1
|
Wang J, Han L, Teng M, Li Q, Zhou J, Li J, Du G, Zhang G. Maltose gradient-induced biosensor-based high-throughput screening for directed evolution of maltogenic amylase from Bacillus stearothermophilus. Int J Biol Macromol 2024; 281:136586. [PMID: 39419146 DOI: 10.1016/j.ijbiomac.2024.136586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Maltogenic amylase is a starch-hydrolyzing enzyme commonly used in bread baking and high-concentration maltose syrup production. However, low catalytic activity limits its industrial application. Improving catalytic activity based on molecular modification and directed evolution requires a High-Throughput Screening (HTS) method. In this study, a maltose gradient-induced (MaGI) biosensor was designed and applied for the directed evolution of maltogenic amylase AmyM, showing a good positive correlation between enzyme activity and fluorescence. The MaGI biosensor detected maltose and maltogenic amylase activity efficiently and specifically. Two mutants, Q440N and S442N/Q661L, were identified through the screening of 3000 mutants using the MaGI biosensor, showing a significant increase in catalytic activity of 35.56 % and 24.51 %, respectively, compared to the wild-type. Meanwhile, the t1/2 of Q440N and S442N/Q661L at 60 °C increased by 58.53 % and 66.66 %, respectively. In industrial applications, the enhancement of catalytic activity and stability is conducive to improving production efficiency and reducing costs. MD simulation has found that when modifying multidomain enzymes, distal mutations can enhance catalytic activity. In conclusion, the developed MaGI biosensor is a promising tool for high-throughput and specific detection of maltose.
Collapse
Affiliation(s)
- Jiayuan Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Laichuang Han
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Maofang Teng
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qinghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Guoqiang Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Ma X, Crespo Tapia N, Koomen J, van Mastrigt O, Zwietering MH, Den Besten HMW, Abee T. Activation of a silent lactose utilization pathway in an evolved Listeria monocytogenes F2365 outbreak isolate. Food Res Int 2024; 189:114554. [PMID: 38876592 DOI: 10.1016/j.foodres.2024.114554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
Listeria monocytogenes, a widespread food-borne pathogen, utilizes diverse growth substrates including mono- and di-saccharides via PEP-phosphotransferase (PTS) systems. We evaluated a collection of L. monocytogenes isolates of different origins for their ability to utilize lactose, a disaccharide composed of galactose and glucose and the main carbon source in milk and dairy products. Notably, the dairy-associated outbreak strain F2365 could not utilize lactose efficiently, conceivably due to a frameshift mutation (lacR887del) resulting in a truncated LacR. Transcriptional activator LacR is involved in the expression of two PTS systems, encoded by the lpo operon lmo1718-1720 in combination with lmo2708 and the lmo2683-2685 operon, and linked to lactose and/or cellobiose metabolism in L. monocytogenes. Via experimental evolution of the ancestral strain F2365, an evolved isolate F2365 EV was obtained which showed enhanced growth and metabolism of lactose. Using the lactose-positive model strain L. monocytogenes EGDe as a control, HPLC experiments showed that EGDe and F2365 EV could consume lactose and utilize the glucose moiety, while the galactose moiety was exported from the cells. Genome sequencing of F2365 EV found the original lacR887del mutation was still present but an additional point mutation lmo2766C415T had occurred, resulting in an amino acid substitution in the putative regulator Lmo2766. The lmo2766 gene is located next to operon lmo2761-2765 with putative PTS genes in the genome. Notably, comparative RNAseq analysis confirmed that the lmo2761-2765 operon was strongly upregulated in F2365 EV in the presence of lactose but not in EGDe and F2365. Conversely, the LacR-regulated lpo operon, lmo2708, and lmo2683-2685 operon were only upregulated in EGDe. Additional growth and HPLC experiments, using mutants constructed in lactose-positive L. monocytogenes EGDe, showed reduced growth of the EGDe lacR887del mutant with no utilization of lactose, while the double mutant EGDe lacR887dellmo2766C415T showed enhanced growth and lactose utilization. Hence, these results demonstrate that an amino acid substitution in the Lmo2766 regulator activates a previously silent lactose utilization pathway encoded by PTS operon lmo2761-2765, facilitating the growth and metabolism of L. monocytogenes with lactose as a substrate. This finding enhances our understanding of the metabolic capabilities and adaptability of L. monocytogenes, offering a broader view of the lactose utilization capacity of this pathogen.
Collapse
Affiliation(s)
- Xuchuan Ma
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Natalia Crespo Tapia
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jeroen Koomen
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Oscar van Mastrigt
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Marcel H Zwietering
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Heidy M W Den Besten
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
3
|
Stege PB, Beekman JM, Hendrickx APA, van Eijk L, Rogers MRC, Suen SWF, Vonk AM, Willems RJL, Paganelli FL. Colonization of vancomycin-resistant Enterococcus faecium in human-derived colonic epithelium: unraveling the transcriptional dynamics of host-enterococcal interactions. FEMS MICROBES 2024; 5:xtae014. [PMID: 38813098 PMCID: PMC11134301 DOI: 10.1093/femsmc/xtae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/27/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024] Open
Abstract
Enterococcus faecium is an opportunistic pathogen able to colonize the intestines of hospitalized patients. This initial colonization is an important step in the downstream pathogenesis, which includes outgrowth of the intestinal microbiota and potential infection of the host. The impact of intestinal overgrowth on host-enterococcal interactions is not well understood. We therefore applied a RNAseq approach in order to unravel the transcriptional dynamics of E. faecium upon co-culturing with human derived colonic epithelium. Co-cultures of colonic epithelium with a hospital-associated vancomycin resistant (vanA-type) E. faecium (VRE) showed that VRE resided on top of the colonic epithelium when analyzed by microscopy. RNAseq revealed that exposure to the colonic epithelium resulted in upregulation of 238 VRE genes compared to the control condition, including genes implicated in pili expression, conjugation (plasmid_2), genes related to sugar uptake, and biofilm formation (chromosome). In total, 260 were downregulated, including the vanA operon located on plasmid_3. Pathway analysis revealed an overall switch in metabolism to amino acid scavenging and reduction. In summary, our study demonstrates that co-culturing of VRE with human colonic epithelium promotes an elaborate gene response in VRE, enhancing our insight in host-E. faecium interactions, which might facilitate the design of novel anti-infectivity strategies.
Collapse
Affiliation(s)
- Paul B Stege
- Department of Medical Microbiology, UMC Utrecht, Utrecht, 3584CX, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
| | - Antoni P A Hendrickx
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721MA, The Netherlands
| | - Laura van Eijk
- Department of Medical Microbiology, UMC Utrecht, Utrecht, 3584CX, The Netherlands
| | - Malbert R C Rogers
- Department of Medical Microbiology, UMC Utrecht, Utrecht, 3584CX, The Netherlands
| | - Sylvia W F Suen
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
| | - Annelotte M Vonk
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, UMC Utrecht, Utrecht, 3584CX, The Netherlands
| | - Fernanda L Paganelli
- Department of Medical Microbiology, UMC Utrecht, Utrecht, 3584CX, The Netherlands
- Winclove Probiotics, Amsterdam, 1033JS, The Netherlands
| |
Collapse
|
4
|
Wang Y, Wang Z, Chen W, Ren ZH, Gao H, Dai J, Luo GZ, Wu Z, Ji Q. A KDPG sensor RccR governs Pseudomonas aeruginosa carbon metabolism and aminoglycoside antibiotic tolerance. Nucleic Acids Res 2024; 52:967-976. [PMID: 38096062 PMCID: PMC10810197 DOI: 10.1093/nar/gkad1201] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
Pseudomonas aeruginosa harbors sophisticated transcription factor (TF) networks to coordinately regulate cellular metabolic states for rapidly adapting to changing environments. The extraordinary capacity in fine-tuning the metabolic states enables its success in tolerance to antibiotics and evading host immune defenses. However, the linkage among transcriptional regulation, metabolic states and antibiotic tolerance in P. aeruginosa remains largely unclear. By screening the P. aeruginosa TF mutant library constructed by CRISPR/Cas12k-guided transposase, we identify that rccR (PA5438) is a major genetic determinant in aminoglycoside antibiotic tolerance, the deletion of which substantially enhances bacterial tolerance. We further reveal the inhibitory roles of RccR in pyruvate metabolism (aceE/F) and glyoxylate shunt pathway (aceA and glcB), and overexpression of aceA or glcB enhances bacterial tolerance. Moreover, we identify that 2-keto-3-deoxy-6-phosphogluconate (KDPG) is a signal molecule that directly binds to RccR. Structural analysis of the RccR/KDPG complex reveals the detailed interactions. Substitution of the key residue R152, K270 or R277 with alanine abolishes KDPG sensing by RccR and impairs bacterial growth with glycerol or glucose as the sole carbon source. Collectively, our study unveils the connection between aminoglycoside antibiotic tolerance and RccR-mediated central carbon metabolism regulation in P. aeruginosa, and elucidates the KDPG-sensing mechanism by RccR.
Collapse
Affiliation(s)
- Yujue Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhipeng Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Weizhong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ze-Hui Ren
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Hui Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiani Dai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guan-Zheng Luo
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Zhaowei Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
5
|
Schulz LM, Konrath A, Rismondo J. Characterisation of the growth behaviour of Listeria monocytogenes in Listeria synthetic media. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:669-683. [PMID: 37864319 PMCID: PMC10667646 DOI: 10.1111/1758-2229.13183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/05/2023] [Indexed: 10/22/2023]
Abstract
The foodborne pathogen Listeria monocytogenes can grow in a wide range of environmental conditions. For the study of the physiology of this organism, several chemically defined media have been developed over the past decades. Here, we examined the ability of L. monocytogenes wildtype strains EGD-e and 10403S to grow under salt and pH stress in Listeria synthetic medium (LSM). Furthermore, we determined that a wide range of carbon sources could support the growth of both wildtype strains in LSM. However, for hexose phosphate sugars such as glucose-1-phosphate, both L. monocytogenes strains need to be pre-grown under conditions, where the major virulence regulator PrfA is active. In addition, growth of both L. monocytogenes strains was observed when LSM was supplemented with the amino acid sugar N-acetylmannosamine (ManNAc). We were able to show that some of the proteins encoded in the operon lmo2795-nanE, such as the ManNAc-6-phosphate epimerase NanE, are required for growth in the presence of ManNAc. The first gene of the operon, lmo2795, encodes a transcriptional regulator of the RpiR family. Using electrophoretic mobility shift assays and quantitative real-time PCR analysis, we were able to show that Lmo2795 binds to the promoter region of the operon lmo2795-nanE and activates its expression.
Collapse
Affiliation(s)
- Lisa Maria Schulz
- Department of General Microbiology, Institute of Microbiology and GeneticsGZMB, Georg‐August University GöttingenGöttingenGermany
| | - Alicia Konrath
- Department of General Microbiology, Institute of Microbiology and GeneticsGZMB, Georg‐August University GöttingenGöttingenGermany
| | - Jeanine Rismondo
- Department of General Microbiology, Institute of Microbiology and GeneticsGZMB, Georg‐August University GöttingenGöttingenGermany
| |
Collapse
|
6
|
Zhang H, Zhang C, Nie X, Wu Y, Yang C, Jiang W, Gu Y. Pleiotropic Regulator GssR Positively Regulates Autotrophic Growth of Gas-Fermenting Clostridium ljungdahlii. Microorganisms 2023; 11:1968. [PMID: 37630531 PMCID: PMC10458427 DOI: 10.3390/microorganisms11081968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Clostridium ljungdahlii is a representative autotrophic acetogen capable of producing multiple chemicals from one-carbon gases (CO2/CO). The metabolic and regulatory networks of this carbon-fixing bacterium are interesting, but still remain minimally explored. Here, based on bioinformatics analysis followed by functional screening, we identified a RpiR family transcription factor (TF) that can regulate the autotrophic growth and carbon fixation of C. ljungdahlii. After deletion of the corresponding gene, the resulting mutant strain exhibited significantly impaired growth in gas fermentation, thus reducing the production of acetic acid and ethanol. In contrast, the overexpression of this TF gene could promote cell growth, indicating a positive regulatory effect of this TF in C. ljungdahlii. Thus, we named the TF as GssR (growth and solvent synthesis regulator). Through the following comparative transcriptomic analysis and biochemical verification, we discovered three important genes (encoding pyruvate carboxylase, carbon hunger protein CstA, and a BlaI family transcription factor) that were directly regulated by GssR. Furthermore, an upstream regulator, BirA, that could directly bind to gssR was found; thus, these two regulators may form a cascade regulation and jointly affect the physiology and metabolism of C. ljungdahlii. These findings substantively expand our understanding on the metabolic regulation of carbon fixation in gas-fermenting Clostridium species.
Collapse
Affiliation(s)
- Huan Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqun Nie
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwei Wu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Weihong Jiang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Yang Gu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
7
|
Afrasiabi S, Zanjani FSA, Ahmadian G, Cohan RA, Keramati M. The effect of manipulating glucuronic acid biosynthetic pathway in Bacillus subtilis strain on hyaluronic acid production. AMB Express 2023; 13:63. [PMID: 37354246 DOI: 10.1186/s13568-023-01567-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/02/2023] [Indexed: 06/26/2023] Open
Abstract
Hyaluronic acid (HA), composed of glucuronic acid (GlcUA) and N-acetyl glucoseamine (GlcNAc), is a versatile biopolymer with high commercial value and innumerous physiological roles and pharmaceutical applications. The hasA gene has main role in HA biosynthesis by Streptococcus strain as a natural producer. The hasB and hasC genes are also mediate GlcUA precursor biosynthesis. In the present study, S. equisimilis hasA gene; B. subtilis tuaD and gtaB genes for GlcUA precursors enhancement, and vgb gene coding bacterial hemoglobin as an oxygen provider were used to construct the B. subtilis strain for HA production. RBSHA (hasA), RBSHA2 (hasA/tuaD/gtaB), and RBSHA3 (hasA/tuaD/gtaB/vgb) strains were developed and confirmed through genotype and phenotype analysis. After HA production and purification, FTIR spectroscopy confirmed the produced HA structures. HA assay showed the highest HA titer for RBSHA3 (2.1 ± 0.18 mg/ml) and then RBSHA2 (1.9 ± 0.03 mg/ml), and RBSHA (0.6 ± 0.14 mg/ml). Statistical analysis indicated there is no significant difference in HA titer between RBSHA2 and RBSHA3 strains (p-value > 0.05), however, these strains produced HA approximately 4-fold higher than that of RBSHA strain. Agarose gel electrophoresis showed the same molecular weight (< 30 kDa) of produced HA by strains. Dynamic light scattering (DLS) revealed all HA polymers had a relatively low polydispersity index (PDI < 0.5). These findings demonstrate the successful GlcUA biosynthetic pathway engineering strategy in improving HA yield by recombinant B. subtilis, metabolically-robust, and industrially potential strain.
Collapse
Affiliation(s)
- Shadi Afrasiabi
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | | | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Malihe Keramati
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
8
|
Prebiotic Isomaltooligosaccharide Provides an Advantageous Fitness to the Probiotic Bacillus subtilis CU1. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacillus subtilis CU1 is a probiotic strain with beneficial effects on immune health in elderly subjects and diarrhea. Commercialized under spore form, new strategies to improve the germination, fitness and beneficial effects of the probiotic once in the gut have to be explored. For this purpose, functional food ingredients, such as isomaltooligosaccharides (IMOSs), could improve the fitness of Bacillus probiotics. IMOSs are composed of α(1 → 6)- and α(1 → 4)-linked oligosaccharides and are partially indigestible. Dietary IMOSs stimulate beneficial members of intestinal microbiota, but the effect of a combination of IMOSs with probiotics, such as B. subtilis CU1, is unknown. In this study, we evaluate the potential effect of IMOSs in B. subtilis CU1 and identify the metabolic pathways involved. The biochemical analysis of the commercial IMOSs highlights a degree of polymerization (DP) comprised between 1 and 29. The metabolism of IMOSs in CU1 was attributed to an α-glucosidase, secreted in the extracellular compartment one hundred times more than with glucose, and which seems to hydrolyze high DP IMOSs into shorter oligosaccharides (DP1, DP2 and DP3) in the culture medium. Proteomic analysis of CU1 after growth on IMOSs showed a reshaping of B. subtilis CU1 metabolism and functions, associated with a decreased production of lactic acid and acetic acid by two times. Moreover, we show for the first time that IMOSs could improve the germination of a Bacillus probiotic in the presence of bile salts in vitro, with an 8 h reduced lag-time when compared to a glucose substrate. Moreover, bacterial concentration (CFU/mL) was increased by about 1 log in IMOS liquid cultures after 48 h when compared to glucose. In conclusion, the use of IMOSs in association with probiotic B. subtilis CU1 in a synbiotic product could improve the fitness and benefits of the probiotic.
Collapse
|
9
|
An operator-based expression toolkit for Bacillus subtilis enables fine-tuning of gene expression and biosynthetic pathway regulation. Proc Natl Acad Sci U S A 2022; 119:e2119980119. [PMID: 35263224 PMCID: PMC8931375 DOI: 10.1073/pnas.2119980119] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A gene regulatory system is an important tool for the engineering of biosynthetic pathways of organisms. Here, we report the development of an inducible-ON/OFF regulatory system using a malO operator as a key element. We identified and modulated sequence, position, numbers, and spacing distance of malO operators, generating a series of activating or repressive promoters with tunable strength. The stringency and robustness are both guaranteed in this system, a maximal induction factor of 790-fold was achieved, and nine proteins from different organisms were expressed with high yields. This system can be utilized as a gene switch, promoter enhancer, or metabolic valve in synthetic biology applications. This operator-based engineering strategy can be employed for developing similar regulatory systems in different microorganisms. Genetic elements are key components of metabolic engineering and synthetic biological applications, allowing the development of organisms as biosensors and for manufacturing valuable chemicals and protein products. In contrast to the gram-negative model bacterium Escherichia coli, the gram-positive model bacterium Bacillus subtilis lacks such elements with precise and flexible characteristics, which is a great barrier to employing B. subtilis for laboratory studies and industrial applications. Here, we report the development of a malO-based genetic toolbox that is derived from the operator box in the malA promoter, enabling gene regulation via compatible “ON” and “OFF” switches. This engineered toolbox combines promoter-based mutagenesis and host-specific metabolic engineering of transactivation components upon maltose induction to achieve stringent, robust, and homogeneous gene regulation in B. subtilis. We further demonstrate the synthetic biological applications of the toolbox by utilizing these genetic elements as a gene switch, a promoter enhancer, and an ON-OFF dual-control device in biosynthetic pathway optimization. Collectively, this regulatory system provides a comprehensive genetic toolbox for controlling the expression of genes in biosynthetic pathways and regulatory networks to optimize the production of valuable chemicals and proteins in B. subtilis.
Collapse
|
10
|
A native conjugative plasmid confers potential selective advantages to plant growth-promoting Bacillus velezensis strain GH1-13. Commun Biol 2021; 4:582. [PMID: 33990691 PMCID: PMC8121941 DOI: 10.1038/s42003-021-02107-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/13/2021] [Indexed: 02/04/2023] Open
Abstract
The conjugative plasmid (pBV71) possibly confers a selective advantage to Bacillus velezensis strain GH1-13, although a selective marker gene is yet to be identified. Here we show that few non-mucoid wild-type GH1-13 cells are spontaneously converted to mucoid variants with or without the loss of pBV71. Mucoid phenotypes, which contain or lack the plasmid, become sensitive to bacitracin, gramicidin, selenite, and tellurite. Using the differences in antibiotic resistance and phenotype, we isolated a reverse complement (COM) and a transconjugant of strain FZB42 with the native pBV71. Transformed COM and FZB42p cells were similar to the wild-type strain GH1-13 with high antibiotic resistance and slow growth rates on lactose compared to those of mucoid phenotypes. RT-PCR analysis revealed that the expression of plasmid-encoded orphan aspartate phosphatase (pRapD) was coordinated with a new quorum-sensing (QS) cassette of RapF2-PhrF2 present in the chromosome of strain GH1-13, but not in strain FZB42. Multi-omics analysis on wild-type and plasmid-cured cells of strain GH1-13 suggested that the conjugative plasmid expression has a crucial role in induction of early envelope stress response that promotes cell morphogenesis, biofilm formation, catabolite repression, and biosynthesis of extracellular-matrix components and antibiotics for protection of host cell during exponential phase.
Collapse
|
11
|
Styles MQ, Nesbitt EA, Hoffmann TD, Queen J, Ortenzi MV, Leak DJ. The heterologous production of terpenes by the thermophile Parageobacillus thermoglucosidasius in a consolidated bioprocess using waste bread. Metab Eng 2020; 65:146-155. [PMID: 33189879 DOI: 10.1016/j.ymben.2020.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/26/2020] [Accepted: 11/08/2020] [Indexed: 11/16/2022]
Abstract
Parageobacillus thermoglucosidasius is a genetically tractable thermophile that grows rapidly at elevated temperatures, with a doubling time at 65 °C comparable to the shortest doubling times of Escherichia coli. It is capable of using a wide variety of substrates, including carbohydrate oligomers, and has been developed for the industrial production of ethanol. In this study, P. thermoglucosidasius NCIMB11955 has been engineered to produce the sesquiterpene τ-muurolol by introduction of a heterologous mevalonate pathway constructed using genes from several thermophilic archaea together with a recently characterised thermostable τ-muurolol synthase. P. thermoglucosidasius naturally uses the methylerythritol phosphate pathway for production of the terpene precursor, isopentenyl pyrophosphate, while archaea use a version of the mevalonate pathway. By introducing the orthogonal archaeal pathway it was possible to increase the flux through to sesquiterpene biosynthesis. Construction of such a large metabolic pathway created problems with genetic vector introduction and stability, so recombinant plasmids were introduced by conjugation, and a thermostable serine integrase system was developed for integration of large pathways onto the chromosome. Finally, by making the heterologous pathway maltose-inducible we demonstrate that the new strain is capable of using waste bread directly as an autoinduction carbon source for the production of terpenes in a consolidated bioprocess.
Collapse
Affiliation(s)
- Matthew Q Styles
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Edward A Nesbitt
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Timothy D Hoffmann
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Junichi Queen
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Maria V Ortenzi
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - David J Leak
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
12
|
Liu H, Liu H, Yang S, Wang R, Wang T. Improved Expression and Optimization of Trehalose Synthase by Regulation of P glv in Bacillus subtilis. Sci Rep 2019; 9:6585. [PMID: 31036837 PMCID: PMC6488592 DOI: 10.1038/s41598-019-43172-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/08/2019] [Indexed: 01/08/2023] Open
Abstract
Trehalose synthase (TreS) converts maltose to trehalose, which has several important functions; therefore, enhancing TreS expression is desirable. Here, a recombinant Bacillus subtilis W800N (ΔamyE)-Pglv strain was constructed to achieve enhanced expression of TreS. Process optimization strategies were developed to improve the expression level of TreS in B. subtilis W800N (ΔamyE)-Pglv. Intracellular activity of TreS was induced using 60 g/L of maltose in shake flask culture. The protein activity reached 5211 ± 134 U/g at 33 °C and pH 7.0 in Luria-Bertani medium. A fed-batch fermentation strategy was applied in a 30 L fermenter containing 18 L terrific broth to achieve high cell density by replacing glycerol with high maltose syrup as a carbon source and an inducer. After 32 h of fermentation, recombinant B. subtilis W800N (ΔamyE)-Pglv activity reached 6850 ± 287 U/g dry cell weight. Our results demonstrate the efficiency of the Pglv promoter in increasing the expression of TreS in B. subtilis W800N (ΔamyE)-Pglv.
Collapse
Affiliation(s)
- Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology(Shandong Academy of Sciences), Jinan, Shandong, 250353, China.,Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.,Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin, 300457, China
| | - Hao Liu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin, 300457, China
| | - Shaojie Yang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology(Shandong Academy of Sciences), Jinan, Shandong, 250353, China.,Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology(Shandong Academy of Sciences), Jinan, Shandong, 250353, China.,Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology(Shandong Academy of Sciences), Jinan, Shandong, 250353, China. .,Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.
| |
Collapse
|
13
|
Copin R, Sause WE, Fulmer Y, Balasubramanian D, Dyzenhaus S, Ahmed JM, Kumar K, Lees J, Stachel A, Fisher JC, Drlica K, Phillips M, Weiser JN, Planet PJ, Uhlemann AC, Altman DR, Sebra R, van Bakel H, Lighter J, Torres VJ, Shopsin B. Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A 2019; 116:1745-1754. [PMID: 30635416 PMCID: PMC6358666 DOI: 10.1073/pnas.1814265116] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The past two decades have witnessed an alarming expansion of staphylococcal disease caused by community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). The factors underlying the epidemic expansion of CA-MRSA lineages such as USA300, the predominant CA-MRSA clone in the United States, are largely unknown. Previously described virulence and antimicrobial resistance genes that promote the dissemination of CA-MRSA are carried by mobile genetic elements, including phages and plasmids. Here, we used high-resolution genomics and experimental infections to characterize the evolution of a USA300 variant plaguing a patient population at increased risk of infection to understand the mechanisms underlying the emergence of genetic elements that facilitate clonal spread of the pathogen. Genetic analyses provided conclusive evidence that fitness (manifest as emergence of a dominant clone) changed coincidently with the stepwise emergence of (i) a unique prophage and mutation of the regulator of the pyrimidine nucleotide biosynthetic operon that promoted abscess formation and colonization, respectively, thereby priming the clone for success; and (ii) a unique plasmid that conferred resistance to two topical microbiocides, mupirocin and chlorhexidine, frequently used for decolonization and infection prevention. The resistance plasmid evolved through successive incorporation of DNA elements from non-S. aureus spp. into an indigenous cryptic plasmid, suggesting a mechanism for interspecies genetic exchange that promotes antimicrobial resistance. Collectively, the data suggest that clonal spread in a vulnerable population resulted from extensive clinical intervention and intense selection pressure toward a pathogen lifestyle that involved the evolution of consequential mutations and mobile genetic elements.
Collapse
Affiliation(s)
- Richard Copin
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - William E Sause
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Yi Fulmer
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Divya Balasubramanian
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Sophie Dyzenhaus
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Jamil M Ahmed
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Krishan Kumar
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - John Lees
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Anna Stachel
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Jason C Fisher
- Division of Pediatric Surgery, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Karl Drlica
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103
| | - Michael Phillips
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Paul J Planet
- Department of Pediatric Infectious Disease, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032
| | - Deena R Altman
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jennifer Lighter
- Division of Pediatric Infectious Diseases, Department of Pediatrics, New York University School of Medicine, New York, NY 10016
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016;
| | - Bo Shopsin
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016;
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
14
|
Cross Talk among Transporters of the Phosphoenolpyruvate-Dependent Phosphotransferase System in Bacillus subtilis. J Bacteriol 2018; 200:JB.00213-18. [PMID: 30038046 PMCID: PMC6148471 DOI: 10.1128/jb.00213-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/18/2018] [Indexed: 12/23/2022] Open
Abstract
The phosphoenolpyruvate-dependent phosphotransferase system (PTS) is the main carbohydrate uptake system in Bacillus subtilis A typical PTS consists of two general proteins, enzyme I (EI) and a histidine-containing protein (HPr), as well as a specific carbohydrate transporter (or enzyme II [EII]), all of which transfer the phosphoryl group from phosphoenolpyruvate to the transported carbohydrate. The specific PTS transporters are formed by multidomain proteins or single-domain subunits. These domains are domain C (EIIC), the transmembrane channel for the carbohydrate transport; domain B (EIIB), the membrane-bound domain responsible for phosphorylation of the carbohydrate; and domain A (EIIA), the mediator between HPr(H15∼P) and EIIB. There are 16 PTS transporters in B. subtilis, 6 of which, i.e., NagP, MalP, MurP, TreP, SacP, and SacX, contain no EIIA domain. Deletion of the single-EIIA-containing transporters showed that there is cross talk between the noncognate EIIA and EIIB domains in PTS. By deletion of all EIIA-containing proteins, strain KM455 (ΔEIIA) was constructed, and the EIIA-containing proteins were individually introduced into the strain. In this way, the PTS transporters of the glucose family, namely, PtsG, GamP, and PtsA (also known as YpqE), enabled growth with maltose, N-acetylglucosamine, sucrose, or trehalose as the sole carbon source. Construction of TkmA-EIIA fusion proteins confirmed the probable interaction between the EIIAs of the glucose family of PTS transporters and the EIIA-deficient PTS transporters. Likewise, we have shown that SacX is mainly phosphorylated by PtsA and GamP. PtsG and GmuA were also able to phosphorylate SacX, albeit less well than GamP and PtsA.IMPORTANCE The phosphoenolpyruvate-dependent phosphotransferase system (PTS) not only is a carbohydrate uptake system in B. subtilis but also plays an important role in sensing the nutrient fluctuation in the medium. This sensing system enables the cells to respond to these fluctuations properly. The PTS transporters have a pivotal role in this sensing system since they are carbohydrate specific. In this study, we tried to understand the interactions among these transporters which revealed the cross talk among PTSs. Three PTS proteins, namely, PtsG (the specific transporter of glucose), GamP (the specific transporter of glucosamine), and PtsA (a cytoplasmic single-domain EIIA protein) were shown to play the major role in the interaction among the PTSs.
Collapse
|
15
|
Aleksandrzak-Piekarczyk T, Szatraj K, Kosiorek K. GlaR (YugA)-a novel RpiR-family transcription activator of the Leloir pathway of galactose utilization in Lactococcus lactis IL1403. Microbiologyopen 2018; 8:e00714. [PMID: 30099846 PMCID: PMC6528599 DOI: 10.1002/mbo3.714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 01/27/2023] Open
Abstract
Bacteria can utilize diverse sugars as carbon and energy source, but the regulatory mechanisms directing the choice of the preferred substrate are often poorly understood. Here, we analyzed the role of the YugA protein (now designated GlaR—Galactose–lactose operon Regulatory protein) of the RpiR family as a transcriptional activator of galactose (gal genes) and lactose (lac genes) utilization genes in Lactococcus lactis IL1403. In this bacterium, gal genes forming the Leloir operon are combined with lac genes in a single so‐called gal–lac operon. The first gene of this operon is the lacS gene encoding galactose permease. The glaR gene encoding GlaR lies directly upstream of the gal–lac gene cluster and is transcribed in the same direction. This genetic layout and the presence of glaR homologues in the closest neighborhood to the Leloir or gal–lac operons are highly conserved only among Lactococcus species. Deletion of glaR disabled galactose utilization and abrogated or decreased expression of the gal–lac genes. The GlaR‐dependent regulation of the gal–lac operon depends on its specific binding to a DNA region upstream of the lacS gene activating lacS expression and increasing the expression of the operon genes localized downstream. Notably, expression of lacS‐downstream genes, namely galMKTE, thgA and lacZ, is partially independent of the GlaR‐driven activation likely due to the presence of additional promoters. The glaR transcription itself is not subject to catabolite control protein A (CcpA) carbon catabolite repression (CRR) and is induced by galactose. Up to date, no similar mechanism has been reported in other lactic acid bacteria species. These results reveal a novel regulatory protein and shed new light on the regulation of carbohydrate catabolism in L. lactis IL1403, and by similarity, probably also in other lactococci.
Collapse
Affiliation(s)
| | - Katarzyna Szatraj
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences (IBB PAS), Warsaw, Poland
| | - Katarzyna Kosiorek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences (IBB PAS), Warsaw, Poland
| |
Collapse
|
16
|
Udaondo Z, Ramos JL, Segura A, Krell T, Daddaoua A. Regulation of carbohydrate degradation pathways in Pseudomonas involves a versatile set of transcriptional regulators. Microb Biotechnol 2018; 11:442-454. [PMID: 29607620 PMCID: PMC5902321 DOI: 10.1111/1751-7915.13263] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/22/2018] [Accepted: 03/01/2018] [Indexed: 01/08/2023] Open
Abstract
Bacteria of the genus Pseudomonas are widespread in nature. In the last decades, members of this genus, especially Pseudomonas aeruginosa and Pseudomonas putida, have acquired great interest because of their interactions with higher organisms. Pseudomonas aeruginosa is an opportunistic pathogen that colonizes the lung of cystic fibrosis patients, while P. putida is a soil bacterium able to establish a positive interaction with the plant rhizosphere. Members of Pseudomonas genus have a robust metabolism for amino acids and organic acids as well as aromatic compounds; however, these microbes metabolize a very limited number of sugars. Interestingly, they have three-pronged metabolic system to generate 6-phosphogluconate from glucose suggesting an adaptation to efficiently consume this sugar. This review focuses on the description of the regulatory network of glucose utilization in Pseudomonas, highlighting the differences between P. putida and P. aeruginosa. Most interestingly, It is highlighted a functional link between glucose assimilation and exotoxin A production in P. aeruginosa. The physiological relevance of this connection remains unclear, and it needs to be established whether a similar relationship is also found in other bacteria.
Collapse
Affiliation(s)
- Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301W. Markham St., Slot 782, Little Rock, AR, 72205, USA
| | - Juan-Luis Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín, C/ Profesor Albareda 1, E-18008, Granada, Spain
| | - Ana Segura
- Department of Environmental Protection, Estación Experimental del Zaidín, C/ Profesor Albareda 1, E-18008, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, C/ Profesor Albareda 1, E-18008, Granada, Spain
| | - Abdelali Daddaoua
- Department of Biochemistry and Molecular Biology II, Pharmacy School, Granada University, Granada, Spain
| |
Collapse
|
17
|
Yue J, Fu G, Zhang D, Wen J. A new maltose-inducible high-performance heterologous expression system in Bacillus subtilis. Biotechnol Lett 2017; 39:1237-1244. [PMID: 28527120 DOI: 10.1007/s10529-017-2357-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/11/2017] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To improve heterologous proteins production, we constructed a maltose-inducible expression system in Bacillus subtilis. RESULTS An expression system based on the promoter for maltose utilization constructed in B. subtilis. Successively, to improve the performance of the P malA -derived system, mutagenesis was employed by gradually shortening the length of P malA promoter and altering the spacing between the predicted MalR binding site and the -35 region. Furthermore, deletion of the maltose utilization genes (malL and yvdK) improved the P malA promoter activity. Finally, using this efficient maltose-inducible expression system, we enhanced the production of luciferase and D-aminoacylase, compared with the P hpaII system. CONCLUSIONS A maltose-inducible expression system was constructed and evaluated. It could be used for high level expression of heterologous proteins production.
Collapse
Affiliation(s)
- Jie Yue
- Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Key Laboratories of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Gang Fu
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Key Laboratories of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Dawei Zhang
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
- Key Laboratories of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
| | - Jianping Wen
- Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| |
Collapse
|
18
|
Engineering of Escherichia coli to facilitate efficient utilization of isomaltose and panose in industrial glucose feedstock. Appl Microbiol Biotechnol 2016; 101:2057-2066. [PMID: 27933453 PMCID: PMC5309279 DOI: 10.1007/s00253-016-8037-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/27/2016] [Accepted: 11/26/2016] [Indexed: 10/25/2022]
Abstract
Industrial glucose feedstock prepared by enzymatic digestion of starch typically contains significant amounts of disaccharides such as maltose and isomaltose and trisaccharides such as maltotriose and panose. Maltose and maltosaccharides can be utilized in Escherichia coli fermentation using industrial glucose feedstock because there is an intrinsic assimilation pathway for these sugars. However, saccharides that contain α-1,6 bonds, such as isomaltose and panose, are still present after fermentation because there is no metabolic pathway for these sugars. To facilitate more efficient utilization of glucose feedstock, we introduced glvA, which encodes phospho-α-glucosidase, and glvC, which encodes a subunit of the phosphoenolpyruvate-dependent maltose phosphotransferase system (PTS) of Bacillus subtilis, into E. coli. The heterologous expression of glvA and glvC conferred upon the recombinant the ability to assimilate isomaltose and panose. The recombinant E. coli assimilated not only other disaccharides but also trisaccharides, including alcohol forms of these saccharides, such as isomaltitol. To the best of our knowledge, this is the first report to show the involvement of the microbial PTS in the assimilation of trisaccharides. Furthermore, we demonstrated that an L-lysine-producing E. coli harboring glvA and glvC converted isomaltose and panose to L-lysine efficiently. These findings are expected to be beneficial for industrial fermentation.
Collapse
|
19
|
Diomandé SE, Doublet B, Vasaï F, Guinebretière MH, Broussolle V, Brillard J. Expression of the genes encoding the CasK/R two-component system and the DesA desaturase during Bacillus cereus cold adaptation. FEMS Microbiol Lett 2016; 363:fnw174. [PMID: 27435329 DOI: 10.1093/femsle/fnw174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2016] [Indexed: 11/13/2022] Open
Abstract
Two-component systems (TCS) allow a cell to elaborate a variety of adaptive responses to environment changes. The recently discovered CasK/R TCS plays a role in the optimal unsaturation of fatty acids necessary for cold adaptation of the foodborne-pathogen Bacillus cereus Here, we showed that the promoter activity of the operon encoding this TCS was repressed during growth at low temperature in the stationary phase in the parental strain when compared to the casK/R mutant, suggesting that CasR negatively regulates the activity of its own promoter in these conditions. The promoter activity of the desA gene encoding the Δ5 fatty acid desaturase, providing unsaturated fatty acids (UFAs) required for low temperature adaptation, was repressed in the casK/R mutant grown at 12°C versus 37°C. This result suggests that CasK/R activates desA expression during B. cereus growth at low temperature, allowing an optimal unsaturation of the fatty acids. In contrast, desA expression was repressed during the lag phase at low temperature in presence of UFAs, in a CasK/R-independent manner. Our findings confirm that the involvement of this major TCS in B. cereus cold adaptation is linked to the upregulation of a fatty acid desaturase.
Collapse
Affiliation(s)
| | | | | | | | | | - Julien Brillard
- SQPOV, INRA, Univ. Avignon, 84000 Avignon, France DGIMI, INRA, Univ. Montpellier, 34095 Montpellier, France
| |
Collapse
|
20
|
Staphylococcus aureus Coordinates Leukocidin Expression and Pathogenesis by Sensing Metabolic Fluxes via RpiRc. mBio 2016; 7:mBio.00818-16. [PMID: 27329753 PMCID: PMC4916384 DOI: 10.1128/mbio.00818-16] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Staphylococcus aureus is a formidable human pathogen that uses secreted cytolytic factors to injure immune cells and promote infection of its host. Of these proteins, the bicomponent family of pore-forming leukocidins play critical roles in S. aureus pathogenesis. The regulatory mechanisms governing the expression of these toxins are incompletely defined. In this work, we performed a screen to identify transcriptional regulators involved in leukocidin expression in S. aureus strain USA300. We discovered that a metabolic sensor-regulator, RpiRc, is a potent and selective repressor of two leukocidins, LukED and LukSF-PV. Whole-genome transcriptomics, S. aureus exoprotein proteomics, and metabolomic analyses revealed that RpiRc influences the expression and production of disparate virulence factors. Additionally, RpiRc altered metabolic fluxes in the trichloroacetic acid cycle, glycolysis, and amino acid metabolism. Using mutational analyses, we confirmed and extended the observation that RpiRc signals through the accessory gene regulatory (Agr) quorum-sensing system in USA300. Specifically, RpiRc represses the rnaIII promoter, resulting in increased repressor of toxins (Rot) levels, which in turn negatively affect leukocidin expression. Inactivation of rpiRc phenocopied rot deletion and increased S. aureus killing of primary human polymorphonuclear leukocytes and the pathogenesis of bloodstream infection in vivo. Collectively, our results suggest that S. aureus senses metabolic shifts by RpiRc to differentially regulate the expression of leukocidins and to promote invasive disease. IMPORTANCE The bicomponent pore-forming leukocidins play pivotal roles in the ability of S. aureus to kill multiple host immune cells, thus enabling this pathogen to have diverse tissue- and species-tropic effects. While the mechanisms of leukocidin-host receptor interactions have been studied in detail, the regulatory aspects of leukocidin expression are less well characterized. Moreover, the expression of the leukocidins is highly modular in vitro, suggesting the presence of regulators other than the known Agr, Rot, and S. aureus exoprotein pathways. Here, we describe how RpiRc, a metabolite-sensing transcription factor, mediates the repression of two specific leukocidin genes, lukED and pvl, which in turn has complex effects on the pathogenesis of S. aureus Our findings highlight the intricacies of leukocidin regulation by S. aureus and demonstrate the involvement of factors beyond traditional virulence factor regulators.
Collapse
|
21
|
Abstract
Pathogenic bacteria must contend with immune systems that actively restrict the availability of nutrients and cofactors, and create a hostile growth environment. To deal with these hostile environments, pathogenic bacteria have evolved or acquired virulence determinants that aid in the acquisition of nutrients. This connection between pathogenesis and nutrition may explain why regulators of metabolism in nonpathogenic bacteria are used by pathogenic bacteria to regulate both metabolism and virulence. Such coordinated regulation is presumably advantageous because it conserves carbon and energy by aligning synthesis of virulence determinants with the nutritional environment. In Gram-positive bacterial pathogens, at least three metabolite-responsive global regulators, CcpA, CodY, and Rex, have been shown to coordinate the expression of metabolism and virulence genes. In this chapter, we discuss how environmental challenges alter metabolism, the regulators that respond to this altered metabolism, and how these regulators influence the host-pathogen interaction.
Collapse
|
22
|
HexR Controls Glucose-Responsive Genes and Central Carbon Metabolism in Neisseria meningitidis. J Bacteriol 2015; 198:644-54. [PMID: 26644430 DOI: 10.1128/jb.00659-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/24/2015] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Neisseria meningitidis, an exclusively human pathogen and the leading cause of bacterial meningitis, must adapt to different host niches during human infection. N. meningitidis can utilize a restricted range of carbon sources, including lactate, glucose, and pyruvate, whose concentrations vary in host niches. Microarray analysis of N. meningitidis grown in a chemically defined medium in the presence or absence of glucose allowed us to identify genes regulated by carbon source availability. Most such genes are implicated in energy metabolism and transport, and some are implicated in virulence. In particular, genes involved in glucose catabolism were upregulated, whereas genes involved in the tricarboxylic acid cycle were downregulated. Several genes encoding surface-exposed proteins, including the MafA adhesins and Neisseria surface protein A, were upregulated in the presence of glucose. Our microarray analysis led to the identification of a glucose-responsive hexR-like transcriptional regulator that controls genes of the central carbon metabolism of N. meningitidis in response to glucose. We characterized the HexR regulon and showed that the hexR gene is accountable for some of the glucose-responsive regulation; in vitro assays with the purified protein showed that HexR binds to the promoters of the central metabolic operons of the bacterium. Based on DNA sequence alignment of the target sites, we propose a 17-bp pseudopalindromic consensus HexR binding motif. Furthermore, N. meningitidis strains lacking hexR expression were deficient in establishing successful bacteremia in an infant rat model of infection, indicating the importance of this regulator for the survival of this pathogen in vivo. IMPORTANCE Neisseria meningitidis grows on a limited range of nutrients during infection. We analyzed the gene expression of N. meningitidis in response to glucose, the main energy source available in human blood, and we found that glucose regulates many genes implicated in energy metabolism and nutrient transport, as well as some implicated in virulence. We identified and characterized a transcriptional regulator (HexR) that controls metabolic genes of N. meningitidis in response to glucose. We generated a mutant lacking HexR and found that the mutant was impaired in causing systemic infection in animal models. Since N. meningitidis lacks known bacterial regulators of energy metabolism, our findings suggest that HexR plays a major role in its biology by regulating metabolism in response to environmental signals.
Collapse
|
23
|
Abstract
In Salmonella enterica, the reversible lysine acetylation (RLA) system is comprised of the protein acetyltransferase (Pat) and sirtuin deacetylase (CobB). RLA controls the activities of many proteins, including the acetyl coenzyme A (acetyl-CoA) synthetase (Acs), by modulating the degree of Acs acetylation. We report that IolR, a myo-inositol catabolism repressor, activates the expression of genes encoding components of the RLA system. In vitro evidence shows that the IolR protein directly regulates pat expression. An iolR mutant strain displayed a growth defect in minimal medium containing 10 mM acetate, a condition under which RLA function is critical to control Acs activity. Increased levels of Pat, CobB, or Acs activity reversed the growth defect, suggesting the Pat/CobB ratio in an iolR strain is altered and that such a change affects the level of acetylated, inactive Acs. Results of quantitative reverse transcription-PCR (qRT-PCR) analyses of pat, cobB, and acs expression indicated that expression of the genes alluded to in the IolR-deficient strain was reduced 5-, 3-, and 2.6-fold, respectively, relative to the levels present in the strain carrying the iolR+ allele. Acs activity in cell-free extracts from an iolR mutant strain was reduced ~25% relative to that of the iolR+ strain. Glucose differentially regulated expression of pat, cobB, and acs. The catabolite repressor protein (Crp) positively regulated expression of pat while having no effect on cobB. Reversible lysine acylation is used by cells of all domains of life to modulate the function of proteins involved in diverse cellular processes. Work reported herein begins to outline the regulatory circuitry that integrates the expression of genes encoding enzymes that control the activity of a central metabolic enzyme in C2 metabolism. Genetic analyses revealed effects on reversible lysine acylation that greatly impacted the growth behavior of the cell. This work provides the first insights into the complexities of the system responsible for controlling reversible lysine acylation at the transcriptional level in the enteropathogenic bacterium Salmonella enterica.
Collapse
|
24
|
Van der Heiden E, Delmarcelle M, Simon P, Counson M, Galleni M, Freedberg DI, Thompson J, Joris B, Battistel MD. Synthesis and Physicochemical Characterization of D-Tagatose-1-Phosphate: The Substrate of the Tagatose-1-Phosphate Kinase in the Phosphotransferase System-Mediated D-Tagatose Catabolic Pathway of Bacillus licheniformis. J Mol Microbiol Biotechnol 2015; 25:106-19. [PMID: 26159072 DOI: 10.1159/000370115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We report the first enzymatic synthesis of D-tagatose-1-phosphate (Tag-1P) by the multicomponent phosphoenolpyruvate:sugar phosphotransferase system (PEP-PTS) present in tagatose-grown cells of Klebsiella pneumoniae. Physicochemical characterization by (31)P and (1)H nuclear magnetic resonance spectroscopy reveals that, in solution, this derivative is primarily in the pyranose form. Tag-1P was used to characterize the putative tagatose-1-phosphate kinase (TagK) of the Bacillus licheniformis PTS-mediated D-tagatose catabolic pathway (Bli-TagP). For this purpose, a soluble protein fusion was obtained with the 6 His-tagged trigger factor (TF(His6)) of Escherichia coli. The active fusion enzyme was named TagK-TF(His6). Tag-1P and D-fructose-1-phosphate are substrates for the TagK-TF(His6) enzyme, whereas the isomeric derivatives D-tagatose-6-phosphate and D-fructose-6-phosphate are inhibitors. Studies of catalytic efficiency (kcat/Km) reveal that the enzyme specificity is markedly in favor of Tag-1P as the substrate. Importantly, we show in vivo that the transfer of the phosphate moiety from PEP to the B. licheniformis tagatose-specific Enzyme II in E. coli is inefficient. The capability of the PTS general cytoplasmic components of B. subtilis, HPr and Enzyme I to restore the phosphate transfer is demonstrated.
Collapse
Affiliation(s)
- Edwige Van der Heiden
- Center for Protein Engineering, University of Liège, Institut de Chimie, Sart-Tilman, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Identification of a two-component signal transduction system that regulates maltose genes in Clostridium perfringens. Anaerobe 2014; 30:199-204. [DOI: 10.1016/j.anaerobe.2014.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/05/2014] [Accepted: 08/08/2014] [Indexed: 11/23/2022]
|
26
|
ClaR--a novel key regulator of cellobiose and lactose metabolism in Lactococcus lactis IL1403. Appl Microbiol Biotechnol 2014; 99:337-47. [PMID: 25239037 PMCID: PMC4286628 DOI: 10.1007/s00253-014-6067-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/11/2014] [Accepted: 08/31/2014] [Indexed: 11/21/2022]
Abstract
In a number of previous studies, our group has discovered an alternative pathway for lactose utilization in Lactococcus lactis that, in addition to a sugar-hydrolyzing enzyme with both P-β-glucosidase and P-β-galactosidase activity (BglS), engages chromosomally encoded components of cellobiose-specific PTS (PTSCel-Lac), including PtcA, PtcB, and CelB. In this report, we show that this system undergoes regulation via ClaR, a novel activator protein from the RpiR family of transcriptional regulators. Although RpiR proteins are widely distributed among lactic acid bacteria, their roles have yet to be confirmed by functional assays. Here, we show that ClaR activity depends on intracellular cellobiose-6-phosphate availability, while other sugars such as glucose or galactose have no influence on it. We also show that ClaR is crucial for activation of the bglS and celB expression in the presence of cellobiose, with some limited effects on ptcA and ptcB activation. Among 190 of carbon sources tested, the deletion of claR reduces L. lactis growth only in lactose- and/or cellobiose-containing media, suggesting a narrow specificity of this regulator within the context of sugar metabolism.
Collapse
|
27
|
Freyre-González JA, Manjarrez-Casas AM, Merino E, Martinez-Nuñez M, Perez-Rueda E, Gutiérrez-Ríos RM. Lessons from the modular organization of the transcriptional regulatory network of Bacillus subtilis. BMC SYSTEMS BIOLOGY 2013; 7:127. [PMID: 24237659 PMCID: PMC4225672 DOI: 10.1186/1752-0509-7-127] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 11/12/2013] [Indexed: 12/27/2022]
Abstract
Background The regulation of gene expression at the transcriptional level is a fundamental process in prokaryotes. Among the different kind of mechanisms modulating gene transcription, the one based on DNA binding transcription factors, is the most extensively studied and the results, for a great number of model organisms, have been compiled making it possible the in silico construction of their corresponding transcriptional regulatory networks and the analysis of the biological relationships of the components of these intricate networks, that allows to elucidate the significant aspects of their organization and evolution. Results We present a thorough review of each regulatory element that constitutes the transcriptional regulatory network of Bacillus subtilis. For facilitating the discussion, we organized the network in topological modules. Our study highlight the importance of σ factors, some of them acting as master regulators which characterize modules by inter- or intra-connecting them and play a key role in the cascades that define relevant cellular processes in this organism. We discussed that some particular functions were distributed in more than one module and that some modules contained more than one related function. We confirm that the presence of paralogous proteins confers advantages to B. subtilis to adapt and select strategies to successfully face the extreme and changing environmental conditions in which it lives. Conclusions The intricate organization is the product of a non-random network evolution that primarily follows a hierarchical organization based on the presence of transcription and σ factor, which is reflected in the connections that exist within and between modules.
Collapse
Affiliation(s)
- Julio A Freyre-González
- Departamentos de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Postal 510-3, Cuernavaca, Morelos 62250, México.
| | | | | | | | | | | |
Collapse
|
28
|
Heravi KM, Altenbuchner J. Regulation of the Bacillus subtilis mannitol utilization genes: promoter structure and transcriptional activation by the wild-type regulator (MtlR) and its mutants. MICROBIOLOGY-SGM 2013; 160:91-101. [PMID: 24196428 DOI: 10.1099/mic.0.071233-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Expression of mannitol utilization genes in Bacillus subtilis is directed by PmtlA, the promoter of the mtlAFD operon, and PmtlR, the promoter of the MtlR activator. MtlR contains phosphoenolpyruvate-dependent phosphotransferase system (PTS) regulation domains, called PRDs. The activity of PRD-containing MtlR is mainly regulated by the phosphorylation/dephosphorylation of its PRDII and EIIB(Gat)-like domains. Replacing histidine 342 and cysteine 419 residues, which are the targets of phosphorylation in these two domains, by aspartate and alanine provided MtlR-H342D C419A, which permanently activates PmtlA in vivo. In the mtlR-H342D C419A mutant, PmtlA was active, even when the mtlAFD operon was deleted from the genome. The mtlR-H342D C419A allele was expressed in an Escherichia coli strain lacking enzyme I of the PTS. Electrophoretic mobility shift assays using purified MtlR-H342D C419A showed an interaction between the MtlR double-mutant and the Cy5-labelled PmtlA and PmtlR DNA fragments. These investigations indicate that the activated MtlR functions regardless of the presence of the mannitol-specific transporter (MtlA). This is in contrast to the proposed model in which the sequestration of MtlR by the MtlA transporter is necessary for the activity of MtlR. Additionally, DNase I footprinting, construction of PmtlA-PlicB hybrid promoters, as well as increasing the distance between the MtlR operator and the -35 box of PmtlA revealed that the activated MtlR molecules and RNA polymerase holoenzyme likely form a class II type activation complex at PmtlA and PmtlR during transcription initiation.
Collapse
Affiliation(s)
- Kambiz Morabbi Heravi
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Josef Altenbuchner
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
29
|
Mokhtari A, Blancato VS, Repizo GD, Henry C, Pikis A, Bourand A, de Fátima Álvarez M, Immel S, Mechakra-Maza A, Hartke A, Thompson J, Magni C, Deutscher J. Enterococcus faecalis utilizes maltose by connecting two incompatible metabolic routes via a novel maltose 6'-phosphate phosphatase (MapP). Mol Microbiol 2013; 88:234-53. [PMID: 23490043 DOI: 10.1111/mmi.12183] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2013] [Indexed: 11/30/2022]
Abstract
Similar to Bacillus subtilis, Enterococcus faecalis transports and phosphorylates maltose via a phosphoenolpyruvate (PEP):maltose phosphotransferase system (PTS). The maltose-specific PTS permease is encoded by the malT gene. However, E. faecalis lacks a malA gene encoding a 6-phospho-α-glucosidase, which in B. subtilis hydrolyses maltose 6'-P into glucose and glucose 6-P. Instead, an operon encoding a maltose phosphorylase (MalP), a phosphoglucomutase and a mutarotase starts upstream from malT. MalP was suggested to split maltose 6-P into glucose 1-P and glucose 6-P. However, purified MalP phosphorolyses maltose but not maltose 6'-P. We discovered that the gene downstream from malT encodes a novel enzyme (MapP) that dephosphorylates maltose 6'-P formed by the PTS. The resulting intracellular maltose is cleaved by MalP into glucose and glucose 1-P. Slow uptake of maltose probably via a maltodextrin ABC transporter allows poor growth for the mapP but not the malP mutant. Synthesis of MapP in a B. subtilis mutant accumulating maltose 6'-P restored growth on maltose. MapP catalyses the dephosphorylation of intracellular maltose 6'-P, and the resulting maltose is converted by the B. subtilis maltose phosphorylase into glucose and glucose 1-P. MapP therefore connects PTS-mediated maltose uptake to maltose phosphorylase-catalysed metabolism. Dephosphorylation assays with a wide variety of phospho-substrates revealed that MapP preferably dephosphorylates disaccharides containing an O-α-glycosyl linkage.
Collapse
Affiliation(s)
- Abdelhamid Mokhtari
- INRA, Microbiologie de l'alimentation au service de la santé humaine (MICALIS), UMR1319, F-78350, Jouy en Josas, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates. BMC Microbiol 2012; 12:116. [PMID: 22720735 PMCID: PMC3438084 DOI: 10.1186/1471-2180-12-116] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 05/31/2012] [Indexed: 11/21/2022] Open
Abstract
Background Plant root exudates have been shown to play an important role in mediating interactions between plant growth-promoting rhizobacteria (PGPR) and their host plants. Most investigations were performed on Gram-negative rhizobacteria, while much less is known about Gram-positive rhizobacteria. To elucidate early responses of PGPR to root exudates, we investigated changes in the transcriptome of a Gram-positive PGPR to plant root exudates. Results Bacillus amyloliquefaciens FZB42 is a well-studied Gram-positive PGPR. To obtain a comprehensive overview of FZB42 gene expression in response to maize root exudates, microarray experiments were performed. A total of 302 genes representing 8.2% of the FZB42 transcriptome showed significantly altered expression levels in the presence of root exudates. The majority of the genes (261) was up-regulated after incubation of FZB42 with root exudates, whereas only 41 genes were down-regulated. Several groups of the genes which were strongly induced by the root exudates are involved in metabolic pathways relating to nutrient utilization, bacterial chemotaxis and motility, and non-ribosomal synthesis of antimicrobial peptides and polyketides. Conclusions Here we present a transcriptome analysis of the root-colonizing bacterium Bacillus amyloliquefaciens FZB42 in response to maize root exudates. The 302 genes identified as being differentially transcribed are proposed to be involved in interactions of Gram-positive bacteria with plants.
Collapse
|
31
|
RpiR homologues may link Staphylococcus aureus RNAIII synthesis and pentose phosphate pathway regulation. J Bacteriol 2011; 193:6187-96. [PMID: 21926234 DOI: 10.1128/jb.05930-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a medically important pathogen that synthesizes a wide range of virulence determinants. The synthesis of many staphylococcal virulence determinants is regulated in part by stress-induced changes in the activity of the tricarboxylic acid (TCA) cycle. One metabolic change associated with TCA cycle stress is an increased concentration of ribose, leading us to hypothesize that a pentose phosphate pathway (PPP)-responsive regulator mediates some of the TCA cycle-dependent regulatory effects. Using bioinformatics, we identified three potential ribose-responsive regulators that belong to the RpiR family of transcriptional regulators. To determine whether these RpiR homologues affect PPP activity and virulence determinant synthesis, the rpiR homologues were inactivated, and the effects on PPP activity and virulence factor synthesis were assessed. Two of the three homologues (RpiRB and RpiRC) positively influence the transcription of the PPP genes rpiA and zwf, while the third homologue (RpiRA) is slightly antagonistic to the other homologues. In addition, inactivation of RpiRC altered the temporal transcription of RNAIII, the effector molecule of the agr quorum-sensing system. These data confirm the close linkage of central metabolism and virulence determinant synthesis, and they establish a metabolic override for quorum-sensing-dependent regulation of RNAIII transcription.
Collapse
|
32
|
The RpiR-like repressor IolR regulates inositol catabolism in Sinorhizobium meliloti. J Bacteriol 2011; 193:5155-63. [PMID: 21784930 DOI: 10.1128/jb.05371-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium meliloti, the nitrogen-fixing symbiont of alfalfa, has the ability to catabolize myo-, scyllo-, and D-chiro-inositol. Functional inositol catabolism (iol) genes are required for growth on these inositol isomers, and they play a role during plant-bacterium interactions. The inositol catabolism genes comprise the chromosomally encoded iolA (mmsA) and the iolY(smc01163)RCDEB genes, as well as the idhA gene located on the pSymB plasmid. Reverse transcriptase assays showed that the iolYRCDEB genes are transcribed as one operon. The iol genes were weakly expressed without induction, but their expression was strongly induced by myo-inositol. The putative transcriptional regulator of the iol genes, IolR, belongs to the RpiR-like repressor family. Electrophoretic mobility shift assays demonstrated that IolR recognized a conserved palindromic sequence (5'-GGAA-N6-TTCC-3') in the upstream regions of the idhA, iolY, iolR, and iolC genes. Complementation assays found IolR to be required for the repression of its own gene and for the downregulation of the idhA-encoded myo-inositol dehydrogenase activity in the presence and absence of inositol. Further expression studies indicated that the late pathway intermediate 2-keto-5-deoxy-D-gluconic acid 6-phosphate (KDGP) functions as the true inducer of the iol genes. The iolA (mmsA) gene encoding methylmalonate semialdehyde dehydrogenase was not regulated by IolR. The S. meliloti iolA (mmsA) gene product seems to be involved in more than only the inositol catabolic pathway, since it was also found to be essential for valine catabolism, supporting its more recent annotation as mmsA.
Collapse
|
33
|
Ruiz JC, D'Afonseca V, Silva A, Ali A, Pinto AC, Santos AR, Rocha AAMC, Lopes DO, Dorella FA, Pacheco LGC, Costa MP, Turk MZ, Seyffert N, Moraes PMRO, Soares SC, Almeida SS, Castro TLP, Abreu VAC, Trost E, Baumbach J, Tauch A, Schneider MPC, McCulloch J, Cerdeira LT, Ramos RTJ, Zerlotini A, Dominitini A, Resende DM, Coser EM, Oliveira LM, Pedrosa AL, Vieira CU, Guimarães CT, Bartholomeu DC, Oliveira DM, Santos FR, Rabelo ÉM, Lobo FP, Franco GR, Costa AF, Castro IM, Dias SRC, Ferro JA, Ortega JM, Paiva LV, Goulart LR, Almeida JF, Ferro MIT, Carneiro NP, Falcão PRK, Grynberg P, Teixeira SMR, Brommonschenkel S, Oliveira SC, Meyer R, Moore RJ, Miyoshi A, Oliveira GC, Azevedo V. Evidence for reductive genome evolution and lateral acquisition of virulence functions in two Corynebacterium pseudotuberculosis strains. PLoS One 2011; 6:e18551. [PMID: 21533164 PMCID: PMC3078919 DOI: 10.1371/journal.pone.0018551] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/11/2011] [Indexed: 02/02/2023] Open
Abstract
Background Corynebacterium pseudotuberculosis, a Gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America. Although C. pseudotuberculosis causes major health and productivity problems for livestock, little is known about the molecular basis of its pathogenicity. Methodology and Findings We characterized two C. pseudotuberculosis genomes (Cp1002, isolated from goats; and CpC231, isolated from sheep). Analysis of the predicted genomes showed high similarity in genomic architecture, gene content and genetic order. When C. pseudotuberculosis was compared with other Corynebacterium species, it became evident that this pathogenic species has lost numerous genes, resulting in one of the smallest genomes in the genus. Other differences that could be part of the adaptation to pathogenicity include a lower GC content, of about 52%, and a reduced gene repertoire. The C. pseudotuberculosis genome also includes seven putative pathogenicity islands, which contain several classical virulence factors, including genes for fimbrial subunits, adhesion factors, iron uptake and secreted toxins. Additionally, all of the virulence factors in the islands have characteristics that indicate horizontal transfer. Conclusions These particular genome characteristics of C. pseudotuberculosis, as well as its acquired virulence factors in pathogenicity islands, provide evidence of its lifestyle and of the pathogenicity pathways used by this pathogen in the infection process. All genomes cited in this study are available in the NCBI Genbank database (http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers CP001809 and CP001829.
Collapse
Affiliation(s)
- Jerônimo C. Ruiz
- Research Center René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Vívian D'Afonseca
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Artur Silva
- Department of Genetics, Federal University of Pará, Belém, Pará, Brazil
| | - Amjad Ali
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anne C. Pinto
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson R. Santos
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aryanne A. M. C. Rocha
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Débora O. Lopes
- Health Sciences Center, Federal University of São João Del Rei, Divinópilis, Minas Gerais, Brazil
| | - Fernanda A. Dorella
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luis G. C. Pacheco
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Biointeraction Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Marcília P. Costa
- Department of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Meritxell Z. Turk
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Núbia Seyffert
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pablo M. R. O. Moraes
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Siomar C. Soares
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sintia S. Almeida
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thiago L. P. Castro
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vinicius A. C. Abreu
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eva Trost
- Department of Genetics, University of Bielefeld, CeBiTech, Bielefeld, Nordrhein-Westfale, Germany
| | - Jan Baumbach
- Department of Computer Science, Max-Planck-Institut für Informatik, Saarbrücken, Saarlan, Germany
| | - Andreas Tauch
- Department of Genetics, University of Bielefeld, CeBiTech, Bielefeld, Nordrhein-Westfale, Germany
| | | | - John McCulloch
- Department of Genetics, Federal University of Pará, Belém, Pará, Brazil
| | | | | | - Adhemar Zerlotini
- Research Center René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson Dominitini
- Research Center René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela M. Resende
- Research Center René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
- Department of Pharmaceutical Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Elisângela M. Coser
- Research Center René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana M. Oliveira
- Department of Phisics, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - André L. Pedrosa
- Department of Pharmaceutical Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
- Department of Biological Sciences, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Carlos U. Vieira
- Department of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Cláudia T. Guimarães
- Brazilian Agricultural Research Corporation (EMBRAPA), Sete Lagoas, Minas Gerais, Brazil
| | - Daniela C. Bartholomeu
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Diana M. Oliveira
- Department of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Fabrício R. Santos
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Élida Mara Rabelo
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Francisco P. Lobo
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Glória R. Franco
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Flávia Costa
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ieso M. Castro
- Department of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Sílvia Regina Costa Dias
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jesus A. Ferro
- Department of Technology, State University of São Paulo, Jaboticabal, São Paulo, Brazil
| | - José Miguel Ortega
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luciano V. Paiva
- Department of Chemistry, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Luiz R. Goulart
- Department of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Juliana Franco Almeida
- Department of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Maria Inês T. Ferro
- Department of Technology, State University of São Paulo, Jaboticabal, São Paulo, Brazil
| | - Newton P. Carneiro
- Brazilian Agricultural Research Corporation (EMBRAPA), Sete Lagoas, Minas Gerais, Brazil
| | - Paula R. K. Falcão
- Brazilian Agricultural Research Corporation (EMBRAPA), Campinas, São Paulo, Brazil
| | - Priscila Grynberg
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Santuza M. R. Teixeira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sérgio Brommonschenkel
- Department of Plant Pathology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Sérgio C. Oliveira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Roberto Meyer
- Department of Biointeraction Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Anderson Miyoshi
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Guilherme C. Oliveira
- Research Center René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
- Center of Excellence in Bioinformatics, National Institute of Science and Technology, Research Center René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
34
|
Capaldo A, Walker M, Ford C, Jiranek V. β-Glucoside metabolism in Oenococcus oeni: Cloning and characterization of the phospho-β-glucosidase CelD. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2010.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Ming YM, Wei ZW, Lin CY, Sheng GY. Development of a Bacillus subtilis expression system using the improved Pglv promoter. Microb Cell Fact 2010; 9:55. [PMID: 20618987 PMCID: PMC2908567 DOI: 10.1186/1475-2859-9-55] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 07/10/2010] [Indexed: 11/12/2022] Open
Abstract
Background B. subtilis is an important organism in the biotechnological application. The efficient expression system is desirable in production of recombinant gene products in B. subtilis. Recently, we developed a new inducible expression system in B. subtilis, which directed by B. subtilis maltose utilization operon promoter Pglv. The system demonstrated high-level expression for target proteins in B. subtilis when induced by maltose. However, the system was markedly repressed by glucose. This limited the application of the system as a high-expression tool in biotechnology field. The aim of this study was to further improve the Pglv promoter system and enhance its expression strength. Results Here, site-directed mutagenesis was facilitated to enhance the expression strength of Pglv. The transcription level from four mutants was increased. Production of β-Gal from the mutants reached the maximum 1.8 times as high as that of wildtype promoter. When induced by 5% maltose, the production of β-Gal from two mutants reached 14.3 U/ml and 13.8 U/ml, 63.5% and 57.5% higher than wildtype promoter (8.8 U/ml) respectively. Thus, site-directed mutagenesis alleviated the repression of glucose and improved the expression activity. To further improve the promoter system, the B. subtilis expression host was reconstructed, in which B. subtilis well-characterized constitutive promoter P43 replaced the promoter of the glv operon in B. subtilis chromosome through a double crossover event. The β-galactosidase production from the improved system (21.1 U/mL) increased compared to that from origin system. Meanwhile, the repression caused by glucose was further alleviated. Conclusions In this study, we obtained a mutated promoter Pglv-M1 through site-directed mutagenesis, which demonstrated high expression strength and alleviated the repression caused by glucose. Moreover, we alleviated the repression and enhanced the expression activity of the Pglv-M1 promoter system via reconstruction of the B. subtilis host. Thus, we provided a valuable expression system in B. subtilis.
Collapse
Affiliation(s)
- Yang M Ming
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | | | | | | |
Collapse
|
36
|
Compartmentalized glucose metabolism in Pseudomonas putida is controlled by the PtxS repressor. J Bacteriol 2010; 192:4357-66. [PMID: 20581202 DOI: 10.1128/jb.00520-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Metabolic flux analysis revealed that in Pseudomonas putida KT2440 about 50% of glucose taken up by the cells is channeled through the 2-ketogluconate peripheral pathway. This pathway is characterized by being compartmentalized in the cells. In fact, initial metabolism of glucose to 2-ketogluconate takes place in the periplasm through a set of reactions catalyzed by glucose dehydrogenase and gluconate dehydrogenase to yield 2-ketogluconate. This metabolite is subsequently transported to the cytoplasm, where two reactions are carried out, giving rise to 6-phosphogluconate, which enters the Entner-Doudoroff pathway. The genes for the periplasmic and cytoplasmic set of reactions are clustered in the host chromosome and grouped within two independent operons that are under the control of the PtxS regulator, which also modulates its own synthesis. Here, we show that although the two catabolic operons are induced in vivo by glucose, ketogluconate, and 2-ketogluconate, in vitro we found that only 2-ketogluconate binds to the regulator with an apparent K(D) (equilibrium dissociation constant) of 15 muM, as determined using isothermal titration calorimetry assays. PtxS is made of two domains, a helix-turn-helix DNA-binding domain located at the N terminus and a C-terminal domain that binds the effector. Differential scanning calorimetry assays revealed that PtxS unfolds via two events characterized by melting points of 48.1 degrees C and 57.6 degrees C and that, in the presence of 2-ketogluconate, the unfolding of the effector binding domain occurs at a higher temperature, providing further evidence for 2-ketogluconate-PtxS interactions. Purified PtxS is a dimer that binds to the target promoters with affinities in the range of 1 to 3 muM. Footprint analysis revealed that PtxS binds to an almost perfect palindrome that is present within the three promoters and whose consensus sequence is 5'-TGAAACCGGTTTCA-3'. This palindrome overlaps with the RNA polymerase binding site.
Collapse
|
37
|
Yang MM, Zhang WW, Bai XT, Li HX, Cen PL. Electroporation is a feasible method to introduce circularized or linearized DNA into B. subtilis chromosome. Mol Biol Rep 2009; 37:2207-13. [DOI: 10.1007/s11033-009-9704-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 07/29/2009] [Indexed: 10/20/2022]
|
38
|
Daddaoua A, Krell T, Ramos JL. Regulation of glucose metabolism in Pseudomonas: the phosphorylative branch and entner-doudoroff enzymes are regulated by a repressor containing a sugar isomerase domain. J Biol Chem 2009; 284:21360-8. [PMID: 19506074 PMCID: PMC2755860 DOI: 10.1074/jbc.m109.014555] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/04/2009] [Indexed: 11/06/2022] Open
Abstract
In Pseudomonas putida, genes for the glucose phosphorylative pathway and the Entner-Doudoroff pathway are organized in two operons; one made up of the zwf, pgl, and eda genes and another consisting of the edd, glk, gltR2, and gltS genes. Divergently with respect to the edd gene is the gap-1 gene. Expression from P(zwf), P(edd), and P(gap) is modulated by HexR in response to the availability of glucose in the medium. To study the regulatory process in greater detail we purified HexR and showed that it is a monomer in solution. Electrophoretic mobility shift assays and isothermal titration calorimetry assays were done showing that HexR recognizes the P(edd), P(zwf), and P(gap-1) promoters with affinity in the nanomolar range. DNA footprinting assays identified the binding site between +30 and +1 at P(zwf), between +16 and +41 at P(edd), and between -6 and +18 at P(gap-1). Based on DNA sequence alignment of the target sites and isothermal titration calorimetry data, two monomers of HexR bind to a pseudopalindrome with a consensus sequence of 5'-TTGTN(7-8)ACAA-3'. Binding of the Entner-Doudoroff pathway intermediate 2-keto-3-deoxy-6-phosphogluconate to HexR released the repressor from its target operators, whereas other chemicals such as glucose, glucose 6-phosphate, and 6-phosphogluconate did not induce complex dissociation. The phosphorylated effector is likely to be recognized by a sugar isomerase domain located at the C-terminal end of HexR, whereas the helix-turn-helix DNA binding domain of HexR exhibits high similarity to proteins of the RpiR family of regulators.
Collapse
Affiliation(s)
- Abdelali Daddaoua
- From the Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, C/ Profesor Albareda 1, E-18008 Granada, Spain
| | - Tino Krell
- From the Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, C/ Profesor Albareda 1, E-18008 Granada, Spain
| | - Juan-Luis Ramos
- From the Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, C/ Profesor Albareda 1, E-18008 Granada, Spain
| |
Collapse
|
39
|
The transcriptional factors MurR and catabolite activator protein regulate N-acetylmuramic acid catabolism in Escherichia coli. J Bacteriol 2008; 190:6598-608. [PMID: 18723630 DOI: 10.1128/jb.00642-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The MurNAc etherase MurQ of Escherichia coli is essential for the catabolism of the bacterial cell wall sugar N-acetylmuramic acid (MurNAc) obtained either from the environment or from the endogenous cell wall (i.e., recycling). High-level expression of murQ is required for growth on MurNAc as the sole source of carbon and energy, whereas constitutive low-level expression of murQ is sufficient for the recycling of peptidoglycan fragments continuously released from the cell wall during growth of the bacteria. Here we characterize for the first time the expression of murQ and its regulation by MurR, a member of the poorly characterized RpiR/AlsR family of transcriptional regulators. Deleting murR abolished the extensive lag phase observed for E. coli grown on MurNAc and enhanced murQ transcription some 20-fold. MurR forms a stable multimer (most likely a tetramer) and binds to two adjacent inverted repeats within an operator region. In this way MurR represses transcription from the murQ promoter and also interferes with its own transcription. MurNAc-6-phosphate, the substrate of MurQ, was identified as a specific inducer that weakens binding of MurR to the operator. Moreover, murQ transcription depends on the activation by cyclic AMP (cAMP)-catabolite activator protein (CAP) bound to a class I site upstream of the murQ promoter. murR and murQ are divergently orientated and expressed from nonoverlapping face-to-face (convergent) promoters, yielding transcripts that are complementary at their 5' ends. As a consequence of this unusual promoter arrangement, cAMP-CAP also affects murR transcription, presumably by acting as a roadblock for RNA polymerase.
Collapse
|
40
|
Li W, Li HX, Ji SY, Li S, Gong YS, Yang MM, Chen YL. Characterization of two temperature-inducible promoters newly isolated from B. subtilis. Biochem Biophys Res Commun 2007; 358:1148-53. [PMID: 17521615 DOI: 10.1016/j.bbrc.2007.05.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 05/10/2007] [Indexed: 11/30/2022]
Abstract
Here, two temperature sensitive promoters, P2 and P7, isolated from Bacillus subtilis, were characterized. The production of beta-galactosidase driven by these promoters was much higher at 45 degrees C than that at 37 degrees C both in Escherichia coli and B. subtilis and that the P2 promoter showed higher expression strength in B. subtilis at 45 degrees C. Thereby, an efficient temperature-inducible expression system was constructed by using P2 promoter in B. subtilis. Thus, we isolated and characterized a newly temperature inducible promoter and exploited it as a potential expression element in B. subtilis.
Collapse
Affiliation(s)
- Wang Li
- College of Animal Sciences, Northwest A&F University, Yangling 712100, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
41
|
Lulko AT, Buist G, Kok J, Kuipers OP. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes. J Mol Microbiol Biotechnol 2007; 12:82-95. [PMID: 17183215 DOI: 10.1159/000096463] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The pleiotropic regulator of carbon metabolism in Gram-positive bacteria, CcpA, regulates gene expression by binding to so-called cre elements, which are located either upstream or in promoter regions, or in open-reading frames. In this study we compared the transcriptomes of Bacillus subtilis 168 and its ccpA deletion mutant during growth in glucose-containing rich medium. Although growth was similar, glucose was completely consumed by the wild-type strain in the stationary phase, while it was still present in the culture of the mutant. At that stage, direct and indirect effects on gene expression were observed. During exponential growth, CcpA mainly influences the carbohydrate and energy metabolism, whereas from transition phase onwards its function expands on a broader range of physiological processes including nucleotide metabolism, cell motility and protein synthesis. A genome wide search revealednew putative cre sites, which could function in vivo according to our transcriptome data. Comparison of our data with published transcriptome data of ccpA mutant analysis in the exponential growth phase confirmed earlier identified CcpA regulon members. It also allowed identification of potential new CcpA-repressed genes, amongst others ycgN and the ydh operon. Novel activated members include opuE andthe opuAABC, yhb and man operons, which all have a putative cre site that appears to be dependent on helical topology. A comparative analysis of these genes with the known activated genes i.e.ackA and pta revealed the presence of a possible upstream activating region (UAR) as has been shown to be functional for the activation of ackA. The data suggest that at later growth phases CcpA may regulate gene expression by itself or complexed with other, yet unknown cofactors.
Collapse
Affiliation(s)
- Andrzej T Lulko
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | |
Collapse
|
42
|
Kobayashi K. Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes. J Bacteriol 2007; 189:4920-31. [PMID: 17468240 PMCID: PMC1913431 DOI: 10.1128/jb.00157-07] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilms are structured multicellular communities of bacteria that form through a developmental process. In standing culture, undomesticated strains of Bacillus subtilis produce a floating biofilm, called a pellicle, with a distinct macroscopic architecture. Here we report on a comprehensive analysis of B. subtilis pellicle formation, with a focus on transcriptional regulators and morphological changes. To date, 288 known or putative transcriptional regulators encoded by the B. subtilis genome have been identified or assigned based on similarity to other known proteins. The genes encoding these regulators were systematically disrupted, and the effects of the mutations on pellicle formation were examined, resulting in the identification of 19 regulators involved in pellicle formation. In addition, morphological analysis revealed that pellicle formation begins with the formation of cell chains, which is followed by clustering and degradation of cell chains. Genetic and morphological evidence showed that each stage of morphological change can be defined genetically, based on mutants of transcriptional regulators, each of which blocks pellicle formation at a specific morphological stage. Formation and degradation of cell chains are controlled by down- and up-regulation of sigma(D)- and sigma(H)-dependent autolysins expressed at specific stages during pellicle formation. Transcriptional analysis revealed that the transcriptional activation of sigH depends on the formation of cell clusters, which in turn activates transcription of sigma(H)-dependent autolysin in cell clusters. Taken together, our results reveal relationships between transcriptional regulators and morphological development during pellicle formation by B. subtilis.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- Graduate School of Information Science, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
43
|
Ming-Ming Y, Wei-Wei Z, Xi-Feng Z, Pei-Lin C. Construction and characterization of a novel maltose inducible expression vector in Bacillus subtilis. Biotechnol Lett 2006; 28:1713-8. [PMID: 17001500 DOI: 10.1007/s10529-006-9146-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 06/23/2006] [Indexed: 10/24/2022]
Abstract
A maltose-inducible expression vector in Bacillus subtilis has been developed and characterized. The vector permitted beta-galactosidase expression at a high level (maximum activity, 8.16 U/ml) when induced and its expression was markedly repressed by glucose. Using this vector, we successfully expressed the other two genes, bioA and vgb. This thus provided a potential expression system for cloned genes in B. subtilis.
Collapse
Affiliation(s)
- Yang Ming-Ming
- Institute of Biochemical Engineering, College of Material Science and Chemical Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | | | | | | |
Collapse
|
44
|
Schönert S, Seitz S, Krafft H, Feuerbaum EA, Andernach I, Witz G, Dahl MK. Maltose and maltodextrin utilization by Bacillus subtilis. J Bacteriol 2006; 188:3911-22. [PMID: 16707683 PMCID: PMC1482931 DOI: 10.1128/jb.00213-06] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis can utilize maltose and maltodextrins that are derived from polysaccharides, like starch or glycogen. In this work, we show that maltose is taken up by a member of the phosphoenolpyruvate-dependent phosphotransferase system and maltodextrins are taken up by a maltodextrin-specific ABC transporter. Uptake of maltose by the phosphoenolpyruvate-dependent phosphotransferase system is mediated by maltose-specific enzyme IICB (MalP; synonym, GlvC), with an apparent K(m) of 5 microM and a V(max) of 91 nmol . min(-1) . (10(10) CFU)(-1). The maltodextrin-specific ABC transporter is composed of the maltodextrin binding protein MdxE (formerly YvdG), with affinities in the low micromolar range for maltodextrins, and the membrane-spanning components MdxF and MdxG (formerly YvdH and YvdI, respectively), as well as the energizing ATPase MsmX. Maltotriose transport occurs with an apparent K(m) of 1.4 microM and a V(max) of 4.7 nmol . min(-1) . (10(10) CFU)(-1).
Collapse
Affiliation(s)
- Stefan Schönert
- Lehrstuhl für Mikrobiologie, Fachbereich Biologie der Universität Konstanz, Universitätsstrasse 10, M605, D-78457 Konstanz, Germany.
| | | | | | | | | | | | | |
Collapse
|
45
|
Gupta A, Maranas CD, Albert R. Elucidation of directionality for co-expressed genes: predicting intra-operon termination sites. Bioinformatics 2005; 22:209-14. [PMID: 16287937 DOI: 10.1093/bioinformatics/bti780] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION In this paper, we present a novel framework for inferring regulatory and sequence-level information from gene co-expression networks. The key idea of our methodology is the systematic integration of network inference and network topological analysis approaches for uncovering biological insights. RESULTS We determine the gene co-expression network of Bacillus subtilis using Affymetrix GeneChip time-series data and show how the inferred network topology can be linked to sequence-level information hard-wired in the organism's genome. We propose a systematic way for determining the correlation threshold at which two genes are assessed to be co-expressed using the clustering coefficient and we expand the scope of the gene co-expression network by proposing the slope ratio metric as a means for incorporating directionality on the edges. We show through specific examples for B. subtilis that by incorporating expression level information in addition to the temporal expression patterns, we can uncover sequence-level biological insights. In particular, we are able to identify a number of cases where (1) the co-expressed genes are part of a single transcriptional unit or operon and (2) the inferred directionality arises due to the presence of intra-operon transcription termination sites. AVAILABILITY The software will be provided on request. SUPPLEMENTARY INFORMATION http://www.phys.psu.edu/~ralbert/pdf/gma_bioinf_supp.pdf
Collapse
Affiliation(s)
- Anshuman Gupta
- Academic Services and Emerging Technologies, The Pennsylvania State University University Park, PA, USA
| | | | | |
Collapse
|
46
|
Abstract
Escherichia coli and Salmonella enterica serovar Typhimurium exhibit a remarkable versatility in the usage of different sugars as the sole source of carbon and energy, reflecting their ability to make use of the digested meals of mammalia and of the ample offerings in the wild. Degradation of sugars starts with their energy-dependent uptake through the cytoplasmic membrane and is carried on further by specific enzymes in the cytoplasm, destined finally for degradation in central metabolic pathways. As variant as the different sugars are, the biochemical strategies to act on them are few. They include phosphorylation, keto-enol isomerization, oxido/reductions, and aldol cleavage. The catabolic repertoire for using carbohydrate sources is largely the same in E. coli and in serovar Typhimurium. Nonetheless, significant differences are found, even among the strains and substrains of each species. We have grouped the sugars to be discussed according to their first step in metabolism, which is their active transport, and follow their path to glycolysis, catalyzed by the sugar-specific enzymes. We will first discuss the phosphotransferase system (PTS) sugars, then the sugars transported by ATP-binding cassette (ABC) transporters, followed by those that are taken up via proton motive force (PMF)-dependent transporters. We have focused on the catabolism and pathway regulation of hexose and pentose monosaccharides as well as the corresponding sugar alcohols but have also included disaccharides and simple glycosides while excluding polysaccharide catabolism, except for maltodextrins.
Collapse
Affiliation(s)
- Christoph Mayer
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
47
|
Rajan SS, Yang X, Collart F, Yip VLY, Withers SG, Varrot A, Thompson J, Davies GJ, Anderson WF. Novel catalytic mechanism of glycoside hydrolysis based on the structure of an NAD+/Mn2+ -dependent phospho-alpha-glucosidase from Bacillus subtilis. Structure 2005; 12:1619-29. [PMID: 15341727 DOI: 10.1016/j.str.2004.06.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 06/11/2004] [Accepted: 06/27/2004] [Indexed: 11/30/2022]
Abstract
GlvA, a 6-phospho-alpha-glucosidase from Bacillus subtilis, catalyzes the hydrolysis of maltose-6'-phosphate and belongs to glycoside hydrolase family GH4. GH4 enzymes are unique in their requirement for NAD(H) and a divalent metal for activity. We have determined the crystal structure of GlvA in complex with its ligands to 2.05 A resolution. Analyses of the active site architecture, in conjunction with mechanistic studies and precedent from the nucleotide diphosphate hexose dehydratases and other systems, suggest a novel mechanism of glycoside hydrolysis by GlvA that involves both the NAD(H) and the metal.
Collapse
Affiliation(s)
- Shyamala S Rajan
- Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Thompson J, Hess S, Pikis A. Genes malh and pagl of Clostridium acetobutylicum ATCC 824 encode NAD+- and Mn2+-dependent phospho-alpha-glucosidase(s). J Biol Chem 2003; 279:1553-61. [PMID: 14570887 DOI: 10.1074/jbc.m310733200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The genome of Clostridium acetobutylicum 824 contains two genes encoding NAD+, Mn2+, and dithiothreitol-dependent phospho-alpha-glucosidases that can be assigned to family 4 of the glycosylhydrolase superfamily. The two genes, designated malh (maltose 6-phosphate hydrolase) and pagl (phospho-alpha-glucosidase), respectively, reside in separate operons that also encode proteins of the phosphoenolpyruvate-dependent:sugar phosphotransferase system. C. acetobutylicum grows on a variety of alpha-linked glucosides, including maltose, methyl-alpha-d-glucoside, and the five isomers of sucrose. In the presence of the requisite cofactors, extracts of these cells readily hydrolyzed the chromogenic substrate p-nitrophenyl-alpha-d-glucopyranoside 6-phosphate, but whether hydrolysis reflected expression of enzymes encoded by the malh or pagl genes was not discernible by spectrophotometric analysis or polyacrylamide gel electrophoresis. Resolution of this question required the cloning of the malh and pagl genes, and subsequent high expression, purification, and characterization of maltose-6'-phosphate hydrolase (MalH) and phospho-alpha-glucosidase (PagL), respectively. MalH and PagL exhibit 50% residue identity, and in solution are tetramers comprising similar sized ( approximately 50 kDa) subunits. The two proteins cross-react with polyclonal rabbit antibody against phospho-alpha-glucosidase from Fusobacterium mortiferum. Purified MalH and PagL cleaved p-nitrophenyl-alpha-d-glucopyranoside 6-phosphate with comparable efficiency, but only MalH catalyzed the hydrolysis of disaccharide 6'-phosphates formed via the phosphoenolpyruvate-dependent:sugar phosphotransferase system. Importantly, analysis of the proteome of C. acetobutylicum 824 by electrospray ionization-mass spectrometry confirmed expression of MalH during growth on many alpha-glucosides tested. Site-directed changes C169S and D170N yielded full-length, but catalytically inactive MalH. Of the two putative operons, our findings suggest that only proteins encoded by the mal operon participate in the dissimilation of maltose and related O-alpha-linked glucosides by C. acetobutylicum 824.
Collapse
Affiliation(s)
- John Thompson
- Microbial Biochemistry and Genetics Unit, Oral Infection and Immunity Branch, NIDCR, NIH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
49
|
Barrangou R, Altermann E, Hutkins R, Cano R, Klaenhammer TR. Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. Proc Natl Acad Sci U S A 2003; 100:8957-62. [PMID: 12847288 PMCID: PMC166420 DOI: 10.1073/pnas.1332765100] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lactobacillus acidophilus is a probiotic organism that displays the ability to use prebiotic compounds such as fructooligosaccharides (FOS), which stimulate the growth of beneficial commensals in the gastrointestinal tract. However, little is known about the mechanisms and genes involved in FOS utilization by Lactobacillus species. Analysis of the L. acidophilus NCFM genome revealed an msm locus composed of a transcriptional regulator of the LacI family, a four-component ATP-binding cassette (ABC) transport system, a fructosidase, and a sucrose phosphorylase. Transcriptional analysis of this operon demonstrated that gene expression was induced by sucrose and FOS but not by glucose or fructose, suggesting some specificity for nonreadily fermentable sugars. Additionally, expression was repressed by glucose but not by fructose, suggesting catabolite repression via two cre-like sequences identified in the promoter-operator region. Insertional inactivation of the genes encoding the ABC transporter substrate-binding protein and the fructosidase reduced the ability of the mutants to grow on FOS. Comparative analysis of gene architecture within this cluster revealed a high degree of synteny with operons in Streptococcus mutans and Streptococcus pneumoniae. However, the association between a fructosidase and an ABC transporter is unusual and may be specific to L. acidophilus. This is a description of a previously undescribed gene locus involved in transport and catabolism of FOS compounds, which can promote competition of beneficial microorganisms in the human gastrointestinal tract.
Collapse
Affiliation(s)
- Rodolphe Barrangou
- Genomic Sciences Program and Southeast Dairy Foods Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
50
|
Thompson J, Robrish SA, Immel S, Lichtenthaler FW, Hall BG, Pikis A. Metabolism of sucrose and its five linkage-isomeric alpha-D-glucosyl-D-fructoses by Klebsiella pneumoniae. Participation and properties of sucrose-6-phosphate hydrolase and phospho-alpha-glucosidase. J Biol Chem 2001; 276:37415-25. [PMID: 11473129 DOI: 10.1074/jbc.m106504200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Klebsiella pneumoniae is presently unique among bacterial species in its ability to metabolize not only sucrose but also its five linkage-isomeric alpha-d-glucosyl-d-fructoses: trehalulose, turanose, maltulose, leucrose, and palatinose. Growth on the isomeric compounds induced a protein of molecular mass approximately 50 kDa that was not present in sucrose-grown cells and which we have identified as an NAD(+) and metal ion-dependent 6-phospho-alpha-glucosidase (AglB). The aglB gene has been cloned and sequenced, and AglB (M(r) = 49,256) has been purified from a high expression system using the chromogenic p-nitrophenyl alpha-glucopyranoside 6-phosphate as substrate. Phospho-alpha-glucosidase catalyzed the hydrolysis of a wide variety of 6-phospho-alpha-glucosides including maltose-6'-phosphate, maltitol-6-phosphate, isomaltose-6'-phosphate, and all five 6'-phosphorylated isomers of sucrose (K(m) approximately 1-5 mm) yet did not hydrolyze sucrose-6-phosphate. By contrast, purified sucrose-6-phosphate hydrolase (M(r) approximately 53,000) hydrolyzed only sucrose-6-phosphate (K(m) approximately 80 microm). Differences in molecular shape and lipophilicity potential between sucrose and its isomers may be important determinants for substrate discrimination by the two phosphoglucosyl hydrolases. Phospho-alpha-glucosidase and sucrose-6-phosphate hydrolase exhibit no significant homology, and by sequence-based alignment, the two enzymes are assigned to Families 4 and 32, respectively, of the glycosyl hydrolase superfamily. The phospho-alpha-glucosidase gene (aglB) lies adjacent to a second gene (aglA), which encodes an EII(CB) component of the phosphoenolpyruvate-dependent sugar:phosphotransferase system. We suggest that the products of the two genes facilitate the phosphorylative translocation and subsequent hydrolysis of the five alpha-d-glucosyl-d-fructoses by K. pneumoniae.
Collapse
Affiliation(s)
- J Thompson
- Microbial Biochemistry and Genetics Unit, Oral Infection and Immunity Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|