1
|
Hoque E, Fritscher J. Are anaerobic fungi crucial hidden players of microbiomes in anoxic environment? Crit Rev Microbiol 2024; 50:540-563. [PMID: 37452612 DOI: 10.1080/1040841x.2023.2224425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 07/18/2023]
Abstract
Anaerobic fungi are known to migrate and establish a 3D network of biofilms (microbiomes) and live invisible in the rumen and terrestrial subsurface, deep-sea - marine, and anoxic environment. They deserve our attention to understand anoxic fungal ecology and functions and develop new products and solutions. Such fungi activate unique genes to produce various polysaccharidases deemed essential for degrading plants' lignocellulosic materials. Nutrient release, recycling, and physical support by anaerobic fungi are crucial for microbiome formation. Multiple reports point to the ability of strictly anaerobic and facultative fungi to adapt and live in anoxic subsurface. Deep-sea sediments and natural anoxic methane-emitting salty waters of sulfidic springs offer suitable habitats for developing prokaryotic-fungal microbiomes. Researchers found a billion-year-old fossil of the fungus-prokaryotic sulfate-reducing consortium buried in deep-sea biospheres. Fungal spores' ability to migrate, even after germination, through sandy layers demonstrates their potential to move up and down porous geological layers or rock fissures. Selective fungal affinity to specific wood in wood chip arrays might help differentiate viable anaerobic fungi from an anoxic environment for their rapid collection and investigation. New collection methods, cultivation, gene expression, and drug and enzyme activity analyses can boost anaerobic fungal research.
Collapse
Affiliation(s)
- Enamul Hoque
- Department of Biotechnology, University of Science and Technology, Foy's Lake, Chittagong, Bangladesh
- International Virtual Institute for Advanced Science and Technology (IVAST), Section Microbial Technology, Munich, Germany
- Department of Environmental Science, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Fritscher
- Department of Biotechnology, University of Science and Technology, Foy's Lake, Chittagong, Bangladesh
- International Virtual Institute for Advanced Science and Technology (IVAST), Section Microbial Technology, Munich, Germany
- Department of Environmental Science, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
2
|
Pratt CJ, Meili CH, Jones AL, Jackson DK, England EE, Wang Y, Hartson S, Rogers J, Elshahed MS, Youssef NH. Anaerobic fungi in the tortoise alimentary tract illuminate early stages of host-fungal symbiosis and Neocallimastigomycota evolution. Nat Commun 2024; 15:2714. [PMID: 38548766 PMCID: PMC10978972 DOI: 10.1038/s41467-024-47047-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
Anaerobic gut fungi (AGF, Neocallimastigomycota) reside in the alimentary tract of herbivores. While their presence in mammals is well documented, evidence for their occurrence in non-mammalian hosts is currently sparse. Culture-independent surveys of AGF in tortoises identified a unique community, with three novel deep-branching genera representing >90% of sequences in most samples. Representatives of all genera were successfully isolated under strict anaerobic conditions. Transcriptomics-enabled phylogenomic and molecular dating analyses indicated an ancient, deep-branching position in the AGF tree for these genera, with an evolutionary divergence time estimate of 104-112 million years ago (Mya). Such estimates push the establishment of animal-Neocallimastigomycota symbiosis from the late to the early Cretaceous. Further, tortoise-associated isolates (T-AGF) exhibited limited capacity for plant polysaccharides metabolism and lacked genes encoding several carbohydrate-active enzyme (CAZyme) families. Finally, we demonstrate that the observed curtailed degradation capacities and reduced CAZyme repertoire is driven by the paucity of horizontal gene transfer (HGT) in T-AGF genomes, compared to their mammalian counterparts. This reduced capacity was reflected in an altered cellulosomal production capacity in T-AGF. Our findings provide insights into the phylogenetic diversity, ecological distribution, evolutionary history, evolution of fungal-host nutritional symbiosis, and dynamics of genes acquisition in Neocallimastigomycota.
Collapse
Affiliation(s)
- Carrie J Pratt
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Casey H Meili
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Adrienne L Jones
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Darian K Jackson
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Emma E England
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Yan Wang
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Steve Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Janet Rogers
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
3
|
Tamilselvan R, Immanuel Selwynraj A. Enhancing biogas generation from lignocellulosic biomass through biological pretreatment: Exploring the role of ruminant microbes and anaerobic fungi. Anaerobe 2024; 85:102815. [PMID: 38145708 DOI: 10.1016/j.anaerobe.2023.102815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
Biogas production from Lignocellulosic Biomass (LB) via anaerobic digestion (AD) has gained attention for its potential in self-sustainability. However, the recalcitrance of LB cell walls pose a challenge to its degradability and biogas generation. Therefore, pretreatment of LB is necessary to enhance lignin removal and increase degradability. Among the different approaches, environmentally friendly biological pretreatment ispromising as it avoids the production of inhibitors. The ruminal microbial community, including anaerobic fungi, bacteria, and protozoa, has shown an ability to effectively degrade LB through biomechanical and microbial penetration of refractory cell structures. In this review, we provide an overview of ruminant microbes dominating LB's AD, their degradation mechanism, and the bioaugmentation of the rumen. We also explore the potential cultivation of anaerobic fungi from the rumen, their enzyme potential, and their role in AD. The rumen ecosystem, comprising both bacteria and fungi, plays a crucial role in enhancing AD. This comprehensive review delves into the intricacies of ruminant microorganisms' adhesion to plant cells, elucidates degradation mechanisms, and explores integrated pretreatment approaches for the effective utilization of LB, minimizing the impact of inhibitors. The discussion underscores the considerable potential of ruminant microbes in pretreating LB, paving the way for sustainable biogas production. Optimizing fungal colonization and ligninolytic enzyme production, such as manganese peroxidase and laccase, significantly enhances the efficiency of fungal pretreatment. Integrating anaerobic fungi through bioaugmentation during mainstream processing demonstrably increases methane production. This study opens promising avenues for further research and development of these microorganisms for bioenergy production.
Collapse
Affiliation(s)
- R Tamilselvan
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - A Immanuel Selwynraj
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India.
| |
Collapse
|
4
|
Dementiev A, Lillington SP, Jin S, Kim Y, Jedrzejczak R, Michalska K, Joachimiak A, O'Malley MA. Structure and enzymatic characterization of CelD endoglucanase from the anaerobic fungus Piromyces finnis. Appl Microbiol Biotechnol 2023; 107:5999-6011. [PMID: 37548665 PMCID: PMC10485095 DOI: 10.1007/s00253-023-12684-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023]
Abstract
Anaerobic fungi found in the guts of large herbivores are prolific biomass degraders whose genomes harbor a wealth of carbohydrate-active enzymes (CAZymes), of which only a handful are structurally or biochemically characterized. Here, we report the structure and kinetic rate parameters for a glycoside hydrolase (GH) family 5 subfamily 4 enzyme (CelD) from Piromyces finnis, a modular, cellulosome-incorporated endoglucanase that possesses three GH5 domains followed by two C-terminal fungal dockerin domains (double dockerin). We present the crystal structures of an apo wild-type CelD GH5 catalytic domain and its inactive E154A mutant in complex with cellotriose at 2.5 and 1.8 Å resolution, respectively, finding the CelD GH5 catalytic domain adopts the (β/α)8-barrel fold common to many GH5 enzymes. Structural superimposition of the apo wild-type structure with the E154A mutant-cellotriose complex supports a catalytic mechanism in which the E154 carboxylate side chain acts as an acid/base and E278 acts as a complementary nucleophile. Further analysis of the cellotriose binding pocket highlights a binding groove lined with conserved aromatic amino acids that when docked with larger cellulose oligomers is capable of binding seven glucose units and accommodating branched glucan substrates. Activity analyses confirm P. finnis CelD can hydrolyze mixed linkage glucan and xyloglucan, as well as carboxymethylcellulose (CMC). Measured kinetic parameters show the P. finnis CelD GH5 catalytic domain has CMC endoglucanase activity comparable to other fungal endoglucanases with kcat = 6.0 ± 0.6 s-1 and Km = 7.6 ± 2.1 g/L CMC. Enzyme kinetics were unperturbed by the addition or removal of the native C-terminal dockerin domains as well as the addition of a non-native N-terminal dockerin, suggesting strict modularity among the domains of CelD. KEY POINTS: • Anaerobic fungi host a wealth of industrially useful enzymes but are understudied. • P. finnis CelD has endoglucanase activity and structure common to GH5_4 enzymes. • CelD's kinetics do not change with domain fusion, exhibiting high modularity.
Collapse
Affiliation(s)
- Alexey Dementiev
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Stephen P Lillington
- Department of Chemical Engineering, University of California, Santa Barbara, CA, USA
| | - Shiyan Jin
- Department of Chemical Engineering, University of California, Santa Barbara, CA, USA
| | - Youngchang Kim
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Robert Jedrzejczak
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Karolina Michalska
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Andrzej Joachimiak
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA, USA.
- Biological Engineering Program, University of California, Santa Barbara, CA, USA.
- Joint BioEnergy Institute (JBEI), Emeryville, CA, 94608, USA.
| |
Collapse
|
5
|
Hua D, Hendriks WH, Xiong B, Pellikaan WF. Starch and Cellulose Degradation in the Rumen and Applications of Metagenomics on Ruminal Microorganisms. Animals (Basel) 2022; 12:3020. [PMID: 36359144 PMCID: PMC9653558 DOI: 10.3390/ani12213020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Carbohydrates (e.g., starch and cellulose) are the main energy source in the diets of dairy cows. The ruminal digestion of starch and cellulose is achieved by microorganisms and digestive enzymes. In order to improve their digestibility, the microbes and enzymes involved in starch and cellulose degradation should be identified and their role(s) and activity known. As existing and new analytical techniques are continuously being developed, our knowledge of the amylolytic and cellulolytic microbial community in the rumen of dairy cows has been evolving rapidly. Using traditional culture-based methods, the main amylolytic and cellulolytic bacteria, fungi and protozoa in the rumen of dairy cows have been isolated. These culturable microbes have been found to only account for a small fraction of the total population of microorganisms present in the rumen. A more recent application of the culture-independent approach of metagenomics has acquired a more complete genetic structure and functional composition of the rumen microbial community. Metagenomics can be divided into functional metagenomics and sequencing-based computational metagenomics. Both approaches have been applied in determining the microbial composition and function in the rumen. With these approaches, novel microbial species as well as enzymes, especially glycosyl hydrolases, have been discovered. This review summarizes the current state of knowledge regarding the major amylolytic and cellulolytic microorganisms present in the rumen of dairy cows. The ruminal amylases and cellulases are briefly discussed. The application of metagenomics technology in investigating glycosyl hydrolases is provided and the novel enzymes are compared in terms of glycosyl hydrolase families related to amylolytic and cellulolytic activities.
Collapse
Affiliation(s)
- Dengke Hua
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Wouter H. Hendriks
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wilbert F. Pellikaan
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
6
|
Abstract
Cellulosomes are elaborate multienzyme complexes capable of efficiently deconstructing lignocellulosic substrates, produced by cellulolytic anaerobic microorganisms, colonizing a large variety of ecological niches. These macromolecular structures have a modular architecture and are composed of two main elements: the cohesin-bearing scaffoldins, which are non-catalytic structural proteins, and the various dockerin-bearing enzymes that tenaciously bind to the scaffoldins. Cellulosome assembly is mediated by strong and highly specific interactions between the cohesin modules, present in the scaffoldins, and the dockerin modules, present in the catalytic units. Cellulosomal architecture and composition varies between species and can even change within the same organism. These differences seem to be largely influenced by external factors, including the nature of the available carbon-source. Even though cellulosome producing organisms are relatively few, the development of new genomic and proteomic technologies has allowed the identification of cellulosomal components in many archea, bacteria and even some primitive eukaryotes. This reflects the importance of this cellulolytic strategy and suggests that cohesin-dockerin interactions could be involved in other non-cellulolytic processes. Due to their building-block nature and highly cellulolytic capabilities, cellulosomes hold many potential biotechnological applications, such as the conversion of lignocellulosic biomass in the production of biofuels or the development of affinity based technologies.
Collapse
Affiliation(s)
- Victor D Alves
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Carlos M G A Fontes
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Pedro Bule
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.
| |
Collapse
|
7
|
Djemiel C, Goulas E, Badalato N, Chabbert B, Hawkins S, Grec S. Targeted Metagenomics of Retting in Flax: The Beginning of the Quest to Harness the Secret Powers of the Microbiota. Front Genet 2020; 11:581664. [PMID: 33193706 PMCID: PMC7652851 DOI: 10.3389/fgene.2020.581664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
The mechanical and chemical properties of natural plant fibers are determined by many different factors, both intrinsic and extrinsic to the plant, during growth but also after harvest. A better understanding of how all these factors exert their effect and how they interact is necessary to be able to optimize fiber quality for use in different industries. One important factor is the post-harvest process known as retting, representing the first step in the extraction of bast fibers from the stem of species such as flax and hemp. During this process microorganisms colonize the stem and produce hydrolytic enzymes that target cell wall polymers thereby facilitating the progressive destruction of the stem and fiber bundles. Recent advances in sequencing technology have allowed researchers to implement targeted metagenomics leading to a much better characterization of the microbial communities involved in retting, as well as an improved understanding of microbial dynamics. In this paper we review how our current knowledge of the microbiology of retting has been improved by targeted metagenomics and discuss how related '-omics' approaches might be used to fully characterize the functional capability of the retting microbiome.
Collapse
Affiliation(s)
- Christophe Djemiel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Estelle Goulas
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Nelly Badalato
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Brigitte Chabbert
- Université de Reims Champagne Ardenne, INRAE, UMR FARE A 614, Reims, France
| | - Simon Hawkins
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Sébastien Grec
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
8
|
Chang J, Park H. Nucleotide and protein researches on anaerobic fungi during four decades. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:121-140. [PMID: 32292921 PMCID: PMC7142291 DOI: 10.5187/jast.2020.62.2.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/07/2020] [Accepted: 03/07/2020] [Indexed: 01/26/2023]
Abstract
Anaerobic fungi habitat in the gastrointestinal tract of foregut fermenters or
hindgut fermenters and degrade fibrous plant biomass through the hydrolysis
reactions with a wide variety of cellulolytic enzymes and physical penetration
through fiber matrix with their rhizoids. To date, seventeen genera have been
described in family Neocallimasticaceae, class
Neocallimastigomycetes, phylum
Neocallimastigomycota and one genus has been described in
phylum Neocallimastigomycota. In National Center for
Biotechnology Information (NCBI) database (DB), 23,830 nucleotide sequences and
59,512 protein sequences have been deposited and most of them were originated
from Piromyces, Neocallimastix and
Anaeromyces. Most of protein sequences (44,025) were
acquired with PacBio next generation sequencing system. The whole genome
sequences of Anaeromyces robustus, Neocallimastix
californiae, Pecoramyces ruminantium,
Piromyces finnis and Piromyces sp. E2 are
available in Joint Genome Institute (JGI) database. According to the results of
protein prediction, average Isoelectric points (pIs) were ranged from 5.88
(Anaeromyces) to 6.57 (Piromyces) and
average molecular weights were ranged from 38.7 kDa
(Orpinomyces) to 56.6 kDa (Piromyces). In
Carbohydrate-Active enZYmes (CAZY) database, glycoside hydrolases (36),
carbohydrate binding module (11), carbohydrate esterases (8),
glycosyltransferase (5) and polysaccharide lyases (3) from anaerobic fungi were
registered. During four decades, 1,031 research articles about anaerobic fungi
were published and 444 and 719 articles were available in PubMed (PM) and PubMed
Central (PMC) DB.
Collapse
Affiliation(s)
- Jongsoo Chang
- Department of Agricultural Sciences, Korea National Open University, Seoul 03087, Korea
| | - Hyunjin Park
- Department of Agricultural Sciences, Korea National Open University, Seoul 03087, Korea
| |
Collapse
|
9
|
Leveraging anaerobic fungi for biotechnology. Curr Opin Biotechnol 2019; 59:103-110. [DOI: 10.1016/j.copbio.2019.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/19/2019] [Accepted: 03/12/2019] [Indexed: 12/30/2022]
|
10
|
Badhan A, Huang J, Wang Y, Abbott DW, Di Falco M, Tsang A, McAllister T. Saccharification efficiencies of multi-enzyme complexes produced by aerobic fungi. N Biotechnol 2018; 46:1-6. [PMID: 29803771 DOI: 10.1016/j.nbt.2018.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 11/16/2022]
Abstract
In the present study, we have characterized high molecular weight multi-enzyme complexes in two commercial enzymes produced by Trichoderma reesei (Spezyme CP) and Penicillium funiculosum (Accellerase XC). We successfully identified 146-1000 kDa complexes using Blue native polyacrylamide gel electrophoresis (BN-PAGE) to fractionate the protein profile in both preparations. Identified complexes dissociated into lower molecular weight constituents when loaded on SDS PAGE. Unfolding of the secondary structure of multi-enzyme complexes with trimethylamine (pH >10) suggested that they were not a result of unspecific protein aggregation. Cellulase (CMCase) profiles of extracts of BN-PAGE fractionated protein bands confirmed cellulase activity within the multi-enzyme complexes. A microassay was used to identify protein bands that promoted high levels of glucose release from barley straw. Those with high saccharification yield were subjected to LC-MS analysis to identify the principal enzymatic activities responsible. The results suggest that secretion of proteins by aerobic fungi leads to the formation of high molecular weight multi-enzyme complexes that display activity against carboxymethyl cellulose and barley straw.
Collapse
Affiliation(s)
- Ajay Badhan
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada
| | - Jiangli Huang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Yuxi Wang
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada
| | - D Wade Abbott
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada
| | - Marcos Di Falco
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Adrian Tsang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Tim McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada.
| |
Collapse
|
11
|
Haitjema CH, Gilmore SP, Henske JK, Solomon KV, de Groot R, Kuo A, Mondo SJ, Salamov AA, LaButti K, Zhao Z, Chiniquy J, Barry K, Brewer HM, Purvine SO, Wright AT, Hainaut M, Boxma B, van Alen T, Hackstein JHP, Henrissat B, Baker SE, Grigoriev IV, O'Malley MA. A parts list for fungal cellulosomes revealed by comparative genomics. Nat Microbiol 2017; 2:17087. [PMID: 28555641 DOI: 10.1038/nmicrobiol.2017.87] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 04/25/2017] [Indexed: 12/16/2022]
Abstract
Cellulosomes are large, multiprotein complexes that tether plant biomass-degrading enzymes together for improved hydrolysis1. These complexes were first described in anaerobic bacteria, where species-specific dockerin domains mediate the assembly of enzymes onto cohesin motifs interspersed within protein scaffolds1. The versatile protein assembly mechanism conferred by the bacterial cohesin-dockerin interaction is now a standard design principle for synthetic biology2,3. For decades, analogous structures have been reported in anaerobic fungi, which are known to assemble by sequence-divergent non-catalytic dockerin domains (NCDDs)4. However, the components, modular assembly mechanism and functional role of fungal cellulosomes remain unknown5,6. Here, we describe a comprehensive set of proteins critical to fungal cellulosome assembly, including conserved scaffolding proteins unique to the Neocallimastigomycota. High-quality genomes of the anaerobic fungi Anaeromyces robustus, Neocallimastix californiae and Piromyces finnis were assembled with long-read, single-molecule technology. Genomic analysis coupled with proteomic validation revealed an average of 312 NCDD-containing proteins per fungal strain, which were overwhelmingly carbohydrate active enzymes (CAZymes), with 95 large fungal scaffoldins identified across four genera that bind to NCDDs. Fungal dockerin and scaffoldin domains have no similarity to their bacterial counterparts, yet several catalytic domains originated via horizontal gene transfer with gut bacteria. However, the biocatalytic activity of anaerobic fungal cellulosomes is expanded by the inclusion of GH3, GH6 and GH45 enzymes. These findings suggest that the fungal cellulosome is an evolutionarily chimaeric structure-an independently evolved fungal complex that co-opted useful activities from bacterial neighbours within the gut microbiome.
Collapse
Affiliation(s)
- Charles H Haitjema
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Sean P Gilmore
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - John K Henske
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Kevin V Solomon
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Randall de Groot
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA
| | - Stephen J Mondo
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA
| | - Asaf A Salamov
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA
| | - Zhiying Zhao
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA
| | - Jennifer Chiniquy
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA
| | - Heather M Brewer
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Aaron T Wright
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Matthieu Hainaut
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université, 13288 Marseille, France.,INRA, USC 1408 AFMB, Marseille, France
| | - Brigitte Boxma
- Department of Evolutionary Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Theo van Alen
- Department of Evolutionary Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Johannes H P Hackstein
- Department of Evolutionary Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université, 13288 Marseille, France.,INRA, USC 1408 AFMB, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, 23218 Jeddah, Saudi Arabia
| | - Scott E Baker
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
12
|
Baba Y, Matsuki Y, Mori Y, Suyama Y, Tada C, Fukuda Y, Saito M, Nakai Y. Pretreatment of lignocellulosic biomass by cattle rumen fluid for methane production: Bacterial flora and enzyme activity analysis. J Biosci Bioeng 2017; 123:489-496. [DOI: 10.1016/j.jbiosc.2016.11.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/18/2016] [Accepted: 11/19/2016] [Indexed: 01/19/2023]
|
13
|
Abstract
Extraction of sugar is the rate-limiting step in converting unpretreated biomass into value-added products through microbial fermentation. Both anaerobic fungi and anaerobic bacteria have evolved to produce large multi-cellulase complexes referred to as cellulosomes, which are powerful machines for biomass deconstruction. Characterization of bacterial cellulosomes has inspired synthetic "designer" cellulosomes, consisting of parts discovered from the native system that have proven useful for cellulose depolymerization. By contrast, the multi-cellulase complexes produced by anaerobic fungi are much more poorly understood, and to date their composition, architecture, and enzyme tethering mechanism remain unknown and heavily debated. Here, we compare current knowledge pertaining to the cellulosomes produced by both bacteria and fungi, including their application to synthetic enzyme-tethered systems for tunneled biocatalysis. We highlight gaps in knowledge and opportunities for discovery, especially pertaining to the potential of fungal cellulosome-inspired systems.
Collapse
Affiliation(s)
- Sean P Gilmore
- a Department of Chemical Engineering ; University of California ; Santa Barbara , CA USA
| | | | | |
Collapse
|
14
|
Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in the cow rumen. Appl Environ Microbiol 2016; 81:1375-86. [PMID: 25501482 DOI: 10.1128/aem.03682-14] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bovine rumen represents a highly specialized bioreactor where plant cell wall polysaccharides (PCWPs) are efficiently deconstructed via numerous enzymes produced by resident microorganisms. Although a large number of fibrolytic genes from rumen microorganisms have been identified, it remains unclear how they are expressed in a coordinated manner to efficiently degrade PCWPs. In this study, we performed a metatranscriptomic analysis of the rumen microbiomes of adult Holstein cows fed a fiber diet and obtained a total of 1,107,083 high-quality non-rRNA reads with an average length of 483 nucleotides. Transcripts encoding glycoside hydrolases (GHs) and carbohydrate binding modules (CBMs) accounted for 1% and 0.1% of the total non-rRNAs, respectively. The majority (98%) of the putative cellulases belonged to four GH families (i.e., GH5, GH9, GH45, and GH48) and were primarily synthesized by Ruminococcus and Fibrobacter. Notably, transcripts for GH48 cellobiohydrolases were relatively abundant compared to the abundance of transcripts for other cellulases. Two-thirds of the putative hemicellulases were of the GH10, GH11, and GH26 types and were produced by members of the genera Ruminococcus, Prevotella, and Fibrobacter. Most (82%) predicted oligosaccharide-degrading enzymes were GH1, GH2, GH3, and GH43 proteins and were from a diverse group of microorganisms. Transcripts for CBM10 and dockerin, key components of the cellulosome, were also relatively abundant. Our results provide metatranscriptomic evidence in support of the notion that members of the genera Ruminococcus, Fibrobacter, and Prevotella are predominant PCWP degraders and point to the significant contribution of GH48 cellobiohydrolases and cellulosome-like structures to efficient PCWP degradation in the cow rumen.
Collapse
|
15
|
|
16
|
Dollhofer V, Podmirseg SM, Callaghan TM, Griffith GW, Fliegerová K. Anaerobic Fungi and Their Potential for Biogas Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 151:41-61. [PMID: 26337843 DOI: 10.1007/978-3-319-21993-6_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Plant biomass is the largest reservoir of environmentally friendly renewable energy on earth. However, the complex and recalcitrant structure of these lignocellulose-rich substrates is a severe limitation for biogas production. Microbial pro-ventricular anaerobic digestion of ruminants can serve as a model for improvement of converting lignocellulosic biomass into energy. Anaerobic fungi are key players in the digestive system of various animals, they produce a plethora of plant carbohydrate hydrolysing enzymes. Combined with the invasive growth of their rhizoid system their contribution to cell wall polysaccharide decomposition may greatly exceed that of bacteria. The cellulolytic arsenal of anaerobic fungi consists of both secreted enzymes, as well as extracellular multi-enzyme complexes called cellulosomes. These complexes are extremely active, can degrade both amorphous and crystalline cellulose and are probably the main reason of cellulolytic efficiency of anaerobic fungi. The synergistic use of mechanical and enzymatic degradation makes anaerobic fungi promising candidates to improve biogas production from recalcitrant biomass. This chapter presents an overview about their biology and their potential for implementation in the biogas process.
Collapse
Affiliation(s)
- Veronika Dollhofer
- Bavarian State Research Center for Agriculture, Central Department for Quality Assurance and Analytics, Micro- and Molecular Biology, Lange Point 6, 85354, Freising, Germany,
| | | | | | | | | |
Collapse
|
17
|
Purification and characterization of a cellulolytic multienzyme complex produced by Neocallimastix patriciarum J11. Biochem Biophys Res Commun 2014; 451:190-5. [PMID: 25073115 DOI: 10.1016/j.bbrc.2014.07.088] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 07/19/2014] [Indexed: 11/24/2022]
Abstract
Understanding the roles of the components of the multienzyme complex of the anaerobial cellulase system, acting on complex substrates, is crucial to the development of efficient cellulase systems for industrial applications such as converting lignocellulose to sugars for bioethanol production. In this study, we purified the multienzyme complex of Neocallimastix patriciarum J11 from a broth through cellulose affinity purification. The multienzyme complex is composed of at least 12 comprised proteins, based on sodium dodecyl sulfate polyacrylamide gel electrophoresis. Eight of these constituents have demonstrated β-glucanase activity on zymogram analysis. The multienzyme complex contained scaffoldings that respond to the gathering of the cellulolytic components. The levels and subunit ratio of the multienzyme complex from N. patriciarum J11 might have been affected by their utilized carbon sources, whereas the components of the complexes were consistent. The trypsin-digested peptides of six proteins were matched to the sequences of cellulases originating from rumen fungi, based on identification through liquid chromatography/mass spectrometry, revealing that at least three types of cellulase, including one endoglucanase and two exoglucanases, could be found in the multienzyme complex of N. patriciarum J11. The cellulolytic subunits could hydrolyze synergistically on both the internal bonds and the reducing and nonreducing ends of cellulose. Based on our research, our findings are the first to depict the composition of the multienzyme complex produced by N. patriciarum J11, and this complex is composed of scaffoldin and three types of cellulase.
Collapse
|
18
|
Haitjema CH, Solomon KV, Henske JK, Theodorou MK, O'Malley MA. Anaerobic gut fungi: Advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production. Biotechnol Bioeng 2014; 111:1471-82. [PMID: 24788404 DOI: 10.1002/bit.25264] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 12/12/2022]
Abstract
Anaerobic gut fungi are an early branching family of fungi that are commonly found in the digestive tract of ruminants and monogastric herbivores. It is becoming increasingly clear that they are the primary colonizers of ingested plant biomass, and that they significantly contribute to the decomposition of plant biomass into fermentable sugars. As such, anaerobic fungi harbor a rich reservoir of undiscovered cellulolytic enzymes and enzyme complexes that can potentially transform the conversion of lignocellulose into bioenergy products. Despite their unique evolutionary history and cellulolytic activity, few species have been isolated and studied in great detail. As a result, their life cycle, cellular physiology, genetics, and cellulolytic metabolism remain poorly understood compared to aerobic fungi. To help address this limitation, this review briefly summarizes the current body of knowledge pertaining to anaerobic fungal biology, and describes progress made in the isolation, cultivation, molecular characterization, and long-term preservation of these microbes. We also discuss recent cellulase- and cellulosome-discovery efforts from gut fungi, and how these interesting, non-model microbes could be further adapted for biotechnology applications.
Collapse
Affiliation(s)
- Charles H Haitjema
- Department of Chemical Engineering, University of California, Santa Barbara, California, 93106
| | | | | | | | | |
Collapse
|
19
|
Pinheiro BA, Brás JLA, Najmudin S, Carvalho AL, Ferreira LMA, Prates JAM, Fontes CMGA. Flexibility and specificity of the cohesin–dockerin interaction: implications for cellulosome assembly and functionality. BIOCATAL BIOTRANSFOR 2012. [DOI: 10.3109/10242422.2012.681854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Mini-scaffoldin enhanced mini-cellulosome hydrolysis performance on low-accessibility cellulose (Avicel) more than on high-accessibility amorphous cellulose. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Punt PJ, Levasseur A, Visser H, Wery J, Record E. Fungal protein production: design and production of chimeric proteins. Annu Rev Microbiol 2012; 65:57-69. [PMID: 21639784 DOI: 10.1146/annurev.micro.112408.134009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For more than a century, filamentous fungi have been used for the production of a wide variety of endogenous enzymes of industrial interest. More recently, with the use of genetic engineering tools developed for these organisms, this use has expanded for the production of nonnative heterologous proteins. In this review, an overview is given of examples describing the production of a special class of these proteins, namely chimeric proteins. The production of two types of chimeric proteins have been explored: (a) proteins grafted for a specific substrate-binding domain and (b) fusion proteins containing two separate enzymatic activities. Various application areas for the use of these chimeric proteins are described.
Collapse
Affiliation(s)
- Peter J Punt
- TNO Microbiology and Systems Biology, 3700 AJ, Zeist, The Netherlands.
| | | | | | | | | |
Collapse
|
22
|
Wang TY, Chen HL, Lu MYJ, Chen YC, Sung HM, Mao CT, Cho HY, Ke HM, Hwa TY, Ruan SK, Hung KY, Chen CK, Li JY, Wu YC, Chen YH, Chou SP, Tsai YW, Chu TC, Shih CCA, Li WH, Shih MC. Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic analyses. BIOTECHNOLOGY FOR BIOFUELS 2011; 4:24. [PMID: 21849025 PMCID: PMC3177772 DOI: 10.1186/1754-6834-4-24] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 08/17/2011] [Indexed: 05/10/2023]
Abstract
BACKGROUND Neocallimastix patriciarum is one of the common anaerobic fungi in the digestive tracts of ruminants that can actively digest cellulosic materials, and its cellulases have great potential for hydrolyzing cellulosic feedstocks. Due to the difficulty in culture and lack of a genome database, it is not easy to gain a global understanding of the glycosyl hydrolases (GHs) produced by this anaerobic fungus. RESULTS We have developed an efficient platform that uses a combination of transcriptomic and proteomic approaches to N. patriciarum to accelerate gene identification, enzyme classification and application in rice straw degradation. By conducting complementary studies of transcriptome (Roche 454 GS and Illumina GA IIx) and secretome (ESI-Trap LC-MS/MS), we identified 219 putative GH contigs and classified them into 25 GH families. The secretome analysis identified four major enzymes involved in rice straw degradation: β-glucosidase, endo-1,4-β-xylanase, xylanase B and Cel48A exoglucanase. From the sequences of assembled contigs, we cloned 19 putative cellulase genes, including the GH1, GH3, GH5, GH6, GH9, GH18, GH43 and GH48 gene families, which were highly expressed in N. patriciarum cultures grown on different feedstocks. CONCLUSIONS These GH genes were expressed in Pichia pastoris and/or Saccharomyces cerevisiae for functional characterization. At least five novel cellulases displayed cellulytic activity for glucose production. One β-glucosidase (W5-16143) and one exocellulase (W5-CAT26) showed strong activities and could potentially be developed into commercial enzymes.
Collapse
Affiliation(s)
- Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hsin-Liang Chen
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Mei-Yeh J Lu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yo-Chia Chen
- Graduate Institute of Biotechnology, National Pingtung University of Science & Technology, Neipu Hsiang, Pingtung 91201, Taiwan
| | - Huang-Mo Sung
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Chi-Tang Mao
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei 115, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Hsing-Yi Cho
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei 115, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- PhD Program in Microbial Genomics, National Chung Hsing University, Taichung 402, Taiwan
| | - Teh-Yang Hwa
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Sz-Kai Ruan
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Kuo-Yen Hung
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chih-Kuan Chen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Life Sciences, National Taiwan University, Taipei 106, Taiwan
| | - Jeng-Yi Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yueh-Chin Wu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Hsiang Chen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Shao-Pei Chou
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ya-Wen Tsai
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Te-Chin Chu
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
- Department of Computer Science and Information Engineering, National Taiwan Normal University, Taipei 116, Taiwan
| | - Chun-Chieh A Shih
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei 115, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Ming-Che Shih
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei 115, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan
| |
Collapse
|
23
|
Qi M, Wang P, O'Toole N, Barboza PS, Ungerfeld E, Leigh MB, Selinger LB, Butler G, Tsang A, McAllister TA, Forster RJ. Snapshot of the eukaryotic gene expression in muskoxen rumen--a metatranscriptomic approach. PLoS One 2011; 6:e20521. [PMID: 21655220 PMCID: PMC3105075 DOI: 10.1371/journal.pone.0020521] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/01/2011] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Herbivores rely on digestive tract lignocellulolytic microorganisms, including bacteria, fungi and protozoa, to derive energy and carbon from plant cell wall polysaccharides. Culture independent metagenomic studies have been used to reveal the genetic content of the bacterial species within gut microbiomes. However, the nature of the genes encoded by eukaryotic protozoa and fungi within these environments has not been explored using metagenomic or metatranscriptomic approaches. METHODOLOGY/PRINCIPAL FINDINGS In this study, a metatranscriptomic approach was used to investigate the functional diversity of the eukaryotic microorganisms within the rumen of muskoxen (Ovibos moschatus), with a focus on plant cell wall degrading enzymes. Polyadenylated RNA (mRNA) was sequenced on the Illumina Genome Analyzer II system and 2.8 gigabases of sequences were obtained and 59129 contigs assembled. Plant cell wall degrading enzyme modules including glycoside hydrolases, carbohydrate esterases and polysaccharide lyases were identified from over 2500 contigs. These included a number of glycoside hydrolase family 6 (GH6), GH48 and swollenin modules, which have rarely been described in previous gut metagenomic studies. CONCLUSIONS/SIGNIFICANCE The muskoxen rumen metatranscriptome demonstrates a much higher percentage of cellulase enzyme discovery and an 8.7x higher rate of total carbohydrate active enzyme discovery per gigabase of sequence than previous rumen metagenomes. This study provides a snapshot of eukaryotic gene expression in the muskoxen rumen, and identifies a number of candidate genes coding for potentially valuable lignocellulolytic enzymes.
Collapse
Affiliation(s)
- Meng Qi
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Pan Wang
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Nicholas O'Toole
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Perry S. Barboza
- Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Emilio Ungerfeld
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Mary Beth Leigh
- Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - L. Brent Selinger
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Greg Butler
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Tim A. McAllister
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Robert J. Forster
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
- * E-mail:
| |
Collapse
|
24
|
Jin X, Meng N, Xia LM. Expression of an endo-β-1,4-glucanase gene from orpinomyces PC-2 in Pichia pastoris. Int J Mol Sci 2011; 12:3366-80. [PMID: 21686190 PMCID: PMC3116196 DOI: 10.3390/ijms12053366] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/03/2011] [Accepted: 05/23/2011] [Indexed: 12/03/2022] Open
Abstract
The endo-β-1,4-glucanase gene celE from the anaerobic fungus Orpinomyces PC-2 was placed under the control of an alcohol oxidase promoter (AOX1) in the plasmid pPIC9K, and integrated into the genome of a methylotrophic yeast P. pastoris GS115 by electroporation. The strain with highest endo-β-1,4-glucanase activity was selected and designed as P. pastoris egE, and cultivated in shaking flasks. The culture supernatant was assayed by SDS-polyacrylamide gel electrophoresis and showed a single band at about 52 kDa. Furthermore, the recombinant P. pastoris egE was proved to possess the ability to utilize sodium carboxymethyl cellulose as a carbon source. The recombinant endoglucanase produced by P. pastoris showed maximum activity at pH 6.0 and temperature 45 °C, indicating it was a mesophilic neutral endo-β-1,4-glucanase, suitable for denim biofinishing/washing. Further research was carried out in suitable fermentation medium in shaking flasks. The most favorable methanol addition concentration was discussed and given as 1.0%. After methanol induction for 96 h, the endo-β-1,4-glucanase activity reached 72.5 IU mL−1. This is the first report on expression and characterization of endo-β-1,4-glucanase from Orpinomyces in P. pastoris. The endo-β-1,4-glucanase secreted by recombinant P. pastoris represents an attractive potential for both academic research and textile industry application.
Collapse
Affiliation(s)
- Xin Jin
- Department of Chemical Engineering and Bioengineering, Zhejiang University, Hangzhou 310027, China; E-Mails: (X.J.); (N.M.)
| | | | | |
Collapse
|
25
|
Qi M, Wang P, Selinger LB, Yanke LJ, Forster RJ, McAllister TA. Isolation and characterization of a ferulic acid esterase (Fae1A) from the rumen fungus Anaeromyces mucronatus. J Appl Microbiol 2011; 110:1341-50. [PMID: 21362116 DOI: 10.1111/j.1365-2672.2011.04990.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS A novel ferulic acid esterase gene from rumen fungus Anaeromyces mucronatus was cloned, heteroexpressed in Escherichia coli and characterized. METHODS AND RESULTS A total of 30 clones exhibiting activity on α-naphthyl acetate (α-NA) were isolated from an A. mucronatus YE505 cDNA library. Sequence analysis revealed that these clones represented two esterase-coding sequences. The gene, fae1A, showed highest amino acid sequence identity to CE family 1 esterases from anaerobic micro-organisms such as Orpinomyces sp., Ruminococcus albus and Clostridium thermocellum. The gene comprised 828 nucleotides encoding a polypeptide of 275 amino acids. The coding sequence was cloned into the pET30a expression vector and overexpressed in E. coli BL21 (DE3). Gene product Fae1A was found to exhibit activity against a number of substrates including naphthyl fatty acid esters, p-nitrophenyl fatty acid esters and hydroxylcinnamic acid esters. CONCLUSIONS Fae1A exhibited a lower K(m) and higher catalytic efficiency (k(cat) /K(m) ) on ferulic acid esters than on α-NA or p-nitrophenyl acetate, suggesting that it has a higher affinity for ethyl and methyl ferulate than for the acetyl esters. It releases ferulic acid and p-coumaric acid from barley straw. Activity of Fae1A was inhibited by the serine-specific protease inhibitor, phenylmethylsulfonyl fluoride, indicating that a serine residue plays a role in its activity. SIGNIFICANCE AND IMPACT OF THE STUDY To our knowledge, this is the first report of characterization of carbohydrate esterase gene from the genus of Anaeromyces.
Collapse
Affiliation(s)
- M Qi
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Griffith GW, Baker S, Fliegerova K, Liggenstoffer A, van der Giezen M, Voigt K, Beakes G. Anaerobic fungi: Neocallimastigomycota. IMA Fungus 2010; 1:181-5. [PMID: 22679578 PMCID: PMC3348783 DOI: 10.5598/imafungus.2010.01.02.11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 11/20/2010] [Indexed: 11/11/2022] Open
Abstract
This contribution is based on the six oral presentations given at the Special Interest Group session on anaerobic fungi held during IMC9. These fungi, recently elevated to the status of a separate phylum (Neocallimastigomycota), distinct from the chytrid fungi, possess several unique traits that make their study both fascinating yet challenging to mycologists. There are several genome sequencing programs underway in the US but these are hampered by the highly AT-rich genomes. Next-generation sequencing has also allowed more detailed investigation of the ecology and diversity of these fungi, and it is apparent that several new taxa beyond the six genera already named exist within the digestive tracts of mammalian herbivores, with others potentially inhabiting other anaerobic niches. By increased collaboration between the various labs studying these fungi, it is hoped to develop a stable taxonomic backbone for these fungi and to facilitate exchange of both cultures and genetic data.
Collapse
|
27
|
Abstract
Frankly, I was surprised to receive an invitation to write a prefatory chapter for the Annual Review of Microbiology. I have read several such chapters written by outstanding researchers, many of whom I know and admire. I did not think I belonged to such a preeminent group. In my view, my contributions to the physiology and biochemistry of anaerobic thermophilic bacteria and, more lately, to anaerobic fungi are modest compared to the contribution made by other authors of prefatory chapters. I am honored to write about my life and my work, and I hope that those who read this chapter will sense how exciting and rewarding they have been.
Collapse
Affiliation(s)
- Lars G Ljungdahl
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia 30602, USA.
| |
Collapse
|
28
|
Pai CK, Wu ZY, Chen MJ, Zeng YF, Chen JW, Duan CH, Li ML, Liu JR. Molecular cloning and characterization of a bifunctional xylanolytic enzyme from Neocallimastix patriciarum. Appl Microbiol Biotechnol 2009; 85:1451-62. [DOI: 10.1007/s00253-009-2175-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/29/2009] [Accepted: 07/29/2009] [Indexed: 11/24/2022]
|
29
|
Peer A, Smith SP, Bayer EA, Lamed R, Borovok I. Noncellulosomal cohesin- and dockerin-like modules in the three domains of life. FEMS Microbiol Lett 2008; 291:1-16. [PMID: 19025568 DOI: 10.1111/j.1574-6968.2008.01420.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The high-affinity cohesin-dockerin interaction was originally discovered as modular components, which mediate the assembly of the various subunits of the multienzyme cellulosome complex that characterizes some cellulolytic bacteria. Until recently, the presence of cohesins and dockerins within a bacterial proteome was considered a definitive signature of a cellulosome-producing bacterium. Widespread genome sequencing has since revealed a wealth of putative cohesin- and dockerin-containing proteins in Bacteria, Archaea, and in primitive eukaryotes. The newly identified modules appear to serve diverse functions that are clearly distinct from the classical cellulosome archetype, and the vast majority of parent proteins are not predicted glycoside hydrolases. In most cases, only a few such genes have been identified in a given microorganism, which encode proteins containing but a single cohesin and/or dockerin. In some cases, one or the other module appears to be missing from a given species, and in other cases both modules occur within the same protein. This review provides a bioinformatics-based survey of the current status of cohesin- and dockerin-like sequences in species from the Bacteria, Archaea, and Eukarya. Surprisingly, many identified modules and their parent proteins are clearly unrelated to cellulosomes. The cellulosome paradigm may thus be the exception rather than the rule for bacterial, archaeal, and eukaryotic employment of cohesin and dockerin modules.
Collapse
Affiliation(s)
- Ayelet Peer
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | |
Collapse
|
30
|
Ljungdahl LG. The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Ann N Y Acad Sci 2008; 1125:308-21. [PMID: 18378601 DOI: 10.1196/annals.1419.030] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Anaerobic fungi, first described in 1975 by Orpin, live in close contact with bacteria and other microorganisms in the rumen and caecum of herbivorous animals, where they digest ingested plant food. Seventeen distinct anaerobic fungi belonging to five different genera have been described. They have been found in at least 50 different herbivorous animals. Anaerobic fungi do not possess mitochondria, but instead have hydrogenosomes, which form hydrogen and carbon dioxide from pyruvate and malate during fermentation of carbohydrates. In addition, they are very oxygen- and temperature-sensitive, and their DNA has an unusually high AT content of from 72 to 87 mol%. My initial reason for studying anaerobic fungi was because they solubilize lignocellulose and produce all enzymes needed to efficiently hydrolyze cellulose and hemicelluloses. Although some of these enzymes are found free in the medium, most of them are associated with cellulosomal and polycellulosomal complexes, in which the enzymes are attached through fungal dockerins to scaffolding proteins; this is similar to what has been found for cellulosomes from anaerobic bacteria. Although cellulosomes from anaerobic fungi share many properties with cellulosomes of anaerobic cellulolytic bacteria and have comparable structures, their structures differ in their amino acid sequences. I discuss some features of the cellulosome of the anaerobic fungus Orpinomyces sp. PC-2 and some possible uses of its enzymes in industrial settings.
Collapse
Affiliation(s)
- Lars G Ljungdahl
- Department of Biochemistry and Molecular Biology, Fred C. Davison Life Sciences Complex, University of Georgia, Athens, GA 30602-7229, USA.
| |
Collapse
|
31
|
Steenbakkers PJM, Irving JA, Harhangi HR, Swinkels WJC, Akhmanova A, Dijkerman R, Jetten MSM, van der Drift C, Whisstock JC, Op den Camp HJM. A serpin in the cellulosome of the anaerobic fungus Piromyces sp. strain E2. ACTA ACUST UNITED AC 2008; 112:999-1006. [PMID: 18539447 DOI: 10.1016/j.mycres.2008.01.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 01/08/2008] [Accepted: 01/24/2008] [Indexed: 11/17/2022]
Abstract
A gene encoding a novel component of the cellulolytic complex (cellulosome) of the anaerobic fungus Piromyces sp. strain E2 was identified. The encoded 538 amino acid protein, named celpin, consists of a signal peptide, a positively charged domain of unknown function followed by two fungal dockerins, typical for components of the extracellular fungal cellulosome. The C-terminal end consists of a 380 amino acid serine proteinase inhibitor (or serpin) domain homologue, sharing 30% identity and 50% similarity to vertebrate and bacterial serpins. Detailed protein sequence analysis of the serpin domain revealed that it contained all features of a functional serpin. It possesses the conserved amino acids present in more than 70% of known serpins, and it contained the consensus of inhibiting serpins. Because of the confined space of the fungal cellulosome inside plant tissue and the auto-proteolysis of plant material in the rumen, the fungal serpin is presumably involved in protection of the cellulosome against plant proteinases. The celpin protein of Piromyces sp. strain E2 is the first non-structural, non-hydrolytic fungal cellulosome component. Furthermore, the celpin protein of Piromyces sp. strain E2 is the first representative of a serine proteinase inhibitor of the fungal kingdom.
Collapse
Affiliation(s)
- Peter J M Steenbakkers
- Department of Microbiology, IWWR, Radboud University Nijmegen, Toernooiveld 1, NL-6525ED Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 2008; 6:121-31. [PMID: 18180751 DOI: 10.1038/nrmicro1817] [Citation(s) in RCA: 1134] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The microbiota of the mammalian intestine depend largely on dietary polysaccharides as energy sources. Most of these polymers are not degradable by the host, but herbivores can derive 70% of their energy intake from microbial breakdown--a classic example of mutualism. Moreover, dietary polysaccharides that reach the human large intestine have a major impact on gut microbial ecology and health. Insight into the molecular mechanisms by which different gut bacteria use polysaccharides is, therefore, of fundamental importance. Genomic analyses of the gut microbiota could revolutionize our understanding of these mechanisms and provide new biotechnological tools for the conversion of polysaccharides, including lignocellulosic biomass, into monosaccharides.
Collapse
|
33
|
Nagy T, Tunnicliffe RB, Higgins LD, Walters C, Gilbert HJ, Williamson MP. Characterization of a double dockerin from the cellulosome of the anaerobic fungus Piromyces equi. J Mol Biol 2007; 373:612-22. [PMID: 17869267 DOI: 10.1016/j.jmb.2007.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 08/01/2007] [Indexed: 10/22/2022]
Abstract
The assembly into supramolecular complexes of proteins having complementary activities is central to cellular function. One such complex of considerable biological and industrial significance is the plant cell wall-degrading apparatus of anaerobic microorganisms, termed the cellulosome. A central feature of bacterial cellulosomes is a large non-catalytic protein, the scaffoldin, which contains multiple cohesin domains. An array of digestive enzymes is incorporated into the cellulosome through the interaction of the dockerin domains, present in the catalytic subunits, with the cohesin domains that are present in the scaffoldin. By contrast, in anaerobic fungi, such as Piromyces equi, the dockerins of cellulosomal enzymes are often present in tandem copies; however, the identity of the cognate cohesin domains in these organisms is unclear, hindering further biotechnological development of the fungal cellulosome. Here, we characterise the solution structure and function of a double-dockerin construct from the P. equi endoglucanase Cel45A. We show that the two domains are connected by a flexible linker that is short enough to keep the binding sites of the two domains on adjacent surfaces, and allows the double-dockerin construct to bind more tightly to cellulosomes than a single domain and with greater coverage. The double dockerin binds to the GH3 beta-glucosidase component of the fungal cellulosome, which is thereby identified as a potential scaffoldin.
Collapse
Affiliation(s)
- Tibor Nagy
- Institute for Cell and Molecular Biosciences, The University of Newcastle upon Tyne, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | | | |
Collapse
|
34
|
Mingardon F, Chanal A, López-Contreras AM, Dray C, Bayer EA, Fierobe HP. Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes. Appl Environ Microbiol 2007; 73:3822-32. [PMID: 17468286 PMCID: PMC1932714 DOI: 10.1128/aem.00398-07] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Artificial designer minicellulosomes comprise a chimeric scaffoldin that displays an optional cellulose-binding module (CBM) and bacterial cohesins from divergent species which bind strongly to enzymes engineered to bear complementary dockerins. Incorporation of cellulosomal cellulases from Clostridium cellulolyticum into minicellulosomes leads to artificial complexes with enhanced activity on crystalline cellulose, due to enzyme proximity and substrate targeting induced by the scaffoldin-borne CBM. In the present study, a bacterial dockerin was appended to the family 6 fungal cellulase Cel6A, produced by Neocallimastix patriciarum, for subsequent incorporation into minicellulosomes in combination with various cellulosomal cellulases from C. cellulolyticum. The binding of the fungal Cel6A with a bacterial family 5 endoglucanase onto chimeric miniscaffoldins had no impact on their activity toward crystalline cellulose. Replacement of the bacterial family 5 enzyme with homologous endoglucanase Cel5D from N. patriciarum bearing a clostridial dockerin gave similar results. In contrast, enzyme pairs comprising the fungal Cel6A and bacterial family 9 endoglucanases were substantially stimulated (up to 2.6-fold) by complexation on chimeric scaffoldins, compared to the free-enzyme system. Incorporation of enzyme pairs including Cel6A and a processive bacterial cellulase generally induced lower stimulation levels. Enhanced activity on crystalline cellulose appeared to result from either proximity or CBM effects alone but never from both simultaneously, unlike minicellulosomes composed exclusively of bacterial cellulases. The present study is the first demonstration that viable designer minicellulosomes can be produced that include (i) free (noncellulosomal) enzymes, (ii) fungal enzymes combined with bacterial enzymes, and (iii) a type (family 6) of cellulase never known to occur in natural cellulosomes.
Collapse
Affiliation(s)
- Florence Mingardon
- Department of Bioénergétique et Ingénierie de Protéines, UPR9036, BIP-CNRS, IBSM, 31, chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
35
|
Expression of an AT-rich xylanase gene from the anaerobic fungus Orpinomyces sp. strain PC-2 in and secretion of the heterologous enzyme by Hypocrea jecorina. Appl Microbiol Biotechnol 2007. [DOI: 10.1007/s00253-006-0787-6 72] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
36
|
Li XL, Skory CD, Ximenes EA, Jordan DB, Dien BS, Hughes SR, Cotta MA. Expression of an AT-rich xylanase gene from the anaerobic fungus Orpinomyces sp. strain PC-2 in and secretion of the heterologous enzyme by Hypocrea jecorina. Appl Microbiol Biotechnol 2007; 74:1264-75. [PMID: 17225100 DOI: 10.1007/s00253-006-0787-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 11/28/2006] [Accepted: 11/30/2006] [Indexed: 12/01/2022]
Abstract
The catalytic domain encoded by an adenine-thymine (AT)-rich xylanase gene (xynA) of the anaerobic fungus Orpinomyces was expressed in Hypocrea jecorina under the control of the cel7A promoter and terminator. No XynA protein was detected in H. jecorina culture supernatants when the original sequence was fused to the H. jecorina cel5A region coding for its signal peptide, carbohydrate-binding module, and hinge. Replacing the xynA (56% AT content) with a synthetic sequence containing lower AT content (39%) supported the extracellular production (150 mg l(-1)) of the fusion xylanase by H. jecorina. Northern analysis revealed that successful production after the decrease in AT content was related to higher levels of the xylanase-specific mRNA. Another construct with an RDKR-coding sequence inserted between the cel5A linker and the xynA catalytic domain allowed production of the fully processed active xylanase catalytic domain. Both the fusion (40 kDa) and the fully processed (28 kDa) forms displayed enzymatic properties of family 11 xylanases. Both the R and the Kex2-like KR sites were recognized during secretion, resulting in a mixture of two amino termini for the 28-kDa xylanase. The work demonstrated for the first time that glycoside hydrolases derived from anaerobic fungi can be produced by H. jecorina.
Collapse
MESH Headings
- AT Rich Sequence/genetics
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Cloning, Molecular
- Electrophoresis, Polyacrylamide Gel
- Endo-1,4-beta Xylanases/genetics
- Endo-1,4-beta Xylanases/metabolism
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Gene Expression Regulation, Enzymologic
- Hypocrea/genetics
- Molecular Sequence Data
- Neocallimastigales/enzymology
- Neocallimastigales/genetics
- Plasmids/chemistry
- Plasmids/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Xin-Liang Li
- Fermentation Biotechnology Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture-Agricultural Research Service, 1815 N. University Street, Peoria, IL, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Chen H, Hopper SL, Li XL, Ljungdahl LG, Cerniglia CE. Isolation of extremely AT-rich genomic DNA and analysis of genes encoding carbohydrate-degrading enzymes from Orpinomyces sp. strain PC-2. Curr Microbiol 2006; 53:396-400. [PMID: 17019643 PMCID: PMC5875115 DOI: 10.1007/s00284-006-0098-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
An effective method for extraction of intact genomic DNA from the extremely AT-rich polycentric anaerobic fungus Orpinomyces sp. strain PC-2 has been developed. This procedure involves removal of glycogen-like storage polysaccharides using hexadecyltrimethylammonium bromide (CTAB) and high salt washes. The DNA was digested with various restriction enzymes and was suitable for use as a PCR template, for Southern blotting, and for genomic library construction. Genomic DNA analysis of three representative genes (celE, bgl1, and xynA) encoding (hemi-) cellulolytic enzymes of the fungus revealed multiplicity of family 5 endocellulase genes (celE-like), and family 1 beta-glucosidase genes (bgl1-like), but only a single copy of family 11 xylanase gene (xynA).
Collapse
Affiliation(s)
- Huizhong Chen
- Division of Microbiology, National Center for Toxicological Research, U.S. FDA, Jefferson, AR, 72079, USA.
| | | | | | | | | |
Collapse
|
38
|
Ximenes EA, Chen H, Kataeva IA, Cotta MA, Felix CR, Ljungdahl LG, Li XL. A mannanase, ManA, of the polycentric anaerobic fungus Orpinomyces sp. strain PC-2 has carbohydrate binding and docking modules. Can J Microbiol 2006; 51:559-68. [PMID: 16175204 PMCID: PMC6448567 DOI: 10.1139/w05-033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The anaerobic fungus Orpinomyces sp. strain PC-2 produces a broad spectrum of glycoside hydrolases, most of which are components of a high molecular mass cellulosomal complex. Here we report about a cDNA (manA) having 1924 bp isolated from the fungus and found to encode a polypeptide of 579 amino acid residues. Analysis of the deduced sequence revealed that it had a mannanase catalytic module, a family 1 carbohydrate-binding module, and a noncatalytic docking module. The catalytic module was homologous to aerobic fungal mannanases belonging to family 5 glycoside hydrolases, but unrelated to the previously isolated mannanases (family 26) of the anaerobic fungus Piromyces. No mannanase activity could be detected in Escherichia coli harboring a manA-containing plasmid. The manA was expressed in Saccharomyces cerevisiae and ManA was secreted into the culture medium in multiple forms. The purified extracellular heterologous mannanase hydrolyzed several types of mannan but lacked activity against cellulose, chitin, or beta-glucan. The enzyme had high specific activity toward locust bean mannan and an extremely broad pH profile. It was stable for several hours at 50 degrees C, but was rapidly inactivated at 60 degrees C. The carbohydrate-binding module of the Man A produced separately in E. coli bound preferably to insoluble lignocellulosic substrates, suggesting that it might play an important role in the complex enzyme system of the fungus for lignocellulose degradation.
Collapse
Affiliation(s)
- Eduardo A. Ximenes
- Laboratorio De Enzimologia, Departmento De Biologia Celular, Universidade De Brasilia, Asa Norte, Brasilia-DF-Brazil 70910-900, Brazil
| | - Huizhong Chen
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079-9502, USA
| | - Irina A. Kataeva
- Department of Biochemistry and Molecular Biology and Center for Biological Resource Recovery, The University of Georgia, Athens, GA 30602-7229, USA
| | - Michael A. Cotta
- Fermentation Biotechnology Research Unit, National Center for Agricultural Utilization Research, USDA/ARS, 1815 N. University Street, Peoria, IL 61604, USA
| | - Carlos R. Felix
- Laboratorio De Enzimologia, Departmento De Biologia Celular, Universidade De Brasilia, Asa Norte, Brasilia-DF-Brazil 70910-900, Brazil
| | - Lars G. Ljungdahl
- Department of Biochemistry and Molecular Biology and Center for Biological Resource Recovery, The University of Georgia, Athens, GA 30602-7229, USA
| | | |
Collapse
|
39
|
Vasil'chenko LG, Khromonygina VV, Karapetyan KN, Vasilenko OV, Rabinovich ML. Cellobiose dehydrogenase formation by filamentous fungus Chaetomium sp. INBI 2-26(−). J Biotechnol 2005; 119:44-59. [PMID: 15996782 DOI: 10.1016/j.jbiotec.2005.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 03/29/2005] [Indexed: 11/28/2022]
Abstract
Laccase-negative filamentous fungus INBI 2-26(-) isolated from non-sporulating laccase-forming fungal association INBI 2-26 by means of protoplast technique was identified as Chaetomium sp. based on partial sequence of its rRNA genes. In the presence of natural cellulose sources, the strain secreted neutral cellobiose dehydrogenase (CDH) activity both in pure culture and in co-culture with laccase-positive filamentous fungus INBI 2-26(+) isolated from the same association. INBI 2-26(-) also secreted CDH during submerged cultivation in minimal medium with glucose as the sole carbon source. Maximal CDH activity of 1IU/ml at pH 6 with 2,6-dichlorophenolindophenol (DCPIP) as an acceptor was obtained on 12th day of submerged cultivation with filter paper as major cellulose source. Cellulase system of Chaetomium sp. INBI 2-26(-) capable of adsorption onto H(3)PO(4)-swollen filter paper consisted of four major proteins (Mr 200, 95, 65 and 55K) based on SDS-polyacrylamide gel electrophoresis and was capable of DCPIP reduction without exogenous cellobiose.
Collapse
Affiliation(s)
- L G Vasil'chenko
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | | | | | | | | |
Collapse
|
40
|
Nicholson MJ, Theodorou MK, Brookman JL. Molecular analysis of the anaerobic rumen fungus Orpinomyces - insights into an AT-rich genome. MICROBIOLOGY-SGM 2005; 151:121-133. [PMID: 15632432 DOI: 10.1099/mic.0.27353-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The anaerobic gut fungi occupy a unique niche in the intestinal tract of large herbivorous animals and are thought to act as primary colonizers of plant material during digestion. They are the only known obligately anaerobic fungi but molecular analysis of this group has been hampered by difficulties in their culture and manipulation, and by their extremely high A+T nucleotide content. This study begins to answer some of the fundamental questions about the structure and organization of the anaerobic gut fungal genome. Directed plasmid libraries using genomic DNA digested with highly or moderately rich AT-specific restriction enzymes (VspI and EcoRI) were prepared from a polycentric Orpinomyces isolate. Clones were sequenced from these libraries and the breadth of genomic inserts, both genic and intergenic, was characterized. Genes encoding numerous functions not previously characterized for these fungi were identified, including cytoskeletal, secretory pathway and transporter genes. A peptidase gene with no introns and having sequence similarity to a gene encoding a bacterial peptidase was also identified, extending the range of metabolic enzymes resulting from apparent trans-kingdom transfer from bacteria to fungi, as previously characterized largely for genes encoding plant-degrading enzymes. This paper presents the first thorough analysis of the genic, intergenic and rDNA regions of a variety of genomic segments from an anaerobic gut fungus and provides observations on rules governing intron boundaries, the codon biases observed with different types of genes, and the sequence of only the second anaerobic gut fungal promoter reported. Large numbers of retrotransposon sequences of different types were found and the authors speculate on the possible consequences of any such transposon activity in the genome. The coding sequences identified included several orphan gene sequences, including one with regions strongly suggestive of structural proteins such as collagens and lampirin. This gene was present as a single copy in Orpinomyces, was expressed during vegetative growth and was also detected in genomes from another gut fungal genus, Neocallimastix.
Collapse
Affiliation(s)
- Matthew J Nicholson
- School of Biological Sciences, University of Manchester, 1.800 Stopford Building, Oxford Road, Manchester M13 9PT, UK
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, UK
| | - Michael K Theodorou
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, UK
| | - Jayne L Brookman
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, UK
| |
Collapse
|
41
|
Adams JJ, Webb BA, Spencer HL, Smith SP. Structural characterization of type II dockerin module from the cellulosome of Clostridium thermocellum: calcium-induced effects on conformation and target recognition. Biochemistry 2005; 44:2173-82. [PMID: 15697243 DOI: 10.1021/bi048039u] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The assembly of a functional cellulose-degrading complex termed the cellulosome involves two specific calcium-dependent cohesin-dockerin interactions: type I and type II. Extensive structural and mutagenesis studies have been performed on the type I modules and their interaction in an attempt to identify the underlying molecular determinants responsible for this specificity. However, very little structural information exists for the type II interaction. We have performed a variety of biophysical studies on the type II dockerin-X-module modular pair (DocX), which comprises the C-terminal region of cellulosomal scaffoldin subunit from Clostridium thermocellum, to determine the effect of calcium on its structure and interaction with type II cohesin. Our results indicate that calcium binding to type II dockerin occurs with an apparent dissociation constant (K(d)) of 7 microM, induces stable secondary and tertiary structure, and leads to the exposure of a hydrophobic surface. Calcium binding also results in the homodimerization of DocX. Analytical ultracentrifugation experiments indicate that the DocX homodimer has an elongated shape and a K(d) of approximately 40 microM. However, addition of the SdbA type II cohesin binding partner led to the dissociation of the DocX homodimer and to the formation of a 1:1 heterodimer. We propose that the exposed hydrophobic surface forms, at least in part, the type II cohesin-binding site, which in the absence of cohesin results in the dimerization of DocX.
Collapse
Affiliation(s)
- Jarrett J Adams
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | |
Collapse
|
42
|
Huang YH, Huang CT, Hseu RS. Effects of dockerin domains onNeocallimastix frontalisxylanases. FEMS Microbiol Lett 2005; 243:455-60. [PMID: 15686849 DOI: 10.1016/j.femsle.2005.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 12/20/2004] [Accepted: 01/06/2005] [Indexed: 11/24/2022] Open
Abstract
Two xylanase genes were cloned from the anaerobic fungus Neocallimastix frontalis. Xyn11A had a modular structure of two catalytic domains and two dockerin domains, while Xyn11B had one catalytic domain and two dockerin domains. The characteristics of the xylanases with and without dockerin domains were investigated. The deletion of dockerin domains had little influence on the optimal pH of xylanases, while it significantly affected the optimal temperatures. The optimal temperatures increased from 55 to 60 degrees C for Xyn11A and 60 to 65 degrees C for Xyn11B after the deletion of dockerin domains. The increase of optimal temperatures was attributed to the lower stability of the second structure in full length xylanase than that in the truncated one as evidenced by the circular dichroism spectroscopy. The specific activity of Xyn11A and Xyn11B increased about 64% and 330%, respectively, after the deletion of the dockerin domains. The removal of dockerin domains appeared to increase the overall efficiency of Xyn11A' (1.2-) and Xyn11B' (2.9-) fold with oat spelts xylan as reflected by the values of k(cat)/K(m). The results suggest that the dockerin domain might play an important role in the characteristics of xylanases from anaerobic fungi.
Collapse
Affiliation(s)
- Ya-Hui Huang
- Institute of Microbiology and Biochemistry, National Taiwan University, Taipei 106, Taiwan, ROC
| | | | | |
Collapse
|
43
|
Affiliation(s)
- Roy H Doi
- Section of Molecular & Cellular Biology, University of California, Davis, California, USA.
| | | |
Collapse
|
44
|
Jindou S, Soda A, Karita S, Kajino T, Béguin P, Wu JHD, Inagaki M, Kimura T, Sakka K, Ohmiya K. Cohesin-dockerin interactions within and between Clostridium josui and Clostridium thermocellum: binding selectivity between cognate dockerin and cohesin domains and species specificity. J Biol Chem 2004; 279:9867-74. [PMID: 14688277 DOI: 10.1074/jbc.m308673200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cellulosome components are assembled into the cellulosome complex by the interaction between one of the repeated cohesin domains of a scaffolding protein and the dockerin domain of an enzyme component. We prepared five recombinant cohesin polypeptides of the Clostridium thermocellum scaffolding protein CipA, two dockerin polypeptides of C. thermocellum Xyn11A and Xyn10C, four cohesin polypeptides of Clostridium josui CipA, and two dockerin polypeptides of C. josui Aga27A and Cel8A, and qualitatively and quantitatively examined the cohesin-dockerin interactions within C. thermocellum and C. josui, respectively, and the species specificity of the cohesin-dockerin interactions between these two bacteria. Surface plasmon resonance (SPR) analysis indicated that there was a certain selectivity, with a maximal 34-fold difference in the K(D) values, in the cohesin-dockerin interactions within a combination of C. josui, although this was not detected by qualitative analysis. Affinity blotting analysis suggested that there was at least one exception to the species specificity in the cohesin-dockerin interactions, although species specificity was generally conserved among the cohesin and dockerin polypeptides from C. thermocellum and C. josui, i.e. the dockerin polypeptides of C. thermocellum Xyn11A exceptionally bound to the cohesin polypeptides from C. josui CipA. SPR analysis confirmed this exceptional binding. We discuss the relationship between the species specificity of the cohesin-dockerin binding and the conserved amino acid residues in the dockerin domains.
Collapse
Affiliation(s)
- Sadanari Jindou
- Faculty of Bioresources, Mie University, 1515 Kamihamacho, Tsu 514-8507, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Li XL, Ljungdahl LG, Ximenes EA, Chen H, Felix CR, Cotta MA, Dien BS. Properties of a recombinant beta-glucosidase from polycentric anaerobic fungus Orpinomyces PC-2 and its application for cellulose hydrolysis. Appl Biochem Biotechnol 2004; 113-116:233-50. [PMID: 15054209 PMCID: PMC5890932 DOI: 10.1385/abab:113:1-3:233] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A beta-glucosidase (BglA, EC 3.2.1.21) gene from the polycentric anaerobic fungus Orpinomyces PC-2 was cloned and sequenced. The enzyme containing 657 amino acid residues was homologous to certain animal, plant, and bacterial beta-glucosidases but lacked significant similarity to those from aerobic fungi. Neither cellulose- nor protein-binding domains were found in BglA. When expressed in Saccharomyces cerevisiae, the enzyme was secreted in two forms with masses of about 110 kDa and also found in two forms associated with the yeast cells. Km and Vmax values of the secreted BglA were 0.762 mM and 8.20 micromol/(min x mg), respectively, with p-nitrophenyl-beta-D-glucopyranoside (pNPG) as the substrate and 0.310 mM and 6.45 micromol/(min.mg), respectively, for the hydrolysis of cellobiose. Glucose competitively inhibited the hydrolysis of pNPG with a Ki of 3.6 mM. Beta-glucosidase significantly enhanced the conversion of cellulosic materials into glucose by Trichoderma reesei cellulase preparations, demonstrating its potential for use in biofuel and feedstock chemical production.
Collapse
Affiliation(s)
- Xin-Liang Li
- Fermentation Biotechnology Research Unit, National Center for Agricultural Utilization Research, USDA/ARS,1815 N. University Street, Peoria, IL 61604-3902, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Flint HJ. Polysaccharide Breakdown by Anaerobic Microorganisms Inhabiting the Mammalian Gut. ADVANCES IN APPLIED MICROBIOLOGY 2004; 56:89-120. [PMID: 15566977 DOI: 10.1016/s0065-2164(04)56003-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Harry J Flint
- Microbial Genetics Group Rowett Research Institute Bucksburn, Aberdeen, AB21 9SB, United Kingdom.
| |
Collapse
|
47
|
Krause DO, Denman SE, Mackie RI, Morrison M, Rae AL, Attwood GT, McSweeney CS. Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol Rev 2003; 27:663-93. [PMID: 14638418 DOI: 10.1016/s0168-6445(03)00072-x] [Citation(s) in RCA: 287] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The degradation of plant cell walls by ruminants is of major economic importance in the developed as well as developing world. Rumen fermentation is unique in that efficient plant cell wall degradation relies on the cooperation between microorganisms that produce fibrolytic enzymes and the host animal that provides an anaerobic fermentation chamber. Increasing the efficiency with which the rumen microbiota degrades fiber has been the subject of extensive research for at least the last 100 years. Fiber digestion in the rumen is not optimal, as is supported by the fact that fiber recovered from feces is fermentable. This view is confirmed by the knowledge that mechanical and chemical pretreatments improve fiber degradation, as well as more recent research, which has demonstrated increased fiber digestion by rumen microorganisms when plant lignin composition is modified by genetic manipulation. Rumen microbiologists have sought to improve fiber digestion by genetic and ecological manipulation of rumen fermentation. This has been difficult and a number of constraints have limited progress, including: (a) a lack of reliable transformation systems for major fibrolytic rumen bacteria, (b) a poor understanding of ecological factors that govern persistence of fibrolytic bacteria and fungi in the rumen, (c) a poor understanding of which glycolyl hydrolases need to be manipulated, and (d) a lack of knowledge of the functional genomic framework within which fiber degradation operates. In this review the major fibrolytic organisms are briefly discussed. A more extensive discussion of the enzymes involved in fiber degradation is included. We also discuss the use of plant genetic manipulation, application of free-living lignolytic fungi and the use of exogenous enzymes. Lastly, we will discuss how newer technologies such as genomic and metagenomic approaches can be used to improve our knowledge of the functional genomic framework of plant cell wall degradation in the rumen.
Collapse
Affiliation(s)
- Denis O Krause
- CSIRO Australia, Queensland Bioscience Precinct, St. Lucia, Qld 4067, Australia.
| | | | | | | | | | | | | |
Collapse
|
48
|
Harhangi HR, Akhmanova A, Steenbakkers PJM, Jetten MSM, van der Drift C, Op den Camp HJM. Genomic DNA analysis of genes encoding (hemi-)cellulolytic enzymes of the anaerobic fungus Piromyces sp. E2. Gene 2003; 314:73-80. [PMID: 14527719 DOI: 10.1016/s0378-1119(03)00705-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Anaerobic fungi contain more than one copy of genes encoding (hemi-)cellulases in their genome. The arrangement of these genes on the chromosomes was not known. A genomic DNA (gDNA) library of Piromyces sp. E2 was screened with different probes specific for (hemi-)cellulolytic enzymes. This screening resulted in three gDNA clones with genes encoding glycoside hydrolase enzymes of families 1 (beta-glucosidase), 6 (exoglucanase) and 26 (mannanase). Each clone contained two or more genes of the same family. Comparison of the gene copies on a clone revealed that they were highly homologous, and in addition, 54-75% of the substitutions was synonymous. One of the mannanase genes contained an intron. PCR with selected primers resulted in a gDNA clone with a new representative (cel9B) of glycoside hydrolase family 9 (endoglucanase). Comparison with cel9A revealed that cel9B had 67% homology on the nucleotide level. Furthermore, three introns were present. All results of this paper taken together provided evidence for duplications of (hemi-)cellulolytic genes, which resulted in clusters of almost identical genes arranged head-to-tail on the genome. In contrast to other eukaryotes, this phenomenon appears frequently in anaerobic fungi.
Collapse
Affiliation(s)
- Harry R Harhangi
- Department of Microbiology, Faculty of Science, University of Nijmegen, Toernooiveld 1, NL-6525 ED, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Harhangi HR, Freelove ACJ, Ubhayasekera W, van Dinther M, Steenbakkers PJM, Akhmanova A, van der Drift C, Jetten MSM, Mowbray SL, Gilbert HJ, Op den Camp HJM. Cel6A, a major exoglucanase from the cellulosome of the anaerobic fungi Piromyces sp. E2 and Piromyces equi. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1628:30-9. [PMID: 12850270 DOI: 10.1016/s0167-4781(03)00112-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anaerobic fungi possess high cellulolytic activities, which are organised in high molecular mass (HMM) complexes. Besides catalytic modules, the cellulolytic enzyme components of these complexes contain non-catalytic modules, known as dockerins, that play a key role in complex assembly. Screening of a genomic and a cDNA library of two Piromyces species resulted in the isolation of two clones containing inserts of 5.5 kb (Piromyces sp. E2) and 1.5 kb (Piromyces equi). Both clones contained the complete coding region of a glycoside hydrolase (GH) from family 6, consisting of a 20 amino acid signal peptide, a 76 (sp. E2)/81 (P. equi) amino acid stretch comprising two fungal non-catalytic docking domains (NCDDs), a 24 (sp. E2)/16 (P. equi) amino acid linker, and a 369 amino acid catalytic module. Homology modelling of the catalytic module strongly suggests that the Piromyces enzymes will be processive cellobiohydrolases. The catalytic residues and all nearby residues are conserved. The reaction is thus expected to proceed via a classical single-displacement (inverting) mechanism that is characteristic of this family of GHs. The enzyme, defined as Cel6A, encoded by the full-length Piromyces E2 sequence was expressed in Escherichia coli. The recombinant protein expressed had a molecular mass of 55 kDa and showed activity against Avicel, supporting the observed relationship of the sequence to those of known cellobiohydrolases. Affinity-purified cellulosomes of Piromyces sp. E2 were analysed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE) electrophoresis. A major band was detected with the molecular weight of Cel6A. A tryptic fingerprint of this protein confirmed its identity.
Collapse
Affiliation(s)
- Harry R Harhangi
- Department of Microbiology, Faculty of Science, University of Nijmegen, Toernooiveld 1, NL-6525 ED, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Steenbakkers PJM, Harhangi HR, Bosscher MW, van der Hooft MMC, Keltjens JT, van der Drift C, Vogels GD, op den Camp HJM. beta-Glucosidase in cellulosome of the anaerobic fungus Piromyces sp. strain E2 is a family 3 glycoside hydrolase. Biochem J 2003; 370:963-70. [PMID: 12485115 PMCID: PMC1223235 DOI: 10.1042/bj20021767] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2002] [Revised: 12/13/2002] [Accepted: 12/16/2002] [Indexed: 11/17/2022]
Abstract
The cellulosomes of anaerobic fungi convert crystalline cellulose solely into glucose, in contrast with bacterial cellulosomes which produce cellobiose. Previously, a beta-glucosidase was identified in the cellulosome of Piromyces sp. strain E2 by zymogram analysis, which represented approx. 25% of the extracellular beta-glucosidase activity. To identify the component in the fungal cellulosome responsible for the beta-glucosidase activity, immunoscreening with anti-cellulosome antibodies was used to isolate the corresponding gene. A 2737 bp immunoclone was isolated from a cDNA library. The clone encoded an extracellular protein containing a eukaryotic family 3 glycoside hydrolase domain homologue and was therefore named cel3A. The C-terminal end of the encoded Cel3A protein consisted of an auxiliary domain and three fungal dockerins, typical for cellulosome components. The Cel3A catalytic domain was expressed in Escherichia coli BL21 and purified. Biochemical analyses of the recombinant protein showed that the Cel3A catalytic domain was specific for beta-glucosidic bonds and functioned as an exoglucohydrolase on soluble substrates as well as cellulose. Comparison of the apparent K (m) and K (i) values of heterologous Cel3A and the fungal cellulosome for p -nitrophenyl-beta-D-glucopyranoside and D-glucono-1,5-delta-lactone respectively indicated that cel3A encodes the beta-glucosidase activity of the Piromyces sp. strain E2 cellulosome.
Collapse
Affiliation(s)
- Peter J M Steenbakkers
- Department of Microbiology, Faculty of Science, University of Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|