1
|
Ou C, Dozois CM, Daigle F. Differential regulatory control of curli (csg) gene expression in Salmonella enterica serovar Typhi requires more than a functional CsgD regulator. Sci Rep 2023; 13:14905. [PMID: 37689734 PMCID: PMC10492818 DOI: 10.1038/s41598-023-42027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023] Open
Abstract
The human-specific Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever, a systemic disease with no known reservoir. Curli fimbriae are major components of biofilm produced by Salmonella and are encoded by the csg gene cluster (csgBAC and csgDEFG). The role of curli in S. Typhi is unknown, although detection of anti-curli antibodies suggests they are produced during host infection. In this study, we investigated curli gene expression in S. Typhi. We demonstrated that the CsgD regulatory protein binds weakly to the csgB promoter. Yet, replacing S. Typhi csgD with the csgD allele from S. Typhimurium did not modify the curli negative phenotype on Congo Red medium suggesting that differential regulation of curli gene expression in S. Typhi is not dependent on modification of the CsgD regulator. The entire csg gene cluster from S. Typhimurium was also cloned into S. Typhi, but again, despite introduction of a fully functional csg gene cluster from S. Typhimurium, curli were still not detected in S. Typhi. Thus, in addition to intrinsic genomic differences in the csg gene cluster that have resulted in production of a modified CsgD protein, S. Typhi has likely undergone other changes independent of the csg gene cluster that have led to distinctive regulation of csg genes compared to other Salmonella serovars.
Collapse
Affiliation(s)
- Camille Ou
- Department of Microbiology, Infectiology and Immunology, University of Montréal, 2900 Bd Édouard-Montpetit, Montreal, QC, H3T 1J4, Canada
- CRIPA, Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, 3200 Sicotte, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Charles M Dozois
- CRIPA, Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, 3200 Sicotte, St-Hyacinthe, QC, J2S 2M2, Canada
- Centre Armand-Frappier Santé Biotechnologie, Institut Nationale de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC, H7V 1B7, Canada
| | - France Daigle
- Department of Microbiology, Infectiology and Immunology, University of Montréal, 2900 Bd Édouard-Montpetit, Montreal, QC, H3T 1J4, Canada.
- CRIPA, Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, 3200 Sicotte, St-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
2
|
Le VVH, León-Quezada RI, Biggs PJ, Rakonjac J. A large chromosomal inversion affects antimicrobial sensitivity of Escherichia coli to sodium deoxycholate. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35960647 DOI: 10.1099/mic.0.001232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Resistance to antimicrobials is normally caused by mutations in the drug targets or genes involved in antimicrobial activation or expulsion. Here we show that an Escherichia coli strain, named DOC14, selected for increased resistance to the bile salt sodium deoxycholate, has no mutations in any ORF, but instead has a 2.1 Mb chromosomal inversion. The breakpoints of the inversion are two inverted copies of an IS5 element. Besides lowering deoxycholate susceptibility, the IS5-mediated chromosomal inversion in the DOC14 mutant was found to increase bacterial survival upon exposure to ampicillin and vancomycin, and sensitize the cell to ciprofloxacin and meropenem, but does not affect bacterial growth or cell morphology in a rich medium in the absence of antibacterial molecules. Overall, our findings support the notion that a large chromosomal inversion can benefit bacterial cells under certain conditions, contributing to genetic variability available for selection during evolution. The DOC14 mutant paired with its isogenic parental strain form a useful model as bacterial ancestors in evolution experiments to study how a large chromosomal inversion influences the evolutionary trajectory in response to various environmental stressors.
Collapse
Affiliation(s)
- Vuong Van Hung Le
- School of Natural Sciences, Massey University, Palmerston North, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand.,Present address: Section of Microbiology, Department of Biology, University of Copenhagen, Denmark
| | | | - Patrick J Biggs
- School of Natural Sciences, Massey University, Palmerston North, New Zealand.,mEpiLab, Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Jasna Rakonjac
- School of Natural Sciences, Massey University, Palmerston North, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Lato DF, Zeng Q, Golding GB. Genomic inversions in Escherichia coli alter gene expression and are associated with nucleoid protein binding sites. Genome 2022; 65:287-299. [DOI: 10.1139/gen-2021-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genomic reorganization, like rearrangements and inversions, influence how genetic information is organized within bacterial genomes. Inversions in particular, facilitate genome evolution through gene gain and loss, and can alter gene expression. Previous studies investigating the impact inversions have on gene expression induced inversions targeting specific genes or examine inversions between distantly related species. This fails to encompass a genome wide perspective on naturally occurring inversions and their post adaptation impact on gene expression. Here we use bioinformatic techniques and multiple RNA-seq datasets to investigate the short- and long-range impact inversions have on genomic gene expression within <i>Escherichia coli</i>. We observed differences in gene expression between homologous inverted and non-inverted genes, even after long term exposure to adaptive selection. In 4% of inversions representing 33 genes, differential gene expression between inverted and non-inverted homologs was detected, with nearly two thirds (71%) of differentially expressed inverted genes having 9.4-85.6 fold higher gene expression. The identified inversions had more overlap than expected with nucleoid associated protein binding sites, which assist in genomic gene expression regulation. Some inversions can drastically impact gene expression even between different strains of <i>E.coli</i>, and could provide a mechanism for the diversification of genetic content through controlled expression changes.
Collapse
Affiliation(s)
| | - Qing Zeng
- McMaster University, Department of Biology, Hamilton, Ontario, Canada,
| | - G. Brian Golding
- McMaster University, Department of Biology, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4K1,
| |
Collapse
|
4
|
Pozdeev G, Mogre A, Dorman CJ. Consequences of producing DNA gyrase from a synthetic gyrBA operon in Salmonella enterica serovar Typhimurium. Mol Microbiol 2021; 115:1410-1429. [PMID: 33539568 PMCID: PMC8359277 DOI: 10.1111/mmi.14689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/17/2022]
Abstract
DNA gyrase is an essential type II topoisomerase that is composed of two subunits, GyrA and GyrB, and has an A2B2 structure. Although the A and B subunits are required in equal proportions to form DNA gyrase, the gyrA and gyrB genes that encode them in Salmonella (and in many other bacteria) are at separate locations on the chromosome, are under separate transcriptional control, and are present in different copy numbers in rapidly growing bacteria. In wild‐type Salmonella, gyrA is near the chromosome's replication terminus, while gyrB is near the origin. We generated a synthetic gyrBA operon at the oriC‐proximal location of gyrB to test the significance of the gyrase gene position for Salmonella physiology. Although the strain producing gyrase from an operon had a modest alteration to its DNA supercoiling set points, most housekeeping functions were unaffected. However, its SPI‐2 virulence genes were expressed at a reduced level and its survival was reduced in macrophage. Our data reveal that the horizontally acquired SPI‐2 genes have a greater sensitivity to disturbance of DNA topology than the core genome and we discuss its significance in the context of Salmonella genome evolution and the gyrA and gyrB gene arrangements found in other bacteria.
Collapse
Affiliation(s)
- German Pozdeev
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Aalap Mogre
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
5
|
Stanton E, Wahlig TA, Park D, Kaspar CW. Chronological set of E. coli O157:H7 bovine strains establishes a role for repeat sequences and mobile genetic elements in genome diversification. BMC Genomics 2020; 21:562. [PMID: 32807088 PMCID: PMC7430833 DOI: 10.1186/s12864-020-06943-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/23/2020] [Indexed: 11/21/2022] Open
Abstract
Background Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is a significant foodborne pathogen that resides asymptomatically within cattle and other ruminants. The EHEC genome harbors an extensive collection of mobile genetic elements (MGE), including multiple prophage, prophage-like elements, plasmids, and insertion sequence (IS) elements. Results A chronological collection of EHEC strains (FRIK804, FRIK1275, and FRIK1625) isolated from a Wisconsin dairy farm (farm X) comprised a closely related clade genetically differentiated by structural alterations to the chromosome. Comparison of the FRIK804 genome with a reference EHEC strain Sakai found a unique prophage like element (PLE, indel 1) and an inversion (1.15 Mb) situated symmetrically with respect to the terminus region. Detailed analysis determined the inversion was due to homologous recombination between repeat sequences in prophage. The three farm X strains were distinguished by the presence or absence of indel 3 (61 kbp) and indel 4 (48 kbp); FRIK804 contained both of these regions, FRIK1275 lacked indel 4, and indels 3 and 4 were both absent in FRIK1625. Indel 3 was the stx2 prophage and indel 4 involved a deletion between two adjacent prophage with shared repeat sequences. Both FRIK804 and FRIK1275 produced functional phage while FRIK1625 did not, which is consistent with indel 3. Due to their involvement in recombination events, direct and inverted repeat sequences were identified, and their locations mapped to the chromosome. FRIK804 had a greater number and overall length of repeat sequences than E. coli K12 strain MG1655. Repeat sequences were most commonly associated with MGE. Conclusions This research demonstrated that three EHEC strains from a Wisconsin dairy farm were closely related and distinguished by variability within prophage regions and other MGE. Chromosome alterations were associated with recombination events between repeat sequences. An inventory of direct and inverted repeat sequences found a greater abundance and total length of repeat sequences in the EHEC strains compared to E. coli strain MG1655. The locations of the repeat sequences were biased towards MGE. The findings from this study expand our understanding of the precise molecular events and elements that contributed to genetic diversification of wild-type EHEC in the bovine and farm environments.
Collapse
Affiliation(s)
- Eliot Stanton
- Department of Bacteriology, University of Wisconsin-Madison, Microbial Sciences Building, 1550 Linden Drive, Madison, WI, 53706, USA
| | - Taylor A Wahlig
- Department of Bacteriology, University of Wisconsin-Madison, Microbial Sciences Building, 1550 Linden Drive, Madison, WI, 53706, USA.,University of Utah, School of Medicine, 30 N 1900 E, Salt Lake City, UT, 84132, USA
| | - Dongjin Park
- Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Charles W Kaspar
- Department of Bacteriology, University of Wisconsin-Madison, Microbial Sciences Building, 1550 Linden Drive, Madison, WI, 53706, USA. .,Food Research Institute, University of Wisconsin-Madison, Microbial Sciences Building, 1550 Linden Drive, Madison, WI, 53706, USA.
| |
Collapse
|
6
|
Abstract
Plasmids are extrachromosomal DNA elements that can be found throughout bacteria, as well as in other domains of life. Nonetheless, the evolutionary processes underlying the persistence of plasmids are incompletely understood. Bacterial plasmids may encode genes for traits that are sometimes beneficial to their hosts, such as antimicrobial resistance, virulence, heavy metal tolerance, and the catabolism of unique nutrient sources. In the absence of selection for these traits, however, plasmids generally impose a fitness cost on their hosts. As such, plasmid persistence presents a conundrum: models predict that costly plasmids will be lost over time or that beneficial plasmid genes will be integrated into the host genome. However, laboratory and comparative studies have shown that plasmids can persist for long periods, even in the absence of positive selection. Several hypotheses have been proposed to explain plasmid persistence, including host-plasmid co-adaptation, plasmid hitchhiking, cross-ecotype transfer, and high plasmid transfer rates, but there is no clear evidence that any one model adequately resolves the plasmid paradox.
Collapse
Affiliation(s)
- Amanda C Carroll
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.,Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Alex Wong
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.,Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
7
|
Conserved intergenic sequences revealed by CTAG-profiling in Salmonella: thermodynamic modeling for function prediction. Sci Rep 2017; 7:43565. [PMID: 28262684 PMCID: PMC5337935 DOI: 10.1038/srep43565] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/23/2017] [Indexed: 01/14/2023] Open
Abstract
Highly conserved short sequences help identify functional genomic regions and facilitate genomic annotation. We used Salmonella as the model to search the genome for evolutionarily conserved regions and focused on the tetranucleotide sequence CTAG for its potentially important functions. In Salmonella, CTAG is highly conserved across the lineages and large numbers of CTAG-containing short sequences fall in intergenic regions, strongly indicating their biological importance. Computer modeling demonstrated stable stem-loop structures in some of the CTAG-containing intergenic regions, and substitution of a nucleotide of the CTAG sequence would radically rearrange the free energy and disrupt the structure. The postulated degeneration of CTAG takes distinct patterns among Salmonella lineages and provides novel information about genomic divergence and evolution of these bacterial pathogens. Comparison of the vertically and horizontally transmitted genomic segments showed different CTAG distribution landscapes, with the genome amelioration process to remove CTAG taking place inward from both terminals of the horizontally acquired segment.
Collapse
|
8
|
Gaffé J, McKenzie C, Maharjan RP, Coursange E, Ferenci T, Schneider D. Insertion Sequence-Driven Evolution of Escherichia coli in Chemostats. J Mol Evol 2011; 72:398-412. [DOI: 10.1007/s00239-011-9439-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/01/2011] [Indexed: 11/30/2022]
|
9
|
Matthews TD, Edwards R, Maloy S. Chromosomal rearrangements formed by rrn recombination do not improve replichore balance in host-specific Salmonella enterica serovars. PLoS One 2010; 5:e13503. [PMID: 20976060 PMCID: PMC2957434 DOI: 10.1371/journal.pone.0013503] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/23/2010] [Indexed: 01/16/2023] Open
Abstract
Background Most of the ∼2,600 serovars of Salmonella enterica have a broad host range as well as a conserved gene order. In contrast, some Salmonella serovars are host-specific and frequently exhibit large chromosomal rearrangements from recombination between rrn operons. One hypothesis explaining these rearrangements suggests that replichore imbalance introduced from horizontal transfer of pathogenicity islands and prophages drives chromosomal rearrangements in an attempt to improve balance. Methodology/Principal Findings This hypothesis was directly tested by comparing the naturally-occurring chromosomal arrangement types to the theoretically possible arrangement types, and estimating their replichore balance using a calculator. In addition to previously characterized strains belonging to host-specific serovars, the arrangement types of 22 serovar Gallinarum strains was also determined. Only 48 out of 1,440 possible arrangement types were identified in 212 host-specific strains. While the replichores of most naturally-occurring arrangement types were well-balanced, most theoretical arrangement types had imbalanced replichores. Furthermore, the most common types of rearrangements did not change replichore balance. Conclusions/Significance The results did not support the hypothesis that replichore imbalance causes these rearrangements, and suggest that the rearrangements could be explained by aspects of a host-specific lifestyle.
Collapse
Affiliation(s)
- T. David Matthews
- Center for Microbial Sciences, Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Robert Edwards
- Center for Microbial Sciences, Department of Biology, San Diego State University, San Diego, California, United States of America
- Department of Computer Science, San Diego State University, San Diego, California, United States of America
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Stanley Maloy
- Center for Microbial Sciences, Department of Biology, San Diego State University, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Booker BM, Deng S, Higgins NP. DNA topology of highly transcribed operons in Salmonella enterica serovar Typhimurium. Mol Microbiol 2010; 78:1348-64. [PMID: 21143310 DOI: 10.1111/j.1365-2958.2010.07394.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacteria differ from eukaryotes by having the enzyme DNA gyrase, which catalyses the ATP-dependent negative supercoiling of DNA. Negative supercoils are essential for condensing chromosomes into an interwound (plectonemic) and branched structure known as the nucleoid. Topo-1 removes excess supercoiling in an ATP-independent reaction and works with gyrase to establish a topological equilibrium where supercoils move within 10 kb domains bounded by stochastic barriers along the sequence. However, transcription changes the stochastic pattern by generating supercoil diffusion barriers near the sites of gene expression. Using supercoil-dependent Tn3 and γδ resolution assays, we studied DNA topology upstream, downstream and across highly transcribed operons. Whenever two Res sites flanked efficiently transcribed genes, resolution was inhibited and the loss in recombination efficiency was proportional to transcription level. Ribosomal RNA operons have the highest transcription rates, and resolution assays at the rrnG and rrnH operons showed inhibitory levels 40-100 times those measured in low-transcription zones. Yet, immediately upstream and downstream of RNA polymerase (RNAP) initiation and termination sites, supercoiling characteristics were similar to poorly transcribed zones. We present a model that explains why RNAP blocks plectonemic supercoil movement in the transcribed track and suggests how gyrase and TopA control upstream and downstream transcription-driven supercoiling.
Collapse
Affiliation(s)
- Betty M Booker
- Department of Biochemistry and Molecular Genetics, University of Alabama , Birmingham, AL 35294-0024, USA
| | | | | |
Collapse
|
11
|
Shukla SK, Kislow J, Briska A, Henkhaus J, Dykes C. Optical mapping reveals a large genetic inversion between two methicillin-resistant Staphylococcus aureus strains. J Bacteriol 2009; 191:5717-23. [PMID: 19542272 PMCID: PMC2737957 DOI: 10.1128/jb.00325-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 06/16/2009] [Indexed: 01/03/2023] Open
Abstract
Staphylococcus aureus is a highly versatile and evolving bacterium of great clinical importance. S. aureus can evolve by acquiring single nucleotide polymorphisms and mobile genetic elements and by recombination events. Identification and location of novel genomic elements in a bacterial genome are not straightforward, unless the whole genome is sequenced. Optical mapping is a new tool that creates a high-resolution, in situ ordered restriction map of a bacterial genome. These maps can be used to determine genomic organization and perform comparative genomics to identify genomic rearrangements, such as insertions, deletions, duplications, and inversions, compared to an in silico (virtual) restriction map of a known genome sequence. Using this technology, we report here the identification, approximate location, and characterization of a genetic inversion of approximately 500 kb of a DNA element between the NRS387 (USA800) and FPR3757 (USA300) strains. The presence of the inversion and location of its junction sites were confirmed by site-specific PCR and sequencing. At both the left and right junction sites in NRS387, an IS1181 element and a 73-bp sequence were identified as inverted repeats, which could explain the possible mechanism of the inversion event.
Collapse
Affiliation(s)
- Sanjay K Shukla
- Marshfield Clinic Research Foundation, 1000 North Oak Avenue, Marshfield, Wisconsin 54449, USA.
| | | | | | | | | |
Collapse
|
12
|
Chen F, Poppe C, Liu GR, Li YG, Peng YH, Sanderson KE, Johnston RN, Liu SL. A genome map of Salmonella enterica serovar Agona: numerous insertions and deletions reflecting the evolutionary history of a human pathogen. FEMS Microbiol Lett 2009; 293:188-95. [PMID: 19533840 DOI: 10.1111/j.1574-6968.2009.01539.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Salmonella enterica serovar Agona is an important zoonotic pathogen, causing serious human illness worldwide, but knowledge about its genetics and evolution, especially regarding the genomic events that might have contributed to the formation of S. Agona as an important pathogen, is lacking. As a first step toward understanding this pathogen and characterizing its genomic differences with other salmonellae, we constructed a physical map of S. Agona in strain SARB1 using I-CeuI, XbaI, AvrII and Tn10 insertions with pulsed-field gel electrophoresis techniques. On the 4815-kb genomic map, we located 82 genes, revealed one inversion of about 1000 kb and resolved seven deletions and seven insertions ranging from 10 to 67 kb relative to the genome of Salmonella typhimurium LT2. These genomic features clearly distinguish S. Agona from other previously analyzed salmonellae and provide clues to the molecular basis for its genomic divergence. Additionally, these kinds of physical maps, combined with emerging high-speed sequencing technologies, such as the Solexa or SOLiD techniques, which require a pre-existing high-resolution physical map such as the S. Agona map reported here, will play important roles in genomic comparative studies of bacteria involving large numbers of strains.
Collapse
Affiliation(s)
- Fang Chen
- Department of Microbiology, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Treangen TJ, Abraham AL, Touchon M, Rocha EPC. Genesis, effects and fates of repeats in prokaryotic genomes. FEMS Microbiol Rev 2009; 33:539-71. [PMID: 19396957 DOI: 10.1111/j.1574-6976.2009.00169.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA repeats are causes and consequences of genome plasticity. Repeats are created by intrachromosomal recombination or horizontal transfer. They are targeted by recombination processes leading to amplifications, deletions and rearrangements of genetic material. The identification and analysis of repeats in nearly 700 genomes of bacteria and archaea is facilitated by the existence of sequence data and adequate bioinformatic tools. These have revealed the immense diversity of repeats in genomes, from those created by selfish elements to the ones used for protection against selfish elements, from those arising from transient gene amplifications to the ones leading to stable duplications. Experimental works have shown that some repeats do not carry any adaptive value, while others allow functional diversification and increased expression. All repeats carry some potential to disorganize and destabilize genomes. Because recombination and selection for repeats vary between genomes, the number and types of repeats are also quite diverse and in line with ecological variables, such as host-dependent associations or population sizes, and with genetic variables, such as the recombination machinery. From an evolutionary point of view, repeats represent both opportunities and problems. We describe how repeats are created and how they can be found in genomes. We then focus on the functional and genomic consequences of repeats that dictate their fate.
Collapse
|
14
|
Liu WQ, Feng Y, Wang Y, Zou QH, Chen F, Guo JT, Peng YH, Jin Y, Li YG, Hu SN, Johnston RN, Liu GR, Liu SL. Salmonella paratyphi C: genetic divergence from Salmonella choleraesuis and pathogenic convergence with Salmonella typhi. PLoS One 2009; 4:e4510. [PMID: 19229335 PMCID: PMC2640428 DOI: 10.1371/journal.pone.0004510] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Accepted: 12/15/2008] [Indexed: 01/13/2023] Open
Abstract
Background Although over 1400 Salmonella serovars cause usually self-limited gastroenteritis in humans, a few, e.g., Salmonella typhi and S. paratyphi C, cause typhoid, a potentially fatal systemic infection. It is not known whether the typhoid agents have evolved from a common ancestor (by divergent processes) or acquired similar pathogenic traits independently (by convergent processes). Comparison of different typhoid agents with non-typhoidal Salmonella lineages will provide excellent models for studies on how similar pathogens might have evolved. Methodologies/Principal Findings We sequenced a strain of S. paratyphi C, RKS4594, and compared it with previously sequenced Salmonella strains. RKS4594 contains a chromosome of 4,833,080 bp and a plasmid of 55,414 bp. We predicted 4,640 intact coding sequences (4,578 in the chromosome and 62 in the plasmid) and 152 pseudogenes (149 in the chromosome and 3 in the plasmid). RKS4594 shares as many as 4346 of the 4,640 genes with a strain of S. choleraesuis, which is primarily a swine pathogen, but only 4008 genes with another human-adapted typhoid agent, S. typhi. Comparison of 3691 genes shared by all six sequenced Salmonella strains placed S. paratyphi C and S. choleraesuis together at one end, and S. typhi at the opposite end, of the phylogenetic tree, demonstrating separate ancestries of the human-adapted typhoid agents. S. paratyphi C seemed to have suffered enormous selection pressures during its adaptation to man as suggested by the differential nucleotide substitutions and different sets of pseudogenes, between S. paratyphi C and S. choleraesuis. Conclusions S. paratyphi C does not share a common ancestor with other human-adapted typhoid agents, supporting the convergent evolution model of the typhoid agents. S. paratyphi C has diverged from a common ancestor with S. choleraesuis by accumulating genomic novelty during adaptation to man.
Collapse
Affiliation(s)
- Wei-Qiao Liu
- Genomics Research Center, Harbin Medical University, Harbin, China
- Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Ye Feng
- JD Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Qing-Hua Zou
- Department of Microbiology, Peking University Health Science Center, Beijing, China
| | - Fang Chen
- Department of Microbiology, Peking University Health Science Center, Beijing, China
| | - Ji-Tao Guo
- Department of Microbiology, Peking University Health Science Center, Beijing, China
| | - Yi-Hong Peng
- Department of Microbiology, Peking University Health Science Center, Beijing, China
| | - Yan Jin
- Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Yong-Guo Li
- Depatment of Infectious Diseases, First Hospital, Harbin Medical University, Harbin, China
| | - Song-Nian Hu
- JD Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Randal N. Johnston
- Departments of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Gui-Rong Liu
- Genomics Research Center, Harbin Medical University, Harbin, China
- Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Peking University Health Science Center, Beijing, China
- * E-mail: (G-RL); (S-LL)
| | - Shu-Lin Liu
- Genomics Research Center, Harbin Medical University, Harbin, China
- Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Peking University Health Science Center, Beijing, China
- Depatment of Infectious Diseases, First Hospital, Harbin Medical University, Harbin, China
- * E-mail: (G-RL); (S-LL)
| |
Collapse
|
15
|
Kotewicz ML, Jackson SA, LeClerc JE, Cebula TA. Optical maps distinguish individual strains of Escherichia coli O157 : H7. MICROBIOLOGY-SGM 2007; 153:1720-1733. [PMID: 17526830 DOI: 10.1099/mic.0.2006/004507-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Optical maps of 11 Escherichia coli O157 : H7 strains have been generated by the assembly of contiguous sets of restriction fragments across their entire 5.3 to 5.6 Mbp chromosomes. Each strain showed a distinct, highly individual configuration of 500-700 BamHI fragments, yielding a map resembling a DNA 'bar code'. The accuracy of optical mapping was assessed by comparing directly the in silico restriction maps of two wholly sequenced reference genomes of E. coli O157 : H7, i.e. EDL933 and the Sakai isolate (RIMD 0509952), with the optical maps of the same strains. The optical maps of nine other E. coli O157 : H7 strains were compared similarly, using the sequence-based maps of the Sakai and EDL933 strains as references. A total of 91 changes at 28 loci were positioned and sized; these included complex chromosomal inversions, insertions, deletions, substitutions, as well as a number of simple RFLPs. The optical maps defined unique genome landmarks in each of the strains and demonstrated the ability of optical mapping to distinguish and differentiate, at the individual level, strains of this important pathogen.
Collapse
Affiliation(s)
- Michael L Kotewicz
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA
| | - Scott A Jackson
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA
| | - J Eugene LeClerc
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA
| | - Thomas A Cebula
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA
| |
Collapse
|
16
|
Abstract
Insertion sequences (ISs) are the smallest and most frequent transposable elements in prokaryotes where they play an important evolutionary role by promoting gene inactivation and genome plasticity. Their genomic abundance varies by several orders of magnitude for reasons largely unknown and widely speculated. The current availability of hundreds of genomes renders testable many of these hypotheses, notably that IS abundance correlates positively with the frequency of horizontal gene transfer (HGT), genome size, pathogenicity, nonobligatory ecological associations, and human association. We thus reannotated ISs in 262 prokaryotic genomes and tested these hypotheses showing that when using appropriate controls, there is no empirical basis for IS family specificity, pathogenicity, or human association to influence IS abundance or density. HGT seems necessary for the presence of ISs, but cannot alone explain the absence of ISs in more than 20% of the organisms, some of which showing high rates of HGT. Gene transfer is also not a significant determinant of the abundance of IS elements in genomes, suggesting that IS abundance is controlled at the level of transposition and ensuing natural selection and not at the level of infection. Prokaryotes engaging in obligatory associations have fewer ISs when controlled for genome size, but this may be caused by some being sexually isolated. Surprisingly, genome size is the only significant predictor of IS numbers and density. Alone, it explains over 40% of the variance of IS abundance. Because we find that genome size and IS abundance correlate negatively with minimal doubling times, we conclude that selection for rapid replication cannot account for the few ISs found in small genomes. Instead, we show evidence that IS numbers are controlled by the frequency of highly deleterious insertion targets. Indeed, IS abundance increases quickly with genome size, which is the exact inverse trend found for the density of genes under strong selection such as essential genes. Hence, for ISs, the bigger the genome the better.
Collapse
Affiliation(s)
- Marie Touchon
- Génétique des Génomes Bactériens, CNRS URA2171, Institut Pasteur, Paris, France.
| | | |
Collapse
|
17
|
Kresse AU, Blöcker H, Römling U. ISPa20 advances the individual evolution of Pseudomonas aeruginosa clone C subclone C13 strains isolated from cystic fibrosis patients by insertional mutagenesis and genomic rearrangements. Arch Microbiol 2006; 185:245-54. [PMID: 16474952 DOI: 10.1007/s00203-006-0089-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 01/03/2006] [Accepted: 01/16/2006] [Indexed: 01/07/2023]
Abstract
Pseudomonas aeruginosa clone C strains, which chronically colonize the lungs of cystic fibrosis patients reorganize their genome structure. In this study, a novel member of the IS3 subfamily of IS elements, ISPa20, was detected which was specific for clone C subclone C13 strains. ISPa20, which was present in high copy number, mediated events of genomic reorganization. ISPa20 was inserted into P. aeruginosa backbone genes leading to adaptation to the cystic fibrosis lung habitat and into DNA acquired through horizontal gene transfer. Further on, large chromosomal inversions were mediated by ISPa20. In contrast to strains of other subclonal linages high rates of genomic rearrangements of subclone C13 strains were observed in vitro. The acquisition of mobile elements by P. aeruginosa clone C strains in the lungs of cystic fibrosis patients supports the chronic colonization by insertional mutagenesis and chromosome restructuring leading to microevolution within clone C that reflects macroevolution observed on the species level.
Collapse
Affiliation(s)
- Andreas U Kresse
- Research Group Clonal Variability, Division of Cell- and Immune Biology, GBF - German Research Centre for Biotechnology, Mascheroder Weg 1, 38124, Braunschweig, Germany
| | | | | |
Collapse
|
18
|
Liu GR, Liu WQ, Johnston RN, Sanderson KE, Li SX, Liu SL. Genome plasticity and ori-ter rebalancing in Salmonella typhi. Mol Biol Evol 2005; 23:365-71. [PMID: 16237205 DOI: 10.1093/molbev/msj042] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genome plasticity resulting from frequent rearrangement of the bacterial genome is a fascinating but poorly understood phenomenon. First reported in Salmonella typhi, it has been observed only in a small number of Salmonella serovars, although the over 2,500 known Salmonella serovars are all very closely related. To gain insights into this phenomenon and elucidate its roles in bacterial evolution, especially those involved in the formation of particular pathogens, we systematically analyzed the genomes of 127 wild-type S. typhi strains isolated from many places of the world and compared them with the two sequenced strains, Ty2 and CT18, attempting to find possible associations between genome rearrangement and other significant genomic features. Like other host-adapted Salmonella serovars, S. typhi contained large genome insertions, including the 134 kb Salmonella pathogenicity island, SPI7. Our analyses showed that SPI7 disrupted the physical balance of the bacterial genome between the replication origin (ori) and terminus (ter) when this DNA segment was inserted into the genome, and rearrangement in individual strains further changed the genome balance status, with a general tendency toward a better balanced genome structure. In a given S. typhi strain, genome diversification occurred and resulted in different structures among cells in the culture. Under a stressed condition, bacterial cells with better balanced genome structures were selected to greatly increase in proportion; in such cases, bacteria with better balanced genomes formed larger colonies and grew with shorter generation times. Our results support the hypothesis that genome plasticity as a result of frequent rearrangement provides the opportunity for the bacterial genome to adopt a better balanced structure and thus eventually stabilizes the genome during evolution.
Collapse
Affiliation(s)
- Gui-Rong Liu
- Department of Microbiology, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | |
Collapse
|
19
|
Wu KY, Liu GR, Liu WQ, Wang AQ, Zhan S, Sanderson KE, Johnston RN, Liu SL. The genome of Salmonella enterica serovar gallinarum: distinct insertions/deletions and rare rearrangements. J Bacteriol 2005; 187:4720-7. [PMID: 15995186 PMCID: PMC1169526 DOI: 10.1128/jb.187.14.4720-4727.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Salmonella enterica serovar Gallinarum is a fowl-adapted pathogen, causing typhoid fever in chickens. It has the same antigenic formula (1,9,12:--:--) as S. enterica serovar Pullorum, which is also adapted to fowl but causes pullorum disease (diarrhea). The close relatedness but distinct pathogeneses make this pair of fowl pathogens good models for studies of bacterial genomic evolution and the way these organisms acquired pathogenicity. To locate and characterize the genomic differences between serovar Gallinarum and other salmonellae, we constructed a physical map of serovar Gallinarum strain SARB21 by using I-CeuI, XbaI, and AvrII with pulsed-field gel electrophoresis techniques. In the 4,740-kb genome, we located two insertions and six deletions relative to the genome of S. enterica serovar Typhimurium LT2, which we used as a reference Salmonella genome. Four of the genomic regions with reduced lengths corresponded to the four prophages in the genome of serovar Typhimurium LT2, and the others contained several smaller deletions relative to serovar Typhimurium LT2, including regions containing srfJ, std, and stj and gene clusters encoding a type I restriction system in serovar Typhimurium LT2. The map also revealed some rare rearrangements, including two inversions and several translocations. Further characterization of these insertions, deletions, and rearrangements will provide new insights into the molecular basis for the specific host-pathogen interactions and mechanisms of genomic evolution to create a new pathogen.
Collapse
Affiliation(s)
- Kai-Yu Wu
- Department of Microbiology and Infectious Diseases, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kothapalli S, Nair S, Alokam S, Pang T, Khakhria R, Woodward D, Johnson W, Stocker BAD, Sanderson KE, Liu SL. Diversity of genome structure in Salmonella enterica serovar Typhi populations. J Bacteriol 2005; 187:2638-50. [PMID: 15805510 PMCID: PMC1070368 DOI: 10.1128/jb.187.8.2638-2650.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The genomes of most strains of Salmonella and Escherichia coli are highly conserved. In contrast, all 136 wild-type strains of Salmonella enterica serovar Typhi analyzed by partial digestion with I-CeuI (an endonuclease which cuts within the rrn operons) and pulsed-field gel electrophoresis and by PCR have rearrangements due to homologous recombination between the rrn operons leading to inversions and translocations. Recombination between rrn operons in culture is known to be equally frequent in S. enterica serovar Typhi and S. enterica serovar Typhimurium; thus, the recombinants in S. enterica serovar Typhi, but not those in S. enterica serovar Typhimurium, are able to survive in nature. However, even in S. enterica serovar Typhi the need for genome balance and the need for gene dosage impose limits on rearrangements. Of 100 strains of genome types 1 to 6, 72 were only 25.5 kb off genome balance (the relative lengths of the replichores during bidirectional replication from oriC to the termination of replication [Ter]), while 28 strains were less balanced (41 kb off balance), indicating that the survival of the best-balanced strains was greater. In addition, the need for appropriate gene dosage apparently selected against rearrangements which moved genes from their accustomed distance from oriC. Although rearrangements involving the seven rrn operons are very common in S. enterica serovar Typhi, other duplicated regions, such as the 25 IS200 elements, are very rarely involved in rearrangements. Large deletions and insertions in the genome are uncommon, except for deletions of Salmonella pathogenicity island 7 (usually 134 kb) from fragment I-CeuI-G and 40-kb insertions, possibly a prophage, in fragment I-CeuI-E. The phage types were determined, and the origins of the phage types appeared to be independent of the origins of the genome types.
Collapse
Affiliation(s)
- Sushma Kothapalli
- Department of Biological Sciences, University of Calgary, Calgary T2N 1N4, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
In prokaryotic genomes, related genes are frequently clustered in operons and higher-order arrangements that reflect functional context. Organization emerges despite rearrangements that constantly shuffle gene and operon order. Evidence is presented that the tandem duplication of related genes acts as a driving evolutionary force in the origin and maintenance of clusters. Gene amplification can be viewed as a dynamic and reversible regulatory mechanism that facilitates adaptation to variable environments. Clustered genes confer selective benefits via their ability to be coamplified. During evolution, rearrangements that bring together related genes can be selected if they increase the fitness of the organism in which they reside. Similarly, the benefits of gene amplification can prevent the dispersal of existing clusters. Examples of frequent and spontaneous amplification of large genomic fragments are provided. The possibility is raised that tandem gene duplication works in concert with horizontal gene transfer as interrelated evolutionary forces for gene clustering.
Collapse
Affiliation(s)
- Andrew B Reams
- Section of Microbiology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
22
|
Mira A, Pushker R, Legault BA, Moreira D, Rodríguez-Valera F. Evolutionary relationships of Fusobacterium nucleatum based on phylogenetic analysis and comparative genomics. BMC Evol Biol 2004; 4:50. [PMID: 15566569 PMCID: PMC535925 DOI: 10.1186/1471-2148-4-50] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 11/26/2004] [Indexed: 11/17/2022] Open
Abstract
Background The phylogenetic position and evolutionary relationships of Fusobacteria remain uncertain. Especially intriguing is their relatedness to low G+C Gram positive bacteria (Firmicutes) by ribosomal molecular phylogenies, but their possession of a typical gram negative outer membrane. Taking advantage of the recent completion of the Fusobacterium nucleatum genome sequence we have examined the evolutionary relationships of Fusobacterium genes by phylogenetic analysis and comparative genomics tools. Results The data indicate that Fusobacterium has a core genome of a very different nature to other bacterial lineages, and branches out at the base of Firmicutes. However, depending on the method used, 35–56% of Fusobacterium genes appear to have a xenologous origin from bacteroidetes, proteobacteria, spirochaetes and the Firmicutes themselves. A high number of hypothetical ORFs with unusual codon usage and short lengths were found and hypothesized to be remnants of transferred genes that were discarded. Some proteins and operons are also hypothesized to be of mixed ancestry. A large portion of the Gram-negative cell wall-related genes seems to have been transferred from proteobacteria. Conclusions Many instances of similarity to other inhabitants of the dental plaque that have been sequenced were found. This suggests that the close physical contact found in this environment might facilitate horizontal gene transfer, supporting the idea of niche-specific gene pools. We hypothesize that at a point in time, probably associated to the rise of mammals, a strong selective pressure might have existed for a cell with a Clostridia-like metabolic apparatus but with the adhesive and immune camouflage features of Proteobacteria.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Base Composition/genetics
- Chromosome Mapping/methods
- Chromosomes, Bacterial/genetics
- Enzymes/genetics
- Evolution, Molecular
- Fusobacterium nucleatum/enzymology
- Fusobacterium nucleatum/genetics
- Gene Order/genetics
- Gene Transfer, Horizontal/genetics
- Genes, Bacterial/genetics
- Genome, Bacterial
- Genomics/methods
- Operon/genetics
- Phylogeny
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 23S/genetics
- Recombinant Fusion Proteins/genetics
Collapse
Affiliation(s)
- Alex Mira
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan 03550, Alicante, Spain
| | - Ravindra Pushker
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan 03550, Alicante, Spain
| | - Boris A Legault
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan 03550, Alicante, Spain
| | - David Moreira
- UMR CNRS 8079, Ecologie, Systématique et Evolution, Université Paris-Sud, bâtiment 360, 91405 Orsay Cedex, France
| | - Francisco Rodríguez-Valera
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan 03550, Alicante, Spain
| |
Collapse
|
23
|
Hume ME, Edrington TS, Looper ML, Callaway TR, Genovese KJ, Nisbet DJ. Salmonella genotype diversity in nonlactating and lactating dairy cows. J Food Prot 2004; 67:2280-3. [PMID: 15508643 DOI: 10.4315/0362-028x-67.10.2280] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dairy cows may serve as asymptomatic carriers of Salmonella. The potential for herd carrier status increases with herd size, and Salmonella shedding may be triggered by stresses placed on the animals. The scope of the current study is to determine the effects lactation may have on Salmonella genotypic diversity among detected serotypes. Fecal samples were collected on two sampling dates from 60 nonlactating and 60 lactating Holstein cows. No serotype was predominant over the two collection dates, although Salmonella Albany, Salmonella Anatum, Salmonella Newport, and Salmonella Senftenberg were detected in relatively high numbers. Twenty-three genotypes were detected on the first date and 27 on the second date. The greatest genotypic diversity was seen among Salmonella Newport and Salmonella Senftenberg, with five and nine genotypes, respectively. The presence of multiple serotypes and genotypes in the herd suggests multiple contamination sources. However, there was no conclusive effect of lactation status of the cows on Salmonella genotypic shedding.
Collapse
Affiliation(s)
- Michael E Hume
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, 2881 F & B Road, College Station, Texas 77845, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Porwollik S, Wong RMY, Helm RA, Edwards KK, Calcutt M, Eisenstark A, McClelland M. DNA amplification and rearrangements in archival Salmonella enterica serovar Typhimurium LT2 cultures. J Bacteriol 2004; 186:1678-82. [PMID: 14996798 PMCID: PMC355959 DOI: 10.1128/jb.186.6.1678-1682.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Variations in genome size and gene order were observed in archival Salmonella enterica serovar Typhimurium cultures stored for over 40 years. In one strain, microarray analysis revealed a large, stable amplification. PCR analysis of the same strain revealed a genomic duplication that underwent a translocation. Other strains had smaller duplications and deletions. These results demonstrate that storage in stabs over time at room temperature not only allows for further bacterial growth but also may produce an environment that selects for a variety of mutations, including genomic rearrangements.
Collapse
|
25
|
Abstract
Comparative genomics and microarrays reveal that the genomes of different Salmonella enterica serovars are distinguished from each other by the presence or absence of hundreds of genes. The distribution of these variable genome regions is often not clonal. Therefore, lateral gene transfer (LGT) plays an important role in diversity among Salmonella. Overall, almost one quarter of the entire S. enterica sv Typhimurium genome may have been introduced by LGT.
Collapse
Affiliation(s)
- Steffen Porwollik
- Sidney Kimmel Cancer Center, 10835 Altman Row, San Diego, CA 92121, USA.
| | | |
Collapse
|
26
|
Boyd EF, Porwollik S, Blackmer F, McClelland M. Differences in gene content among Salmonella enterica serovar typhi isolates. J Clin Microbiol 2003; 41:3823-8. [PMID: 12904395 PMCID: PMC179825 DOI: 10.1128/jcm.41.8.3823-3828.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used a nonredundant microarray of the Salmonella enterica serovar Typhimurium LT2 and Typhi CT18 genomes to assess the genomic content of a diverse set of isolates of serovar Typhi. Comparative genomic hybridization revealed 13 regions of absent or divergent gene content in the eight Typhi strains examined compared to Typhi CT18. In particular, two Typhi CT18 prophage regions, STY1048 to STY1077 and STY2038 to STY2077, as well as a five-gene islet (STY3188 to STY3193) were absent or divergent in all other Typhi strains examined. Seven Typhi strains lacked most or all of the IS1 elements present in strain CT18, and three Typhi strains lacked a P4-like phage (STY4821 to STY4834). One strain was devoid of a 149-gene region (STY4521 to STY4680), which encodes numerous phage genes and the Vi antigen biosynthesis and export gene cluster, a type IV pilus, and numerous phage genes. In Typhi strain 26T25, an amplification of an entire inter-ribosomal region encompassing 31 genes has occurred. Furthermore, a 257-gene region (STY1360 to STY1639) showed an aberrant replication pattern in three Typhi isolates. Overall, these differences in gene content indicate that even within a highly clonal bacterial population the genomic reservoir is unstable.
Collapse
Affiliation(s)
- E F Boyd
- Sidney Kimmel Cancer Center, San Diego, California 92121, USA
| | | | | | | |
Collapse
|
27
|
Liu GR, Edwards K, Eisenstark A, Fu YM, Liu WQ, Sanderson KE, Johnston RN, Liu SL. Genomic diversification among archival strains of Salmonella enterica serovar typhimurium LT7. J Bacteriol 2003; 185:2131-42. [PMID: 12644482 PMCID: PMC151480 DOI: 10.1128/jb.185.7.2131-2142.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2002] [Accepted: 01/07/2003] [Indexed: 11/20/2022] Open
Abstract
To document genomic changes during long periods of storage, we analyzed Salmonella enterica serovar Typhimurium LT7, a mutator strain that was previously reported to have higher rates of mutations compared to other serovar Typhimurium strains such as LT2. Upon plating directly from sealed agar stabs that had been stocked at room temperature for up to four decades, many auxotrophic mutants derived from LT7 gave rise to colonies of different sizes. Restreaking from single colonies consistently yielded colonies of diverse sizes even when we repeated single-colony isolation nine times. Colonies from the first plating had diverse genomic changes among and even within individual vials, including translocations, inversions, duplications, and point mutations, which were detected by rare-cutting endonuclease analysis with pulsed-field gel electrophoresis. Interestingly, even though the colony size kept diversifying, all descendents of the same single colonies from the first plating had the same sets of detected genomic changes. We did not detect any colony size or genome structure diversification in serovar Typhimurium LT7 stocked at -70 degrees C or in serovar Typhimurium LT2 stocked either at -70 degrees C or at room temperature. These results suggest that, although colony size diversification occurred during rapid growth, all detected genomic changes took place during the storage at room temperature and were carried over to their descendents without further changes during rapid growth in rich medium. We constructed a genomic cleavage map on the LT7 strain that had been stocked at -70 degrees C and located all of the detected genomic changes on the map. We speculated on the significance of mutators for survival and evolution under environmentally stressed conditions.
Collapse
Affiliation(s)
- Gui-Rong Liu
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1 Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|