1
|
Exertier C, Montemiglio LC, Tognaccini L, Zamparelli C, Vallone B, Olczak T, Śmiga M, Smulevich G, Malatesta F. Gaseous ligand binding to Porphyromonas gingivalis HmuY hemophore-like protein in complex with heme. J Inorg Biochem 2025; 269:112879. [PMID: 40073653 DOI: 10.1016/j.jinorgbio.2025.112879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/14/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
Porphyromonas gingivalis is the main pathogenic player in the development of periodontitis. To acquire heme, being an essential source of iron and protoporphyrin IX, P. gingivalis utilizes TonB-dependent outer membrane heme receptor (HmuR) and heme-binding hemophore-like protein (HmuY) as the main system for heme uptake from host hemoproteins. In this work, we present an extensive spectroscopic characterization of the binding of exogenous gaseous ligands to the holo-form of the HmuY (HmuY-heme) to unravel the mechanistic basis of heme release. Our data are consistent with a scenario where heme release from HmuY-heme is a multistep process that requires the initial rupture of one of the two heme‑iron coordination bonds with endogenous histidines.
Collapse
Affiliation(s)
- Cécile Exertier
- Institute of Molecular Biology and Pathology (IBPM), CNR, c/o Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Linda Celeste Montemiglio
- Institute of Molecular Biology and Pathology (IBPM), CNR, c/o Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Lorenzo Tognaccini
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, FI, Italy.
| | - Carlotta Zamparelli
- Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Beatrice Vallone
- Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383 Wrocław, Poland.
| | - Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383 Wrocław, Poland.
| | - Giulietta Smulevich
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, FI, Italy.
| | - Francesco Malatesta
- Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.
| |
Collapse
|
2
|
Somboon K, Melling O, Lejeune M, Pinheiro GMS, Paquelin A, Bardiaux B, Nilges M, Delepelaire P, Khalid S, Izadi-Pruneyre N. Dynamic interplay between a TonB-dependent heme transporter and a TonB protein in a membrane environment. mBio 2024; 15:e0178124. [PMID: 39475239 PMCID: PMC11633176 DOI: 10.1128/mbio.01781-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/03/2024] [Indexed: 12/12/2024] Open
Abstract
The envelope of Gram-negative bacteria is composed of two membranes separated by the periplasmic space. This organization imposes geometrical and distance constraints that are key for the mechanism of action of multicomponent systems spanning the envelope. However, consideration of all three compartments by experimental approaches is still elusive. Here, we have used the state-of-the-art molecular dynamics simulation in an Escherichia coli envelope model to obtain a dynamic view of molecular interactions between the outer membrane heme transporter HasR and the inner membrane TonB-like protein HasB. Their interaction allows the transfer of the inner membrane proton-motive force derived energy to the transporter for heme internalization. The simulations that incorporate both membranes show the key role of periplasmic domains of both proteins and their dynamics in complex formation and stability. They revealed a previously unidentified network of HasR-HasB protein-protein interactions in the periplasm. Experimental validation (mutations, in vivo phenotypic and biophysical assays) provides support for the simulation-predicted interactions. Based on structural and sequence conservation, the network of interaction revealed in this study is expected to occur in other nutrient import systems. IMPORTANCE Gram-negative bacteria import scarce nutrients such as metals and vitamins by an energized mechanism involving a multicomponent protein system that spans the cell envelope. It consists of an outer membrane TonB-dependent transporter (TBDT) and a TonB complex in the inner membrane that provides the proton motive force energy for the nutrient entry. Despite the intense research efforts focused on this system (a) from structural and fundamental microbiology perspectives and (b) for the interest in the development of new antibacterial strategies, the molecular mechanism of the system is not at all well understood. The lack of understanding comes from incomplete structural data and the experimental difficulties of studying an inherently flexible multicomponent complex that resides within the heterogeneous environment of the double membrane bacterial cell envelope. To address these challenges and obtain a comprehensive view of the molecular interactions at atomic level, here, we have used the combined power of advanced molecular simulations and complementary microbiology and biochemical experiments. Our results represent a significant step forward in understanding the structural and molecular bases of this vital mechanism.
Collapse
Affiliation(s)
- Kamolrat Somboon
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Oliver Melling
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Maylis Lejeune
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Bacterial Transmembrane Systems Unit, Paris, France
| | - Glaucia M. S. Pinheiro
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Bacterial Transmembrane Systems Unit, Paris, France
| | - Annick Paquelin
- Institut de Biologie Physico-Chimique, UMR 7099, CNRS Université de Paris, Paris, France
| | - Benjamin Bardiaux
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Bacterial Transmembrane Systems Unit, Paris, France
| | - Michael Nilges
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, Paris, France
| | - Phillippe Delepelaire
- Institut de Biologie Physico-Chimique, UMR 7099, CNRS Université de Paris, Paris, France
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Nadia Izadi-Pruneyre
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Bacterial Transmembrane Systems Unit, Paris, France
| |
Collapse
|
3
|
Zhang Z, Hu B, Zhang T, Luo Z, Zhou J, Li J, Chen J, Du G, Zhao X. The modification of heme special importer to improve the production of active hemoglobins in Escherichia coli. Biotechnol Lett 2024; 46:545-558. [PMID: 38717663 DOI: 10.1007/s10529-024-03488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 07/03/2024]
Abstract
To enhance the import of heme for the production of active hemoproteins in Escherichia coli C41 (DE3) lacking the special heme import system, heme receptor ChuA from E. coli Nissle 1917 was modified through molecular docking and the other components (ChuTUV) for heme import was overexpressed, while heme import was tested through growth assay and heme sensor HS1 detection. A ChuA mutant G360K was selected, which could import 3.91 nM heme, compared with 2.92 nM of the wild-type ChuA. In addition, it presented that the expression of heme transporters ChuTUV was not necessary for heme import. Based on the modification of ChuA (G360K), the titer of human hemoglobin and the peroxidase activity of leghemoglobin reached 1.19 μg g-1 DCW and 24.16 103 U g-1 DCW, compared with 1.09 μg g-1 DCW and 21.56 103 U g-1 DCW of the wild-type ChuA, respectively. Heme import can be improved through the modification of heme receptor and the engineered strain with improved heme import has a potential to efficiently produce high-active hemoproteins.
Collapse
Affiliation(s)
- Zihan Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Baodong Hu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Tao Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Zhengshan Luo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xinrui Zhao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
4
|
Shisaka Y, Shoji O. Bridging the gap: Unveiling novel functions of a bacterial haem-acquisition protein capturing diverse synthetic porphyrinoids. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Biou V, Adaixo RJD, Chami M, Coureux PD, Laurent B, Enguéné VYN, de Amorim GC, Izadi-Pruneyre N, Malosse C, Chamot-Rooke J, Stahlberg H, Delepelaire P. Structural and molecular determinants for the interaction of ExbB from Serratia marcescens and HasB, a TonB paralog. Commun Biol 2022; 5:355. [PMID: 35418619 PMCID: PMC9008036 DOI: 10.1038/s42003-022-03306-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/22/2022] [Indexed: 01/20/2023] Open
Abstract
ExbB and ExbD are cytoplasmic membrane proteins that associate with TonB to convey the energy of the proton-motive force to outer membrane receptors in Gram-negative bacteria for iron uptake. The opportunistic pathogen Serratia marcescens (Sm) possesses both TonB and a heme-specific TonB paralog, HasB. ExbBSm has a long periplasmic extension absent in other bacteria such as E. coli (Ec). Long ExbB's are found in several genera of Alphaproteobacteria, most often in correlation with a hasB gene. We investigated specificity determinants of ExbBSm and HasB. We determined the cryo-EM structures of ExbBSm and of the ExbB-ExbDSm complex from S. marcescens. ExbBSm alone is a stable pentamer, and its complex includes two ExbD monomers. We showed that ExbBSm extension interacts with HasB and is involved in heme acquisition and we identified key residues in the membrane domain of ExbBSm and ExbBEc, essential for function and likely involved in the interaction with TonB/HasB. Our results shed light on the class of inner membrane energy machinery formed by ExbB, ExbD and HasB.
Collapse
Affiliation(s)
- Valérie Biou
- grid.508487.60000 0004 7885 7602Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, UMR 7099 CNRS, F-75005 Paris, France ,grid.450875.b0000 0004 0643 538XInstitut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Ricardo Jorge Diogo Adaixo
- grid.6612.30000 0004 1937 0642Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Mohamed Chami
- grid.6612.30000 0004 1937 0642Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Pierre-Damien Coureux
- grid.10877.390000000121581279Laboratoire de Biologie Structurale de la Cellule, BIOC, UMR7654 CNRS/Ecole polytechnique, Palaiseau, France
| | - Benoist Laurent
- grid.450875.b0000 0004 0643 538XInstitut de Biologie Physico-Chimique, F-75005 Paris, France ,grid.508487.60000 0004 7885 7602Plateforme de Bioinformatique, Université de Paris, FRC 550 CNRS, F-75005 Paris, France
| | - Véronique Yvette Ntsogo Enguéné
- grid.508487.60000 0004 7885 7602Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, UMR 7099 CNRS, F-75005 Paris, France ,grid.450875.b0000 0004 0643 538XInstitut de Biologie Physico-Chimique, F-75005 Paris, France ,grid.5335.00000000121885934Present Address: Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - Gisele Cardoso de Amorim
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS, USR3756 Paris, France ,grid.8536.80000 0001 2294 473XPresent Address: Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ Brasil
| | - Nadia Izadi-Pruneyre
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS, USR3756 Paris, France
| | - Christian Malosse
- grid.428999.70000 0001 2353 6535Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut Pasteur, 75015 Paris, France
| | - Julia Chamot-Rooke
- grid.428999.70000 0001 2353 6535Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut Pasteur, 75015 Paris, France
| | - Henning Stahlberg
- grid.6612.30000 0004 1937 0642Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland ,grid.9851.50000 0001 2165 4204Present Address: Centre d’imagerie Dubochet UNIL-EPFL-UNIGE & Laboratoire de microscopie électronique biologique UNIL-EPFL, Lausanne, Switzerland
| | - Philippe Delepelaire
- grid.508487.60000 0004 7885 7602Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, UMR 7099 CNRS, F-75005 Paris, France ,grid.450875.b0000 0004 0643 538XInstitut de Biologie Physico-Chimique, F-75005 Paris, France
| |
Collapse
|
6
|
Braun V, Hartmann MD, Hantke K. Transcription regulation of iron carrier transport genes by ECF sigma factors through signaling from the cell surface into the cytoplasm. FEMS Microbiol Rev 2022; 46:6524835. [PMID: 35138377 PMCID: PMC9249621 DOI: 10.1093/femsre/fuac010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
Bacteria are usually iron-deficient because the Fe3+ in their environment is insoluble or is incorporated into proteins. To overcome their natural iron limitation, bacteria have developed sophisticated iron transport and regulation systems. In gram-negative bacteria, these include iron carriers, such as citrate, siderophores, and heme, which when loaded with Fe3+ adsorb with high specificity and affinity to outer membrane proteins. Binding of the iron carriers to the cell surface elicits a signal that initiates transcription of iron carrier transport and synthesis genes, referred to as “cell surface signaling”. Transcriptional regulation is not coupled to transport. Outer membrane proteins with signaling functions contain an additional N-terminal domain that in the periplasm makes contact with an anti-sigma factor regulatory protein that extends from the outer membrane into the cytoplasm. Binding of the iron carriers to the outer membrane receptors elicits proteolysis of the anti-sigma factor by two different proteases, Prc in the periplasm, and RseP in the cytoplasmic membrane, inactivates the anti-sigma function or results in the generation of an N-terminal peptide of ∼50 residues with pro-sigma activity yielding an active extracytoplasmic function (ECF) sigma factor. Signal recognition and signal transmission into the cytoplasm is discussed herein.
Collapse
Affiliation(s)
- Volkmar Braun
- Max Planck Institute for Biology, Department of Protein Evolution, Max Planck Ring 5, 72076 Tübingen, Germany
| | - Marcus D Hartmann
- Max Planck Institute for Biology, Department of Protein Evolution, Max Planck Ring 5, 72076 Tübingen, Germany
| | - Klaus Hantke
- IMIT Institute, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Wilson T, Mouriño S, Wilks A. The heme-binding protein PhuS transcriptionally regulates the Pseudomonas aeruginosa tandem sRNA prrF1,F2 locus. J Biol Chem 2021; 296:100275. [PMID: 33428928 PMCID: PMC7948967 DOI: 10.1016/j.jbc.2021.100275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen requiring iron for its survival and virulence. P. aeruginosa can acquire iron from heme via the nonredundant heme assimilation system and Pseudomonas heme uptake (Phu) systems. Heme transported by either the heme assimilation system or Phu system is sequestered by the cytoplasmic protein PhuS. Furthermore, PhuS has been shown to specifically transfer heme to the iron-regulated heme oxygenase HemO. As the PhuS homolog ShuS from Shigella dysenteriae was observed to bind DNA as a function of its heme status, we sought to further determine if PhuS, in addition to its role in regulating heme flux through HemO, functions as a DNA-binding protein. Herein, through a combination of chromatin immunoprecipitation–PCR, EMSA, and fluorescence anisotropy, we show that apo-PhuS but not holo-PhuS binds upstream of the tandem iron-responsive sRNAs prrF1,F2. Previous studies have shown the PrrF sRNAs are required for sparing iron for essential proteins during iron starvation. Furthermore, under certain conditions, a heme-dependent read through of the prrF1 terminator yields the longer PrrH transcript. Quantitative PCR analysis of P. aeruginosa WT and ΔphuS strains shows that loss of PhuS abrogates the heme-dependent regulation of PrrF and PrrH levels. Taken together, our data show that PhuS, in addition to its role in extracellular heme metabolism, also functions as a transcriptional regulator by modulating PrrF and PrrH levels in response to heme. This dual function of PhuS is central to integrating extracellular heme utilization into the PrrF/PrrH sRNA regulatory network that is critical for P. aeruginosa adaptation and virulence within the host.
Collapse
Affiliation(s)
- Tyree Wilson
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Susana Mouriño
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA.
| |
Collapse
|
8
|
Khan D, Lee D, Gulten G, Aggarwal A, Wofford J, Krieger I, Tripathi A, Patrick JW, Eckert DM, Laganowsky A, Sacchettini J, Lindahl P, Bankaitis VA. A Sec14-like phosphatidylinositol transfer protein paralog defines a novel class of heme-binding proteins. eLife 2020; 9:57081. [PMID: 32780017 PMCID: PMC7462610 DOI: 10.7554/elife.57081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/10/2020] [Indexed: 01/02/2023] Open
Abstract
Yeast Sfh5 is an unusual member of the Sec14-like phosphatidylinositol transfer protein (PITP) family. Whereas PITPs are defined by their abilities to transfer phosphatidylinositol between membranes in vitro, and to stimulate phosphoinositide signaling in vivo, Sfh5 does not exhibit these activities. Rather, Sfh5 is a redox-active penta-coordinate high spin FeIII hemoprotein with an unusual heme-binding arrangement that involves a co-axial tyrosine/histidine coordination strategy and a complex electronic structure connecting the open shell iron d-orbitals with three aromatic ring systems. That Sfh5 is not a PITP is supported by demonstrations that heme is not a readily exchangeable ligand, and that phosphatidylinositol-exchange activity is resuscitated in heme binding-deficient Sfh5 mutants. The collective data identify Sfh5 as the prototype of a new class of fungal hemoproteins, and emphasize the versatility of the Sec14-fold as scaffold for translating the binding of chemically distinct ligands to the control of diverse sets of cellular activities.
Collapse
Affiliation(s)
- Danish Khan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Dongju Lee
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, United States
| | - Gulcin Gulten
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Anup Aggarwal
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Joshua Wofford
- Department of Chemistry, Texas A&M University, College Station, United States.,Department of Chemistry, Charleston Southern University, North Charleston, United States
| | - Inna Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Ashutosh Tripathi
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, United States
| | - John W Patrick
- Department of Chemistry, Texas A&M University, College Station, United States
| | - Debra M Eckert
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, United States
| | - James Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Paul Lindahl
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States.,Department of Chemistry, Texas A&M University, College Station, United States
| | - Vytas A Bankaitis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States.,Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, United States.,Department of Chemistry, Texas A&M University, College Station, United States
| |
Collapse
|
9
|
Shisaka Y, Iwai Y, Yamada S, Uehara H, Tosha T, Sugimoto H, Shiro Y, Stanfield JK, Ogawa K, Watanabe Y, Shoji O. Hijacking the Heme Acquisition System of Pseudomonas aeruginosa for the Delivery of Phthalocyanine as an Antimicrobial. ACS Chem Biol 2019; 14:1637-1642. [PMID: 31287285 DOI: 10.1021/acschembio.9b00373] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To survive in the iron-devoid environment of their host, pathogenic bacteria have devised multifarious cunning tactics such as evolving intricate heme transport systems to pirate extracellular heme. Yet, the potential of heme transport systems as antimicrobial targets has not been explored. Herein we developed a strategy to deliver antimicrobials by exploiting the extracellular heme acquisition system protein A (HasA) of Pseudomonas aeruginosa. We demonstrated that, analogous to heme uptake, HasA can specifically traffic an antimicrobial, gallium phthalocyanine (GaPc), into the intracellular space of P. aeruginosa via the interaction of HasA with its outer membrane receptor HasR. HasA enables water-insoluble GaPc to be mistakenly acquired by P. aeruginosa, permitting its sterilization (>99.99%) by irradiation with near-infrared (NIR) light, irrespective of antibiotic resistance. Our findings substantiate that bacterial heme uptake via protein-protein recognition is an attractive target for antimicrobials, enabling specific and effective sterilization.
Collapse
Affiliation(s)
- Yuma Shisaka
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yusuke Iwai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shiho Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hiromu Uehara
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takehiko Tosha
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Hiroshi Sugimoto
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yoshitsugu Shiro
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Joshua K. Stanfield
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kazuya Ogawa
- Department of Science for Advanced Materials, Faculty of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Yoshihito Watanabe
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
10
|
Andersen SB, Ghoul M, Marvig RL, Lee ZB, Molin S, Johansen HK, Griffin AS. Privatisation rescues function following loss of cooperation. eLife 2018; 7:e38594. [PMID: 30558711 PMCID: PMC6298776 DOI: 10.7554/elife.38594] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/17/2018] [Indexed: 12/11/2022] Open
Abstract
A single cheating mutant can lead to the invasion and eventual eradication of cooperation from a population. Consequently, cheat invasion is often considered equal to extinction in empirical and theoretical studies of cooperator-cheat dynamics. But does cheat invasion necessarily equate extinction in nature? By following the social dynamics of iron metabolism in Pseudomonas aeruginosa during cystic fibrosis lung infection, we observed that individuals evolved to replace cooperation with a 'private' behaviour. Phenotypic assays showed that cooperative iron acquisition frequently was upregulated early in infection, which, however, increased the risk of cheat invasion. With whole-genome sequencing we showed that if, and only if, cooperative iron acquisition is lost from the population, a private system was upregulated. The benefit of upregulation depended on iron availability. These findings highlight the importance of social dynamics of natural populations and emphasizes the potential impact of past social interaction on the evolution of private traits.
Collapse
Affiliation(s)
- Sandra Breum Andersen
- Department of ZoologyUniversity of OxfordOxfordUnited Kingdom
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Melanie Ghoul
- Department of ZoologyUniversity of OxfordOxfordUnited Kingdom
| | | | - Zhuo-Bin Lee
- Department of ZoologyUniversity of OxfordOxfordUnited Kingdom
| | - Søren Molin
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Helle Krogh Johansen
- Department of Clinical MicrobiologyRigshospitaletCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | | |
Collapse
|
11
|
Hijazi S, Visca P, Frangipani E. Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes. Front Cell Infect Microbiol 2017; 7:12. [PMID: 28184354 PMCID: PMC5266731 DOI: 10.3389/fcimb.2017.00012] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/10/2017] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti-Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa. Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu, primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration.
Collapse
Affiliation(s)
- Sarah Hijazi
- Department of Science, Roma Tre University Rome, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University Rome, Italy
| | | |
Collapse
|
12
|
Diverse structural approaches to haem appropriation by pathogenic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:422-433. [PMID: 28130069 DOI: 10.1016/j.bbapap.2017.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 11/24/2022]
Abstract
The critical need for iron presents a challenge for pathogenic bacteria that must survive in an environment bereft of accessible iron due to a natural low bioavailability and their host's nutritional immunity. Appropriating haem, either direct from host haemoproteins or by secreting haem-scavenging haemophores, is one way pathogenic bacteria can overcome this challenge. After capturing their target, haem appropriation systems must remove haem from a high-affinity binding site (on the host haemoprotein or bacterial haemophore) and transfer it to a binding site of lower affinity on a bacterial receptor. Structural information is now available to show how, using a combination of induced structural changes and steric clashes, bacteria are able to extract haem from haemophores, haemopexin and haemoglobin. This review focuses on structural descriptions of these bacterial haem acquisition systems, summarising how they bind haem and their target haemoproteins with particularly emphasis on the mechanism of haem extraction.
Collapse
|
13
|
Mouriño S, Giardina BJ, Reyes-Caballero H, Wilks A. Metabolite-driven Regulation of Heme Uptake by the Biliverdin IXβ/δ-Selective Heme Oxygenase (HemO) of Pseudomonas aeruginosa. J Biol Chem 2016; 291:20503-15. [PMID: 27493207 DOI: 10.1074/jbc.m116.728527] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas aeruginosa acquires extracellular heme via the Phu (Pseudomonas heme uptake) and Has (heme assimilation system) systems. We have previously shown the catalytic actions of heme oxygenase (HemO) along with the cytoplasmic heme transport protein PhuS control heme flux into the cell. To further investigate the role of the PhuS-HemO couple in modulating heme uptake, we have characterized two HemO variants, one that is catalytically inactive (HemO H26A/K34A/K132A or HemOin) and one that has altered regioselectivity (HemO N19K/K34A/F117Y/K132A or HemOα), producing biliverdin IXα (BVIXα). HemOα similar to wild type was able to interact and acquire heme from holo-PhuS. In contrast, the HemOin variant did not interact with holo-PhuS and showed no enzymatic activity. Complementation of a hemO deletion strain with the hemOin or hemOα variants in combination with [(13)C]heme isotopic labeling experiments revealed that the absence of BVIXβ and BVIXδ leads to a decrease in extracellular levels of hemophore HasA. We propose BVIXβ and/or BVIXδ transcriptionally or post-transcriptionally regulates HasA. Thus, coupling the PhuS-dependent flux of heme through HemO to feedback regulation of the cell surface signaling system through HasA allows P. aeruginosa to rapidly respond to fluctuating extracellular heme levels independent of the iron status of the cell.
Collapse
Affiliation(s)
- Susana Mouriño
- From the Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Bennett J Giardina
- From the Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Hermes Reyes-Caballero
- From the Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Angela Wilks
- From the Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
14
|
Structural basis for haem piracy from host haemopexin by Haemophilus influenzae. Nat Commun 2016; 7:11590. [PMID: 27188378 PMCID: PMC4873976 DOI: 10.1038/ncomms11590] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 04/11/2016] [Indexed: 02/07/2023] Open
Abstract
Haemophilus influenzae is an obligate human commensal/pathogen that requires haem for survival and can acquire it from several host haemoproteins, including haemopexin. The haem transport system from haem-haemopexin consists of HxuC, a haem receptor, and the two-partner-secretion system HxuB/HxuA. HxuA, which is exposed at the cell surface, is strictly required for haem acquisition from haemopexin. HxuA forms complexes with haem-haemopexin, leading to haem release and its capture by HxuC. The key question is how HxuA liberates haem from haemopexin. Here, we solve crystal structures of HxuA alone, and HxuA in complex with the N-terminal domain of haemopexin. A rational basis for the release of haem from haem-haemopexin is derived from both in vivo and in vitro studies. HxuA acts as a wedge that destabilizes the two-domains structure of haemopexin with a mobile loop on HxuA that favours haem ejection by redirecting key residues in the haem-binding pocket of haemopexin. Haemophilus influenzae requires haem, and acquires it from host haemoproteins including haemopexin. Here, the authors examine the haem transport system consisting of HxuA, HxuB and HxuC via the structures of HxuA in complex with haemopexin.
Collapse
|
15
|
Delepelaire P, Izadi-Pruneyre N, Delepierre M, Ghigo JM, Schwartz M. A tribute to Cécile Wandersman. Res Microbiol 2015; 166:393-8. [PMID: 26258186 DOI: 10.1016/j.resmic.2015.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Zhao J, Li Q, Pan CL, Liu JC, Wang HY, Tan LS, Pan YP. Gene expression changes in Porphyromonas gingivalis W83 after inoculation in rat oral cavity. BMC Microbiol 2015; 15:111. [PMID: 26001932 PMCID: PMC4493947 DOI: 10.1186/s12866-015-0438-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 05/05/2015] [Indexed: 12/02/2022] Open
Abstract
Background The development of chronic periodontitis was due to not only periodontal pathogens, but also the interaction between periodontal pathogens and host. The aim of this study is to investigate the alterations in gene expression in Porphyromonas gingivalis (P.gingivalis) W83 after inoculation in rat oral cavity. Results P.gingivalis W83 inoculation in rat oral cavity caused inflammatory responses in gingival tissues and destroyed host alveolar bone. Microarray analysis revealed that 42 genes were upregulated, and 22 genes were downregulated in the detected 1786 genes in the inoculated P.gingivalis W83. Real-time quantitative PCR detection confirmed the expression alterations in some selected genes. Products of these upregulated and downregulated genes are mainly related to transposon functions, cell transmembrane transportation, protein and nucleic acid metabolism, energy metabolism, cell division and bacterial pathogenicity. Conclusions P.gingivalis W83 has a pathogenic effect on host oral cavity. Meanwhile, inflammatory oral environment alters P.gingivalis W83 gene expression profile. These changes in gene expression may limit the proliferation and weaken the pathogenicity of P.gingivalis W83, and favor themselves to adapt local environment for survival.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang , Liaoning, China.
| | - Qian Li
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang , Liaoning, China.
| | - Chun-Ling Pan
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang , Liaoning, China.
| | - Jun-Chao Liu
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang , Liaoning, China.
| | - Hong-Yan Wang
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang , Liaoning, China.
| | - Li-Si Tan
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang , Liaoning, China.
| | - Ya-Ping Pan
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang , Liaoning, China.
| |
Collapse
|
17
|
Smith AD, Modi AR, Sun S, Dawson JH, Wilks A. Spectroscopic Determination of Distinct Heme Ligands in Outer-Membrane Receptors PhuR and HasR of Pseudomonas aeruginosa. Biochemistry 2015; 54:2601-12. [PMID: 25849630 DOI: 10.1021/acs.biochem.5b00017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pseudomonas aeruginosa PAO1 encodes two outer membrane receptors, PhuR (Pseudomonas heme uptake) and HasR (heme assimilation system). The HasR receptor acquires heme through interaction with a secreted hemophore, HasAp. The non-hemophore-dependent PhuR is encoded along with proteins required for heme translocation into the cytoplasm. Herein, we report the isolation and characterization of the HasR and PhuR receptors. Absorption and MCD spectroscopy confirmed that, similar to other Gram-negative OM receptors, HasR coordinates heme through the conserved N-terminal plug His-221 and His-624 of the surface-exposed FRAP-loop. In contrast, PhuR showed distinct absorption and MCD spectra consistent with coordination through a Tyr residue. Sequence alignment of PhuR with all known Gram-negative OM heme receptors revealed a lack of a conserved His within the FRAP loop but two Tyr residues at positions 519 and 529. Site-directed mutagenesis and spectroscopic characterization confirmed Tyr-519 and the N-terminal plug His-124 provide the heme ligands in PhuR. We propose that PhuR and HasR represent nonredundant heme receptors capable of sensing and accessing heme across a wide range of physiological conditions on colonization and infection of the host.
Collapse
Affiliation(s)
- Aaron D Smith
- †Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Anuja R Modi
- ‡Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Shengfang Sun
- ‡Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - John H Dawson
- ‡Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Angela Wilks
- †Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
18
|
Smith AD, Wilks A. Differential contributions of the outer membrane receptors PhuR and HasR to heme acquisition in Pseudomonas aeruginosa. J Biol Chem 2015; 290:7756-66. [PMID: 25616666 DOI: 10.1074/jbc.m114.633495] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pseudomonas aeruginosa PAO1 encodes two outer membrane receptors, PhuR (Pseudomonas heme uptake) and HasR (heme assimilation system). The HasR and PhuR receptors have distinct heme coordinating ligands and substrate specificities. HasR is encoded in an operon with a secreted hemophore, HasAp. In contrast the non-hemophore-dependent PhuR is encoded within an operon along with proteins required for heme translocation into the cytoplasm. Herein we report on the contributions of the HasR and PhuR receptors to heme uptake and utilization. Employing bacterial genetics and isotopic [(13)C]heme labeling studies we have shown both PhuR and HasR are required for optimal heme utilization. However, the unique His-Tyr-ligated PhuR plays a major role in the acquisition of heme. In contrast the HasR receptor plays a primary role in the sensing of extracellular heme and a supplementary role in heme uptake. We propose PhuR and HasR represent non-redundant heme receptors, capable of accessing heme across a wide range of physiological conditions on colonization of the host.
Collapse
Affiliation(s)
- Aaron D Smith
- From the Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Angela Wilks
- From the Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
19
|
Ascenzi P, di Masi A, Leboffe L, Frangipani E, Nardini M, Verde C, Visca P. Structural Biology of Bacterial Haemophores. Adv Microb Physiol 2015; 67:127-76. [PMID: 26616517 DOI: 10.1016/bs.ampbs.2015.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Iron plays a key role in a wide range of metabolic and signalling functions representing an essential nutrient for almost all forms of life. However, the ferric form is hardly soluble, whereas the ferrous form is highly toxic. Thus, in biological fluids, most of the iron is sequestered in iron- or haem-binding proteins and the level of free iron is low, making haem and iron acquisition a challenge for pathogenic bacteria during infections. Although toxic to the host, free haem is a major and readily available source of iron for several pathogenic microorganisms. Both Gram-positive and Gram-negative bacteria have developed several strategies to acquire free haem-Fe and protein-bound haem-Fe. Haemophores are a class of secreted and cell surface-exposed proteins promoting free-haem uptake, haem extraction from host haem proteins, and haem presentation to specific outer-membrane receptors that internalize the metal-porphyrins. Here, structural biology of bacterial haemophores is reviewed focusing on haem acquisition, haem internalization, and haem-degrading systems.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica, Università Roma Tre, Roma, Italy; Istituto di Bioscienze e BioRisorse, Consiglio Nazionale delle Ricerche, Napoli, Italy.
| | | | - Loris Leboffe
- Dipartimento di Scienze, Università Roma Tre, Roma, Italy
| | | | - Marco Nardini
- Dipartimento di Bioscienze, Università di Milano, Milano, Italy
| | - Cinzia Verde
- Istituto di Bioscienze e BioRisorse, Consiglio Nazionale delle Ricerche, Napoli, Italy; Dipartimento di Scienze, Università Roma Tre, Roma, Italy
| | - Paolo Visca
- Dipartimento di Scienze, Università Roma Tre, Roma, Italy
| |
Collapse
|
20
|
Becker KW, Skaar EP. Metal limitation and toxicity at the interface between host and pathogen. FEMS Microbiol Rev 2014; 38:1235-49. [PMID: 25211180 DOI: 10.1111/1574-6976.12087] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 08/09/2014] [Accepted: 08/31/2014] [Indexed: 12/14/2022] Open
Abstract
Metals are required cofactors for numerous fundamental processes that are essential to both pathogen and host. They are coordinated in enzymes responsible for DNA replication and transcription, relief from oxidative stress, and cellular respiration. However, excess transition metals can be toxic due to their ability to cause spontaneous, redox cycling and disrupt normal metabolic processes. Vertebrates have evolved intricate mechanisms to limit the availability of some crucial metals while concurrently flooding sites of infection with antimicrobial concentrations of other metals. To compete for limited metal within the host while simultaneously preventing metal toxicity, pathogens have developed a series of metal regulatory, acquisition, and efflux systems. This review will cover the mechanisms by which pathogenic bacteria recognize and respond to host-induced metal scarcity and toxicity.
Collapse
Affiliation(s)
- Kyle W Becker
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | |
Collapse
|
21
|
Molecular and evolutionary analysis of NEAr-iron Transporter (NEAT) domains. PLoS One 2014; 9:e104794. [PMID: 25153520 PMCID: PMC4143258 DOI: 10.1371/journal.pone.0104794] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 07/18/2014] [Indexed: 12/25/2022] Open
Abstract
Iron is essential for bacterial survival, being required for numerous biological processes. NEAr-iron Transporter (NEAT) domains have been studied in pathogenic Gram-positive bacteria to understand how their proteins obtain heme as an iron source during infection. While a 2002 study initially discovered and annotated the NEAT domain encoded by the genomes of several Gram-positive bacteria, there remains a scarcity of information regarding the conservation and distribution of NEAT domains throughout the bacterial kingdom, and whether these domains are restricted to pathogenic bacteria. This study aims to expand upon initial bioinformatics analysis of predicted NEAT domains, by exploring their evolution and conserved function. This information was used to identify new candidate domains in both pathogenic and nonpathogenic organisms. We also searched metagenomic datasets, specifically sequence from the Human Microbiome Project. Here, we report a comprehensive phylogenetic analysis of 343 NEAT domains, encoded by Gram-positive bacteria, mostly within the phylum Firmicutes, with the exception of Eggerthella sp. (Actinobacteria) and an unclassified Mollicutes bacterium (Tenericutes). No new NEAT sequences were identified in the HMP dataset. We detected specific groups of NEAT domains based on phylogeny of protein sequences, including a cluster of novel clostridial NEAT domains. We also identified environmental and soil organisms that encode putative NEAT proteins. Biochemical analysis of heme binding by a NEAT domain from a protein encoded by the soil-dwelling organism Paenibacillus polymyxa demonstrated that the domain is homologous in function to NEAT domains encoded by pathogenic bacteria. Together, this study provides the first global bioinformatics analysis and phylogenetic evidence that NEAT domains have a strong conservation of function, despite group-specific differences at the amino acid level. These findings will provide information useful for future projects concerning the structure and function of NEAT domains, particularly in pathogens where they have yet to be studied.
Collapse
|
22
|
Llamas MA, Imperi F, Visca P, Lamont IL. Cell-surface signaling inPseudomonas: stress responses, iron transport, and pathogenicity. FEMS Microbiol Rev 2014; 38:569-97. [DOI: 10.1111/1574-6976.12078] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 05/20/2014] [Accepted: 05/27/2014] [Indexed: 01/06/2023] Open
|
23
|
Carpenter C, Payne SM. Regulation of iron transport systems in Enterobacteriaceae in response to oxygen and iron availability. J Inorg Biochem 2014; 133:110-7. [PMID: 24485010 DOI: 10.1016/j.jinorgbio.2014.01.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
Abstract
Iron is an essential nutrient for most bacteria. Depending on the oxygen available in the surrounding environment, iron is found in two distinct forms: ferrous (Fe(II)) or ferric (Fe(III)). Bacteria utilize different transport systems for the uptake of the two different forms of iron. In oxic growth conditions, iron is found in its insoluble, ferric form, and in anoxic growth conditions iron is found in its soluble, ferrous form. Enterobacteriaceae have adapted to transporting the two forms of iron by utilizing the global, oxygen-sensing regulators, ArcA and Fnr to regulate iron transport genes in response to oxygen.
Collapse
Affiliation(s)
- Chandra Carpenter
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States
| | - Shelley M Payne
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
24
|
de Amorim GC, Prochnicka-Chalufour A, Delepelaire P, Lefèvre J, Simenel C, Wandersman C, Delepierre M, Izadi-Pruneyre N. The structure of HasB reveals a new class of TonB protein fold. PLoS One 2013; 8:e58964. [PMID: 23527057 PMCID: PMC3602595 DOI: 10.1371/journal.pone.0058964] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 02/08/2013] [Indexed: 11/22/2022] Open
Abstract
TonB is a key protein in active transport of essential nutrients like vitamin B12 and metal sources through the outer membrane transporters of Gram-negative bacteria. This inner membrane protein spans the periplasm, contacts the outer membrane receptor by its periplasmic domain and transduces energy from the cytoplasmic membrane pmf to the receptor allowing nutrient internalization. Whereas generally a single TonB protein allows the acquisition of several nutrients through their cognate receptor, in some species one particular TonB is dedicated to a specific system. Despite a considerable amount of data available, the molecular mechanism of TonB-dependent active transport is still poorly understood. In this work, we present a structural study of a TonB-like protein, HasB dedicated to the HasR receptor. HasR acquires heme either free or via an extracellular heme transporter, the hemophore HasA. Heme is used as an iron source by bacteria. We have solved the structure of the HasB periplasmic domain of Serratia marcescens and describe its interaction with a critical region of HasR. Some important differences are observed between HasB and TonB structures. The HasB fold reveals a new structural class of TonB-like proteins. Furthermore, we have identified the structural features that explain the functional specificity of HasB. These results give a new insight into the molecular mechanism of nutrient active transport through the bacterial outer membrane and present the first detailed structural study of a specific TonB-like protein and its interaction with the receptor.
Collapse
Affiliation(s)
- Gisele Cardoso de Amorim
- Institut Pasteur, Unité de Résonance Magnétique Nucléaire des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, UMR 3528, Paris, France
| | - Ada Prochnicka-Chalufour
- Institut Pasteur, Unité de Résonance Magnétique Nucléaire des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, UMR 3528, Paris, France
| | - Philippe Delepelaire
- Institut de Biologie Physico-Chimique, CNRS Université Paris-Diderot UMR 7099, Paris, France
| | - Julien Lefèvre
- Institut Pasteur, Unité de Résonance Magnétique Nucléaire des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, UMR 3528, Paris, France
| | - Catherine Simenel
- Institut Pasteur, Unité de Résonance Magnétique Nucléaire des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, UMR 3528, Paris, France
| | - Cécile Wandersman
- Institut Pasteur, Unité des Membranes Bactériennes, Département de Microbiologie, Paris, France
| | - Muriel Delepierre
- Institut Pasteur, Unité de Résonance Magnétique Nucléaire des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, UMR 3528, Paris, France
| | - Nadia Izadi-Pruneyre
- Institut Pasteur, Unité de Résonance Magnétique Nucléaire des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, UMR 3528, Paris, France
- * E-mail:
| |
Collapse
|
25
|
Hom K, Heinzl GA, Eakanunkul S, Lopes PEM, Xue F, MacKerell AD, Wilks A. Small molecule antivirulents targeting the iron-regulated heme oxygenase (HemO) of P. aeruginosa. J Med Chem 2013; 56:2097-109. [PMID: 23379514 DOI: 10.1021/jm301819k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bacteria require iron for survival and virulence and employ several mechanisms including utilization of the host heme containing proteins. The final step in releasing iron is the oxidative cleavage of heme by HemO. A recent computer aided drug design (CADD) study identified several inhibitors of the bacterial HemOs. Herein we report the near complete HN, N, CO, Cα, and Cβ chemical shift assignment of the P. aeruginosa HemO in the absence and presence of inhibitors (E)-3-(4-(phenylamino)phenylcarbamoyl)acrylic acid (3) and (E)-N'-(4-(dimethylamino)benzylidene) diazenecarboximidhydrazide (5). The NMR data confirm that the inhibitors bind within the heme pocket of HemO consistent with in silico molecular dynamic simulations. Both inhibitors and the phenoxy derivative of 3 have activity against P. aeruginosa clinical isolates. Furthermore, 5 showed antimicrobial activity in the in vivo C. elegans curing assay. Thus, targeting virulence mechanisms required within the host is a viable antimicrobial strategy for the development of novel antivirulants.
Collapse
Affiliation(s)
- Kellie Hom
- The Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1140, United States
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Haem is the major iron source for bacteria that develop in higher organisms. In these hosts, bacteria have to cope with nutritional immunity imposed by the host, since haem and iron are tightly bound to carrier and storage proteins. Siderophores were the first recognized fighters in the battle for iron between bacteria and host. They are non-proteinaceus organic molecules having an extremely high affinity for Fe(3+) and able to extract it from host proteins. Haemophores, that display functional analogy with siderophores, were more recently discovered. They are a class of secreted proteins with a high affinity for haem; they are able to extract haem from host haemoproteins and deliver it to specific receptors that internalize haem. In the past few years, a wealth of data has accumulated on haem acquisition systems that are dependent on surface exposed/secreted bacterial proteins. They promote haem transfer from its initial source (in most cases, a eukaryotic haem binding protein) to the transporter that carries out the membrane crossing step. Here we review recent discoveries in this field, with particular emphasis on similar and dissimilar mechanisms in haemophores and siderophores, from the initial host source to the binding protein/receptor at the cell surface.
Collapse
Affiliation(s)
- Cécile Wandersman
- Unité des Membranes Bactériennes, Institut Pasteur, Département de Microbiologie, 25-28, rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
27
|
Fournier C, Smith A, Delepelaire P. Haem release from haemopexin by HxuA allows Haemophilus influenzae to escape host nutritional immunity. Mol Microbiol 2011; 80:133-48. [DOI: 10.1111/j.1365-2958.2011.07562.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Honsa ES, Maresso AW. Mechanisms of iron import in anthrax. Biometals 2011; 24:533-45. [PMID: 21258843 DOI: 10.1007/s10534-011-9413-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/08/2011] [Indexed: 12/18/2022]
Abstract
During an infection, bacterial pathogens must acquire iron from the host to survive. However, free iron is sequestered in host proteins, which presents a barrier to iron-dependent bacterial replication. In response, pathogens have developed mechanisms to acquire iron from the host during infection. Interestingly, a significant portion of the iron pool is sequestered within heme, which is further bound to host proteins such as hemoglobin. The copious amount of heme-iron makes hemoglobin an ideal molecule for targeted iron uptake during infection. While the study of heme acquisition is well represented in Gram-negative bacteria, the systems and mechanism of heme uptake in Gram-positive bacteria has only recently been investigated. Bacillus anthracis, the causative agent of anthrax disease, represents an excellent model organism to study iron acquisition processes owing to a multifaceted lifecycle consisting of intra- and extracellular phases and a tremendous replicative potential upon infection. This review provides an in depth description of the current knowledge of B. anthracis iron acquisition and applies these findings to a general understanding of how pathogenic Gram-positive bacteria transport this critical nutrient during infection.
Collapse
Affiliation(s)
- Erin Sarah Honsa
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
29
|
Benevides-Matos N, Biville F. The Hem and Has haem uptake systems in Serratia marcescens. Microbiology (Reading) 2010; 156:1749-1757. [DOI: 10.1099/mic.0.034405-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Serratia marcescens, like several other Gram-negative bacteria, possesses two functional haem uptake systems. The first, referred to as the Hem system, can transport haem present at a concentration equal to or above 10−6 M. It requires an active outer-membrane receptor which uses proton-motive force energy transmitted by the inner-membrane TonB protein. The other system, Has, takes up haem at lower concentrations and utilizes a small secreted haem-binding protein (haemophore) and its cognate TonB-dependent outer-membrane receptor HasR. Various combinations of mutations were used to examine haem uptake activity by the two systems in S. marcescens. The Hem uptake system enables S. marcescens to take up haem at a concentration of 10−6 M in the presence of various levels of iron depletion. The Has system, which enables such uptake even in the presence of lower haem concentrations, requires higher iron depletion conditions for function. Has haem uptake requires the presence of HasB, a TonB paralogue encoded by the has operon. These two systems enable S. marcescens to take up haem under various conditions from different sources, reflecting its capacity to confront conditions encountered in natural biotopes.
Collapse
Affiliation(s)
- Najla Benevides-Matos
- Unité des Membranes Bactériennes, Institut Pasteur (CNRS URA 2172), 25 Rue du Dr Roux, Paris CEDEX 15, France
| | - Francis Biville
- Unité des Membranes Bactériennes, Institut Pasteur (CNRS URA 2172), 25 Rue du Dr Roux, Paris CEDEX 15, France
| |
Collapse
|
30
|
Caillet-Saguy C, Piccioli M, Turano P, Izadi-Pruneyre N, Delepierre M, Bertini I, Lecroisey A. Mapping the interaction between the hemophore HasA and its outer membrane receptor HasR using CRINEPT-TROSY NMR spectroscopy. J Am Chem Soc 2009; 131:1736-44. [PMID: 19159260 DOI: 10.1021/ja804783x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first step of heme acquisition by Gram-negative pathogenic bacteria through the so-called heme acquisition system, Has, requires delivery of the heme from the extracellular hemophore protein HasA to a specific outer membrane receptor, HasR. CRINEPT-TROSY NMR experiments in DPC micelles were here used to obtain information on the intermediate HasA-HasR complex in solution. A stable protein-protein adduct is detected both in the presence and in the absence of heme. Structural information on the complexed form of HasA is obtained from chemical shift mapping and statistical analysis of the spectral fingerprint of the protein NMR spectra obtained under different conditions. This approach shows the following: (i) only three different conformations are possible for HasA in solution: one for the isolated apoprotein, one for the isolated holoprotein, and one for the complexed protein, that is independent of the presence of the heme; (ii) the structure of the hemophore in the complex resembles the open conformation of the apoprotein; (iii) the surface contact area between HasA and HasR is independent of the presence of the heme, involving loop L1, loop L2, and the beta2-beta6 strands; (iv) upon complex formation the heme group is transferred from holoHasA to HasR.
Collapse
Affiliation(s)
- Célia Caillet-Saguy
- Unite de RMN des Biomolecules (CNRS URA 2185), Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Heme uptake across the outer membrane as revealed by crystal structures of the receptor-hemophore complex. Proc Natl Acad Sci U S A 2009; 106:1045-50. [PMID: 19144921 DOI: 10.1073/pnas.0809406106] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gram-negative bacteria use specific heme uptake systems, relying on outer membrane receptors and excreted heme-binding proteins (hemophores) to scavenge and actively transport heme. To unravel the unknown molecular details involved, we present 3 structures of the Serratia marcescens receptor HasR in complex with its hemophore HasA. The transfer of heme over a distance of 9 A from its high-affinity site in HasA into a site of lower affinity in HasR is coupled with the exergonic complex formation of the 2 proteins. Upon docking to the receptor, 1 of the 2 axial heme coordinations of the hemophore is initially broken, but the position and orientation of the heme is preserved. Subsequently, steric displacement of heme by a receptor residue ruptures the other axial coordination, leading to heme transfer into the receptor.
Collapse
|
32
|
Tong Y, Guo M. Bacterial heme-transport proteins and their heme-coordination modes. Arch Biochem Biophys 2009; 481:1-15. [PMID: 18977196 PMCID: PMC2683585 DOI: 10.1016/j.abb.2008.10.013] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/07/2008] [Accepted: 10/07/2008] [Indexed: 12/11/2022]
Abstract
Efficient iron acquisition is critical for an invading microbe's survival and virulence. Most of the iron in mammals is incorporated into heme, which can be plundered by certain bacterial pathogens as a nutritional iron source. Utilization of exogenous heme by bacteria involves the binding of heme or hemoproteins to the cell surface receptors, followed by the transport of heme into cells. Once taken into the cytosol, heme is presented to heme oxygenases where the tetrapyrrole ring is cleaved in order to release the iron. Some Gram-negative bacteria also secrete extracellular heme-binding proteins called hemophores, which function to sequester heme from the environment. The heme-transport genes are often genetically linked as gene clusters under Fur (ferric uptake regulator) regulation. This review discusses the gene clusters and proteins involved in bacterial heme acquisition, transport and processing processes, with special focus on the heme-coordination, protein structures and mechanisms underlying heme-transport.
Collapse
Affiliation(s)
- Yong Tong
- Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA, 02747, USA
| | - Maolin Guo
- Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA, 02747, USA
| |
Collapse
|
33
|
Eisenbeis S, Lohmiller S, Valdebenito M, Leicht S, Braun V. NagA-dependent uptake of N-acetyl-glucosamine and N-acetyl-chitin oligosaccharides across the outer membrane of Caulobacter crescentus. J Bacteriol 2008; 190:5230-8. [PMID: 18539735 PMCID: PMC2493260 DOI: 10.1128/jb.00194-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 05/22/2008] [Indexed: 12/26/2022] Open
Abstract
Among the 67 predicted TonB-dependent outer membrane transporters of Caulobacter crescentus, NagA was found to be essential for growth on N-acetyl-beta-D-glucosamine (GlcNAc) and larger chitin oligosaccharides. NagA (93 kDa) has a predicted typical domain structure of an outer membrane transport protein: a signal sequence, the TonB box EQVVIT, a hatch domain of 147 residues, and a beta-barrel composed of 22 antiparallel beta-strands linked by large surface loops and very short periplasmic turns. Mutations in tonB1 and exbBD, known to be required for maltose transport via MalA in C. crescentus, and in two additional predicted tonB genes (open reading frames cc2327 and cc3508) did not affect NagA-mediated GlcNAc uptake. nagA is located in a gene cluster that encodes a predicted PTS sugar transport system and two enzymes that convert GlcNAc-6-P to fructose-6-P. Since a nagA insertion mutant did not grow on and transport GlcNAc, diffusion of GlcNAc through unspecific porins in the outer membrane is excluded. Uptake of GlcNAc into tonB and exbBD mutants and reduction but not abolishment of GlcNAc transport by agents which dissipate the electrochemical potential of the cytoplasmic membrane (0.1 mM carbonyl cyanide 3-chlorophenylhydrazone and 1 mM 2,4-dinitrophenol) suggest diffusion of GlcNAc through a permanently open pore of NagA. Growth on (GlcNAc)(3) and (GlcNAc)(5) requires ExbB and ExbD, indicating energy-coupled transport by NagA. We propose that NagA forms a small pore through which GlcNAc specifically diffuses into the periplasm and functions as an energy-coupled transporter for the larger chitin oligosaccharides.
Collapse
Affiliation(s)
- Simone Eisenbeis
- Microbiology/Membrane Physiology, Proteome Center, University of Tübingen, Tübingen, Germany
| | | | | | | | | |
Collapse
|
34
|
Schalk IJ. Metal trafficking via siderophores in Gram-negative bacteria: Specificities and characteristics of the pyoverdine pathway. J Inorg Biochem 2008; 102:1159-69. [DOI: 10.1016/j.jinorgbio.2007.11.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/03/2007] [Accepted: 11/30/2007] [Indexed: 10/22/2022]
|
35
|
Modulation by substrates of the interaction between the HasR outer membrane receptor and its specific TonB-like protein, HasB. J Mol Biol 2008; 378:840-51. [PMID: 18402979 DOI: 10.1016/j.jmb.2008.03.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 02/15/2008] [Accepted: 03/21/2008] [Indexed: 11/21/2022]
Abstract
TonB is a cytoplasmic membrane protein required for active transport of various essential substrates such as heme and iron siderophores through the outer membrane receptors of Gram-negative bacteria. This protein spans the periplasm, contacts outer membrane transporters by its C-terminal domain, and transduces energy from the protonmotive force to the transporters. The TonB box, a relatively conserved sequence localized on the periplasmic side of the transporters, has been shown to directly contact TonB. While Serratia marcescens TonB functions with various transporters, HasB, a TonB-like protein, is dedicated to the HasR transporter. HasR acquires heme either freely or via an extracellular heme carrier, the hemophore HasA, that binds to HasR and delivers heme to the transporter. Here, we study the interaction of HasR with a HasB C-terminal domain and compare it with that obtained with a TonB C-terminal fragment. Analysis of the thermodynamic parameters reveals that the interaction mode of HasR with HasB differs from that with TonB, the difference explaining the functional specificity of HasB for HasR. We also demonstrate that the presence of the substrate on the extracellular face of the transporter modifies, via enthalpy-entropy compensation, the interaction with HasB on the periplasmic face. The transmitted signal depends on the nature of the substrate. While the presence of heme on the transporter modifies only slightly the nature of interactions involved between HasR and HasB, hemophore binding on the transporter dramatically changes the interactions and seems to locally stabilize some structural motifs. In both cases, the HasR TonB box is the target for those modifications.
Collapse
|
36
|
Wolff N, Izadi-Pruneyre N, Couprie J, Habeck M, Linge J, Rieping W, Wandersman C, Nilges M, Delepierre M, Lecroisey A. Comparative analysis of structural and dynamic properties of the loaded and unloaded hemophore HasA: functional implications. J Mol Biol 2007; 376:517-25. [PMID: 18164722 DOI: 10.1016/j.jmb.2007.11.072] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 11/14/2007] [Accepted: 11/26/2007] [Indexed: 11/29/2022]
Abstract
A heme-acquisition system present in several Gram-negative bacteria requires the secretion of hemophores. These extracellular carrier proteins capture heme and deliver it to specific outer membrane receptors. The Serratia marcescens HasA hemophore is a monodomain protein that binds heme with a very high affinity. Its alpha/beta structure, as that of its binding pocket, has no common features with other iron- or heme-binding proteins. Heme is held by two loops L1 and L2 and coordinated to iron by an unusual ligand pair, H32/Y75. Two independent regions of the hemophore beta-sheet are involved in HasA-HasR receptor interaction. Here, we report the 3-D NMR structure of apoHasA and the backbone dynamics of both loaded and unloaded hemophore. While the overall structure of HasA is very similar in the apo and holo forms, the hemophore presents a transition from an open to a closed form upon ligand binding, through a large movement, of up to 30 A, of loop L1 bearing H32. Comparison of loaded and unloaded HasA dynamics on different time scales reveals striking flexibility changes in the binding pocket. We propose a mechanism by which these structural and dynamic features provide the dual function of heme binding and release to the HasR receptor.
Collapse
Affiliation(s)
- Nicolas Wolff
- Unité de RMN des Biomolécules, CNRS URA 2185, Département de Biologie Structurale et de Chimie, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Serratia marcescens possesses two functional TonB paralogs, TonB(Sm) and HasB, for energizing TonB-dependent transport receptors (TBDT). Previous work had shown that HasB is specific to heme uptake in the natural host and in Escherichia coli expressing the S. marcescens TBDT receptor HasR, whereas the S. marcescens TonB and E. coli TonB proteins function equally well with various TBDT receptors for heme and siderophores. This has raised the question of the target of this specificity. HasB could be specific either to heme TBDT receptors or only to HasR. To resolve this question, we have cloned in E. coli another S. marcescens heme receptor, HemR, and we show here that this receptor is TonB dependent and does not work with HasB. This demonstrates that HasB is not dedicated to heme TBDT receptors but rather forms a specific pair with HasR. This is the first reported case of a specific TonB protein working with only one TBDT receptor in one given species. We discuss the occurrence, possible molecular mechanisms, and selective advantages of such dedicated TonB paralogs.
Collapse
|
38
|
Krewulak KD, Vogel HJ. Structural biology of bacterial iron uptake. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:1781-804. [PMID: 17916327 DOI: 10.1016/j.bbamem.2007.07.026] [Citation(s) in RCA: 350] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 07/20/2007] [Accepted: 07/24/2007] [Indexed: 11/19/2022]
Abstract
To fulfill their nutritional requirement for iron, bacteria utilize various iron sources which include the host proteins transferrin and lactoferrin, heme, and low molecular weight iron chelators termed siderophores. The iron sources are transported into the Gram-negative bacterial cell via specific uptake pathways which include an outer membrane receptor, a periplasmic binding protein (PBP), and an inner membrane ATP-binding cassette (ABC) transporter. Over the past two decades, structures for the proteins involved in bacterial iron uptake have not only been solved, but their functions have begun to be understood at the molecular level. However, the elucidation of the three dimensional structures of all components of the iron uptake pathways is currently limited. Despite the low sequence homology between different bacterial species, the available three-dimensional structures of homologous proteins are strikingly similar. Examination of the current three-dimensional structures of the outer membrane receptors, PBPs, and ABC transporters provides an overview of the structural biology of iron uptake in bacteria.
Collapse
Affiliation(s)
- Karla D Krewulak
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | |
Collapse
|
39
|
Barjon C, Wecker K, Izadi-Pruneyre N, Delepelaire P. Mutagenesis and molecular modeling reveal three key extracellular loops of the membrane receptor HasR that are involved in hemophore HasA binding. J Bacteriol 2007; 189:5379-82. [PMID: 17483227 PMCID: PMC1951882 DOI: 10.1128/jb.00251-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
On the basis of the three-dimensional model of the heme/hemophore TonB-dependent outer membrane receptor HasR, mutants with six-residue deletions in the 11 putative extracellular loops were generated. Although all mutants continued to be active TonB-dependent heme transporters, mutations in three loops abolished hemophore HasA binding both in vivo and in vitro.
Collapse
Affiliation(s)
- Clément Barjon
- Unité des Membranes Bactériennes, Département de Microbiologie, CNRS URA2172, Institut Pasteur, 25-28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
40
|
Cescau S, Cwerman H, Létoffé S, Delepelaire P, Wandersman C, Biville F. Heme acquisition by hemophores. Biometals 2007; 20:603-13. [PMID: 17268821 DOI: 10.1007/s10534-006-9050-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 11/28/2006] [Indexed: 01/02/2023]
Abstract
Bacterial hemophores are secreted to the extracellular medium, where they scavenge heme from various hemoproteins due to their higher affinity for this compound, and return it to their specific outer membrane receptor. HasR, the outer membrane receptor of the HasA hemophore, assumes multiple functions which require various energy levels. Binding of heme and, of heme-free or heme-loaded hemophores is energy-independent. Heme transfer from the holo-hemophore to the outer membrane receptor is also energy-independent. In contrast, heme transport and hemophore release require basal or high levels of TonB and proton motive force, respectively. In addition, HasR is a component of a signaling cascade, regulating expression of the has operon via specific sigma and anti-sigma factors encoded by genes clustered at the has operon. The signal is the heme landing on HasR in the presence of the hemophore in its apo form. The has system is the only system thus far characterized in which the anti-sigma factor is submitted to the same signaling cascade as the target operon. Specific autoregulation of the has system, combined with negative regulation by the Fur protein, permits bacterial adaptation to the available iron source. In the presence of a heme-loaded hemophore, inactive anti-sigma factor is accumulated and can be activated as soon as the heme source dries up. Hence, the has system, instead of being submitted to amplification like other systems regulated by sigma anti-sigma factors, functions by pulses triggered by heme availability.
Collapse
Affiliation(s)
- S Cescau
- Unité des Membranes Bactériennes, Département de Microiologie, URA CNRS 2172 Institut Pasteur, 25, rue du Dr. Roux, 75024 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
41
|
Ridley KA, Rock JD, Li Y, Ketley JM. Heme utilization in Campylobacter jejuni. J Bacteriol 2006; 188:7862-75. [PMID: 16980451 PMCID: PMC1636299 DOI: 10.1128/jb.00994-06] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 09/08/2006] [Indexed: 11/20/2022] Open
Abstract
A putative iron- and Fur-regulated hemin uptake gene cluster, composed of the transport genes chuABCD and a putative heme oxygenase gene (Cj1613c), has been identified in Campylobacter jejuni NCTC 11168. Mutation of chuA or Cj1613c leads to an inability to grow in the presence of hemin or hemoglobin as a sole source of iron. Mutation of chuB, -C, or -D only partially attenuates growth where hemin is the sole iron source, suggesting that an additional inner membrane (IM) ABC (ATP-binding cassette) transport system(s) for heme is present in C. jejuni. Genotyping experiments revealed that Cj1613c is highly conserved in 32 clinical isolates. One strain did not possess chuC, though it was still capable of using hemin/hemoglobin as a sole iron source, supporting the hypothesis that additional IM transport genes are present. In two other strains, sequence variations within the gene cluster were apparent and may account for an observed negative heme utilization phenotype. Analysis of promoter activity within the Cj1613c-chuA intergenic spacer region revealed chuABCD and Cj1613c are expressed from separate iron-repressed promoters and that this region also specifically binds purified recombinant Fur(Cj) in gel retardation studies. Absorbance spectroscopy of purified recombinant His(6)-Cj1613c revealed a 1:1 heme:His(6)-Cj1613c binding ratio. The complex was oxidatively degraded in the presence of ascorbic acid as the electron donor, indicating that the Cj1613c gene product functions as a heme oxygenase. In conclusion, we confirm the involvement of Cj1613c and ChuABCD in heme/hemoglobin utilization in C. jejuni.
Collapse
Affiliation(s)
- Kristian A Ridley
- Department of Genetics, University of Leicester, Adrian Building, University Road, Leicester LE1 7RH, United Kingdom
| | | | | | | |
Collapse
|
42
|
Czjzek M, Létoffé S, Wandersman C, Delepierre M, Lecroisey A, Izadi-Pruneyre N. The crystal structure of the secreted dimeric form of the hemophore HasA reveals a domain swapping with an exchanged heme ligand. J Mol Biol 2006; 365:1176-86. [PMID: 17113104 DOI: 10.1016/j.jmb.2006.10.063] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 10/16/2006] [Indexed: 10/24/2022]
Abstract
To satisfy their iron needs, several Gram-negative bacteria use a heme uptake system involving an extracellular heme-binding protein called hemophore. The function of the hemophore is to acquire free or hemoprotein-bound heme and to transfer it to HasR, its specific outer membrane receptor, by protein-protein interaction. The hemophore HasA secreted by Serratia marcescens, an opportunistic pathogen, was the first to be identified and is now very well characterized. HasA is a monomer that binds one b heme with strong affinity. The heme in HasA is highly exposed to solvent and coordinated by an unusual pair of ligands, a histidine and a tyrosine. Here, we report the identification, the characterization and the X-ray structure of a dimeric form of HasA from S. marcescens: DHasA. We show that both monomeric and dimeric forms are secreted in iron deficient conditions by S. marcescens. The crystal structure of DHasA reveals that it is a domain swapped dimer. The overall structure of each monomeric subunit of DHasA is very similar to that of HasA but formed by parts coming from the two different polypeptide chains, involving one of the heme ligands. Consequently DHasA binds two heme molecules by residues coming from both polypeptide chains. We show here that, while DHasA can bind two heme molecules, it is not able to deliver them to the receptor HasR. However, DHasA can efficiently transfer its heme to the monomeric form that, in turn, delivers it to HasR. We assume that DHasA can function as a heme reservoir in the hemophore system.
Collapse
Affiliation(s)
- Mirjam Czjzek
- CNRS, Université Pierre et Marie Curie-Paris 6, Laboratoire International Associé-Dispersal and Adaptation in Marine Species, Unité Mixte de Recherche 7139, Station Biologique, F-29682 Roscoff Cedex, France
| | | | | | | | | | | |
Collapse
|
43
|
Grandjean D, Jorand F, Guilloteau H, Block JC. Iron uptake is essential for Escherichia coli survival in drinking water. Lett Appl Microbiol 2006; 43:111-7. [PMID: 16834730 DOI: 10.1111/j.1472-765x.2006.01895.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The aim of this study was to elucidate if the need for iron for Escherichia coli to remain cultivable in a poorly nutritive medium such as the drinking water uses the iron transport system via the siderophores. METHODS AND RESULTS Environmental strains of E. coli (isolated from a drinking water network), referenced strains of E. coli and mutants deficient in TonB, an essential protein for iron(III) acquisition, were incubated for 3 weeks at 25 degrees C, in sterile drinking water with and without lepidocrocite (gamma-FeOOH), an insoluble iron corrosion product. Only cells with a functional iron transport system were able to survive throughout the weeks. CONCLUSIONS The iron transport system via protein TonB plays an essential role on the survival of E. coli in a weakly nutritive medium like drinking water. SIGNIFICANCE AND IMPACTS OF THE STUDY Iron is a key parameter involved in coliform persistence in drinking water distribution systems.
Collapse
Affiliation(s)
- D Grandjean
- Laboratoire de Chimie Physique et Microbiologie Pour l'Environnement (LCPME), rue de Vandoeuvre, Villers-lès-Nancy, France
| | | | | | | |
Collapse
|
44
|
Izadi-Pruneyre N, Huché F, Lukat-Rodgers GS, Lecroisey A, Gilli R, Rodgers KR, Wandersman C, Delepelaire P. The heme transfer from the soluble HasA hemophore to its membrane-bound receptor HasR is driven by protein-protein interaction from a high to a lower affinity binding site. J Biol Chem 2006; 281:25541-50. [PMID: 16774915 DOI: 10.1074/jbc.m603698200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HasA is an extracellular heme binding protein, and HasR is an outer membrane receptor protein from Serratia marcescens. They are the initial partners of a heme internalization system allowing S. marcescens to scavenge heme at very low concentrations due to the very high affinity of HasA for heme (Ka = 5,3 x 10(10) m(-1)). Heme is then transferred to HasR, which has a lower affinity for heme. The mechanism of the heme transfer between HasA and HasR is largely unknown. HasR has been overexpressed and purified in holo and apo forms. It binds one heme molecule with a Ka of 5 x 10(6) m(-1) and shows the characteristic absorbance spectrum of a low spin heme iron. Both holoHasA and apoHasA bind tightly to apoHasR in a 1:1 stoichiometry. In this study we show that heme transfer occurs in vitro in the purified HasA.HasR complex, demonstrating that heme transfer is energy- and TonB complex-independent and driven by a protein-protein interaction. We also show that heme binding to HasR involves two conserved histidine residues.
Collapse
Affiliation(s)
- Nadia Izadi-Pruneyre
- Unité des Membranes Bactériennes, CNRS URA 2172 Département de Microbiologie, Institut Pasteur, 75724 Paris Cedex 15 France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Cwerman H, Wandersman C, Biville F. Heme and a five-amino-acid hemophore region form the bipartite stimulus triggering the has signaling cascade. J Bacteriol 2006; 188:3357-64. [PMID: 16621830 PMCID: PMC1447456 DOI: 10.1128/jb.188.9.3357-3364.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 02/10/2006] [Indexed: 11/20/2022] Open
Abstract
Bacterial cells sense the extracellular environment and adapt to that environment by activating gene regulation circuits, often by means of signaling molecules. The Serratia marcescens hemophore is a signaling molecule that acts as an extracellular heme-scavenging protein. The heme-loaded hemophore interacts with its cognate receptor (HasR), triggering transmembrane signaling and turning on transcription of hemophore-dependent heme uptake genes. We investigated the features of the holo-hemophore, the only HasR ligand known to act as an inducer. We used a hemophore mutant that does not deliver its heme and a HasR mutant that does not bind heme, and we showed that heme transfer from the hemophore to the receptor is necessary for induction. Using a hemophore mutant that does not bind heme and that blocks heme transport, we demonstrated that two molecules that do not interact (heme and the mutant hemophore) may nonetheless induce this system. These findings suggest that hemophore-mediated induction and heme transport involve different mechanisms. The hemophore region important for induction was precisely localized to amino acids 50 to 55, which lie in one of the two HasR-binding hemophore regions. This bipartite stimulus probably corresponds to a physiological process because heme is transferred to the receptor before apo-hemophore release. This bipartite regulation mechanism may allow the bacterium to adjust its heme transport mechanism to the perceived environmental heme concentration.
Collapse
Affiliation(s)
- Hélène Cwerman
- Unité des Membranes Bactériennes, Institut Pasteur, 25, Rue du Dr. Roux, 75024 Paris Cedex 15, France
| | | | | |
Collapse
|
46
|
Caillet-Saguy C, Delepierre M, Lecroisey A, Bertini I, Piccioli M, Turano P. Direct-detected 13C NMR to investigate the iron(III) hemophore HasA. J Am Chem Soc 2006; 128:150-8. [PMID: 16390142 DOI: 10.1021/ja054902h] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hemophore HasA is a 19 kDa iron(III) hemoprotein that participates in the shuttling of heme to a specific membrane receptor. In HasA, heme iron has an original coordination environment with a His/Tyr pair as axial ligands. Recently developed two-dimensional protonless (13)C-detected experiments provide the sequence-specific assignment of all but three protein residues in the close proximity of the paramagnetic center, thus overcoming limitations due to the short relaxation times induced by the presence of the iron(III) center. Mono-dimensional (13)C and (15)N experiments tailored for the detection of paramagnetic signals allow the identification of resonances of the axial ligands. These experiments are used to characterize the conformational features and the electronic structure of the heme iron(III) environment. The good complementarity among (1)H-, (13)C-, and (15)N-detected experiments is highlighted. A thermal high-spin/low-spin equilibrium is observed and is related to a modulation of the strength of the coordination bond between the iron and the Tyr74 axial ligand. The key role of a neighboring residue, His82, for the stability of the axial coordination and its involvement in the heme delivery to the receptor is discussed.
Collapse
Affiliation(s)
- Célia Caillet-Saguy
- Unité de RMN des Biomolécules (CNRS URA 2185), Institut Pasteur, 28 rue du Docteur Roux, 75015 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
47
|
Toth IK, Pritchard L, Birch PRJ. Comparative genomics reveals what makes an enterobacterial plant pathogen. ANNUAL REVIEW OF PHYTOPATHOLOGY 2006; 44:305-36. [PMID: 16704357 DOI: 10.1146/annurev.phyto.44.070505.143444] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The bacterial family Enterobacteriaceae contains some of the most devastating human and animal pathogens, including Escherichia coli, Salmonella enterica and species of Yersinia and Shigella. These are among the best-studied of any organisms, yet there is much to be learned about the nature and evolution of interactions with their hosts and with the wider environment. Comparative and functional genomics have fundamentally improved our understanding of their modes of adaptation to different ecological niches and the genes that determine their pathogenicity. In addition to animal pathogens, Enterobacteriaceae include important plant pathogens, such as Erwinia carotovora subsp. atroseptica (Eca), the first plant-pathogenic enterobacterium to be sequenced. This review focuses on genomic comparisons between Eca and other enterobacteria, with particular emphasis on the differences that exemplify or explain the plant-associated lifestyle(s) of Eca. Horizontal gene transfer in Eca may directly have led to the acquisition of a number of determinants that mediate its interactions, pathogenic or otherwise, with plants, offering a glimpse into its evolutionary divergence from animal-pathogenic enterobacteria.
Collapse
Affiliation(s)
- Ian K Toth
- Plant Pathology Program, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom.
| | | | | |
Collapse
|
48
|
Huché F, Delepelaire P, Wandersman C, Welte W. Purification, crystallization and preliminary X-ray analysis of the outer membrane complex HasA-HasR from Serratia marcescens. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 62:56-60. [PMID: 16511263 PMCID: PMC2150924 DOI: 10.1107/s1744309105041394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 12/09/2005] [Indexed: 11/11/2022]
Abstract
Serratia marcescens is able to acquire iron using its haem-acquisition system (;has'), which contains an outer membrane receptor HasR and a soluble haemophore HasA. After secretion, HasA binds free haem in the extracellular medium or extracts it from haemoproteins and delivers it to the receptor. Here, the crystallization of a HasA-HasR complex is reported. HasA and HasR have been overexpressed in Escherichia coli and the complex formed and crystallized. Small platelets and bunches of needles of dimensions 0.01 x 0.1 x 1 mm were obtained. A native data set has been collected to 6.8 A.
Collapse
Affiliation(s)
- Frédéric Huché
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany.
| | | | | | | |
Collapse
|
49
|
Ascenzi P, Bocedi A, Visca P, Altruda F, Tolosano E, Beringhelli T, Fasano M. Hemoglobin and heme scavenging. IUBMB Life 2005; 57:749-59. [PMID: 16511968 DOI: 10.1080/15216540500380871] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Release of hemoglobin into plasma is a physiological phenomenon associated with intravascular hemolysis. In plasma, stable haptoglobin-hemoglobin complexes are formed and these are subsequently delivered to the reticulo-endothelial system by CD163 receptor-mediated endocytosis. Heme arising from the degradation of hemoglobin, myoglobin, and of enzymes with heme prosthetic groups could be delivered in plasma. Albumin, haptoglobin, hemopexin, and high and low density lipoproteins cooperate to trap the plasma heme, thereby ensuring its complete clearance. Then hemopexin releases the heme into hepatic parenchymal cells only after internalization of the hemopexin-heme complex by CD91 receptor-mediated endocytosis. Moreover, alpha1-microglobulin contributes to heme degradation by a still unknown mechanism, with the concomitant formation of heterogeneous yellow-brown kynurenine-derived chromophores which are very tightly bound to amino acid residues close to the rim of the lipocalin pocket. During hemoglobin synthesis, the erythroid alpha-chain hemoglobin-stabilizing protein specifically binds free alpha-hemoglobin subunits limiting the free protein toxicity. Although highly toxic because capable of catalyzing free radical formation, heme is also a major and readily available source of iron for pathogenic organisms. Gram-negative bacteria pick up the heme-bound iron through the secretion of a hemophore that takes up either free heme or heme bound to heme-proteins and transports it to a specific receptor, which, in turn, releases the heme and hence iron into the bacterium. Here, hemoglobin and heme trapping mechanisms are summarized.
Collapse
Affiliation(s)
- Paolo Ascenzi
- National Institute for Infectious Diseases IRCCS 'Lazzaro Spallanzani', Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|
50
|
Létoffé S, Wecker K, Delepierre M, Delepelaire P, Wandersman C. Activities of the Serratia marcescens heme receptor HasR and isolated plug and beta-barrel domains: the beta-barrel forms a heme-specific channel. J Bacteriol 2005; 187:4637-45. [PMID: 15968075 PMCID: PMC1151761 DOI: 10.1128/jb.187.13.4637-4645.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Serratia marcescens hemophore-specific outer membrane receptor HasR is a member of the TonB-dependent family of autoregulated receptors. It can transport either heme itself or heme bound to the hemophore HasA. On the basis of sequence and functional similarities with other TonB-dependent outer membrane receptors whose three-dimensional structures have been determined, a HasR structure model was proposed. The mature HasR protein comprises a 99-residue amino-terminal extension necessary for hasR transcription, followed by a plug domain of 139 amino acids and a beta-barrel domain inserted in the outer membrane, the lumen of which is closed by the plug. This model was used to generate hasR deletions encoding HasR proteins with the native signal peptides but lacking either the N-terminal regulatory extension or encoding the plug or the beta-barrel alone. The protein lacking the N-terminal extension, HasR delta11-91, was incorporated in the outer membrane and was fully functional for active uptake of free and hemophore-bound heme. The HasR beta-barrel, delta11-192, was also incorporated in the outer membrane and bound the hemophore but expressed no active heme transport properties. The HasR plug remained in the periplasm. Coexpression of the plug and the beta-barrel allowed partial plug insertion in the outer membrane, demonstrating that these two HasR domains interact in vivo. The beta-barrel and the plug also interact in vitro. Nevertheless, the two domains did not complement each other to reconstitute an active TonB-dependent receptor for free or hemophore-bound heme uptake. Production of the beta-barrel alone selectively increased passive diffusion of heme but not of other exogenous compounds. A mutation at histidine 603, which is required for heme uptake through the wild-type receptor, abolished heme diffusion, showing that HasR delta11-192 forms a specific heme channel.
Collapse
Affiliation(s)
- Sylvie Létoffé
- Unité des Membranes Bactériennes, Institut Pasteur, CNRS URA 2172, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|