1
|
Radzinski M, Oppenheim T, Yogev O, Levy A, Naomi MB, Kacen A, Merbl Y, Ravid T, Reichmann D. Cdc48 plays a crucial role in redox homeostasis through dynamic reshaping of its interactome during early stationary phase. Redox Biol 2025; 84:103651. [PMID: 40359616 DOI: 10.1016/j.redox.2025.103651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Most microbial cells on earth predominantly exist in non-proliferating, dormant conditions, such as the stationary state. The stationary phase is a crucial stage during the cellular lifespan, which requires homeostatic rewiring for long-term viability and rapid responses to environmental changes. Here, we show that entry to the stationary phase in yeast is accompanied by increased cytosolic and mitochondrial oxidation, imposing stress on the proteostasis network. We establish a functional link between redox and protein homeostasis, mediated by a key protein quality control member, Cdc48/p97/VCP. Comparative proteomic analysis of post-mitotic yeast cells reveals that while the global proteome remains largely stable during the first stages of stationary phase, the Cdc48 interactome undergoes significant remodeling, including altered interactions with antioxidants and its cofactors Shp1/Ubx1 and Ubx2. To challenge yeast Cdc48's capacity as a redox-switch protein during the early stages of the stationary phase, we utilized redox proteomics to map changes in reversible oxidation modification on Cdc48's cysteines upon entry to the stationary phase. We revealed the temporal and reversible oxidation of Cdc48-Cys115 as a key regulatory event essential for stationary-phase survival and interactome modulation. Cys115-to-serine mutation significantly reduced longevity and increased oxidative stress sensitivity, correlating with disrupted interactions between Cdc48 and antioxidants, and cofactor Shp1, specifically with the phosphorylated form of Shp1. Taken together, these findings identify a new thiol switch protein in the protein degradation pathway, while further defining novel roles for Cdc48 in reshaping the proteome during the yeast stationary phase.
Collapse
Affiliation(s)
- Meytal Radzinski
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Tal Oppenheim
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Ohad Yogev
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Adi Levy
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Melamed-Book Naomi
- Bio-Imaging Unit, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Assaf Kacen
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yifat Merbl
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Tommer Ravid
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel; The Center for Nanoscience and Nanotechnology, Safra Campus Givat Ram, The Hebrew University of Jerusalem, 9190401, Israel.
| |
Collapse
|
2
|
Manyi-Loh CE, Lues R. Listeria monocytogenes and Listeriosis: The Global Enigma. Foods 2025; 14:1266. [PMID: 40238523 PMCID: PMC11989209 DOI: 10.3390/foods14071266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Listeria monocytogenes is an intracellular, Gram-positive, non-spore-forming, non-encapsulated, facultative anaerobic, rod-shaped, and psychrotrophic food-borne pathogen that causes the infection, listeriosis, thus it attracts great attention following listeriosis outbreaks, which are often associated with high mortality rates. The prevalence of listeriosis is quite low globally; however, the most recent and deadliest outbreak occurred in South Africa, during which 216 persons lost their lives. L. monocytogenes is endowed with the potential to multiply through a wide range of harsh environmental conditions, forming biofilms on varying surfaces in the food industry, as well as having persistent and antibiotic-resistant cells, which pose a major threat and burden to the ready-to-eat food industry. A more frustrating characteristic of this bacterium is its strain divergence, alongside an increased level of antibiotic resistance registered among the strains of L. monocytogenes recovered from food, humans, and environmental sources, especially to those antibiotics involved in the treatment of human listeriosis. Antibiotic resistance exerted by and among pathogenic food-borne microbes is an ongoing public health menace that continues to be an issue. Against this background, a thorough search into different databases using various search engines was performed, which led to the gathering of salient information that was organised, chronologically, based on Listeria monocytogenes and listeriosis. Altogether, the findings elaborated in this study present up-to date knowledge on different aspects of this pathogen which will improve our understanding of the mystery associated with it and the ways to prevent and control its dissemination through ready-to-eat foods. In addition, constant monitoring of the antibiotic resistance profiles of strains of L. monocytogenes from varying sources detected changes, giving an update on the trend in antibiotic resistance. Overall, monitoring of bacterial contamination serves as the key aspect in the control of the food safety output in the food industry.
Collapse
Affiliation(s)
- Christy E. Manyi-Loh
- Centre for Applied Food Sustainability and Biotechnology, Central University of Technology, Bloemfontein X9301, South Africa;
| | | |
Collapse
|
3
|
Pant I, Potnis AA, Shashidhar R. Gene knockout studies of Dps protein reveals a novel role for DNA-binding protein in maintaining outer membrane permeability. World J Microbiol Biotechnol 2025; 41:70. [PMID: 39939516 PMCID: PMC11821673 DOI: 10.1007/s11274-025-04269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/17/2025] [Indexed: 02/14/2025]
Abstract
DNA-binding proteins like Dps are crucial for bacterial stress physiology. This study investigated the unexpected role of Dps protein in maintaining outer membrane integrity of Salmonella Typhimurium. We observed that a Δdps mutant displayed increased sensitivity to glycopeptide antibiotics (vancomycin, nisin), which are ineffective against Gram-negative bacteria due to their thick outer membrane (OM). Furthermore, the Δdps mutant exhibited susceptibility to membrane-disrupting agents like detergents (deoxycholate, SDS) and phages. The perforation was observed in OM after the treatment of vancomycin using atomic force microscopy. Notably, this sensitivity was rescued by supplementing the media with calcium and magnesium cations. These findings suggest a novel function for Dps in maintaining outer membrane permeability. We propose two potential mechanisms: 1) Dps might directly localize to the outer membrane 2) Dps might regulate genes responsible for lipopolysaccharide synthesis or outer membrane proteins, key components of outer membrane. This study highlights a previously unknown role for Dps beyond DNA binding and warrants further investigation into the precise mechanism by which it influences outer membrane integrity in Salmonella.
Collapse
Affiliation(s)
- Indu Pant
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Life Sciences, Homi Bhabha National Institute (DAE-Deemed University), Trombay, Mumbai, 400094, India
| | - Akhilesh A Potnis
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute (DAE-Deemed University), Trombay, Mumbai, 400094, India
| | - Ravindranath Shashidhar
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India.
- Life Sciences, Homi Bhabha National Institute (DAE-Deemed University), Trombay, Mumbai, 400094, India.
| |
Collapse
|
4
|
Nakamoto S, Kobayashi I, Watanabe K, Kikuta T, Imamura S, Shimada T. Identification of a comprehensive set of transcriptional regulators involved in the long-term survivability of Escherichia coli in soil. Sci Rep 2025; 15:4279. [PMID: 39905026 PMCID: PMC11794783 DOI: 10.1038/s41598-025-85609-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Bacteria that typically do not thrive in soil can survive therein for long periods. While much research has been conducted on the external environmental factors affecting the long-term survival of bacteria in soil, their inherent factors are poorly understood. To adapt to environmental changes, bacteria alter their gene expression patterns using transcriptional regulators such as sigma factors. Using Escherichia coli as a model bacterium, we examined the effects of each transcriptional regulator on the long-term survivability of E. coli in soil. The survivability of 294 E. coli strains deficient in transcriptional regulators in soil was measured over 6 weeks. The results showed that ten strains deficient in transcription factors significantly reduced survivability, whereas four deficient strains increased it. The functions common to several of these transcriptional regulators included carbon and nitrogen metabolism, stationary phase adaptation, and osmotic stress adaptation. These transcription factors are often global regulators and conserved among other pathogenic bacterial species. Taken together, we successfully identified a comprehensive set of transcription factors involved in the long-term survival of E. coli in soil. These findings will be useful for understanding the mechanisms underlying the adaptation of microorganisms to soil environments.
Collapse
Affiliation(s)
- Soma Nakamoto
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Tokyo, Kanagawa, 214-8571, Japan
| | - Ikki Kobayashi
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Tokyo, Kanagawa, 214-8571, Japan
| | - Koichi Watanabe
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Tokyo, Kanagawa, 214-8571, Japan
| | - Takeru Kikuta
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Tokyo, Kanagawa, 214-8571, Japan
| | - Sousuke Imamura
- Space Environment and Energy Laboratories, NTT Corporation, Musashino-Shi, Tokyo, 180-8585, Japan.
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Tokyo, Kanagawa, 214-8571, Japan.
| |
Collapse
|
5
|
Kovalenko V, Tereshkina K, Moiseenko A, Ryzhykau YL, Kuklin AI, Tereshkin E, Zaytsev P, Generalova A, Persiyantseva N, Sokolova OS, Krupyanskii Y, Loiko N. The Dps Protein Protects Escherichia coli DNA in the Form of the Trimer. Int J Mol Sci 2025; 26:619. [PMID: 39859335 PMCID: PMC11766142 DOI: 10.3390/ijms26020619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
The Dps protein is the major DNA-binding protein of prokaryotes, which protects DNA during starvation by forming a crystalline complex. The structure of such an intracellular DNA-Dps complex is still unknown. However, the phenomenon of a decrease in the size of the Dps protein from 90 Å to 69-75 Å during the formation of a complex with DNA has been repeatedly observed, and no explanation has been given. In this work, we show that during the formation of intracellular DNA-Dps crystals, the protein transitions to another oligomeric form: from a dodecameric (of 12 monomers), which has an almost spherical shape with a diameter of 90 Å, to a trimeric (of three monomers), which has a shape close to a torus-like structure with a diameter of 70 Å and a height of 40 Å. The trimer model was obtained through the molecular dynamic modeling of the interaction of the three monomers of the Dps protein. Placement of the obtained trimer in the electron density of in vitro DNA-Dps crystal allowed for the determination of the lattice parameters of the studied crystal. This crystal model was in good agreement with the SAXS data obtained from intracellular crystals of 2-day-old Escherichia coli cells. The final crystal structure contains a DNA molecule in the through channel of the crystal structure between the Dps trimers. It was discussed that the mechanism of protein transition from one oligomeric form to another in the cell cytoplasm could be regulated by intracellular metabolites and is a simple and flexible mechanism of prokaryotic cell transition from one metabolic state to another.
Collapse
Affiliation(s)
- Vladislav Kovalenko
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (K.T.); (E.T.); (A.G.); (Y.K.)
| | - Ksenia Tereshkina
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (K.T.); (E.T.); (A.G.); (Y.K.)
| | - Andrey Moiseenko
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.M.); (P.Z.); (O.S.S.)
| | - Yury L. Ryzhykau
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (Y.L.R.); (A.I.K.)
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - Alexander I. Kuklin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (Y.L.R.); (A.I.K.)
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - Eduard Tereshkin
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (K.T.); (E.T.); (A.G.); (Y.K.)
| | - Petr Zaytsev
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.M.); (P.Z.); (O.S.S.)
| | - Anastasiya Generalova
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (K.T.); (E.T.); (A.G.); (Y.K.)
| | - Nadezhda Persiyantseva
- “N. N. Blokhin National Medical Research Centre of Oncology” of the Health Ministry of Russia, 115478 Moscow, Russia;
| | - Olga S. Sokolova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.M.); (P.Z.); (O.S.S.)
| | - Yurii Krupyanskii
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (K.T.); (E.T.); (A.G.); (Y.K.)
| | - Nataliya Loiko
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
6
|
Sultana F, Ghosh A. Exploring the evolutionary landscape and structural resonances of ferritin with insights into functional significance in plant. Biochimie 2024; 227:217-230. [PMID: 39047810 DOI: 10.1016/j.biochi.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/04/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The mineral iron plays a crucial role in facilitating the optimal functioning of numerous biological processes within the cellular environment. These processes involve the transportation of oxygen, energy production, immune system functioning, cognitive abilities, and muscle function. However, it is crucial to note that excessive levels of iron can result in oxidative damage within cells, primarily through Fenton reactions. Iron availability and toxicity present significant challenges that have been addressed through evolution. Ferritin is an essential protein that stores iron and is divided into different subfamilies, including DNA-binding proteins under starvation (Dps), bacterioferritin, and classical ferritin. Ferritin plays a critical role in maintaining cellular balance and protecting against oxidative damage. This study delves into ferritin's evolutionary dynamics across diverse taxa, emphasizing structural features and regulatory mechanisms. Insights into ferritin's evolution and functional diversity are gained through phylogenetic and structural analysis in bacterial Dps, bacterioferritin, and classical ferritin proteins. Additionally, the involvement of ferritin in plant stress responses and development is explored. Analysis of ferritin gene expression across various developmental stages and stress conditions provides insights into its regulatory roles. This comprehensive exploration enhances our understanding of ferritin's significance in plant biology, offering insights into its evolutionary history, structural diversity, and protective mechanisms against oxidative stress.
Collapse
Affiliation(s)
- Fahmida Sultana
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| |
Collapse
|
7
|
Ziklo N, Bibi M, Sinai L, Salama P. Niacinamide Antimicrobial Efficacy and Its Mode of Action via Microbial Cell Cycle Arrest. Microorganisms 2024; 12:1581. [PMID: 39203423 PMCID: PMC11356291 DOI: 10.3390/microorganisms12081581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Niacinamide is a versatile compound widely used in the personal care industry for its ample skin benefits. As a precursor to nicotinamide adenine dinucleotide (NAD+), essential for ATP production and a substrate for poly-ADP-ribose polymerase-1 (PARP-1), studies have highlighted its roles in DNA repair, cellular stress mechanisms, and anti-aging benefits. Niacinamide was also studied for its antimicrobial activity, particularly in the context of host-infection via host immune response, yet its direct antimicrobial activity and the mechanisms of action remain unclear. Its multifunctionality makes it an appealing bioactive molecule for skincare products as well as a potential preservative solution. This study explores niacinamide's antimicrobial mode of action against four common cosmetic pathogens. Our findings indicate that niacinamide is causing microbial cell cycle arrest; while cells were found to increase their volume and length under treatment to prepare for cell division, complete separation into two daughter cells was prevented. Fluorescence microscopy revealed expanded chromatin, alongside a decreased RNA expression of the DNA-binding protein gene, dps. Finally, niacinamide was found to directly interact with DNA, hindering successful amplification. These unprecedented findings allowed us to add a newly rationalized preservative facete to the wide range of niacinamide multi-functionality.
Collapse
Affiliation(s)
| | | | | | - Paul Salama
- Innovation Department, Sharon Personal Care Ltd., Eli Horovitz St. 4, Rehovot 7608810, Israel; (N.Z.); (M.B.); (L.S.)
| |
Collapse
|
8
|
Rogers RR, Kesthely CA, Jean-Pierre F, El Hafi B, O'Toole GA. Dpr-mediated H 2O 2 resistance contributes to streptococcus survival in a cystic fibrosis airway model system. J Bacteriol 2024; 206:e0017624. [PMID: 38940597 PMCID: PMC11270861 DOI: 10.1128/jb.00176-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024] Open
Abstract
The cystic fibrosis (CF) lung environment is conducive to the colonization of bacteria as polymicrobial biofilms, which are associated with poor clinical outcomes for persons with CF (pwCF). Streptococcus spp. are highly prevalent in the CF airway, but its role in the CF lung microbiome is poorly understood. Some studies have shown Streptococcus spp. to be associated with better clinical outcomes for pwCF, while others show that high abundance of Streptococcus spp. is correlated with exacerbations. Our lab previously reported a polymicrobial culture system consisting of four CF-relevant pathogens that can be used to study microbial behavior in a more clinically relevant setting. Here, we use this model system to identify genetic pathways that are important for Streptococcus sanguinis survival in the context of the polymicrobial community. We identified genes related to reactive oxygen species as differentially expressed in S. sanguinis monoculture versus growth of this microbe in the mixed community. Genetic studies identified Dpr as important for S. sanguinis survival in the community. We show that Dpr, a DNA-binding ferritin-like protein, and PerR, a peroxide-responsive transcriptional regulator of Dpr, are important for protecting S. sanguinis from phenazine-mediated toxicity in co-culture with Pseudomonas aeruginosa and when exposed to hydrogen peroxide, both of which mimic the CF lung environment. Characterizing such interactions in a clinically relevant model system contributes to our understanding of microbial behavior in the context of polymicrobial biofilm infections. IMPORTANCE Streptococcus spp. are recognized as a highly prevalent pathogen in cystic fibrosis (CF) airway infections. However, the role of this microbe in clinical outcomes for persons with CF is poorly understood. Here, we leverage a polymicrobial community system previously developed by our group to model CF airway infections as a tool to investigate a Pseudomonas-Streptococcus interaction involving reactive oxygen species (ROS). We show that protection against ROS is required for Streptococcus sanguinis survival in a clinically relevant polymicrobial system. Using this model system to study interspecies interactions contributes to our broader understanding of the complex role of Streptococcus spp. in the CF lung.
Collapse
Affiliation(s)
- Rendi R. Rogers
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Christopher A. Kesthely
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Fabrice Jean-Pierre
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Bassam El Hafi
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A. O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
9
|
Vauclare P, Wulffelé J, Lacroix F, Servant P, Confalonieri F, Kleman JP, Bourgeois D, Timmins J. Stress-induced nucleoid remodeling in Deinococcus radiodurans is associated with major changes in Heat Unstable (HU) protein dynamics. Nucleic Acids Res 2024; 52:6406-6423. [PMID: 38742631 PMCID: PMC11194088 DOI: 10.1093/nar/gkae379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Bacteria have developed a wide range of strategies to respond to stress, one of which is the rapid large-scale reorganization of their nucleoid. Nucleoid associated proteins (NAPs) are believed to be major actors in nucleoid remodeling, but the details of this process remain poorly understood. Here, using the radiation resistant bacterium D. radiodurans as a model, and advanced fluorescence microscopy, we examined the changes in nucleoid morphology and volume induced by either entry into stationary phase or exposure to UV-C light, and characterized the associated changes in mobility of the major NAP in D. radiodurans, the heat-unstable (HU) protein. While both types of stress induced nucleoid compaction, HU diffusion was reduced in stationary phase cells, but was instead increased following exposure to UV-C, suggesting distinct underlying mechanisms. Furthermore, we show that UV-C-induced nucleoid remodeling involves a rapid nucleoid condensation step associated with increased HU diffusion, followed by a slower decompaction phase to restore normal nucleoid morphology and HU dynamics, before cell division can resume. These findings shed light on the diversity of nucleoid remodeling processes in bacteria and underline the key role of HU in regulating this process through changes in its mode of assembly on DNA.
Collapse
Affiliation(s)
- Pierre Vauclare
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Jip Wulffelé
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | | - Pascale Servant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Fabrice Confalonieri
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | | | - Joanna Timmins
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| |
Collapse
|
10
|
Rajapaksha N, Yao H, Cook A, Seibold S, Liu L, Battaile KP, Fontenot L, Donnarumma F, Lovell S, Rivera M. Pseudomonas aeruginosa gene PA4880 encodes a Dps-like protein with a Dps fold, bacterioferritin-type ferroxidase centers, and endonuclease activity. Front Mol Biosci 2024; 11:1390745. [PMID: 38841187 PMCID: PMC11150526 DOI: 10.3389/fmolb.2024.1390745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
We report the biochemical, structural, and functional characterization of the protein coded by gene PA4880 in the P. aeruginosa PAO1 genome. The PA4880 gene had been annotated as coding a probable bacterioferritin. Our structural work shows that the product of gene PA4880 is a protein that adopts the Dps subunit fold, which oligomerizes into a 12-mer quaternary structure. Unlike Dps, however, the ferroxidase di-iron centers and iron coordinating ligands are buried within each subunit, in a manner identical to that observed in the ferroxidase center of P. aeruginosa bacterioferritin. Since these structural characteristics correspond to Dps-like proteins, we term the protein as P. aeruginosa Dps-like, or Pa DpsL. The ferroxidase centers in Pa DpsL catalyze the oxidation of Fe2+ utilizing O2 or H2O2 as oxidant, and the resultant Fe3+ is compartmentalized in the interior cavity. Interestingly, incubating Pa DpsL with plasmid DNA results in efficient nicking of the DNA and at higher concentrations of Pa DpsL the DNA is linearized and eventually degraded. The nickase and endonuclease activities suggest that Pa DpsL, in addition to participating in the defense of P. aeruginosa cells against iron-induced toxicity, may also participate in the innate immune mechanisms consisting of restriction endonucleases and cognate methyl transferases.
Collapse
Affiliation(s)
- Nimesha Rajapaksha
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, United States
| | - Huili Yao
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, United States
| | - Aisha Cook
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, United States
| | - Steve Seibold
- Protein Structure & X-ray Crystallography Laboratory, University of Kansas, Lawrence, KS, United States
| | - Lijun Liu
- Protein Structure & X-ray Crystallography Laboratory, University of Kansas, Lawrence, KS, United States
| | | | - Leo Fontenot
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, United States
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, United States
| | - Scott Lovell
- Protein Structure & X-ray Crystallography Laboratory, University of Kansas, Lawrence, KS, United States
| | - Mario Rivera
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
11
|
Qi W, Jonker MJ, de Leeuw W, Brul S, ter Kuile BH. Role of RelA-synthesized (p)ppGpp and ROS-induced mutagenesis in de novo acquisition of antibiotic resistance in E. coli. iScience 2024; 27:109579. [PMID: 38617560 PMCID: PMC11015494 DOI: 10.1016/j.isci.2024.109579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
The stringent response of bacteria to starvation and stress also fulfills a role in addressing the threat of antibiotics. Within this stringent response, (p)ppGpp, synthesized by RelA or SpoT, functions as a global alarmone. However, the effect of this (p)ppGpp on resistance development is poorly understood. Here, we show that knockout of relA or rpoS curtails resistance development against bactericidal antibiotics. The emergence of mutated genes associated with starvation and (p)ppGpp, among others, indicates the activation of stringent responses. The growth rate is decreased in ΔrelA-resistant strains due to the reduced ability to synthesize (p)ppGpp and the persistence of deacylated tRNA impeding protein synthesis. Sluggish cellular activity causes decreased production of reactive oxygen species (ROS), thereby reducing oxidative damage, leading to weakened DNA mismatch repair, potentially reducing the generation of mutations. These findings offer new targets for mitigating antibiotic resistance development, potentially achieved through inhibiting (p)ppGpp or ROS synthesis.
Collapse
Affiliation(s)
- Wenxi Qi
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Martijs J. Jonker
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Wim de Leeuw
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Benno H. ter Kuile
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Chodkowski JL, Shade A. Bioactive exometabolites drive maintenance competition in simple bacterial communities. mSystems 2024; 9:e0006424. [PMID: 38470039 PMCID: PMC11019792 DOI: 10.1128/msystems.00064-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
During prolonged resource limitation, bacterial cells can persist in metabolically active states of non-growth. These maintenance periods, such as those experienced in stationary phase, can include upregulation of secondary metabolism and release of exometabolites into the local environment. As resource limitation is common in many environmental microbial habitats, we hypothesized that neighboring bacterial populations employ exometabolites to compete or cooperate during maintenance and that these exometabolite-facilitated interactions can drive community outcomes. Here, we evaluated the consequences of exometabolite interactions over the stationary phase among three environmental strains: Burkholderia thailandensis E264, Chromobacterium subtsugae ATCC 31532, and Pseudomonas syringae pv. tomato DC3000. We assembled them into synthetic communities that only permitted chemical interactions. We compared the responses (transcripts) and outputs (exometabolites) of each member with and without neighbors. We found that transcriptional dynamics were changed with different neighbors and that some of these changes were coordinated between members. The dominant competitor B. thailandensis consistently upregulated biosynthetic gene clusters to produce bioactive exometabolites for both exploitative and interference competition. These results demonstrate that competition strategies during maintenance can contribute to community-level outcomes. It also suggests that the traditional concept of defining competitiveness by growth outcomes may be narrow and that maintenance competition could be an additional or alternative measure. IMPORTANCE Free-living microbial populations often persist and engage in environments that offer few or inconsistently available resources. Thus, it is important to investigate microbial interactions in this common and ecologically relevant condition of non-growth. This work investigates the consequences of resource limitation for community metabolic output and for population interactions in simple synthetic bacterial communities. Despite non-growth, we observed active, exometabolite-mediated competition among the bacterial populations. Many of these interactions and produced exometabolites were dependent on the community composition but we also observed that one dominant competitor consistently produced interfering exometabolites regardless. These results are important for predicting and understanding microbial interactions in resource-limited environments.
Collapse
Affiliation(s)
- John L. Chodkowski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Ashley Shade
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Villeurbanne, France
| |
Collapse
|
13
|
Petrova O, Semenova E, Parfirova O, Tsers I, Gogoleva N, Gogolev Y, Nikolaichik Y, Gorshkov V. RpoS-Regulated Genes and Phenotypes in the Phytopathogenic Bacterium Pectobacterium atrosepticum. Int J Mol Sci 2023; 24:17348. [PMID: 38139177 PMCID: PMC10743746 DOI: 10.3390/ijms242417348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The alternative sigma factor RpoS is considered to be one of the major regulators providing stress resistance and cross-protection in bacteria. In phytopathogenic bacteria, the effects of RpoS have not been analyzed with regard to cross-protection, and genes whose expression is directly or indirectly controlled by RpoS have not been determined at the whole-transcriptome level. Our study aimed to determine RpoS-regulated genes and phenotypes in the phytopathogenic bacterium Pectobacterium atrosepticum. Knockout of the rpoS gene in P. atrosepticum affected the long-term starvation response, cross-protection, and virulence toward plants with enhanced immune status. The whole-transcriptome profiles of the wild-type P. atrosepticum strain and its ΔrpoS mutant were compared under different experimental conditions, and functional gene groups whose expression was affected by RpoS were determined. The RpoS promoter motif was inferred within the promoter regions of the genes affected by rpoS deletion, and the P. atrosepticum RpoS regulon was predicted. Based on RpoS-controlled phenotypes, transcriptome profiles, and RpoS regulon composition, the regulatory role of RpoS in P. atrosepticum is discussed.
Collapse
Affiliation(s)
- Olga Petrova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
| | - Elizaveta Semenova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
| | - Olga Parfirova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
| | - Ivan Tsers
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
| | - Natalia Gogoleva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
| | - Yuri Gogolev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yevgeny Nikolaichik
- Department of Molecular Biology, Belarusian State University, 220030 Minsk, Belarus;
| | - Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
14
|
de Pedro-Jové R, Corral J, Rocafort M, Puigvert M, Azam FL, Vandecaveye A, Macho AP, Balsalobre C, Coll NS, Orellano E, Valls M. Gene expression changes throughout the life cycle allow a bacterial plant pathogen to persist in diverse environmental habitats. PLoS Pathog 2023; 19:e1011888. [PMID: 38113281 PMCID: PMC10763947 DOI: 10.1371/journal.ppat.1011888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/03/2024] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
Bacterial pathogens exhibit a remarkable ability to persist and thrive in diverse ecological niches. Understanding the mechanisms enabling their transition between habitats is crucial to control dissemination and potential disease outbreaks. Here, we use Ralstonia solanacearum, the causing agent of the bacterial wilt disease, as a model to investigate pathogen adaptation to water and soil, two environments that act as bacterial reservoirs, and compare this information with gene expression in planta. Gene expression in water resembled that observed during late xylem colonization, with an intriguing induction of the type 3 secretion system (T3SS). Alkaline pH and nutrient scarcity-conditions also encountered during late infection stages-were identified as the triggers for this T3SS induction. In the soil environment, R. solanacearum upregulated stress-responses and genes for the use of alternate carbon sources, such as phenylacetate catabolism and the glyoxylate cycle, and downregulated virulence-associated genes. We proved through gain- and loss-of-function experiments that genes associated with the oxidative stress response, such as the regulator OxyR and the catalase KatG, are key for bacterial survival in soil, as their deletion cause a decrease in culturability associated with a premature induction of the viable but non culturable state (VBNC). This work identifies essential factors necessary for R. solanacearum to complete its life cycle and is the first comprehensive gene expression analysis in all environments occupied by a bacterial plant pathogen, providing valuable insights into its biology and adaptation to unexplored habitats.
Collapse
Affiliation(s)
- Roger de Pedro-Jové
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Jordi Corral
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Mercedes Rocafort
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Marina Puigvert
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Fàtima Latif Azam
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Agustina Vandecaveye
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-UNR-CONICET), Rosario, Santa Fe, Argentina
| | - Alberto P. Macho
- Shanghai Centre for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Carlos Balsalobre
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
| | - Núria S. Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Elena Orellano
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-UNR-CONICET), Rosario, Santa Fe, Argentina
| | - Marc Valls
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| |
Collapse
|
15
|
Rivera M. Mobilization of iron stored in bacterioferritin, a new target for perturbing iron homeostasis and developing antibacterial and antibiofilm molecules. J Inorg Biochem 2023; 247:112306. [PMID: 37451083 PMCID: PMC11642381 DOI: 10.1016/j.jinorgbio.2023.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023]
Abstract
Antibiotic resistance is a global public health threat. The care of chronic infections is complicated by bacterial biofilms. Biofilm embedded cells can be up to 1000-fold more tolerant to antibiotic treatment than planktonic cells. Antibiotic tolerance is a condition which does not involve mutation and enables bacteria to survive in the presence of antibiotics. The antibiotic tolerance of biofilm-cells often renders antibiotics ineffective, even against strains that do not carry resistance-impairing mutations. This review discusses bacterial iron homeostasis and the strategies being developed to target this bacterial vulnerability, with emphasis on a recently proposed approach which aims at targeting the iron storage protein bacterioferritin (Bfr) and its physiological partner, the ferredoxin Bfd. Bfr regulates cytosolic iron concentrations by oxidizing Fe2+ and storing Fe3+ in its internal cavity, and by forming a complex with Bfd to reduce Fe3+ in the internal cavity and release Fe2+ to the cytosol. Blocking the Bfr-Bfd complex in P. aeruginosa cells causes an irreversible accumulation of Fe3+ in BfrB and simultaneous cytosolic iron depletion, which leads to impaired biofilm maintenance and biofilm cell death. Recently discovered small molecule inhibitors of the Bfr-Bfd complex, which bind Bfr at the Bfd binding site, inhibit iron mobilization, and elicit biofilm cell death.
Collapse
Affiliation(s)
- Mario Rivera
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA.
| |
Collapse
|
16
|
Williams SM, Chatterji D. Dps Functions as a Key Player in Bacterial Iron Homeostasis. ACS OMEGA 2023; 8:34299-34309. [PMID: 37779979 PMCID: PMC10536872 DOI: 10.1021/acsomega.3c03277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Iron plays a vital role in the maintenance of life, being central to various cellular processes, from respiration to gene regulation. It is essential for iron to be stored in a nontoxic and readily available form. DNA binding proteins under starvation (Dps) belong to the ferritin family of iron storage proteins and are adept at storing iron in their hollow protein shells. Existing solely in prokaryotes, these proteins have the additional functions of DNA binding and protection from oxidative stress. Iron storage proteins play a functional role in storage, release, and transfer of iron and therefore are central to the optimal functioning of iron homeostasis. Here we review the multifarious properties of Dps through relevant biochemical and structural studies with a focus on iron storage and ferroxidation. We also examine the role of Dps as a possible candidate as an iron donor to iron-sulfur (Fe-S) clusters, which are ubiquitous to many biological processes.
Collapse
Affiliation(s)
- Sunanda Margrett Williams
- Institute
of Structural and Molecular Biology, Birkbeck,
University of London, Malet Street, London WC1E
7HX, United Kingdom
| | - Dipankar Chatterji
- Molecular
Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
17
|
Loiko N, Tereshkina K, Kovalenko V, Moiseenko A, Tereshkin E, Sokolova OS, Krupyanskii Y. DNA-Binding Protein Dps Protects Escherichia coli Cells against Multiple Stresses during Desiccation. BIOLOGY 2023; 12:853. [PMID: 37372138 DOI: 10.3390/biology12060853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Gradual dehydration is one of the frequent lethal yet poorly understood stresses that bacterial cells constantly face in the environment when their micro ecotopes dry out, as well as in industrial processes. Bacteria successfully survive extreme desiccation through complex rearrangements at the structural, physiological, and molecular levels, in which proteins are involved. The DNA-binding protein Dps has previously been shown to protect bacterial cells from many adverse effects. In our work, using engineered genetic models of E. coli to produce bacterial cells with overproduction of Dps protein, the protective function of Dps protein under multiple desiccation stresses was demonstrated for the first time. It was shown that the titer of viable cells after rehydration in the experimental variants with Dps protein overexpression was 1.5-8.5 times higher. Scanning electron microscopy was used to show a change in cell morphology upon rehydration. It was also proved that immobilization in the extracellular matrix, which is greater when the Dps protein is overexpressed, helps the cells survive. Transmission electron microscopy revealed disruption of the crystal structure of DNA-Dps crystals in E. coli cells that underwent desiccation stress and subsequent watering. Coarse-grained molecular dynamics simulations showed the protective function of Dps in DNA-Dps co-crystals during desiccation. The data obtained are important for improving biotechnological processes in which bacterial cells undergo desiccation.
Collapse
Affiliation(s)
- Nataliya Loiko
- Winogradsky Institute of Microbiology, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Ksenia Tereshkina
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladislav Kovalenko
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Andrey Moiseenko
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Eduard Tereshkin
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Olga S Sokolova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Yurii Krupyanskii
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
18
|
Park JH, Lee ES, Jung YJ. Functional characterization of the DNA-binding protein from starved cells (DPS) as a molecular chaperone under heat stress. Biochem Biophys Res Commun 2023; 667:180-185. [PMID: 37229826 DOI: 10.1016/j.bbrc.2023.05.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
The DNA-binding protein from starved cells, known as DPS, has been characterized as a crucial factor in protecting E. coli from external stresses. The DPS functions in various cellular processes, including protein-DNA binding, ferroxidase activity, compaction of chromosome and regulation of stress resistance gene expression. DPS proteins exist as oligomeric complexes; however, the specific biochemical activity of oligomeric DPS in conferring heat shock tolerance has not been fully understood. Therefore, we investigated the novel functional role of DPS under heat shock. To elucidate the functional role of DPS under heat shock conditions, we purified recombinant GST-DPS protein and demonstrated its thermostability and existence in its highly oligomeric form. Furthermore, we discovered that the hydrophobic region of GST-DPS influenced the formation of oligomers, which exhibited molecular chaperone activity, thereby preventing the aggregation of substrate proteins. Collectively, our findings highlight the novel functional role of DPS, as a molecular chaperone and may confer thermotolerance to E. coli.
Collapse
Affiliation(s)
- Joung Hun Park
- Division of Ecological Safety, National Institute of Ecology, Seocheon, Republic of Korea
| | - Eun Seon Lee
- Division of Ecological Safety, National Institute of Ecology, Seocheon, Republic of Korea
| | - Young Jun Jung
- Division of Ecological Safety, National Institute of Ecology, Seocheon, Republic of Korea.
| |
Collapse
|
19
|
Chesnokov Y, Kamyshinsky R, Mozhaev A, Shtykova E, Vasiliev A, Orlov I, Dadinova L. Morphological Diversity of Dps Complex with Genomic DNA. Int J Mol Sci 2023; 24:ijms24108534. [PMID: 37239879 DOI: 10.3390/ijms24108534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
In response to adverse environmental factors, Escherichia coli cells actively produce Dps proteins which form ordered complexes (biocrystals) with bacterial DNA to protect the genome. The effect of biocrystallization has been described extensively in the scientific literature; furthermore, to date, the structure of the Dps-DNA complex has been established in detail in vitro using plasmid DNA. In the present work, for the first time, Dps complexes with E. coli genomic DNA were studied in vitro using cryo-electron tomography. We demonstrate that genomic DNA forms one-dimensional crystals or filament-like assemblies which transform into weakly ordered complexes with triclinic unit cells, similar to what is observed for plasmid DNA. Changing such environmental factors as pH and KCl and MgCl2 concentrations leads to the formation of cylindrical structures.
Collapse
Affiliation(s)
- Yuri Chesnokov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl., 1, 123182 Moscow, Russia
| | - Roman Kamyshinsky
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl., 1, 123182 Moscow, Russia
| | - Andrey Mozhaev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Eleonora Shtykova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia
| | - Alexander Vasiliev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl., 1, 123182 Moscow, Russia
- Moscow Institute of Physics and Technology, Institutsky per. 9, 141701 Dolgoprudny, Russia
| | - Ivan Orlov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia
| | - Liubov Dadinova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia
| |
Collapse
|
20
|
Dadinova LA, Petoukhov MV, Gordienko AM, Manuvera VA, Lazarev VN, Rakitina TV, Mozhaev AA, Peters GS, Shtykova EV. Nucleoid-Associated Proteins HU and IHF: Oligomerization in Solution and Hydrodynamic Properties. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:640-654. [PMID: 37331710 DOI: 10.1134/s0006297923050073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 06/20/2023]
Abstract
Structure and function of bacterial nucleoid is controlled by the nucleoid-associated proteins (NAP). In any phase of growth, various NAPs, acting sequentially, condense nucleoid and facilitate formation of its transcriptionally active structure. However, in the late stationary phase, only one of the NAPs, Dps protein, is strongly expressed, and DNA-protein crystals are formed that transform nucleoid into a static, transcriptionally inactive structure, effectively protected from the external influences. Discovery of crystal structures in living cells and association of this phenomenon with the bacterial resistance to antibiotics has aroused great interest in studying this phenomenon. The aim of this work is to obtain and compare structures of two related NAPs (HU and IHF), since they are the ones that accumulate in the cell at the late stationary stage of growth, which precedes formation of the protective DNA-Dps crystalline complex. For structural studies, two complementary methods were used in the work: small-angle X-ray scattering (SAXS) as the main method for studying structure of proteins in solution, and dynamic light scattering as a complementary one. To interpret the SAXS data, various approaches and computer programs were used (in particular, the evaluation of structural invariants, rigid body modeling and equilibrium mixture analysis in terms of the volume fractions of its components were applied), which made it possible to determine macromolecular characteristics and obtain reliable 3D structural models of various oligomeric forms of HU and IHF proteins with ~2 nm resolution typical for SAXS. It was shown that these proteins oligomerize in solution to varying degrees, and IHF is characterized by the presence of large oligomers consisting of initial dimers arranged in a chain. An analysis of the experimental and published data made it possible to hypothesize that just before the Dps expression, it is IHF that forms toroidal structures previously observed in vivo and prepares the platform for formation of DNA-Dps crystals. The results obtained are necessary for further investigation of the phenomenon of biocrystal formation in bacterial cells and finding ways to overcome resistance of various pathogens to external conditions.
Collapse
Affiliation(s)
- Liubov A Dadinova
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, 119333, Russia
| | - Maxim V Petoukhov
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, 119333, Russia
| | - Alexander M Gordienko
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, 119333, Russia
| | - Valentin A Manuvera
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, 141701, Russia
| | - Vassili N Lazarev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, 141701, Russia
| | - Tatiana V Rakitina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Andrey A Mozhaev
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, 119333, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Georgy S Peters
- National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Eleonora V Shtykova
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, 119333, Russia.
| |
Collapse
|
21
|
Gupta A, Joshi A, Arora K, Mukhopadhyay S, Guptasarma P. The bacterial nucleoid-associated proteins, HU, and Dps, condense DNA into context-dependent biphasic or multiphasic complex coacervates. J Biol Chem 2023; 299:104637. [PMID: 36963493 PMCID: PMC10141540 DOI: 10.1016/j.jbc.2023.104637] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/26/2023] Open
Abstract
The bacterial chromosome, known as its nucleoid, is an amorphous assemblage of globular nucleoprotein domains. It exists in a state of phase separation from the cell's cytoplasm, as an irregularly-shaped, membrane-less, intracellular compartment. This state (the nature of which remains largely unknown) is maintained through bacterial generations ad infinitum. Here, we show that HU, and Dps, two of the most abundant nucleoid-associated proteins (NAPs) of Escherichia coli, undergo spontaneous complex coacervation with different forms of DNA/RNA, both individually and in each other's presence, to cause accretion and compaction of DNA/RNA into liquid-liquid phase separated (LLPS) condensates in vitro. Upon mixing with nucleic acids, HU-A and HU-B form (a) bi-phasic heterotypic mixed condensates in which HU-B helps to lower the Csat of HU-A; and also (b) multi-phasic heterotypic condensates, with Dps, in which de-mixed domains display different contents of HU and Dps. We believe that these modes of complex coacervation that are seen in vitro can serve as models for the in vivo relationships amongst NAPs in nucleoids, involving local and global variations in the relative abundances of the different NAPs, especially in de-mixed sub-domains that are characterized by differing grades of phase separation. Our results clearly demonstrate some quantitative, and some qualitative, differences in the coacervating abilities of different NAPs with DNA, potentially explaining (i) why E. coli has two isoforms of HU, and (ii) why changes in the abundances of HU and Dps facilitate the lag, logarithmic and stationary phases of E. coli growth.
Collapse
Affiliation(s)
- Archit Gupta
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India.
| | - Ashish Joshi
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Kanika Arora
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India; Department of Chemical Sciences; Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Purnananda Guptasarma
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
22
|
Dps-dependent in vivo mutation enhances long-term host adaptation in Vibrio cholerae. PLoS Pathog 2023; 19:e1011250. [PMID: 36928244 PMCID: PMC10104298 DOI: 10.1371/journal.ppat.1011250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/14/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
As one of the most successful pathogenic organisms, Vibrio cholerae (V. cholerae) has evolved sophisticated regulatory mechanisms to overcome host stress. During long-term colonization by V. cholerae in adult mice, many spontaneous nonmotile mutants (approximately 10% at the fifth day post-infection) were identified. These mutations occurred primarily in conserved regions of the flagellar regulator genes flrA, flrC, and rpoN, as shown by Sanger and next-generation sequencing, and significantly increased fitness during colonization in adult mice. Intriguingly, instead of key genes in DNA repair systems (mutS, nfo, xthA, uvrA) or ROS and RNS scavenging systems (katG, prxA, hmpA), which are generally thought to be associated with bacterial mutagenesis, we found that deletion of the cyclin gene dps significantly increased the mutation rate (up to 53% at the fifth day post-infection) in V. cholerae. We further determined that the dpsD65A and dpsF46E point mutants showed a similar mutagenesis profile as the Δdps mutant during long-term colonization in mice, which strongly indicated that the antioxidative function of Dps directly contributes to the development of V. cholerae nonmotile mutants. Methionine metabolism pathway may be one of the mechanism for ΔflrA, ΔflrC and ΔrpoN mutant increased colonization in adult mice. Our results revealed a new phenotype in which V. cholerae fitness increases in the host gut via spontaneous production nonmotile mutants regulated by cyclin Dps, which may represent a novel adaptation strategy for directed evolution of pathogens in the host.
Collapse
|
23
|
Zare F, Ghasemi N, Bansal N, Hosano H. Advances in pulsed electric stimuli as a physical method for treating liquid foods. Phys Life Rev 2023; 44:207-266. [PMID: 36791571 DOI: 10.1016/j.plrev.2023.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
There is a need for alternative technologies that can deliver safe and nutritious foods at lower costs as compared to conventional processes. Pulsed electric field (PEF) technology has been utilised for a plethora of different applications in the life and physical sciences, such as gene/drug delivery in medicine and extraction of bioactive compounds in food science and technology. PEF technology for treating liquid foods involves engineering principles to develop the equipment, and quantitative biochemistry and microbiology techniques to validate the process. There are numerous challenges to address for its application in liquid foods such as the 5-log pathogen reduction target in food safety, maintaining the food quality, and scale up of this physical approach for industrial integration. Here, we present the engineering principles associated with pulsed electric fields, related inactivation models of microorganisms, electroporation and electropermeabilization theory, to increase the quality and safety of liquid foods; including water, milk, beer, wine, fruit juices, cider, and liquid eggs. Ultimately, we discuss the outlook of the field and emphasise research gaps.
Collapse
Affiliation(s)
- Farzan Zare
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia; School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Negareh Ghasemi
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Hamid Hosano
- Biomaterials and Bioelectrics Department, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan.
| |
Collapse
|
24
|
Rajapaksha N, Soldano A, Yao H, Donnarumma F, Kashipathy MM, Seibold S, Battaile KP, Lovell S, Rivera M. Pseudomonas aeruginosa Dps (PA0962) Functions in H 2O 2 Mediated Oxidative Stress Defense and Exhibits In Vitro DNA Cleaving Activity. Int J Mol Sci 2023; 24:4669. [PMID: 36902100 PMCID: PMC10002758 DOI: 10.3390/ijms24054669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
We report the structural, biochemical, and functional characterization of the product of gene PA0962 from Pseudomonas aeruginosa PAO1. The protein, termed Pa Dps, adopts the Dps subunit fold and oligomerizes into a nearly spherical 12-mer quaternary structure at pH 6.0 or in the presence of divalent cations at neutral pH and above. The 12-Mer Pa Dps contains two di-iron centers at the interface of each subunit dimer, coordinated by conserved His, Glu, and Asp residues. In vitro, the di-iron centers catalyze the oxidation of Fe2+ utilizing H2O2 (not O2) as an oxidant, suggesting Pa Dps functions to aid P. aeruginosa to survive H2O2-mediated oxidative stress. In agreement, a P. aeruginosa Δdps mutant is significantly more susceptible to H2O2 than the parent strain. The Pa Dps structure harbors a novel network of Tyr residues at the interface of each subunit dimer between the two di-iron centers, which captures radicals generated during Fe2+ oxidation at the ferroxidase centers and forms di-tyrosine linkages, thus effectively trapping the radicals within the Dps shell. Surprisingly, incubating Pa Dps and DNA revealed unprecedented DNA cleaving activity that is independent of H2O2 or O2 but requires divalent cations and 12-mer Pa Dps.
Collapse
Affiliation(s)
- Nimesha Rajapaksha
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA
| | - Anabel Soldano
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA
| | - Huili Yao
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA
| | - Maithri M. Kashipathy
- Protein Structure and X-ray Crystallography Laboratory, University of Kansas, 2034 Becker Dr., Lawrence, KS 66047, USA
| | - Steve Seibold
- Protein Structure and X-ray Crystallography Laboratory, University of Kansas, 2034 Becker Dr., Lawrence, KS 66047, USA
| | | | - Scott Lovell
- Protein Structure and X-ray Crystallography Laboratory, University of Kansas, 2034 Becker Dr., Lawrence, KS 66047, USA
| | - Mario Rivera
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA
| |
Collapse
|
25
|
Abstract
Bifidobacteria naturally inhabit diverse environments, including the gastrointestinal tracts of humans and animals. Members of the genus are of considerable scientific interest due to their beneficial effects on health and, hence, their potential to be used as probiotics. By definition, probiotic cells need to be viable despite being exposed to several stressors in the course of their production, storage, and administration. Examples of common stressors encountered by probiotic bifidobacteria include oxygen, acid, and bile salts. As bifidobacteria are highly heterogenous in terms of their tolerance to these stressors, poor stability and/or robustness can hamper the industrial-scale production and commercialization of many strains. Therefore, interest in the stress physiology of bifidobacteria has intensified in recent decades, and many studies have been established to obtain insights into the molecular mechanisms underlying their stability and robustness. By complementing traditional methodologies, omics technologies have opened new avenues for enhancing the understanding of the defense mechanisms of bifidobacteria against stress. In this review, we summarize and evaluate the current knowledge on the multilayered responses of bifidobacteria to stressors, including the most recent insights and hypotheses. We address the prevailing stressors that may affect the cell viability during production and use as probiotics. Besides phenotypic effects, molecular mechanisms that have been found to underlie the stress response are described. We further discuss strategies that can be applied to improve the stability of probiotic bifidobacteria and highlight knowledge gaps that should be addressed in future studies.
Collapse
Affiliation(s)
- Marie Schöpping
- Systems Biology, Discovery, Chr. Hansen A/S, Hørsholm, Denmark
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ahmad A. Zeidan
- Systems Biology, Discovery, Chr. Hansen A/S, Hørsholm, Denmark
| | - Carl Johan Franzén
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
26
|
Guo K, Hakobyan A, Glatter T, Paczia N, Liesack W. Methylocystis sp. Strain SC2 Acclimatizes to Increasing NH 4+ Levels by a Precise Rebalancing of Enzymes and Osmolyte Composition. mSystems 2022; 7:e0040322. [PMID: 36154142 PMCID: PMC9600857 DOI: 10.1128/msystems.00403-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022] Open
Abstract
A high NH4+ load is known to inhibit bacterial methane oxidation. This is due to a competition between CH4 and NH3 for the active site of particulate methane monooxygenase (pMMO), which converts CH4 to CH3OH. Here, we combined global proteomics with amino acid profiling and nitrogen oxides measurements to elucidate the cellular acclimatization response of Methylocystis sp. strain SC2 to high NH4+ levels. Relative to 1 mM NH4+, a high (50 mM and 75 mM) NH4+ load under CH4-replete conditions significantly increased the lag phase duration required for proteome adjustment. The number of differentially regulated proteins was highly significantly correlated with an increasing NH4+ load. The cellular responses to increasing ionic and osmotic stress involved a significant upregulation of stress-responsive proteins, the K+ "salt-in" strategy, the synthesis of compatible solutes (glutamate and proline), and the induction of the glutathione metabolism pathway. A significant increase in the apparent Km value for CH4 oxidation during the growth phase was indicative of increased pMMO-based oxidation of NH3 to toxic hydroxylamine. The detoxifying activity of hydroxlyamine oxidoreductase (HAO) led to a significant accumulation of NO2- and, upon decreasing O2 tension, N2O. Nitric oxide reductase and hybrid cluster proteins (Hcps) were the candidate enzymes for the production of N2O. In summary, strain SC2 has the capacity to precisely rebalance enzymes and osmolyte composition in response to increasing NH4+ exposure, but the need to simultaneously combat both ionic-osmotic stress and the toxic effects of hydroxylamine may be the reason why its acclimatization capacity is limited to 75 mM NH4+. IMPORTANCE In addition to reducing CH4 emissions from wetlands and landfills, the activity of alphaproteobacterial methane oxidizers of the genus Methylocystis contributes to the sink capacity of forest and grassland soils for atmospheric methane. The methane-oxidizing activity of Methylocystis spp. is, however, sensitive to high NH4+ concentrations. This is due to the competition of CH4 and NH3 for the active site of particulate methane monooxygenase, thereby resulting in the production of toxic hydroxylamine with an increasing NH4+ load. An understanding of the physiological and molecular response mechanisms of Methylocystis spp. is therefore of great importance. Here, we combined global proteomics with amino acid profiling and NOx measurements to disentangle the cellular mechanisms underlying the acclimatization of Methylocystis sp. strain SC2 to an increasing NH4+ load.
Collapse
Affiliation(s)
- Kangli Guo
- Methanotrophic Bacteria and Environmental Genomics/Transcriptomics Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Anna Hakobyan
- Methanotrophic Bacteria and Environmental Genomics/Transcriptomics Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Werner Liesack
- Methanotrophic Bacteria and Environmental Genomics/Transcriptomics Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
27
|
Du GF, Dong Y, Fan X, Yin A, Le YJ, Yang XY. Proteomic Investigation of the Antibacterial Mechanism of Cefiderocol against Escherichia coli. Microbiol Spectr 2022; 10:e0109322. [PMID: 35980225 PMCID: PMC9603102 DOI: 10.1128/spectrum.01093-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/01/2022] [Indexed: 12/30/2022] Open
Abstract
This study aimed to investigate the antibacterial mechanism of cefiderocol (CFDC) using data-independent acquisition quantitative proteomics combined with cellular and molecular biological assays. Numerous differentially expressed proteins related to the production of NADH, reduced cofactor flavin adenine dinucleotide (FADH2), NADPH and reactive oxygen species (ROS), iron-sulfur cluster binding, and iron ion homeostasis were found to be upregulated by CFDC. Furthermore, parallel reaction monitoring analysis validated these results. Meanwhile, we confirmed that the levels of NADH, ROS, H2O2, and iron ions were induced by CFDC, and the sensitivity of Escherichia coli to CFDC was inhibited by the antioxidant vitamin C, N-acetyl-l-cysteine, and deferoxamine. Moreover, deferoxamine also suppressed the H2O2 stress induced by CFDC. In addition, knockout of the NADH-quinone oxidoreductase genes (nuoA, nuoC, nuoE, nuoF, nuoG, nuoJ, nuoL, nuoM) in the respiratory chain attenuated the sensitivity of E. coli to CFDC far beyond the effects of cefepime and ceftazidime; in particular, the E. coli BW25113 ΔnuoJ strain produced 60-fold increases in MIC to CFDC compared to that of the wild-type E. coli BW25113 strain. The present study revealed that CFDC exerts its antibacterial effects by inducing ROS stress by elevating the levels of NADH and iron ions in E. coli. IMPORTANCE CFDC was the first FDA-approved siderophore cephalosporin antibiotic in 2019 and is known for its Trojan horse tactics and broad antimicrobial activity against Gram-negative bacteria. However, its antibacterial mechanism is not fully understood, and whether it has an impact on in vivo iron ion homeostasis remains unknown. To comprehensively reveal the antibacterial mechanisms of CFDC, data-independent acquisition quantitative proteomics combined with cellular and molecular biological assays were performed in this study. The findings will further facilitate our understanding of the antibacterial mechanism of CFDC and may provide a theoretical foundation for controlling CFDC resistance in the future.
Collapse
Affiliation(s)
- Gao-Fei Du
- Key Laboratory of Laboratory Diagnostics, Medical Technology School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu Dong
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaolu Fan
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, China
| | - Ankang Yin
- Key Laboratory of Laboratory Diagnostics, Medical Technology School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yao-Jin Le
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Xiao-Yan Yang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| |
Collapse
|
28
|
NO-Stressed Y. pseudotuberculosis Has Decreased Cell Division Rates in the Mouse Spleen. Infect Immun 2022; 90:e0016722. [PMID: 35862700 PMCID: PMC9387282 DOI: 10.1128/iai.00167-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Fluorescence dilution approaches can detect bacterial cell division events and can detect if there are differential rates of cell division across individual cells within a population. This approach typically involves inducing expression of a fluorescent protein and then tracking partitioning of fluorescence into daughter cells. However, fluorescence can be diluted very quickly within a rapidly replicating population, such as pathogenic bacterial populations replicating within host tissues. To overcome this limitation, we have generated two revTetR reporter constructs, where either mCherry or yellow fluorescent protein (YFP) is constitutively expressed and repressed by addition of tetracyclines, resulting in fluorescence dilution within defined time frames. We show that fluorescent signals are diluted in replicating populations and that signal accumulates in growth-inhibited populations, including during nitric oxide (NO) exposure. Furthermore, we show that tetracyclines can be delivered to the mouse spleen during Yersinia pseudotuberculosis infection and defined a drug concentration that results in even exposure of cells to tetracyclines. We then used this system to visualize bacterial cell division within defined time frames postinfection. revTetR-mCherry allowed us to detect slow-growing cells in response to NO in culture; however, this strain had a growth defect within mouse tissues, which complicated results. To address this issue, we constructed revTetR-YFP using the less toxic YFP and showed that heightened NO exposure correlated with heightened YFP signal, indicating decreased cell division rates within this subpopulation in vivo. This revTetR reporter will provide a critical tool for future studies to identify and isolate slowly replicating bacterial subpopulations from host tissues.
Collapse
|
29
|
Tereshkin EV, Loiko NG, Tereshkina KB, Kovalenko VV, Krupyanskii YF. Possible Mechanisms of 4-Hexylresorcinol Influence on DNA and DNA–Dps Nanocrystals Affecting Stress Sustainability of Escherichia coli. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122040285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Chen Y, Yang Z, Zhou X, Jin M, Dai Z, Ming D, Zhang Z, Zhu L, Jiang L. Sequence, structure, and function of the Dps DNA-binding protein from Deinococcus wulumuqiensis R12. Microb Cell Fact 2022; 21:132. [PMID: 35780107 PMCID: PMC9250271 DOI: 10.1186/s12934-022-01857-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 06/21/2022] [Indexed: 11/28/2022] Open
Abstract
Deinococcus wulumuqiensis R12, which was isolated from arid irradiated soil in Xinjiang province of China, belongs to a genus that is well-known for its extreme resistance to ionizing radiation and oxidative stress. The DNA-binding protein Dps has been studied for its great contribution to oxidative resistance. To explore the role of Dps in D. wulumuqiensis R12, the Dps sequence and homology-modeled structure were analyzed. In addition, the dps gene was knocked out and proteomics was used to verify the functions of Dps in D. wulumuqiensis R12. Docking data and DNA binding experiments in vitro showed that the R12 Dps protein has a better DNA binding ability than the Dps1 protein from D. radiodurans R1. When the dps gene was deleted in D. wulumuqiensis R12, its resistance to H2O2 and UV rays was greatly reduced, and the cell envelope was destroyed by H2O2 treatment. Additionally, the qRT-PCR and proteomics data suggested that when the dps gene was deleted, the catalase gene was significantly down-regulated. The proteomics data indicated that the metabolism, transport and oxidation-reduction processes of D. wulumuqiensis R12 were down-regulated after the deletion of the dps gene. Overall, the data conformed that Dps protein plays an important role in D. wulumuqiensis R12.
Collapse
Affiliation(s)
- Yao Chen
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhihan Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xue Zhou
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Mengmeng Jin
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zijie Dai
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Dengming Ming
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhidong Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Key Laboratory of Special Environmental Microbiology, Ürümqi, 830091, Xinjiang, China.
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Ling Jiang
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
31
|
Shtykova EV, Petoukhov MV, Mozhaev AA. Formation of Iron Oxide Nanoparticles in the Internal Cavity of Ferritin-Like Dps Protein: Studies by Anomalous X-Ray Scattering. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:511-523. [PMID: 35790408 DOI: 10.1134/s0006297922060037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
DNA-binding protein from starved cells (Dps) takes a special place among dodecamer mini-ferritins. Its most important function is protection of bacterial genome from various types of destructive external factors via in cellulo Dps-DNA co-crystallization. This protective response results in the emergence of bacterial resistance to antibiotics and other drugs. The protective properties of Dps have attracted a significant attention of researchers. However, Dps has another equally important functional role. Being a ferritin-like protein, Dps acts as an iron depot and protects bacterial cells from the oxidative damage initiated by the excess of iron. Here we investigated formation of iron oxide nanoparticles in the internal cavity of the Dps dodecamer. We used anomalous small-angle X-ray scattering as the main research technique, which allows to examine the structure of metal-containing biological macromolecules and to analyze the size distribution of metal nanoparticles formed in them. The contributions of protein and metal components to total scattering were distinguished by varying the energy of the incident X-ray radiation near the edge of the metal atom absorption band (the K-band for iron). We examined Dps specimens containing 50, 500, and 2000 iron atoms per protein dodecamer. Analysis of the particle size distribution showed that, depending on the iron content in the solution, the size of the nanoparticles formed inside the protein molecule was 2 to 4 nm and the growth of metal nanoparticles was limited by the size of the protein inner cavity. We also found some amount of iron ions in the Dps surface layer. This layer is very important for the protein to perform its protective functions, since the surface-located N-terminal domains determine the nature of interactions between Dps and DNA. In general, the results obtained in this work can be useful for the next step in studying the Dps phenomenon, as well as in creating biocompatible and solution-stabilized metal nanoparticles.
Collapse
Affiliation(s)
- Eleonora V Shtykova
- Shubnikov Institute of Crystallography, Crystallography and Photonics Federal Scientific Research Centre, Russian Academy of Sciences, Moscow, 119333, Russia.
| | - Maxim V Petoukhov
- Shubnikov Institute of Crystallography, Crystallography and Photonics Federal Scientific Research Centre, Russian Academy of Sciences, Moscow, 119333, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Andrey A Mozhaev
- Shubnikov Institute of Crystallography, Crystallography and Photonics Federal Scientific Research Centre, Russian Academy of Sciences, Moscow, 119333, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- National Research University Higher School of Economics, Moscow, 101000, Russia
| |
Collapse
|
32
|
García-Descalzo L, García-López E, Cid C. Comparative Proteomic Analysis of Psychrophilic vs. Mesophilic Bacterial Species Reveals Different Strategies to Achieve Temperature Adaptation. Front Microbiol 2022; 13:841359. [PMID: 35591995 PMCID: PMC9111180 DOI: 10.3389/fmicb.2022.841359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
The old debate of nature (genes) vs. nurture (environmental variables) is once again topical concerning the effect of climate change on environmental microorganisms. Specifically, the Polar Regions are experiencing a drastic increase in temperature caused by the rise in greenhouse gas emissions. This study, in an attempt to mimic the molecular adaptation of polar microorganisms, combines proteomic approaches with a classical microbiological analysis in three bacterial species Shewanella oneidensis, Shewanella frigidimarina, and Psychrobacter frigidicola. Both shewanellas are members of the same genus but they live in different environments. On the other hand, Shewanella frigidimarina and Psychrobacter frigidicola share the same natural environment but belong to a different genus. The comparison of the strategies employed by each bacterial species estimates the contribution of genome vs. environmental variables in the adaptation to temperature. The results show a greater versatility of acclimatization for the genus Shewanella with respect to Psychrobacter. Besides, S. frigidimarina was the best-adapted species to thermal variations in the temperature range 4–30°C and displayed several adaptation mechanisms common with the other two species. Regarding the molecular machinery used by these bacteria to face the consequences of temperature changes, chaperones have a pivoting role. They form complexes with other proteins in the response to the environment, establishing cooperation with transmembrane proteins, elongation factors, and proteins for protection against oxidative damage.
Collapse
Affiliation(s)
- Laura García-Descalzo
- Centro de Astrobiología, Department of Planetology and Habitability, CSIC-INTA, Madrid, Spain
| | - Eva García-López
- Centro de Astrobiología, Department of Molecular Ecology, CSIC-INTA, Madrid, Spain
| | - Cristina Cid
- Centro de Astrobiología, Department of Molecular Ecology, CSIC-INTA, Madrid, Spain
| |
Collapse
|
33
|
Abstract
The DNA-binding protein from starved cells, Dps, is a universally conserved prokaryotic ferritin that, in many species, also binds DNA. Dps homologs have been identified in the vast majority of bacterial species and several archaea. Dps also may play a role in the global regulation of gene expression, likely through chromatin reorganization. Dps has been shown to use both its ferritin and DNA-binding functions to respond to a variety of environmental pressures, including oxidative stress. One mechanism that allows Dps to achieve this is through a global nucleoid restructuring event during stationary phase, resulting in a compact, hexacrystalline nucleoprotein complex called the biocrystal that occludes damaging agents from DNA. Due to its small size, hollow spherical structure, and high stability, Dps is being developed for applications in biotechnology.
Collapse
|
34
|
Kuruppu AI, Turyanska L, Bradshaw TD, Manickam S, Galhena BP, Paranagama P, De Silva R. Apoferritin and Dps as drug delivery vehicles: Some selected examples in oncology. Biochim Biophys Acta Gen Subj 2022; 1866:130067. [PMID: 34896255 DOI: 10.1016/j.bbagen.2021.130067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND The ideal nanoparticle should be able to encapsulate either pharmaceutical agents or imaging probes so that it could treat or image clinical tumours by targeting the cancer site efficiently. Further, it would be an added advantage if it demonstrates: small size, built in targeting, biocompatibility and biodegradability. Ferritin, which is an endogenous self-assembling protein, stores iron and plays a role in iron homeostasis. When iron atoms are removed apoferritin (AFt) is formed which consists of a hollow shell where it can be used to load guest molecules. Due to its unique architecture, AFt has been investigated as a versatile carrier for tumour theranostic applications. DNA-binding protein from starved cells (Dps), which also belongs to the ferritin family, is a protein found only in prokaryotes. It is used to store iron and protect chromosomes from oxidative damage; because of its architecture, Dps could also be used as a delivery vehicle. CONCLUSIONS Both these nano particles are promising in the field of oncology, especially due to their stability, solubility and biocompatibility features. Further their exterior surface can be modified for better tumour-targeting ability. More studies, are warranted to determine the immunogenicity, biodistribution, and clearance from the body. GENERAL PERSPECTIVE This review discusses a few selected examples of the remarkable in vitro and in vivo studies that have been carried out in the recent past with the use of AFt and Dps in targeting and delivery of various pharmaceutical agents, natural products and imaging probes in the field of oncology.
Collapse
Affiliation(s)
- Anchala I Kuruppu
- Institute for Combinatorial Advanced Research & Education, General Sir John Kotelawala Defence University, Sri Lanka.
| | | | | | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Brunei Darussalam
| | - Bandula Prasanna Galhena
- Department Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Kelaniya, Sri Lanka
| | - Priyani Paranagama
- Department of Chemistry, Faculty of Science, University of Kelaniya, Sri Lanka; Institute of Indigenous Medicine, University of Colombo, Sri Lanka
| | - Ranil De Silva
- Institute for Combinatorial Advanced Research & Education, General Sir John Kotelawala Defence University, Sri Lanka
| |
Collapse
|
35
|
Amemiya HM, Goss TJ, Nye TM, Hurto RL, Simmons LA, Freddolino PL. Distinct heterochromatin-like domains promote transcriptional memory and silence parasitic genetic elements in bacteria. EMBO J 2022; 41:e108708. [PMID: 34961960 PMCID: PMC8804932 DOI: 10.15252/embj.2021108708] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023] Open
Abstract
There is increasing evidence that prokaryotes maintain chromosome structure, which in turn impacts gene expression. We recently characterized densely occupied, multi-kilobase regions in the E. coli genome that are transcriptionally silent, similar to eukaryotic heterochromatin. These extended protein occupancy domains (EPODs) span genomic regions containing genes encoding metabolic pathways as well as parasitic elements such as prophages. Here, we investigate the contributions of nucleoid-associated proteins (NAPs) to the structuring of these domains, by examining the impacts of deleting NAPs on EPODs genome-wide in E. coli and B. subtilis. We identify key NAPs contributing to the silencing of specific EPODs, whose deletion opens a chromosomal region for RNA polymerase binding at genes contained within that region. We show that changes in E. coli EPODs facilitate an extra layer of transcriptional regulation, which prepares cells for exposure to exotic carbon sources. Furthermore, we distinguish novel xenogeneic silencing roles for the NAPs Fis and Hfq, with the presence of at least one being essential for cell viability in the presence of domesticated prophages. Our findings reveal previously unrecognized mechanisms through which genomic architecture primes bacteria for changing metabolic environments and silences harmful genomic elements.
Collapse
Affiliation(s)
- Haley M Amemiya
- Cellular and Molecular Biology ProgramUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Department of Computational Medicine and BioinformaticsUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Present address:
Broad Institute of MIT and HarvardCambridgeMAUSA
| | - Thomas J Goss
- Department of Biological ChemistryUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Taylor M Nye
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMIUSA
- Present address:
Department of Molecular MicrobiologyWashington University in St. Louis School of MedicineSt. LouisMOUSA
| | - Rebecca L Hurto
- Department of Biological ChemistryUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMIUSA
| | - Peter L Freddolino
- Cellular and Molecular Biology ProgramUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Department of Computational Medicine and BioinformaticsUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Department of Biological ChemistryUniversity of Michigan Medical SchoolAnn ArborMIUSA
| |
Collapse
|
36
|
Fasnacht M, Gallo S, Sharma P, Himmelstoß M, Limbach PA, Willi J, Polacek N. Dynamic 23S rRNA modification ho5C2501 benefits Escherichia coli under oxidative stress. Nucleic Acids Res 2021; 50:473-489. [PMID: 34904663 PMCID: PMC8754641 DOI: 10.1093/nar/gkab1224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022] Open
Abstract
Post-transcriptional modifications are added to ribosomal RNAs (rRNAs) to govern ribosome biogenesis and to fine-tune protein biosynthesis. In Escherichia coli and related bacteria, RlhA uniquely catalyzes formation of a 5-hydroxycytidine (ho5C) at position 2501 of 23S rRNA. However, the molecular and biological functions as well as the regulation of ho5C2501 modification remain unclear. We measured growth curves with the modification-deficient ΔrlhA strain and quantified the extent of the modification during different conditions by mass spectrometry and reverse transcription. The levels of ho5C2501 in E. coli ribosomes turned out to be highly dynamic and growth phase-dependent, with the most effective hydroxylation yields observed in the stationary phase. We demonstrated a direct effect of ho5C2501 on translation efficiencies in vitro and in vivo. High ho5C2501 levels reduced protein biosynthesis which however turned out to be beneficial for E. coli for adapting to oxidative stress. This functional advantage was small under optimal conditions or during heat or cold shock, but becomes pronounced in the presence of hydrogen peroxide. Taken together, these data provided first functional insights into the role of this unique 23S rRNA modification for ribosome functions and bacterial growth under oxidative stress.
Collapse
Affiliation(s)
- Michel Fasnacht
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Stefano Gallo
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Puneet Sharma
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Maximilian Himmelstoß
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, OH, USA
| | - Jessica Willi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland.,Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, OH, USA
| | - Norbert Polacek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
37
|
Irawati W, Djojo ES, Kusumawati L, Yuwono T, Pinontoan R. Optimizing Bioremediation: Elucidating Copper Accumulation Mechanisms of Acinetobacter sp. IrC2 Isolated From an Industrial Waste Treatment Center. Front Microbiol 2021; 12:713812. [PMID: 34795645 PMCID: PMC8595058 DOI: 10.3389/fmicb.2021.713812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/20/2021] [Indexed: 01/31/2023] Open
Abstract
Acinetobacter sp. IrC2 is a copper-resistant bacterium isolated from an industrial waste treatment center in Rungkut, Surabaya. Copper-resistant bacteria are known to accumulate copper inside the cells as a mechanism to adapt to a copper-contaminated environment. Periplasmic and membrane proteins CopA and CopB have been known to incorporate copper as a mechanism of copper resistance. In the present study, protein profile changes in Acinetobacter sp. IrC2 following exposure to copper stress were analyzed to elucidate the copper resistance mechanism. Bacteria were grown in a Luria Bertani agar medium with and without CuSO4 supplementation. Intracellular copper ion accumulation was quantified using atomic absorption spectrophotometry. Changes in protein profile were assessed using sodium dodecyl sulfate polyacrylamide gel electrophoresis. The results showed that 6 mM CuSO4 was toxic for Acinetobacter sp. IrC2, and as a response to this copper-stress condition, the lag phase was prolonged to 18 h. It was also found that the bacteria accumulated copper to a level of 508.01 mg/g of cells' dry weight, marked by a change in colony color to green. The protein profile under copper stress was altered as evidenced by the appearance of five specific protein bands with molecular weights of 68.0, 60.5, 38.5, 24.0, and 20.5 kDa, suggesting the presence of CopA, multicopper oxidase (MCO), CopB, universal stress protein (Usp), and superoxide dismutase (SOD) and/or DNA-binding protein from starved cells, respectively. We proposed that the mechanism of bacterial resistance to copper involves CopA and CopB membrane proteins in binding Cu ions in the periplasm and excreting excess Cu ions as well as involving enzymes that play a role in the detoxification process, namely, SOD, MCO, and Usp to avoid cell damage under copper stress.
Collapse
Affiliation(s)
- Wahyu Irawati
- Department of Biology Education, Universitas Pelita Harapan, Tangerang, Indonesia
| | | | - Lucia Kusumawati
- Department of Food Technology, International University Liaison Indonesia, Tangerang, Indonesia
| | - Triwibowo Yuwono
- Department of Agricultural Microbiology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | |
Collapse
|
38
|
Rai R, Singh S, Rai KK, Raj A, Sriwastaw S, Rai LC. Regulation of antioxidant defense and glyoxalase systems in cyanobacteria. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:353-372. [PMID: 34700048 DOI: 10.1016/j.plaphy.2021.09.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/09/2021] [Accepted: 09/28/2021] [Indexed: 05/19/2023]
Abstract
Oxidative stress is common consequence of abiotic stress in plants as well as cyanobacteria caused by generation of reactive oxygen species (ROS), an inevitable product of respiration and photosynthetic electron transport. ROS act as signalling molecule at low concentration however, when its production exceeds the endurance capacity of antioxidative defence system, the organisms suffer oxidative stress. A highly toxic metabolite, methylglyoxal (MG) is also produced in cyanobacteria in response to various abiotic stresses which consequently augment the ensuing oxidative damage. Taking recourse to the common lineage of eukaryotic plants and cyanobacteria, it would be worthwhile to explore the regulatory role of glyoxalase system and antioxidative defense mechanism in combating abiotic stress in cyanobacteria. This review provides comprehensive information on the complete glyoxalase system (GlyI, GlyII and GlyIII) in cyanobacteria. Furthermore, it elucidates the recent understanding regarding the production of ROS and MG, noteworthy link between intracellular MG and ROS and its detoxification via synchronization of antioxidants (enzymatic and non-enzymatic) and glyoxalase systems using glutathione (GSH) as common co-factor.
Collapse
Affiliation(s)
- Ruchi Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shilpi Singh
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Krishna Kumar Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Alka Raj
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sonam Sriwastaw
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - L C Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
39
|
Adaptive remodelling of blue pigmenting Pseudomonas fluorescens pf59 proteome in response to different environmental conditions. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Amemiya HM, Schroeder J, Freddolino PL. Nucleoid-associated proteins shape chromatin structure and transcriptional regulation across the bacterial kingdom. Transcription 2021; 12:182-218. [PMID: 34499567 PMCID: PMC8632127 DOI: 10.1080/21541264.2021.1973865] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023] Open
Abstract
Genome architecture has proven to be critical in determining gene regulation across almost all domains of life. While many of the key components and mechanisms of eukaryotic genome organization have been described, the interplay between bacterial DNA organization and gene regulation is only now being fully appreciated. An increasing pool of evidence has demonstrated that the bacterial chromosome can reasonably be thought of as chromatin, and that bacterial chromosomes contain transcriptionally silent and transcriptionally active regions analogous to heterochromatin and euchromatin, respectively. The roles played by histones in eukaryotic systems appear to be shared across a range of nucleoid-associated proteins (NAPs) in bacteria, which function to compact, structure, and regulate large portions of bacterial chromosomes. The broad range of extant NAPs, and the extent to which they differ from species to species, has raised additional challenges in identifying and characterizing their roles in all but a handful of model bacteria. Here we review the regulatory roles played by NAPs in several well-studied bacteria and use the resulting state of knowledge to provide a working definition for NAPs, based on their function, binding pattern, and expression levels. We present a screening procedure which can be applied to any species for which transcriptomic data are available. Finally, we note that NAPs tend to play two major regulatory roles - xenogeneic silencers and developmental regulators - and that many unrecognized potential NAPs exist in each bacterial species examined.
Collapse
Affiliation(s)
- Haley M. Amemiya
- University of Michigan Medical School, Ann Arbor, MI, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jeremy Schroeder
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter L. Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
41
|
Cardoza E, Singh H. Involvement of CspC in response to diverse environmental stressors in Escherichia coli. J Appl Microbiol 2021; 132:785-801. [PMID: 34260797 DOI: 10.1111/jam.15219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/23/2022]
Abstract
The ability of Escherichia coli surviving a cold shock lies mainly with the induction of a few Csps termed as 'Major cold shock proteins'. Regardless of high sequence similarity among the nine homologous members, CspC appears to be functionally diverse in conferring the cell adaptability to various stresses based on fundamental properties of the protein including nucleic acid binding, nucleic acid melting and regulatory activity. Spanning three different stress regulons of acid, oxidative and heat, CspC regulates gene expression and transcript stability of stress proteins and bestows upon the cell tolerance to lethal-inducing agents ultimately helping it adapt to severe environmental assaults. While its exact role in cellular physiology is still to be detailed, understanding the transcriptional and translational control will likely provide insights into the mechanistic role of CspC under stress conditions. To this end, we review the knowledge on stress protein regulation by CspC and highlight its activity in response to stressors thereby elucidating its role as a major Csp player in response to one too many environmental triggers. The knowledge presented here could see various downstream applications in engineering microbes for industrial, agricultural and research applications in order to achieve high product efficiency and to aid bacteria cope with environmentally harsh conditions.
Collapse
Affiliation(s)
- Evieann Cardoza
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Mumbai, India
| | - Harinder Singh
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Mumbai, India
| |
Collapse
|
42
|
Espinosa-Gongora C, Hansen MJ, Bertelsen MF, Bojesen AM. Polar bear-adapted Ursidibacter maritimus are remarkably conserved after generations in captivity. Mol Ecol 2021; 30:4497-4504. [PMID: 34250662 DOI: 10.1111/mec.16075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Most species in the bacterial family of Pasteurellaceae colonize one specific host species. Vertebrates of very different evolutionary descent including fish, turtles, marsupials, eutherians and birds are colonized by different members of Pasteurellaceae. This one-to-one microbial-host species partnership makes Pasteurellaceae species valuable candidates to study biodiversity, bacterial-host co-evolution and host adaptation, and their widespread distribution across vertebrates provide the possibility to collect a wide array of data, where wildlife species are essential. However, obtaining samples from wild animals comes with logistic, technical and ethical challenges, and previous microbiota studies have led to the presumption that captive animals are poor models for microbial studies in wildlife. Here, we show that colonization of polar bears by Ursidibacter maritimus is unaffected by factors related to captivity, reflecting a deep symbiotic bond to the host. We argue that the study of ecological and evolutionary principles in captive wildlife is possible for host-adapted taxa such as those in the Pasteurellaceae family. Moreover, studying captive, often trained animals protects wild populations from the stress associated with obtaining samples.
Collapse
Affiliation(s)
- Carmen Espinosa-Gongora
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Mie Johanne Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.,Center for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Mads Frost Bertelsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.,Center for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
43
|
Modifying TIMER to generate a slow-folding DsRed derivative for optimal use in quickly-dividing bacteria. PLoS Pathog 2021; 17:e1009284. [PMID: 34214139 PMCID: PMC8291646 DOI: 10.1371/journal.ppat.1009284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 07/20/2021] [Accepted: 06/14/2021] [Indexed: 11/29/2022] Open
Abstract
It is now well appreciated that members of pathogenic bacterial populations exhibit heterogeneity in growth rates and metabolic activity, and it is known this can impact the ability to eliminate all members of the bacterial population during antibiotic treatment. It remains unclear which pathways promote slowed bacterial growth within host tissues, primarily because it has been difficult to identify and isolate slow growing bacteria from host tissues for downstream analyses. To overcome this limitation, we have developed a novel variant of TIMER, a slow-folding fluorescent protein, named DsRed42, to identify subsets of slowly dividing bacteria within host tissues. The original TIMER folds too slowly for fluorescence accumulation in quickly replicating bacterial species (Escherichia coli, Yersinia pseudotuberculosis), however DsRed42 accumulates red fluorescence in late stationary phase cultures of E. coli and Y. pseudotuberculosis. We show DsRed42 signal also accumulates during exposure to sources of nitric oxide (NO), suggesting DsRed42 signal detects growth-arrested bacterial cells. In a mouse model of Y. pseudotuberculosis deep tissue infection, DsRed42 signal was detected, and primarily accumulates in bacteria expressing markers of stationary phase growth. There was no significant overlap between DsRed42 signal and NO-exposed subpopulations of bacteria within host tissues, suggesting NO stress was transient, allowing bacteria to recover from this stress and resume replication. This novel DsRed42 variant represents a tool that will enable additional studies of slow-growing subpopulations of bacteria, specifically within bacterial species that quickly divide. We have generated a variant of TIMER that can be used to mark slow-growing subsets of Yersinia pseudotuberculosis, which has a relatively short division time, similar to E. coli. We used a combination of site-directed and random mutagenesis to generate DsRed42, which has red fluorescent signal accumulation in post-exponential or stationary phase cells. Since this variant accumulates only red fluorescence, it is no longer a TIMER protein, and is more appropriately termed DsRed42. We found that nitric oxide (NO) stress is sufficient to promote DsRed42 signal accumulation in culture, however within host tissues, DsRed42 signal correlates with a stationary phase reporter (dps). These results suggest NO may cause an immediate arrest in bacterial cell division, but during growth in host tissues exposure to NO is transient, allowing bacteria to recover from this stress and resume cell division. Thus instead of indicating a response to host stressors, DsRed42 signal accumulation within host tissues appears to identify slow-growing cells that are experiencing nutrient limitation.
Collapse
|
44
|
Davis MM, Brock AM, DeHart TG, Boribong BP, Lee K, McClune ME, Chang Y, Cramer N, Liu J, Jones CN, Jutras BL. The peptidoglycan-associated protein NapA plays an important role in the envelope integrity and in the pathogenesis of the lyme disease spirochete. PLoS Pathog 2021; 17:e1009546. [PMID: 33984073 PMCID: PMC8118282 DOI: 10.1371/journal.ppat.1009546] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
The bacterial pathogen responsible for causing Lyme disease, Borrelia burgdorferi, is an atypical Gram-negative spirochete that is transmitted to humans via the bite of an infected Ixodes tick. In diderms, peptidoglycan (PG) is sandwiched between the inner and outer membrane of the cell envelope. In many other Gram-negative bacteria, PG is bound by protein(s), which provide both structural integrity and continuity between envelope layers. Here, we present evidence of a peptidoglycan-associated protein (PAP) in B. burgdorferi. Using an unbiased proteomics approach, we identified Neutrophil Attracting Protein A (NapA) as a PAP. Interestingly, NapA is a Dps homologue, which typically functions to bind and protect cellular DNA from damage during times of stress. While B. burgdorferi NapA is known to be involved in the oxidative stress response, it lacks the critical residues necessary for DNA binding. Biochemical and cellular studies demonstrate that NapA is localized to the B. burgdorferi periplasm and is indeed a PAP. Cryo-electron microscopy indicates that mutant bacteria, unable to produce NapA, have structural abnormalities. Defects in cell-wall integrity impact growth rate and cause the napA mutant to be more susceptible to osmotic and PG-specific stresses. NapA-linked PG is secreted in outer membrane vesicles and augments IL-17 production, relative to PG alone. Using microfluidics, we demonstrate that NapA acts as a molecular beacon-exacerbating the pathogenic properties of B. burgdorferi PG. These studies further our understanding of the B. burgdorferi cell envelope, provide critical information that underlies its pathogenesis, and highlight how a highly conserved bacterial protein can evolve mechanistically, while maintaining biological function.
Collapse
Affiliation(s)
- Marisela M. Davis
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Aaron M. Brock
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Molecular and Cellular Biology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Tanner G. DeHart
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Brittany P. Boribong
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Katherine Lee
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Mecaila E. McClune
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Yunjie Chang
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
| | - Nicholas Cramer
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
| | - Caroline N. Jones
- Molecular and Cellular Biology, Virginia Tech, Blacksburg, Virginia, United States of America
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Brandon L. Jutras
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Molecular and Cellular Biology, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
45
|
Dps-DNA interaction in Marinobacter hydrocarbonoclasticus protein: effect of a single-charge alteration. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:513-521. [PMID: 33900431 DOI: 10.1007/s00249-021-01538-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
DNA-binding proteins from starved cells (Dps) are members of the ferritin family of proteins found in prokaryotes, with hollow rounded cube-like structures, composed of 12 equal subunits. These protein nanocages are bifunctional enzymes that protect the cell from the harmful reaction of iron and peroxide (Fenton reaction), thus preventing DNA damage by oxidative stress. Ferrous ions are oxidized at specific iron-binding sites in the presence of the oxidant and stored in its cavity that can accommodate up to ca. 500 iron atoms. DNA-binding properties of Dps are associated with the N-terminal, positive charge rich, extensions that can promote DNA binding and condensation, apparently by a cooperative binding mechanism. Here, we describe the binding and protection activities of Marinobacter hydrocarbonoclasticus Dps using Electrophoretic Mobility Shift Essays (EMSA), and synchrotron radiation circular dichroism (SRCD) spectroscopy. While no DNA condensation was observed in the tested conditions, it was possible to determine a Dps-DNA complex formation with an apparent dissociation constant of 6.0 ± 1.0 µM and a Hill coefficient of 1.2 ± 0.1. This interaction is suppressed by the inclusion of a single negative charge in the N-terminal region by point mutation. In Dps proteins containing a ferric mineral core (above 96 Fe/protein), DNA binding was impaired. SRCD data clearly showed that no significant modification existed either in secondary structure or protein stability of WT, Q14E variant and core containing proteins. It was, however, interesting to note that, in our experimental conditions, thermal denaturation induced protein aggregation that caused artifacts in thermal denaturation curves, which were dependent on radiation flux and vertical arrangement of the CD cell.
Collapse
|
46
|
SpoT-mediated NapA upregulation promotes oxidative stress-induced Helicobacter pylori biofilm formation and confers multidrug resistance. Antimicrob Agents Chemother 2021; 65:AAC.00152-21. [PMID: 33649116 PMCID: PMC8092859 DOI: 10.1128/aac.00152-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recently, there is increased incidence of drug-resistant Helicobacter pylori infection. Biofilm formation confers multidrug resistance to bacteria. Moreover, it has been found that the formation of biofilm on the surface of gastric mucosa is an important reason for the difficulty of eradication of H. pylori The mechanisms underlying H. pylori biofilm formation in vivo have not been elucidated. Reactive oxygen species (ROS) released by the host immune cells in response to H. pylori infection cannot effectively clear the pathogen. Moreover, the extracellular matrix of the biofilm protects the bacteria against ROS-mediated toxicity. This study hypothesized that ROS can promote H. pylori biofilm formation and treatment with low concentrations of hydrogen peroxide (H2O2) promoted this process in vitro The comparative transcriptome analysis of planktonic and biofilm-forming cells revealed that the expression of SpoT, a (p)ppGpp (guanosine 3'-diphosphate 5'-triphosphate and guanosine 3',5'-bispyrophosphate) synthetase/hydrolase, is upregulated in H2O2-induced biofilms and that knockout of spoT inhibited H. pylori biofilm formation. Additionally, this study examined the key target molecules involved in SpoT regulation using weighted gene co-expression network analysis. The analysis revealed that neutrophil-activating protein (NapA; HP0243) promoted H2O2-induced biofilm formation and conferred multidrug resistance. Furthermore, vitamin C exhibited anti-H. pylori biofilm activity and downregulated the expression of napA in vitro These findings provide novel insight into the clearance of H. pylori biofilms.
Collapse
|
47
|
Linsak DT, Kese D, Broznic D, Lusic DV, Cenov A, Moric M, Gobin I. Sea water whirlpool spa as a source of Legionella infection. JOURNAL OF WATER AND HEALTH 2021; 19:242-253. [PMID: 33901021 DOI: 10.2166/wh.2021.150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacterial pneumonia caused by the inhalation of aerosols contaminated with Legionella spp. is also known as Legionnaires' disease. In this study, we report a case of pneumonia caused by Legionella pneumophila sg.1 in a 58-year-old man who visited a sea water-filled whirlpool within a hotel and spa complex. The patient's Legionella urine antigen test was positive for L. pneumophila sg.1. During the field study, samples were taken from both the outdoor and indoor sea water-filled pools. Samples from the whirlpool were culture positive for L. pneumophila sg.1. Typing results indicated sea water isolate belonged to Sequence type ST82 and Allentown/France MAb subgroup. In vitro experiments showed that L. pneumophila strains are able to survive within sea water up to 7 days, and survival time is prolonged with sea water dilution. Also, our results indicate that L. pneumophila Allentown strain was the most resistant to adverse conditions in sea water with the highest values of DT50 (420 min) and DT90 (1,396 min). The possible source of infection was adding potable water for filling up the whirlpool. The survival of the L. pneumophila in additionally conditioned sea water should be considered in a further study.
Collapse
Affiliation(s)
- Dijana Tomic Linsak
- Faculty of Medicine, Department of Health Ecology, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia E-mail: ; Teaching Institute of Public Health of Primorje-Gorski Kotar County, Kresimirova 52a, 51000 Rijeka, Croatia
| | - Darja Kese
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
| | - Dalibor Broznic
- Faculty of Medicine, Department of Medical Chemistry, Biochemistry and Clinical Chemistry, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia
| | - Darija Vukic Lusic
- Faculty of Medicine, Department of Health Ecology, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia E-mail: ; Teaching Institute of Public Health of Primorje-Gorski Kotar County, Kresimirova 52a, 51000 Rijeka, Croatia
| | - Arijana Cenov
- Teaching Institute of Public Health of Primorje-Gorski Kotar County, Kresimirova 52a, 51000 Rijeka, Croatia
| | - Milan Moric
- Teaching Institute of Public Health of Primorje-Gorski Kotar County, Kresimirova 52a, 51000 Rijeka, Croatia
| | - Ivana Gobin
- Faculty of Medicine, Department of Microbiology, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
48
|
Pipercevic J, Jakob RP, Righetto RD, Goldie KN, Stahlberg H, Maier T, Hiller S. Identification of a Dps contamination in Mitomycin-C-induced expression of Colicin Ia. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183607. [PMID: 33775657 DOI: 10.1016/j.bbamem.2021.183607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 11/29/2022]
Abstract
Colicins are bacterial toxins targeting Gram-negative bacteria, including E. coli and related Enterobacteriaceae strains. Some colicins form ion-gated pores in the inner membrane of attacked bacteria that are lethal to their target. Colicin Ia was the first pore-forming E. coli toxin, for which a high-resolution structure of the monomeric full-length protein was determined. It is so far also the only colicin, for which a low-resolution structure of its membrane-inserted pore was reported by negative-stain electron microscopy. Resolving this structure at the atomic level would allow an understanding of the mechanism of toxin pore formation. Here, we report an observation that we made during an attempt to determine the Colicin Ia pore structure at atomic resolution. Colicin Ia was natively expressed by mitomycin-C induction under a native SOS promotor and purified following published protocols. The visual appearance in the electron microscope of negatively stained preparations and the lattice parameters of 2D crystals obtained from the material were highly similar to those reported earlier resulting from the same purification protocol. However, a higher-resolution structural analysis revealed that the protein is Dps (DNA-binding protein from starved cells), a dodecameric E. coli protein. This finding suggests that the previously reported low-resolution structure of a "Colicin Ia oligomeric pore" actually shows Dps.
Collapse
Affiliation(s)
| | - Roman P Jakob
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Ricardo D Righetto
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Kenneth N Goldie
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | |
Collapse
|
49
|
Zhou Z, Tang H, Wang W, Zhang L, Su F, Wu Y, Bai L, Li S, Sun Y, Tao F, Xu P. A cold shock protein promotes high-temperature microbial growth through binding to diverse RNA species. Cell Discov 2021; 7:15. [PMID: 33727528 PMCID: PMC7966797 DOI: 10.1038/s41421-021-00246-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 01/27/2021] [Indexed: 01/18/2023] Open
Abstract
Endowing mesophilic microorganisms with high-temperature resistance is highly desirable for industrial microbial fermentation. Here, we report a cold-shock protein (CspL) that is an RNA chaperone protein from a lactate producing thermophile strain (Bacillus coagulans 2–6), which is able to recombinantly confer strong high-temperature resistance to other microorganisms. Transgenic cspL expression massively enhanced high-temperature growth of Escherichia coli (a 2.4-fold biomass increase at 45 °C) and eukaryote Saccharomyces cerevisiae (a 2.6-fold biomass increase at 36 °C). Importantly, we also found that CspL promotes growth rates at normal temperatures. Mechanistically, bio-layer interferometry characterized CspL’s nucleotide-binding functions in vitro, while in vivo we used RNA-Seq and RIP-Seq to reveal CspL’s global effects on mRNA accumulation and CspL’s direct RNA binding targets, respectively. Thus, beyond establishing how a cold-shock protein chaperone provides high-temperature resistance, our study introduces a strategy that may facilitate industrial thermal fermentation.
Collapse
Affiliation(s)
- Zikang Zhou
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Lige Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Fei Su
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yuanting Wu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Sicong Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei, 430071, People's Republic of China
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei, 430071, People's Republic of China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
50
|
Dubrovin EV, Dadinova LA, Petoukhov MV, Soshinskaya EY, Mozhaev AA, Klinov DV, Schäffer TE, Shtykova EV, Batishchev OV. Spatial organization of Dps and DNA-Dps complexes. J Mol Biol 2021; 433:166930. [PMID: 33713674 DOI: 10.1016/j.jmb.2021.166930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/24/2021] [Accepted: 03/05/2021] [Indexed: 02/04/2023]
Abstract
DNA co-crystallization with Dps family proteins is a fundamental mechanism, which preserves DNA in bacteria from harsh conditions. Though many aspects of this phenomenon are well characterized, the spatial organization of DNA in DNA-Dps co-crystals is not completely understood, and existing models need further clarification. To advance in this problem we have utilized atomic force microscopy (AFM) as the main structural tool, and small-angle X-scattering (SAXS) to characterize Dps as a key component of the DNA-protein complex. SAXS analysis in the presence of EDTA indicates a significantly larger radius of gyration for Dps than would be expected for the core of the dodecamer, consistent with the N-terminal regions extending out into solution and being accessible for interaction with DNA. In AFM experiments, both Dps protein molecules and DNA-Dps complexes adsorbed on mica or highly oriented pyrolytic graphite (HOPG) surfaces form densely packed hexagonal structures with a characteristic size of about 9 nm. To shed light on the peculiarities of DNA interaction with Dps molecules, we have characterized individual DNA-Dps complexes. Contour length evaluation has confirmed the non-specific character of Dps binding with DNA and revealed that DNA does not wrap Dps molecules in DNA-Dps complexes. Angle analysis has demonstrated that in DNA-Dps complexes a Dps molecule contacts with a DNA segment of ~6 nm in length. Consideration of DNA condensation upon complex formation with small Dps quasi-crystals indicates that DNA may be arranged along the rows of ordered protein molecules on a Dps sheet.
Collapse
Affiliation(s)
- Evgeniy V Dubrovin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow 119071, Russia; Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 bld 2, 119991 Moscow, Russia.
| | - Liubov A Dadinova
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics," Russian Academy of Sciences, 119333 Moscow, Russia
| | - Maxim V Petoukhov
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics," Russian Academy of Sciences, 119333 Moscow, Russia
| | - Ekaterina Yu Soshinskaya
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics," Russian Academy of Sciences, 119333 Moscow, Russia
| | - Andrey A Mozhaev
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics," Russian Academy of Sciences, 119333 Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitry V Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, 119435 Moscow, Russia
| | - Tilman E Schäffer
- University of Tübingen, Institute of Applied Physics, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Eleonora V Shtykova
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics," Russian Academy of Sciences, 119333 Moscow, Russia
| | - Oleg V Batishchev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow 119071, Russia
| |
Collapse
|