1
|
Ma X, Sun C, Xian M, Guo J, Zhang R. Progress in research on the biosynthesis of 1,2,4-butanetriol by engineered microbes. World J Microbiol Biotechnol 2024; 40:68. [PMID: 38200399 DOI: 10.1007/s11274-024-03885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
1,2,4-butanetriol (BT) is a polyol with unique chemical properties, which has a stereocenter and can be divided into D-BT (the S-enantiomer) and L-BT (the R-enantiomer). BT can be used for the synthesis of 1,2,4-butanetriol trinitrate, 3-hydroxytetrahydrofuran, polyurethane, and other chemicals. It is widely used in the military industry, medicine, tobacco, polymer. At present, the BT is mainly synthesized by chemical methods, which are accompanied by harsh reaction conditions, poor selectivity, many by-products, and environmental pollution. Therefore, BT biosynthesis methods with the advantages of mild reaction conditions and green sustainability have become a current research hotspot. In this paper, the research status of microbial synthesis of BT was summarized from the following three aspects: (1) the biosynthetic pathway establishment for BT from xylose; (2) metabolic engineering strategies employed for improving BT production from xylose; (3) other substrates for BT production. Finally, the challenges and prospects of biosynthetic BT were discussed for future methods to improve competitiveness for industrial production.
Collapse
Affiliation(s)
- Xiangyu Ma
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Sun
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Mo Xian
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Jing Guo
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| | - Rubing Zhang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| |
Collapse
|
2
|
Wang S, Narsing Rao MP, Quadri SR. Assessing the metabolism, phylogenomic, and taxonomic classification of the halophilic genus Halarchaeum. FEMS Microbiol Lett 2024; 371:fnae001. [PMID: 38192037 DOI: 10.1093/femsle/fnae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
In this study, a genomic approach was employed to evaluate the metabolic potentials and taxonomic classification of the halophilic genus Halarchaeum. Genomic analysis revealed that Halarchaeum members exhibit a predilection for amino acids as their primary energy source in high-salinity environments over carbohydrates. Genome analysis unveiled the presence of crucial genes associated with metabolic pathways, including the Embden-Meyerhof pathway, semi-phosphorylative Entner-Doudoroff pathway, and the urea cycle. Furthermore, the genomic analysis indicated that Halarchaeum members employ diverse mechanisms for osmotic regulation (encompassing both salt-in and salt-out strategies). Halarchaeum members also encode genes to alleviate acid and heat stress. The average nucleotide identity value between Halarchaeum solikamskense and Halarchaeum nitratireducens exceeded the established threshold (95%-96%) for defining distinct species. This high similarity suggests a close relationship between these two species, prompting the proposal to reclassify Halarchaeum solikamskense as a heterotypic synonym of Halarchaeum nitratireducens. The results of this study contribute to our knowledge of taxonomic classification and shed light on the adaptive strategies employed by Halarchaeum species in their specific ecological niches.
Collapse
Affiliation(s)
- Shuang Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization/Heilongjiang Black Soil Conservation Engineering and Technology Research Center, Harbin 150086, People's Republic of China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China
| | - Manik Prabhu Narsing Rao
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, Talca 3460000, Chile
| | - Syed Raziuddin Quadri
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar-91431 Northern Borders, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Ladeveze S, Zurek PJ, Kaminski TS, Emond S, Hollfelder F. Versatile Product Detection via Coupled Assays for Ultrahigh-Throughput Screening of Carbohydrate-Active Enzymes in Microfluidic Droplets. ACS Catal 2023; 13:10232-10243. [PMID: 37560191 PMCID: PMC10407846 DOI: 10.1021/acscatal.3c01609] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/06/2023] [Indexed: 08/11/2023]
Abstract
Enzyme discovery and directed evolution are the two major contemporary approaches for the improvement of industrial processes by biocatalysis in various fields. Customization of catalysts for improvement of single enzyme reactions or de novo reaction development is often complex and tedious. The success of screening campaigns relies on the fraction of sequence space that can be sampled, whether for evolving a particular enzyme or screening metagenomes. Ultrahigh-throughput screening (uHTS) based on in vitro compartmentalization in water-in-oil emulsion of picoliter droplets generated in microfluidic systems allows screening rates >1 kHz (or >107 per day). Screening for carbohydrate-active enzymes (CAZymes) catalyzing biotechnologically valuable reactions in this format presents an additional challenge because the released carbohydrates are difficult to monitor in high throughput. Activated substrates with large optically active hydrophobic leaving groups provide a generic optical readout, but the molecular recognition properties of sugars will be altered by the incorporation of such fluoro- or chromophores and their typically higher reactivity, as leaving groups with lowered pKa values compared to native substrates make the observation of promiscuous reactions more likely. To overcome these issues, we designed microdroplet assays in which optically inactive carbohydrate products are made visible by specific cascades: the primary reaction of an unlabeled substrate leads to an optical signal downstream. Successfully implementing such assays at the picoliter droplet scale allowed us to detect glucose, xylose, glucuronic acid, and arabinose as final products of complex oligosaccharide degradation by glycoside hydrolases by absorbance measurements. Enabling the use of uHTS for screening CAZyme reactions that have been thus far elusive will chart a route toward faster and easier development of specific and efficient biocatalysts for biovalorization, directing enzyme discovery by challenging catalysts for reaction with natural rather than model substrates.
Collapse
Affiliation(s)
| | - Paul J. Zurek
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB21GA, U.K.
| | | | | | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB21GA, U.K.
| |
Collapse
|
4
|
Ren Y, Eronen V, Blomster Andberg M, Koivula A, Hakulinen N. Structure and function of aldopentose catabolism enzymes involved in oxidative non-phosphorylative pathways. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:147. [PMID: 36578086 PMCID: PMC9795676 DOI: 10.1186/s13068-022-02252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
Platform chemicals and polymer precursors can be produced via enzymatic pathways starting from lignocellulosic waste materials. The hemicellulose fraction of lignocellulose contains aldopentose sugars, such as D-xylose and L-arabinose, which can be enzymatically converted into various biobased products by microbial non-phosphorylated oxidative pathways. The Weimberg and Dahms pathways convert pentose sugars into α-ketoglutarate, or pyruvate and glycolaldehyde, respectively, which then serve as precursors for further conversion into a wide range of industrial products. In this review, we summarize the known three-dimensional structures of the enzymes involved in oxidative non-phosphorylative pathways of pentose catabolism. Key structural features and reaction mechanisms of a diverse set of enzymes responsible for the catalytic steps in the reactions are analysed and discussed.
Collapse
Affiliation(s)
- Yaxin Ren
- grid.9668.10000 0001 0726 2490Department of Chemistry, University of Eastern Finland, 111, 80101 Joensuu, Finland
| | - Veikko Eronen
- grid.9668.10000 0001 0726 2490Department of Chemistry, University of Eastern Finland, 111, 80101 Joensuu, Finland
| | | | - Anu Koivula
- grid.6324.30000 0004 0400 1852VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Nina Hakulinen
- grid.9668.10000 0001 0726 2490Department of Chemistry, University of Eastern Finland, 111, 80101 Joensuu, Finland
| |
Collapse
|
5
|
Thompson TP, Megaw J, Kelly SA, Hopps J, Gilmore BF. Microbial communities of halite deposits and other hypersaline environments. ADVANCES IN APPLIED MICROBIOLOGY 2022; 120:1-32. [PMID: 36243451 DOI: 10.1016/bs.aambs.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Large regions of Earth's surface are underlain by salt deposits that evaporated from ancient oceans and are populated by extreme halophilic microbes. While the microbiology of ancient evaporites has been well studied, the ecology of halite deposits and more recently formed NaCl "salticle" stalactite structures (speleothems) in a Triassic halite mine are less well characterized. The microbiome of Kilroot Salt Mine was profiled using conventional and enhanced culturing techniques. From this, 89 halophilic archaeal isolates from six known genera, and 55 halophilic or halotolerant bacterial isolates from 18 genera were obtained. Culture-independent metagenomic approaches also revealed that culturing techniques were inadvertently biased toward specific taxa, and the need for optimized isolation procedures are required to enhance cultivation diversity. Speleothems formed from saturated brines are unique structures that have the potential to entomb haloarchaea cells for thousands of years within fluid inclusions. The presence of such fluid inclusions, alongside the high abundance of genes related to glycerol metabolism, biofilm formation, and persister cell formation is highly suggestive of an environmental niche that could promote longevity and survivability. Finally, previous studies reporting the discovery of novel biocatalysts from the Kilroot mine microbiome, suggests that this environment may be an untapped source of chemical diversity with high biodiscovery potential.
Collapse
Affiliation(s)
- Thomas P Thompson
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, United Kingdom.
| | - Julianne Megaw
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Stephen A Kelly
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, United Kingdom
| | - Jason Hopps
- Irish Salt Mining & Exploration Company Ltd., Carrickfergus, United Kingdom
| | - Brendan F Gilmore
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, United Kingdom
| |
Collapse
|
6
|
Trichez D, Carneiro CVGC, Braga M, Almeida JRM. Recent progress in the microbial production of xylonic acid. World J Microbiol Biotechnol 2022; 38:127. [PMID: 35668329 DOI: 10.1007/s11274-022-03313-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/19/2022] [Indexed: 01/03/2023]
Abstract
Interest in the production of renewable chemicals from biomass has increased in the past years. Among these chemicals, carboxylic acids represent a significant part of the most desirable bio-based products. Xylonic acid is a five-carbon sugar-acid obtained from xylose oxidation that can be used in several industrial applications, including food, pharmaceutical, and construction industries. So far, the production of xylonic acid has not yet been available at an industrial scale; however, several microbial bio-based production processes are under development. This review summarizes the recent advances in pathway characterization, genetic engineering, and fermentative strategies to improve xylonic acid production by microorganisms from xylose or lignocellulosic hydrolysates. In addition, the strengths of the available microbial strains and processes and the major requirements for achieving biotechnological production of xylonic acid at a commercial scale are discussed. Efficient native and engineered microbial strains have been reported. Xylonic acid titers as high as 586 and 171 g L-1 were obtained from bacterial and yeast strains, respectively, in a laboratory medium. Furthermore, relevant academic and industrial players associated with xylonic acid production will be presented.
Collapse
Affiliation(s)
- Débora Trichez
- Laboratory of Genetics and Biotechnology, EMBRAPA Agroenergia, Brasília, Brazil
| | - Clara Vida G C Carneiro
- Laboratory of Genetics and Biotechnology, EMBRAPA Agroenergia, Brasília, Brazil.,Graduate Program of Microbial Biology, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | - Melissa Braga
- Innovation and Business Office, EMBRAPA Agroenergia, Brasília, Brazil
| | - João Ricardo M Almeida
- Laboratory of Genetics and Biotechnology, EMBRAPA Agroenergia, Brasília, Brazil. .,Graduate Program of Microbial Biology, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil.
| |
Collapse
|
7
|
De Anda V, Chen LX, Dombrowski N, Hua ZS, Jiang HC, Banfield JF, Li WJ, Baker BJ. Brockarchaeota, a novel archaeal phylum with unique and versatile carbon cycling pathways. Nat Commun 2021; 12:2404. [PMID: 33893309 PMCID: PMC8065059 DOI: 10.1038/s41467-021-22736-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/18/2021] [Indexed: 02/02/2023] Open
Abstract
Geothermal environments, such as hot springs and hydrothermal vents, are hotspots for carbon cycling and contain many poorly described microbial taxa. Here, we reconstructed 15 archaeal metagenome-assembled genomes (MAGs) from terrestrial hot spring sediments in China and deep-sea hydrothermal vent sediments in Guaymas Basin, Gulf of California. Phylogenetic analyses of these MAGs indicate that they form a distinct group within the TACK superphylum, and thus we propose their classification as a new phylum, 'Brockarchaeota', named after Thomas Brock for his seminal research in hot springs. Based on the MAG sequence information, we infer that some Brockarchaeota are uniquely capable of mediating non-methanogenic anaerobic methylotrophy, via the tetrahydrofolate methyl branch of the Wood-Ljungdahl pathway and reductive glycine pathway. The hydrothermal vent genotypes appear to be obligate fermenters of plant-derived polysaccharides that rely mostly on substrate-level phosphorylation, as they seem to lack most respiratory complexes. In contrast, hot spring lineages have alternate pathways to increase their ATP yield, including anaerobic methylotrophy of methanol and trimethylamine, and potentially use geothermally derived mercury, arsenic, or hydrogen. Their broad distribution and their apparent anaerobic metabolic versatility indicate that Brockarchaeota may occupy previously overlooked roles in anaerobic carbon cycling.
Collapse
Affiliation(s)
- Valerie De Anda
- Department of Marine Science, University of Texas Austin, Port Aransas, TX, 78373, USA
| | - Lin-Xing Chen
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA
| | - Nina Dombrowski
- Department of Marine Science, University of Texas Austin, Port Aransas, TX, 78373, USA
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, Den Burg, Netherlands
| | - Zheng-Shuang Hua
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, PR China
| | - Hong-Chen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People's Republic of China
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, People's Republic of China.
| | - Brett J Baker
- Department of Marine Science, University of Texas Austin, Port Aransas, TX, 78373, USA.
| |
Collapse
|
8
|
Abstract
The Embden–Meyerhof–Parnas (EMP) and Entner–Doudoroff (ED) pathways are considered the most abundant catabolic pathways found in microorganisms, and ED enzymes have been shown to also be widespread in cyanobacteria, algae and plants. In a large number of organisms, especially common strains used in molecular biology, these pathways account for the catabolism of glucose. The existence of pathways for other carbohydrates that are relevant to biomass utilization has been recognized as new strains have been characterized among thermophilic bacteria and Archaea that are able to transform simple polysaccharides from biomass to more complex and potentially valuable precursors for industrial microbiology. Many of the variants of the ED pathway have the key dehydratase enzyme involved in the oxidation of sugar derived from different families such as the enolase, IlvD/EDD and xylose-isomerase-like superfamilies. There are the variations in structure of proteins that have the same specificity and generally greater-than-expected substrate promiscuity. Typical biomass lignocellulose has an abundance of xylan, and four different pathways have been described, which include the Weimberg and Dahms pathways initially oxidizing xylose to xylono-gamma-lactone/xylonic acid, as well as the major xylose isomerase pathway. The recent realization that xylan constitutes a large proportion of biomass has generated interest in exploiting the compound for value-added precursors, but few chassis microorganisms can grow on xylose. Arabinose is part of lignocellulose biomass and can be metabolized with similar pathways to xylose, as well as an oxidative pathway. Like enzymes in many non-phosphorylative carbohydrate pathways, enzymes involved in L-arabinose pathways from bacteria and Archaea show metabolic and substrate promiscuity. A similar multiplicity of pathways was observed for other biomass-derived sugars such as L-rhamnose and L-fucose, but D-mannose appears to be distinct in that a non-phosphorylative version of the ED pathway has not been reported. Many bacteria and Archaea are able to grow on mannose but, as with other minor sugars, much of the information has been derived from whole cell studies with additional enzyme proteins being incorporated, and so far, only one synthetic pathway has been described. There appears to be a need for further discovery studies to clarify the general ability of many microorganisms to grow on the rarer sugars, as well as evaluation of the many gene copies displayed by marine bacteria.
Collapse
|
9
|
Pentose degradation in archaea: Halorhabdus species degrade D-xylose, L-arabinose and D-ribose via bacterial-type pathways. Extremophiles 2020; 24:759-772. [PMID: 32761262 PMCID: PMC8551123 DOI: 10.1007/s00792-020-01192-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/21/2020] [Indexed: 01/29/2023]
Abstract
The degradation of the pentoses D-xylose, L-arabinose and D-ribose in the domain of archaea, in Haloferax volcanii and in Haloarcula and Sulfolobus species, has been shown to proceed via oxidative pathways to generate α-ketoglutarate. Here, we report that the haloarchaeal Halorhabdus species utilize the bacterial-type non-oxidative degradation pathways for pentoses generating xylulose-5-phosphate. The genes of these pathways are each clustered and were constitutively expressed. Selected enzymes involved in D-xylose degradation, xylose isomerase and xylulokinase, and those involved in L-arabinose degradation, arabinose isomerase and ribulokinase, were characterized. Further, D-ribose degradation in Halorhabdus species involves ribokinase, ribose-5-phosphate isomerase and D-ribulose-5-phosphate-3-epimerase. Ribokinase of Halorhabdus tiamatea and ribose-5-phosphate isomerase of Halorhabdus utahensis were characterized. This is the first report of pentose degradation via the bacterial-type pathways in archaea, in Halorhabdus species that likely acquired these pathways from bacteria. The utilization of bacterial-type pathways of pentose degradation rather than the archaeal oxidative pathways generating α-ketoglutarate might be explained by an incomplete gluconeogenesis in Halorhabdus species preventing the utilization of α-ketoglutarate in the anabolism.
Collapse
|
10
|
Yoshiwara K, Watanabe S, Watanabe Y. Crystal structure of bacterial L-arabinose 1-dehydrogenase in complex with L-arabinose and NADP . Biochem Biophys Res Commun 2020; 530:203-208. [PMID: 32828286 DOI: 10.1016/j.bbrc.2020.07.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
L-Arabinose 1-dehydrogenase (AraDH) is responsible for the first step of the non-phosphorylative L-arabinose pathway from bacteria, and catalyzes the NAD(P)+-dependent oxidation of L-arabinose to L-arabinonolactone. This enzyme belongs to the so-called Gfo/Idh/MocA protein superfamily, but has a very poor phylogenetic relationship with other functional members. We previously reported the crystal structures of AraDH without a ligand and in complex with NADP+. To clarify the underlying catalytic mechanisms in more detail, we herein elucidated the crystal structure in complex with L-arabinose and NADP+. In addition to the previously reported five amino acid residues (Lys91, Glu147, His153, Asp169, and Asn173), His119, Trp152, and Trp231 interacted with L-arabinose, which were not found in substrate recognition by other Gfo/Idh/MocA members. Structure-based site-directed mutagenic analyses suggested that Asn173 plays an important role in catalysis, whereas Trp152, Trp231, and His119 contribute to substrate binding. The preference of NADP+ over NAD+ was significantly subjected by a pair of Ser37 and Arg38, whose manners were similar to other Gfo/Idh/MocA members.
Collapse
Affiliation(s)
- Kentaroh Yoshiwara
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Seiya Watanabe
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan; Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan; Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.
| | - Yasunori Watanabe
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan; Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan; Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| |
Collapse
|
11
|
d-Ribose Catabolism in Archaea: Discovery of a Novel Oxidative Pathway in Haloarcula Species. J Bacteriol 2020; 202:JB.00608-19. [PMID: 31712277 DOI: 10.1128/jb.00608-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/29/2019] [Indexed: 11/20/2022] Open
Abstract
The Haloarcula species H. marismortui and H. hispanica were found to grow on d-ribose, d-xylose, and l-arabinose. Here, we report the discovery of a novel promiscuous oxidative pathway of pentose degradation based on genome analysis, identification and characterization of enzymes, transcriptional analysis, and growth experiments with knockout mutants. Together, the data indicate that in Haloarcula spp., d-ribose, d-xylose, and l-arabinose were degraded to α-ketoglutarate involving the following enzymes: (i) a promiscuous pentose dehydrogenase that catalyzed the oxidation of d-ribose, d-xylose, and l-arabinose; (ii) a promiscuous pentonolactonase that was involved in the hydrolysis of ribonolactone, xylonolactone, and arabinolactone; (iii) a highly specific dehydratase, ribonate dehydratase, which catalyzed the dehydration of ribonate, and a second enzyme, a promiscuous xylonate/gluconate dehydratase, which was involved in the conversion of xylonate, arabinonate, and gluconate. Phylogenetic analysis indicated that the highly specific ribonate dehydratase constitutes a novel sugar acid dehydratase family within the enolase superfamily; and (iv) finally, 2-keto-3-deoxypentanonate dehydratase and α-ketoglutarate semialdehyde dehydrogenase catalyzed the conversion of 2-keto-3-deoxypentanonate to α-ketoglutarate via α-ketoglutarate semialdehyde. We conclude that the expanded substrate specificities of the pentose dehydrogenase and pentonolactonase toward d-ribose and ribonolactone, respectively, and the presence of a highly specific ribonate dehydratase are prerequisites of the oxidative degradation of d-ribose in Haloarcula spp. This is the first characterization of an oxidative degradation pathway of d-ribose to α-ketoglutarate in archaea.IMPORTANCE The utilization and degradation of d-ribose in archaea, the third domain of life, have not been analyzed so far. We show that Haloarcula species utilize d-ribose, which is degraded to α-ketoglutarate via a novel oxidative pathway. Evidence is presented that the oxidative degradation of d-ribose involves novel promiscuous enzymes, pentose dehydrogenase and pentonolactonase, and a novel sugar acid dehydratase highly specific for ribonate. This is the first report of an oxidative degradation pathway of d-ribose in archaea, which differs from the canonical nonoxidative pathway of d-ribose degradation reported for most bacteria. The data contribute to our understanding of the unusual sugar degradation pathways and enzymes in archaea.
Collapse
|
12
|
Haque RU, Paradisi F, Allers T. Haloferax volcanii for biotechnology applications: challenges, current state and perspectives. Appl Microbiol Biotechnol 2019; 104:1371-1382. [PMID: 31863144 PMCID: PMC6985049 DOI: 10.1007/s00253-019-10314-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 01/08/2023]
Abstract
Haloferax volcanii is an obligate halophilic archaeon with its origin in the Dead Sea. Simple laboratory culture conditions and a wide range of genetic tools have made it a model organism for studying haloarchaeal cell biology. Halophilic enzymes of potential interest to biotechnology have opened up the application of this organism in biocatalysis, bioremediation, nanobiotechnology, bioplastics and the biofuel industry. Functionally active halophilic proteins can be easily expressed in a halophilic environment, and an extensive genetic toolkit with options for regulated protein overexpression has allowed the purification of biotechnologically important enzymes from different halophiles in H. volcanii. However, corrosion mediated damage caused to stainless-steel bioreactors by high salt concentrations and a tendency to form biofilms when cultured in high volume are some of the challenges of applying H. volcanii in biotechnology. The ability to employ expressed active proteins in immobilized cells within a porous biocompatible matrix offers new avenues for exploiting H. volcanii in biotechnology. This review critically evaluates the various application potentials, challenges and toolkits available for using this extreme halophilic organism in biotechnology.
Collapse
Affiliation(s)
- R U Haque
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK.,School of Chemistry, University Park, University of Nottingham, Nottingham, NG7 2RD, UK.,Warwick Integrative Synthetic Biology Centre, School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - F Paradisi
- School of Chemistry, University Park, University of Nottingham, Nottingham, NG7 2RD, UK.,Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - T Allers
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
13
|
Unusual Phosphoenolpyruvate (PEP) Synthetase-Like Protein Crucial to Enhancement of Polyhydroxyalkanoate Accumulation in Haloferax mediterranei Revealed by Dissection of PEP-Pyruvate Interconversion Mechanism. Appl Environ Microbiol 2019; 85:AEM.00984-19. [PMID: 31350314 DOI: 10.1128/aem.00984-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022] Open
Abstract
Phosphoenolpyruvate (PEP)/pyruvate interconversion is a major metabolic point in glycolysis and gluconeogenesis and is catalyzed by various sets of enzymes in different Archaea groups. In this study, we report the key enzymes that catalyze the anabolic and catabolic directions of the PEP/pyruvate interconversion in Haloferax mediterranei The in silico analysis showed the presence of a potassium-dependent pyruvate kinase (PYKHm [HFX_0773]) and two phosphoenol pyruvate synthetase (PPS) candidates (PPSHm [HFX_0782] and a PPS homolog protein named PPS-like [HFX_2676]) in this strain. Expression of the pyk Hm gene and pps Hm was induced by glycerol and pyruvate, respectively; whereas the pps-like gene was not induced at all. Similarly, genetic analysis and enzyme activities of purified proteins showed that PYKHm catalyzed the conversion from PEP to pyruvate and that PPSHm catalyzed the reverse reaction, while PPS-like protein displayed no function in PEP/pyruvate interconversion. Interestingly, knockout of the pps-like gene led to a 70.46% increase in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) production. The transcriptome sequencing (RNA-Seq) and quantitative reverse transcription-PCR (qRT-PCR) results showed that many genes responsible for PHBV monomer supply and for PHBV synthesis were upregulated in a pps-like gene deletion strain and thereby improved PHBV accumulation. Additionally, our phylogenetic evidence suggested that PPS-like protein diverged from PPS enzyme and evolved as a distinct protein with novel function in haloarchaea. Our findings attempt to fill the gaps in central metabolism of Archaea by providing comprehensive information about key enzymes involved in the haloarchaeal PEP/pyruvate interconversion, and we also report a high-yielding PHBV strain with great future potentials.IMPORTANCE Archaea, the third domain of life, have evolved diversified metabolic pathways to cope with their extreme habitats. Phosphoenol pyruvate (PEP)/pyruvate interconversion during carbohydrate metabolism is one such important metabolic process that is highly differentiated among Archaea However, this process is still uncharacterized in the haloarchaeal group. Haloferax mediterranei is a well-studied haloarchaeon that has the ability to produce polyhydroxyalkanoates (PHAs) under unbalanced nutritional conditions. In this study, we identified the key enzymes involved in this interconversion and discussed their differences with their counterparts from other members of the Archaea and Bacteria domains. Notably, we found a novel protein, phosphoenolpyruvate synthetase-like (PPS-like), which exhibited high homology to PPS enzyme. However, PPS-like protein has evolved some distinct sequence features and functions, and strikingly the corresponding gene deletion helped to enhance poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) synthesis significantly. Overall, we have filled the gap in knowledge about PEP/pyruvate interconversion in haloarchaea and reported an efficient strategy for improving PHBV production in H. mediterranei.
Collapse
|
14
|
Xu Y, Chi P, Bilal M, Cheng H. Biosynthetic strategies to produce xylitol: an economical venture. Appl Microbiol Biotechnol 2019; 103:5143-5160. [PMID: 31101942 DOI: 10.1007/s00253-019-09881-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 01/04/2023]
Abstract
Xylitol is a natural five-carbon sugar alcohol with potential for use in food and pharmaceutical industries owing to its insulin-independent metabolic regulation, tooth rehardening, anti-carcinogenic, and anti-inflammatory, as well as osteoporosis and ear infections preventing activities. Chemical and biosynthetic routes using D-xylose, glucose, or biomass hydrolysate as raw materials can produce xylitol. Among these methods, microbial production of xylitol has received significant attention due to its wide substrate availability, easy to operate, and eco-friendly nature, in contrast with high-energy consuming and environmental-polluting chemical method. Though great advances have been made in recent years for the biosynthesis of xylitol from xylose, glucose, and biomass hydrolysate, and the yield and productivity of xylitol are substantially improved by metabolic engineering and optimizing key metabolic pathway parameters, it is still far away from industrial-scale biosynthesis of xylitol. In contrary, the chemical synthesis of xylitol from xylose remains the dominant route. Economic and highly efficient xylitol biosynthetic strategies from an abundantly available raw material (i.e., glucose) by engineered microorganisms are on the hard way to forwarding. However, synthetic biology appears as a novel and promising approach to develop a super yeast strain for industrial production of xylitol from glucose. After a brief overview of chemical-based xylitol production, we critically analyzed and comprehensively summarized the major metabolic strategies used for the enhanced biosynthesis of xylitol in this review. Towards the end, the study is wrapped up with current challenges, concluding remarks, and future prospects for designing an industrial yeast strain for xylitol biosynthesis from glucose.
Collapse
Affiliation(s)
- Yirong Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Chi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
15
|
Sucrose Metabolism in Haloarchaea: Reassessment Using Genomics, Proteomics, and Metagenomics. Appl Environ Microbiol 2019; 85:AEM.02935-18. [PMID: 30658981 DOI: 10.1128/aem.02935-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
The canonical pathway for sucrose metabolism in haloarchaea utilizes a modified Embden-Meyerhof-Parnas pathway (EMP), in which ketohexokinase and 1-phosphofructokinase phosphorylate fructose released from sucrose hydrolysis. However, our survey of haloarchaeal genomes determined that ketohexokinase and 1-phosphofructokinase genes were not present in all species known to utilize fructose and sucrose, thereby indicating that alternative mechanisms exist for fructose metabolism. A fructokinase gene was identified in the majority of fructose- and sucrose-utilizing species, whereas only a small number possessed a ketohexokinase gene. Analysis of a range of hypersaline metagenomes revealed that haloarchaeal fructokinase genes were far more abundant (37 times) than haloarchaeal ketohexokinase genes. We used proteomic analysis of Halohasta litchfieldiae (which encodes fructokinase) and identified changes in protein abundance that relate to growth on sucrose. Proteins inferred to be involved in sucrose metabolism included fructokinase, a carbohydrate primary transporter, a putative sucrose hydrolase, and two uncharacterized carbohydrate-related proteins encoded in the same gene cluster as fructokinase and the transporter. Homologs of these proteins were present in the genomes of all haloarchaea that use sugars for growth. Enzymes involved in the semiphosphorylative Entner-Doudoroff pathway also had higher abundances in sucrose-grown H. litchfieldiae cells, consistent with this pathway functioning in the catabolism of the glucose moiety of sucrose. The study revises the current understanding of fundamental pathways for sugar utilization in haloarchaea and proposes alternatives to the modified EMP pathway used by haloarchaea for sucrose and fructose utilization.IMPORTANCE Our ability to infer the function that microorganisms perform in the environment is predicated on assumptions about metabolic capacity. When genomic or metagenomic data are used, metabolic capacity is inferred from genetic potential. Here, we investigate the pathways by which haloarchaea utilize sucrose. The canonical haloarchaeal pathway for fructose metabolism involving ketohexokinase occurs only in a small proportion of haloarchaeal genomes and is underrepresented in metagenomes. Instead, fructokinase genes are present in the majority of genomes/metagenomes. In addition to genomic and metagenomic analyses, we used proteomic analysis of Halohasta litchfieldiae (which encodes fructokinase but lacks ketohexokinase) and identified changes in protein abundance that related to growth on sucrose. In this way, we identified novel proteins implicated in sucrose metabolism in haloarchaea, comprising a transporter and various catabolic enzymes (including proteins that are annotated as hypothetical).
Collapse
|
16
|
Watanabe S, Fukumori F, Nishiwaki H, Sakurai Y, Tajima K, Watanabe Y. Novel non-phosphorylative pathway of pentose metabolism from bacteria. Sci Rep 2019; 9:155. [PMID: 30655589 PMCID: PMC6336799 DOI: 10.1038/s41598-018-36774-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/30/2018] [Indexed: 11/09/2022] Open
Abstract
Pentoses, including D-xylose, L-arabinose, and D-arabinose, are generally phosphorylated to D-xylulose 5-phosphate in bacteria and fungi. However, in non-phosphorylative pathways analogous to the Entner-Dodoroff pathway in bacteria and archaea, such pentoses can be converted to pyruvate and glycolaldehyde (Route I) or α-ketoglutarate (Route II) via a 2-keto-3-deoxypentonate (KDP) intermediate. Putative gene clusters related to these metabolic pathways were identified on the genome of Herbaspirillum huttiense IAM 15032 using a bioinformatic analysis. The biochemical characterization of C785_RS13685, one of the components encoded to D-arabinonate dehydratase, differed from the known acid-sugar dehydratases. The biochemical characterization of the remaining components and a genetic expression analysis revealed that D- and L-KDP were converted not only to α-ketoglutarate, but also pyruvate and glycolate through the participation of dehydrogenase and hydrolase (Route III). Further analyses revealed that the Route II pathway of D-arabinose metabolism was not evolutionally related to the analogous pathway from archaea.
Collapse
Affiliation(s)
- Seiya Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan. .,Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan. .,Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.
| | - Fumiyasu Fukumori
- Faculty of Food and Nutritional Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Hisashi Nishiwaki
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan.,Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Yasuhiro Sakurai
- Department of Bio-molecular Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kunihiko Tajima
- Department of Bio-molecular Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yasuo Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan.,Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| |
Collapse
|
17
|
Valdehuesa KNG, Ramos KRM, Nisola GM, Bañares AB, Cabulong RB, Lee WK, Liu H, Chung WJ. Everyone loves an underdog: metabolic engineering of the xylose oxidative pathway in recombinant microorganisms. Appl Microbiol Biotechnol 2018; 102:7703-7716. [PMID: 30003296 DOI: 10.1007/s00253-018-9186-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 11/25/2022]
Abstract
The D-xylose oxidative pathway (XOP) has recently been employed in several recombinant microorganisms for growth or for the production of several valuable compounds. The XOP is initiated by D-xylose oxidation to D-xylonolactone, which is then hydrolyzed into D-xylonic acid. D-Xylonic acid is then dehydrated to form 2-keto-3-deoxy-D-xylonic acid, which may be further dehydrated then oxidized into α-ketoglutarate or undergo aldol cleavage to form pyruvate and glycolaldehyde. This review introduces a brief discussion about XOP and its discovery in bacteria and archaea, such as Caulobacter crescentus and Haloferax volcanii. Furthermore, the current advances in the metabolic engineering of recombinant strains employing the XOP are discussed. This includes utilization of XOP for the production of diols, triols, and short-chain organic acids in Escherichia coli, Saccharomyces cerevisiae, and Corynebacterium glutamicum. Improving the D-xylose uptake, growth yields, and product titer through several metabolic engineering techniques bring some of these recombinant strains close to industrial viability. However, more developments are still needed to optimize the XOP pathway in the host strains, particularly in the minimization of by-product formation.
Collapse
Affiliation(s)
- Kris Niño G Valdehuesa
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Kristine Rose M Ramos
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Grace M Nisola
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Angelo B Bañares
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Rhudith B Cabulong
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Won-Keun Lee
- Division of Bioscience and Bioinformatics, Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, 266237, People's Republic of China.
| | - Wook-Jin Chung
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| |
Collapse
|
18
|
Wang X, Xu N, Hu S, Yang J, Gao Q, Xu S, Chen K, Ouyang P. d-1,2,4-Butanetriol production from renewable biomass with optimization of synthetic pathway in engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2018; 250:406-412. [PMID: 29195152 DOI: 10.1016/j.biortech.2017.11.062] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Bio-based production of d-1,2,4-butanetriol (BT) from renewable substrates is increasingly attracting attention. Here, the BT biosynthetic pathway was constructed and optimized in Escherichia coli to produce BT from pure d-xylose or corncob hydrolysates. First, E. coli BL21(DE3) was identified as a more proper host for BT production through host screening. Then, BT pathway was systematically optimized with gene homolog screening strategy, mainly targeting three key steps from xylonic acid to BT catalyzed by d-xylonate dehydratase (XD), 2-keto acid decarboxylase (KDC) and aldehyde reductase (ALR). After screening six ALRs, four KDCs and four XDs, AdhP from E. coli, KdcA from Lactococcus lactis and XylD from Caulobacter crescentus were identified more efficiently for BT production. The co-expression of these enzymes in recombinant strain BL21-14 led to BT production of 5.1 g/L under the optimized cultivation conditions. Finally, BT production from corncob hydrolysates was achieved with a titer of 3.4 g/L.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Nana Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Shewei Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Jianming Yang
- Xian Modern Chemistry Research Institute, Xian 710065, China
| | - Qian Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Sheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China.
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| |
Collapse
|
19
|
Amoozegar MA, Siroosi M, Atashgahi S, Smidt H, Ventosa A. Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. MICROBIOLOGY-SGM 2017; 163:623-645. [PMID: 28548036 DOI: 10.1099/mic.0.000463] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Halophilic archaea, also referred to as haloarchaea, dominate hypersaline environments. To survive under such extreme conditions, haloarchaea and their enzymes have evolved to function optimally in environments with high salt concentrations and, sometimes, with extreme pH and temperatures. These features make haloarchaea attractive sources of a wide variety of biotechnological products, such as hydrolytic enzymes, with numerous potential applications in biotechnology. The unique trait of haloarchaeal enzymes, haloenzymes, to sustain activity under hypersaline conditions has extended the range of already-available biocatalysts and industrial processes in which high salt concentrations inhibit the activity of regular enzymes. In addition to their halostable properties, haloenzymes can also withstand other conditions such as extreme pH and temperature. In spite of these benefits, the industrial potential of these natural catalysts remains largely unexplored, with only a few characterized extracellular hydrolases. Because of the applied impact of haloarchaea and their specific ability to live in the presence of high salt concentrations, studies on their systematics have intensified in recent years, identifying many new genera and species. This review summarizes the current status of the haloarchaeal genera and species, and discusses the properties of haloenzymes and their potential industrial applications.
Collapse
Affiliation(s)
- Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Siroosi
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
20
|
Nitrate reduction in Haloferax alexandrinus: the case of assimilatory nitrate reductase. Extremophiles 2017; 21:551-561. [DOI: 10.1007/s00792-017-0924-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/27/2017] [Indexed: 11/25/2022]
|
21
|
Cao Y, Niu W, Guo J, Xian M, Liu H. Biotechnological production of 1,2,4-butanetriol: An efficient process to synthesize energetic material precursor from renewable biomass. Sci Rep 2015; 5:18149. [PMID: 26670289 PMCID: PMC4680960 DOI: 10.1038/srep18149] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/13/2015] [Indexed: 12/02/2022] Open
Abstract
1,2,4-Butanetriol (BT) is a valuable chemical with extensive applications in many different fields. The traditional chemical routes to synthesize BT suffer from many drawbacks, e.g., harsh reaction conditions, multiple steps and poor selectivity, limiting its industrial production. In this study, an engineered Escherichia coli strain was constructed to produce BT from xylose, which is a major component of the lignocellulosic biomass. Through the coexpression of a xylose dehydrogenase (CCxylB) and a xylonolactonase (xylC) from Caulobacter crescentus, native E. coli xylonate dehydratase (yjhG), a 2-keto acid decarboxylase from Pseudomonas putida (mdlC) and native E. coli aldehyde reductase (adhP) in E. coli BL21 star(DE3), the recombinant strain could efficiently convert xylose to BT. Furthermore, the competitive pathway responsible for xylose metabolism in E. coli was blocked by disrupting two genes (xylA and EcxylB) encoding xylose isomerase and xyloluse kinase. Under fed-batch conditions, the engineered strain BL21ΔxylAB/pE-mdlCxylBC&pA-adhPyjhG produced up to 3.92 g/L of BT from 20 g/L of xylose, corresponding to a molar yield of 27.7%. These results suggest that the engineered E. coli has a promising prospect for the large-scale production of BT.
Collapse
Affiliation(s)
- Yujin Cao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Wei Niu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Huizhou Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
22
|
Characterization of a unique Caulobacter crescentus aldose-aldose oxidoreductase having dual activities. Appl Microbiol Biotechnol 2015; 100:673-85. [PMID: 26428243 DOI: 10.1007/s00253-015-7011-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/04/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
Abstract
We describe here the characterization of a novel enzyme called aldose-aldose oxidoreductase (Cc AAOR; EC 1.1.99) from Caulobacter crescentus. The Cc AAOR exists in solution as a dimer, belongs to the Gfo/Idh/MocA family and shows homology with the glucose-fructose oxidoreductase from Zymomonas mobilis. However, unlike other known members of this protein family, Cc AAOR is specific for aldose sugars and can be in the same catalytic cycle both oxidise and reduce a panel of monosaccharides at the C1 position, producing in each case the corresponding aldonolactone and alditol, respectively. Cc AAOR contains a tightly-bound nicotinamide cofactor, which is regenerated in this oxidation-reduction cycle. The highest oxidation activity was detected on D-glucose but significant activity was also observed on D-xylose, L-arabinose and D-galactose, revealing that both hexose and pentose sugars are accepted as substrates by Cc AAOR. The configuration at the C2 and C3 positions of the saccharides was shown to be especially important for the substrate binding. Interestingly, besides monosaccharides, Cc AAOR can also oxidise a range of 1,4-linked oligosaccharides having aldose unit at the reducing end, such as lactose, malto- and cello-oligosaccharides as well as xylotetraose. (1)H NMR used to monitor the oxidation and reduction reaction simultaneously, demonstrated that although D-glucose has the highest affinity and is also oxidised most efficiently by Cc AAOR, the reduction of D-glucose is clearly not as efficient. For the overall reaction catalysed by Cc AAOR, the L-arabinose, D-xylose and D-galactose were the most potent substrates.
Collapse
|
23
|
Johnsen U, Sutter JM, Schulz AC, Tästensen JB, Schönheit P. XacR - a novel transcriptional regulator of D-xylose and L-arabinose catabolism in the haloarchaeon Haloferax volcanii. Environ Microbiol 2014; 17:1663-76. [PMID: 25141768 DOI: 10.1111/1462-2920.12603] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/14/2014] [Indexed: 11/27/2022]
Abstract
The haloarchaeon Haloferax volcanii degrades D-xylose and L-arabinose via oxidative pathways to α-ketoglutarate. The genes involved in these pathways are clustered and were transcriptionally upregulated by both D-xylose and L-arabinose suggesting a common regulator. Adjacent to the gene cluster, a putative IclR-like transcriptional regulator, HVO_B0040, was identified. It is shown that HVO_B0040, designated xacR, encodes an activator of both D-xylose and L-arabinose catabolism: in ΔxacR cells, transcripts of genes involved in pentose catabolism could not be detected; transcript formation could be recovered by complementation, indicating XacR dependent transcriptional activation. Upstream activation promoter regions and nucleotide sequences that were essential for XacR-mediated activation of pentose-specific genes were identified by in vivo deletion and scanning mutagenesis. Besides its activator function XacR acted as repressor of its own synthesis: xacR deletion resulted in an increase of xacR promoter activity. A palindromic sequence was identified at the operator site of xacR promoter, and mutation of this sequence also resulted in an increase and thus derepression of xacR promoter activity. It is concluded that the palindromic sequence represents the binding site of XacR as repressor. This is the first report of a transcriptional regulator of pentose catabolism in the domain of archaea.
Collapse
Affiliation(s)
- Ulrike Johnsen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, Kiel, D-24118, Germany
| | | | | | | | | |
Collapse
|
24
|
Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol Mol Biol Rev 2014; 78:89-175. [PMID: 24600042 DOI: 10.1128/mmbr.00041-13] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many "classical" pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of "new," unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented.
Collapse
|
25
|
|
26
|
Metabolic engineering of Escherichia coli for the production of xylonate. PLoS One 2013; 8:e67305. [PMID: 23861757 PMCID: PMC3702539 DOI: 10.1371/journal.pone.0067305] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/16/2013] [Indexed: 01/30/2023] Open
Abstract
Xylonate is a valuable chemical for versatile applications. Although the chemical synthesis route and microbial conversion pathway were established decades ago, no commercial production of xylonate has been obtained so far. In this study, the industrially important microorganism Escherichia coli was engineered to produce xylonate from xylose. Through the coexpression of a xylose dehydrogenase (xdh) and a xylonolactonase (xylC) from Caulobacter crescentus, the recombinant strain could convert 1 g/L xylose to 0.84 g/L xylonate and 0.10 g/L xylonolactone after being induced for 12 h. Furthermore, the competitive pathway for xylose catabolism in E. coli was blocked by disrupting two genes (xylA and xylB) encoding xylose isomerase and xylulose kinase. Under fed-batch conditions, the finally engineered strain produced up to 27.3 g/L xylonate and 1.7 g/L xylonolactone from 30 g/L xylose, about 88% of the theoretical yield. These results suggest that the engineered E. coli strain has a promising perspective for large-scale production of xylonate.
Collapse
|
27
|
Mihasan M, Stefan M, Hritcu L, Artenie V, Brandsch R. Evidence of a plasmid-encoded oxidative xylose-catabolic pathway in Arthrobacter nicotinovorans pAO1. Res Microbiol 2012; 164:22-30. [PMID: 23063486 DOI: 10.1016/j.resmic.2012.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/11/2012] [Indexed: 11/26/2022]
Abstract
Due to its high abundance, the D-xylose fraction of lignocellulose provides a promising resource for production of various chemicals. Examples of efficient utilization of d-xylose are nevertheless rare, mainly due to the lack of enzymes with suitable properties for biotechnological applications. The genus Arthrobacter, which occupies an ecological niche rich in lignocellulosic materials and containing species with high resistance and tolerance to environmental factors, is a very suitable candidate for finding D-xylose-degrading enzymes with new properties. In this work, the presence of the pAO1 megaplasmid in cells of Arthrobacter nicotinovorans was directly linked to the ability of this microorganism to ferment D-xylose and to sustain longer log growth. Three pAO1 genes (orf32, orf39, orf40) putatively involved in degradation of xylose were identified and cloned, and the corresponding proteins purified and characterized. ORF40 was shown to be a homotetrameric NADP(+)/NAD(+) sugar dehydrogenase with a strong preference for d-xylose; ORF39 is a monomeric aldehyde dehydrogenase with wide substrate specificity and ORF32 is a constitutive expressed transcription factor putatively involved in control of the entire catabolic pathway. Based on analogies with other pentose degradation pathways, a putative xylose oxidative pathway similar to the Weimberg pathway is postulated.
Collapse
Affiliation(s)
- Marius Mihasan
- Department of Biology, Alexandru Ioan Cuza University, no 20 A, 700505 Iaşi, Romania.
| | | | | | | | | |
Collapse
|
28
|
Toivari MH, Nygård Y, Penttilä M, Ruohonen L, Wiebe MG. Microbial D-xylonate production. Appl Microbiol Biotechnol 2012; 96:1-8. [PMID: 22875400 PMCID: PMC3433669 DOI: 10.1007/s00253-012-4288-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 07/05/2012] [Accepted: 07/07/2012] [Indexed: 01/27/2023]
Abstract
d-Xylonic acid is a versatile platform chemical with reported applications as complexing agent or chelator, in dispersal of concrete, and as a precursor for compounds such as co-polyamides, polyesters, hydrogels and 1,2,4-butanetriol. With increasing glucose prices, d-xylonic acid may provide a cheap, non-food derived alternative for gluconic acid, which is widely used (about 80 kton/year) in pharmaceuticals, food products, solvents, adhesives, dyes, paints and polishes. Large-scale production has not been developed, reflecting the current limited market for d-xylonate. d-Xylonic acid occurs naturally, being formed in the first step of oxidative metabolism of d-xylose by some archaea and bacteria via the action of d-xylose or d-glucose dehydrogenases. High extracellular concentrations of d-xylonate have been reported for various bacteria, in particular Gluconobacter oxydans and Pseudomonas putida. High yields of d-xylonate from d-xylose make G. oxydans an attractive choice for biotechnical production. G. oxydans is able to produce d-xylonate directly from plant biomass hydrolysates, but rates and yields are reduced because of sensitivity to hydrolysate inhibitors. Recently, d-xylonate has been produced by the genetically modified bacterium Escherichia coli and yeast Saccharomyces cerevisiae and Kluyveromyces lactis. Expression of NAD+-dependent d-xylose dehydrogenase of Caulobacter crescentus in either E. coli or in a robust, hydrolysate-tolerant, industrial Saccharomyces cerevisiae strain has resulted in d-xylonate titres, which are comparable to those seen with G. oxydans, at a volumetric rate approximately 30 % of that observed with G. oxydans. With further development, genetically modified microbes may soon provide an alternative for production of d-xylonate at industrial scale.
Collapse
Affiliation(s)
- Mervi H Toivari
- VTT, Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT Espoo, Finland.
| | | | | | | | | |
Collapse
|
29
|
Toivari M, Nygård Y, Kumpula EP, Vehkomäki ML, Benčina M, Valkonen M, Maaheimo H, Andberg M, Koivula A, Ruohonen L, Penttilä M, Wiebe MG. Metabolic engineering of Saccharomyces cerevisiae for bioconversion of D-xylose to D-xylonate. Metab Eng 2012; 14:427-36. [PMID: 22709678 DOI: 10.1016/j.ymben.2012.03.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 01/23/2012] [Accepted: 03/05/2012] [Indexed: 11/30/2022]
Abstract
An NAD(+)-dependent D-xylose dehydrogenase, XylB, from Caulobacter crescentus was expressed in Saccharomyces cerevisiae, resulting in production of 17 ± 2 g D-xylonate l(-1) at 0.23 gl(-1)h(-1) from 23 g D-xylose l(-1) (with glucose and ethanol as co-substrates). D-Xylonate titre and production rate were increased and xylitol production decreased, compared to strains expressing genes encoding T. reesei or pig liver NADP(+)-dependent D-xylose dehydrogenases. D-Xylonate accumulated intracellularly to ∼70 mgg(-1); xylitol to ∼18 mgg(-1). The aldose reductase encoding gene GRE3 was deleted to reduce xylitol production. Cells expressing D-xylonolactone lactonase xylC from C. crescentus with xylB initially produced more extracellular D-xylonate than cells lacking xylC at both pH 5.5 and pH 3, and sustained higher production at pH 3. Cell vitality and viability decreased during D-xylonate production at pH 3.0. An industrial S. cerevisiae strain expressing xylB efficiently produced 43 g D-xylonate l(-1) from 49 g D-xylose l(-1).
Collapse
Affiliation(s)
- Mervi Toivari
- VTT, Technical Research Centre of Finland, PO Box 1000, FI-02044 VTT, Espoo, Finland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Conversion of plant cell walls to ethanol constitutes second generation bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation and separation. Ultimately, it is desirable to combine as many of the biochemical steps as possible in a single organism to achieve CBP (consolidated bioprocessing). A commercially ready CBP organism is currently unreported. Production of second generation bioethanol is hindered by economics, particularly in the cost of pretreatment (including waste management and solvent recovery), the cost of saccharification enzymes (particularly exocellulases and endocellulases displaying kcat ~1 s−1 on crystalline cellulose), and the inefficiency of co-fermentation of 5- and 6-carbon monosaccharides (owing in part to redox cofactor imbalances in Saccharomyces cerevisiae).
Collapse
|
31
|
Liang B, Li L, Mascin M, Liu A. Construction of Xylose Dehydrogenase Displayed on the Surface of Bacteria Using Ice Nucleation Protein for Sensitive d-Xylose Detection. Anal Chem 2011; 84:275-82. [DOI: 10.1021/ac202513u] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bo Liang
- Laboratory for Biosensing, Qingdao Institute of Bioenergy & Bioprocess Technology, and Key Laboratory of Bioenergy, Chinese Academy of Sciences, 189 Songling Road Qingdao, 266101, People’s Republic of China
| | - Liang Li
- Laboratory for Biosensing, Qingdao Institute of Bioenergy & Bioprocess Technology, and Key Laboratory of Bioenergy, Chinese Academy of Sciences, 189 Songling Road Qingdao, 266101, People’s Republic of China
| | - Marco Mascin
- Dipartimento di Chimica, Universita
degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| | - Aihua Liu
- Laboratory for Biosensing, Qingdao Institute of Bioenergy & Bioprocess Technology, and Key Laboratory of Bioenergy, Chinese Academy of Sciences, 189 Songling Road Qingdao, 266101, People’s Republic of China
| |
Collapse
|
32
|
Characterization of alcohol dehydrogenase (ADH12) from Haloarcula marismortui, an extreme halophile from the Dead Sea. Extremophiles 2011; 16:57-66. [DOI: 10.1007/s00792-011-0405-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 10/06/2011] [Indexed: 10/16/2022]
|
33
|
Potential for industrial products from the halophilic Archaea. J Ind Microbiol Biotechnol 2011; 38:1635-47. [PMID: 21853327 DOI: 10.1007/s10295-011-1021-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
Abstract
The halophilic Archaea are a group of microorganisms that have not been extensively considered for biotechnological applications. This review describes some of the enzymes and products and the potential applications of this unique group of microorganisms to various industrial processes. Specifically, the characteristics of the glycosyl hydrolases, lipases and esterases, proteases, biopolymers and surfactants, as well as some miscellaneous other activities will be described.
Collapse
|
34
|
Chu LJ, Yang H, Shih P, Kao Y, Tsai YS, Chen J, Huang G, Weng RR, Ting YS, Fang X, von Haller PD, Goodlett DR, Ng WV. Metabolic capabilities and systems fluctuations in Haloarcula marismortui revealed by integrative genomics and proteomics analyses. J Proteome Res 2011; 10:3261-73. [PMID: 21598921 DOI: 10.1021/pr200290x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The 1310 Haloarcula marismortui proteins identified from mid-log and late-log phase soluble and membrane proteomes were analyzed in metabolic and cellular process networks to predict the available systems and systems fluctuations upon environmental stresses. When the connected metabolic reactions with identified proteins were examined, the availability of a number of metabolic pathways and a highly connected amino acid metabolic network were revealed. Quantitative spectral count analyses suggested 300 or more proteins might have expression changes in late-log phase. Among these, integrative network analyses indicated approximately 106 were metabolic proteins that might have growth-phase dependent changes. Interestingly, a large proportion of proteins in affected biomodules had the same trend of changes in spectral counts. Disregard the magnitude of changes, we had successfully predicted and validated the expression changes of nine genes including the rimK, gltCP, rrnAC0132, and argC in lysine biosynthesis pathway which were downregulated in late-log phase. This study had not only revealed the expressed proteins but also the availability of biological systems in two growth phases, systems level changes in response to the stresses in late-log phase, cellular locations of identified proteins, and the likely regulated genes to facilitate further analyses in the postgenomic era.
Collapse
Affiliation(s)
- Lichieh Julie Chu
- Institute of Biotechnology in Medicine, National Yang Ming University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kale AJ, McGlinchey RP, Moore BS. Characterization of 5-chloro-5-deoxy-D-ribose 1-dehydrogenase in chloroethylmalonyl coenzyme A biosynthesis: substrate and reaction profiling. J Biol Chem 2010; 285:33710-7. [PMID: 20736169 PMCID: PMC2962469 DOI: 10.1074/jbc.m110.153833] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/10/2010] [Indexed: 11/06/2022] Open
Abstract
SalM is a short-chain dehydrogenase/reductase enzyme from the marine actinomycete Salinispora tropica that is involved in the biosynthesis of chloroethylmalonyl-CoA, a novel halogenated polyketide synthase extender unit of the proteasome inhibitor salinosporamide A. SalM was heterologously overexpressed in Escherichia coli and characterized in vitro for its substrate specificity, kinetics, and reaction profile. A sensitive real-time (13)C NMR assay was developed to visualize the oxidation of 5-chloro-5-deoxy-D-ribose to 5-chloro-5-deoxy-D-ribono-γ-lactone in an NAD(+)-dependent reaction, followed by spontaneous lactone hydrolysis to 5-chloro-5-deoxy-D-ribonate. Although short-chain dehydrogenase/reductase enzymes are widely regarded as metal-independent, a strong divalent metal cation dependence for Mg(2+), Ca(2+), or Mn(2+) was observed with SalM. Oxidative activity was also measured with the alternative substrates D-erythrose and D-ribose, making SalM the first reported stereospecific non-phosphorylative ribose 1-dehydrogenase.
Collapse
Affiliation(s)
- Andrew J. Kale
- From the Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, and
| | - Ryan P. McGlinchey
- From the Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, and
| | - Bradley S. Moore
- From the Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, and
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
36
|
Nunn CEM, Johnsen U, Schönheit P, Fuhrer T, Sauer U, Hough DW, Danson MJ. Metabolism of pentose sugars in the hyperthermophilic archaea Sulfolobus solfataricus and Sulfolobus acidocaldarius. J Biol Chem 2010; 285:33701-9. [PMID: 20736170 DOI: 10.1074/jbc.m110.146332] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that the hyperthermophilic archaeon, Sulfolobus solfataricus, catabolizes d-glucose and d-galactose to pyruvate and glyceraldehyde via a non-phosphorylative version of the Entner-Doudoroff pathway. At each step, one enzyme is active with both C6 epimers, leading to a metabolically promiscuous pathway. On further investigation, the catalytic promiscuity of the first enzyme in this pathway, glucose dehydrogenase, has been shown to extend to the C5 sugars, D-xylose and L-arabinose. In the current paper we establish that this promiscuity for C6 and C5 metabolites is also exhibited by the third enzyme in the pathway, 2-keto-3-deoxygluconate aldolase, but that the second step requires a specific C5-dehydratase, the gluconate dehydratase being active only with C6 metabolites. The products of this pathway for the catabolism of D-xylose and L-arabinose are pyruvate and glycolaldehyde, pyruvate entering the citric acid cycle after oxidative decarboxylation to acetyl-coenzyme A. We have identified and characterized the enzymes, both native and recombinant, that catalyze the conversion of glycolaldehyde to glycolate and then to glyoxylate, which can enter the citric acid cycle via the action of malate synthase. Evidence is also presented that similar enzymes for this pentose sugar pathway are present in Sulfolobus acidocaldarius, and metabolic tracer studies in this archaeon demonstrate its in vivo operation in parallel with a route involving no aldol cleavage of the 2-keto-3-deoxy-pentanoates but direct conversion to the citric acid cycle C5-metabolite, 2-oxoglutarate.
Collapse
Affiliation(s)
- Charlotte E M Nunn
- Department of Biology and Biochemistry, Centre for Extremophile Research, University of Bath, Bath BA2 7AY, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
37
|
Carboxyl ester hydrolases production and growth of a halophilic archaeon, Halobacterium sp. NRC-1. Extremophiles 2009; 14:99-106. [PMID: 19957092 DOI: 10.1007/s00792-009-0291-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
The capability of Halobacterium sp. NRC-1 to synthesize carboxyl ester hydrolases was investigated, and the effect of physicochemical conditions on the growth rate and production of esterases was evaluated. The haloarchaeon synthesized a carboxyl ester hydrolase, confirming the genomic prediction. This enzymatic activity was intracellularly produced as a growth-associated metabolite. Esterase activity was assayed using different p-nitrophenyl-esters and triacyl-glycerides, which showed a preference for hydrolyzing tributyrin. The archaeal growth rate and esterase production were significantly influenced by the pH and the NaCl concentration. An interaction effect between temperature and NaCl was also seen. The maximal growth rate and esterase production found for Halobacterium sp. NRC-1 were 0.136 h(-1) (at 4.2 M NaCl, pH 6 and 44 degrees C) and 1.64 U/l (at 4.6 M NaCl, pH 6 and 30 degrees C), respectively. Furthermore, the effects of NaCl concentration, pH and temperature on enzyme activity were studied. Two maximal esterase activities were elucidated from the intracellular crude extract when it was incubated at different NaCl concentrations (1 M and 5 M) and at different pHs (6 and 7.5). This is the first report that shows experimentally the synthesis of carboxyl ester hydrolases by Halobacterium sp. NRC-1. This enzyme was found to be extremely halophilic (5 M NaCl) and thermophilic (80 degrees C), making it very interesting for future investigations in non-aqueous biocatalysis.
Collapse
|
38
|
Johnsen U, Dambeck M, Zaiss H, Fuhrer T, Soppa J, Sauer U, Schönheit P. D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. J Biol Chem 2009; 284:27290-303. [PMID: 19584053 DOI: 10.1074/jbc.m109.003814] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pathway of D-xylose degradation in archaea is unknown. In a previous study we identified in Haloarcula marismortui the first enzyme of xylose degradation, an inducible xylose dehydrogenase (Johnsen, U., and Schönheit, P. (2004) J. Bacteriol. 186, 6198-6207). Here we report a comprehensive study of the complete D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. The analyses include the following: (i) identification of the degradation pathway in vivo following (13)C-labeling patterns of proteinogenic amino acids after growth on [(13)C]xylose; (ii) identification of xylose-induced genes by DNA microarray experiments; (iii) characterization of enzymes; and (iv) construction of in-frame deletion mutants and their functional analyses in growth experiments. Together, the data indicate that D-xylose is oxidized exclusively to the tricarboxylic acid cycle intermediate alpha-ketoglutarate, involving D-xylose dehydrogenase (HVO_B0028), a novel xylonate dehydratase (HVO_B0038A), 2-keto-3-deoxyxylonate dehydratase (HVO_B0027), and alpha-ketoglutarate semialdehyde dehydrogenase (HVO_B0039). The functional involvement of these enzymes in xylose degradation was proven by growth studies of the corresponding in-frame deletion mutants, which all lost the ability to grow on d-xylose, but growth on glucose was not significantly affected. This is the first report of an archaeal D-xylose degradation pathway that differs from the classical D-xylose pathway in most bacteria involving the formation of xylulose 5-phosphate as an intermediate. However, the pathway shows similarities to proposed oxidative pentose degradation pathways to alpha-ketoglutarate in few bacteria, e.g. Azospirillum brasilense and Caulobacter crescentus, and in the archaeon Sulfolobus solfataricus.
Collapse
Affiliation(s)
- Ulrike Johnsen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, D-24118 Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Pérez-Pomares F, Díaz S, Bautista V, Pire C, Bravo G, Esclapez J, Zafrilla B, Bonete MJ. Identification of several intracellular carbohydrate-degrading activities from the halophilic archaeon Haloferax mediterranei. Extremophiles 2009; 13:633-41. [DOI: 10.1007/s00792-009-0246-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 04/01/2009] [Indexed: 10/20/2022]
|
40
|
Production and characterization of esterase and lipase from Haloarcula marismortui. J Ind Microbiol Biotechnol 2009; 36:901-9. [PMID: 19350295 DOI: 10.1007/s10295-009-0568-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 03/17/2009] [Indexed: 10/20/2022]
Abstract
The present study was conducted to investigate the capability of Haloarcula marismortui to synthesize esterases and lipases, and the effect of physicochemical conditions on the growth and the production of esterases and lipases. Finally, the effect of NaCl concentration and temperature on esterase and lipase activities was studied using intracellular crude extracts. In order to confirm the genomic prediction about the esterase and lipase synthesis, H. marismortui was cultured on a rich medium and the crude extracts (intra- or extracellular) obtained were assayed for both activities using p-nitrophenyl esters and triacylglycerides as substrates. Studies on the kinetics of growth and production of esterase and lipase of H. marismortui were performed, reaching a maximum growth rate of 0.053 h(-1) and maximal productions of intracellular esterase and lipase of 2.094 and 0.722 U l(-1) using p-nitrophenyl valerate and p-nitrophenyl laurate, respectively. Both enzymes were produced as growth-associated metabolites. The effects of temperature, pH, and NaCl concentration on the growth rate and production of enzymes were studied by using a Box-Behnken response surface design. The three response variables were significantly influenced by the physicochemical factors and an interaction effect between temperature and NaCl concentration was also evidenced. The surface response method estimated the following maximal values for growth rate and productions of esterase and lipase: 0.086 h(-1) (at 42.5 degrees C, pH 7.4, and 3.6 mol l(-1) NaCl), 2.3 U l(-1) (at 50 degrees C, pH 7.5, and 4.3 mol l(-1) NaCl), and 0.58 U l(-1) (at 50 degrees C, pH 7.6, and 4.5 mol l(-1) NaCl), respectively. Esterases were active at different salt concentrations, showing two optimal activities (at 0.5 and 5 mol l(-1) NaCl), which suggested the presence of two different esterases. Interestingly, in the absence of salt, esterase retained 50% residual activity. Esterases and lipase activities were maximal at 45 degrees C and inactive at 75 degrees C. This study represents the first report evidencing the synthesis of esterase and lipase by H. marismortui.
Collapse
|
41
|
Establishment of oxidative D-xylose metabolism in Pseudomonas putida S12. Appl Environ Microbiol 2009; 75:2784-91. [PMID: 19270113 DOI: 10.1128/aem.02713-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oxidative D-xylose catabolic pathway of Caulobacter crescentus, encoded by the xylXABCD operon, was expressed in the gram-negative bacterium Pseudomonas putida S12. This engineered transformant strain was able to grow on D-xylose as a sole carbon source with a biomass yield of 53% (based on g [dry weight] g D-xylose(-1)) and a maximum growth rate of 0.21 h(-1). Remarkably, most of the genes of the xylXABCD operon appeared to be dispensable for growth on D-xylose. Only the xylD gene, encoding D-xylonate dehydratase, proved to be essential for establishing an oxidative D-xylose catabolic pathway in P. putida S12. The growth performance on D-xylose was, however, greatly improved by coexpression of xylXA, encoding 2-keto-3-deoxy-D-xylonate dehydratase and alpha-ketoglutaric semialdehyde dehydrogenase, respectively. The endogenous periplasmic glucose dehydrogenase (Gcd) of P. putida S12 was found to play a key role in efficient oxidative D-xylose utilization. Gcd activity not only contributes to D-xylose oxidation but also prevents the intracellular accumulation of toxic catabolic intermediates which delays or even eliminates growth on D-xylose.
Collapse
|
42
|
Hess M. Thermoacidophilic proteins for biofuel production. Trends Microbiol 2008; 16:414-9. [PMID: 18691890 DOI: 10.1016/j.tim.2008.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 06/17/2008] [Accepted: 06/27/2008] [Indexed: 11/18/2022]
Abstract
Growing concerns about global climate change and energy dependence have led to an increased effort to reduce carbon emissions. A considerable reduction could be achieved by using biofuels from lignocellulosic biomass instead of fossil fuels. One major bottleneck of biofuel production from lignocellulose is the availability of efficient and inexpensive biocatalysts (i.e. alcohol dehydrogenases, cellulases and esterases) that are active and stable at high temperatures and low pH values. Although heterologous gene expression is used effectively to obtain recombinant proteins derived from mesophiles, the production of thermoacidophilic proteins is often unsuccessful. Some of the reasons for this failure and potential solutions for an increased production of novel extremophilic biocatalysts are discussed here.
Collapse
Affiliation(s)
- Matthias Hess
- Department of Energy Joint Genome Institute, Genomics Division, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.
| |
Collapse
|
43
|
Watanabe S, Saimura M, Makino K. Eukaryotic and bacterial gene clusters related to an alternative pathway of nonphosphorylated L-rhamnose metabolism. J Biol Chem 2008; 283:20372-82. [PMID: 18505728 DOI: 10.1074/jbc.m801065200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Entner-Doudoroff (ED) pathway is a classic central pathway of d-glucose metabolism in all three phylogenetic domains. On the other hand, Archaea and/or bacteria possess several modified versions of the ED pathway, in which nonphosphorylated intermediates are involved. Several fungi, including Pichia stipitis and Debaryomyces hansenii, possess an alternative pathway of L-rhamnose metabolism, which is different from the known bacterial pathway. Gene cluster related to this hypothetical pathway was identified by bioinformatic analysis using the metabolic enzymes involved in analogous sugar pathways to the ED pathway. Furthermore, the homologous gene cluster was found not only in many other fungi but also several bacteria, including Azotobacter vinelandii. Four putative metabolic genes, LRA1-4, were cloned, overexpressed in Escherichia coli, and purified. Substrate specificity and kinetic analysis revealed that nonphosphorylated intermediates related to L-rhamnose are significant active substrates for the purified LRA1-4 proteins. Furthermore, L-2-keto-3-deoxyrhamnonate was structurally identified as both reaction products of dehydration by LRA3 and aldol condensation by LRA4. These results suggested that the LRA1-4 genes encode L-rhamnose 1-dehydrogenase, L-rhamnono-gamma-lactonase, L-rhamnonate dehydratase, and L-KDR aldolase, respectively, by which L-rhamnose is converted into pyruvate and L-lactaldehyde through analogous reaction steps to the ED pathway. There was no evolutionary relationship between L-KDR aldolases from fungi and bacteria.
Collapse
Affiliation(s)
- Seiya Watanabe
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, Japan.
| | | | | |
Collapse
|
44
|
Abstract
In spite of their common hypersaline environment, halophilic archaea are surprisingly different in their nutritional demands and metabolic pathways. The metabolic diversity of halophilic archaea was investigated at the genomic level through systematic metabolic reconstruction and comparative analysis of four completely sequenced species: Halobacterium salinarum, Haloarcula marismortui, Haloquadratum walsbyi, and the haloalkaliphile Natronomonas pharaonis. The comparative study reveals different sets of enzyme genes amongst halophilic archaea, e.g. in glycerol degradation, pentose metabolism, and folate synthesis. The carefully assessed metabolic data represent a reliable resource for future system biology approaches as it also links to current experimental data on (halo)archaea from the literature.
Collapse
|
45
|
Berghäll S, Hilditch S, Penttilä M, Richard P. Identification in the mould Hypocrea jecorina of a gene encoding an NADP(+): d-xylose dehydrogenase. FEMS Microbiol Lett 2008; 277:249-53. [PMID: 18031347 PMCID: PMC2228372 DOI: 10.1111/j.1574-6968.2007.00969.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A gene coding for an NADP+-dependent d-xylose dehydrogenase was identified in the mould Hypocrea jecorina (Trichoderma reesei). It was cloned from cDNA, the active enzyme was expressed in yeast and a histidine-tagged enzyme was purified and characterized. The enzyme had highest activity with d-xylose and significantly smaller activities with other aldose sugars. The enzyme is specific for NADP+. The Km values for d-xylose and NADP+ are 43 mM and 250 μM, respectively. The role of this enzyme in H. jecorina is unclear because in this organism d-xylose is predominantly catabolized through a path with xylitol and d-xylulose as intermediates and the mould is unable to grow on d-xylonic acid.
Collapse
|
46
|
Stephens C, Christen B, Fuchs T, Sundaram V, Watanabe K, Jenal U. Genetic analysis of a novel pathway for D-xylose metabolism in Caulobacter crescentus. J Bacteriol 2006; 189:2181-5. [PMID: 17172333 PMCID: PMC1855722 DOI: 10.1128/jb.01438-06] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic data suggest that the oligotrophic freshwater bacterium Caulobacter crescentus metabolizes D-xylose through a pathway yielding alpha-ketoglutarate, comparable to the recently described L-arabinose degradation pathway of Azospirillum brasilense. Enzymes of the C. crescentus pathway, including an NAD(+)-dependent xylose dehydrogenase, are encoded in the xylose-inducible xylXABCD operon (CC0823-CC0819).
Collapse
Affiliation(s)
- Craig Stephens
- Biology Department, Santa Clara University, Santa Clara, CA 95053, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Brouns SJJ, Walther J, Snijders APL, van de Werken HJG, Willemen HLDM, Worm P, de Vos MGJ, Andersson A, Lundgren M, Mazon HFM, van den Heuvel RHH, Nilsson P, Salmon L, de Vos WM, Wright PC, Bernander R, van der Oost J. Identification of the Missing Links in Prokaryotic Pentose Oxidation Pathways. J Biol Chem 2006; 281:27378-88. [PMID: 16849334 DOI: 10.1074/jbc.m605549200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pentose metabolism of Archaea is largely unknown. Here, we have employed an integrated genomics approach including DNA microarray and proteomics analyses to elucidate the catabolic pathway for D-arabinose in Sulfolobus solfataricus. During growth on this sugar, a small set of genes appeared to be differentially expressed compared with growth on D-glucose. These genes were heterologously overexpressed in Escherichia coli, and the recombinant proteins were purified and biochemically studied. This showed that D-arabinose is oxidized to 2-oxoglutarate by the consecutive action of a number of previously uncharacterized enzymes, including a D-arabinose dehydrogenase, a D-arabinonate dehydratase, a novel 2-keto-3-deoxy-D-arabinonate dehydratase, and a 2,5-dioxopentanoate dehydrogenase. Promoter analysis of these genes revealed a palindromic sequence upstream of the TATA box, which is likely to be involved in their concerted transcriptional control. Integration of the obtained biochemical data with genomic context analysis strongly suggests the occurrence of pentose oxidation pathways in both Archaea and Bacteria, and predicts the involvement of additional enzyme components. Moreover, it revealed striking genetic similarities between the catabolic pathways for pentoses, hexaric acids, and hydroxyproline degradation, which support the theory of metabolic pathway genesis by enzyme recruitment.
Collapse
Affiliation(s)
- Stan J J Brouns
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Hesselink van Suchtelenweg 4, 6703 CT Wageningen, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Milburn CC, Lamble HJ, Theodossis A, Bull SD, Hough DW, Danson MJ, Taylor GL. The Structural Basis of Substrate Promiscuity in Glucose Dehydrogenase from the Hyperthermophilic Archaeon Sulfolobus solfataricus. J Biol Chem 2006; 281:14796-804. [PMID: 16556607 DOI: 10.1074/jbc.m601334200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hyperthermophilic archaeon Sulfolobus solfataricus grows optimally above 80 degrees C and utilizes an unusual, promiscuous, non-phosphorylative Entner-Doudoroff pathway to metabolize both glucose and galactose. The first enzyme in this pathway, glucose dehydrogenase, catalyzes the oxidation of glucose to gluconate, but has been shown to have activity with a broad range of sugar substrates, including glucose, galactose, xylose, and L-arabinose, with a requirement for the glucose stereo configuration at the C2 and C3 positions. Here we report the crystal structure of the apo form of glucose dehydrogenase to a resolution of 1.8 A and a complex with its required cofactor, NADP+, to a resolution of 2.3 A. A T41A mutation was engineered to enable the trapping of substrate in the crystal. Complexes of the enzyme with D-glucose and D-xylose are presented to resolutions of 1.6 and 1.5 A, respectively, that provide evidence of selectivity for the beta-anomeric, pyranose form of the substrate, and indicate that this is the productive substrate form. The nature of the promiscuity of glucose dehydrogenase is also elucidated, and a physiological role for this enzyme in xylose metabolism is suggested. Finally, the structure suggests that the mechanism of sugar oxidation by this enzyme may be similar to that described for human sorbitol dehydrogenase.
Collapse
Affiliation(s)
- Christine C Milburn
- Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
49
|
Watanabe S, Kodaki T, Kodak T, Makino K. Cloning, Expression, and Characterization of Bacterial l-Arabinose 1-Dehydrogenase Involved in an Alternative Pathway of l-Arabinose Metabolism. J Biol Chem 2006; 281:2612-23. [PMID: 16326697 DOI: 10.1074/jbc.m506477200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Azospirillum brasiliense converts L-arabinose to alpha-ketoglutarate via five hypothetical enzymatic steps. We purified and characterized L-arabinose 1-dehydrogenase (EC 1.1.1.46), catalyzing the conversion of L-arabinose to L-arabino-gamma-lactone as an enzyme responsible for the first step of this alternative pathway of L-arabinose metabolism. The purified enzyme preferred NADP+ to NAD+ as a coenzyme. Kinetic analysis revealed that the enzyme had high catalytic efficiency for both L-arabinose and D-galactose. The gene encoding L-arabinose 1-dehydrogenase was cloned using a partial peptide sequence of the purified enzyme and was overexpressed in Escherichia coli as a fully active enzyme. The enzyme consists of 308 amino acids and has a calculated molecular mass of 33,663.92 Da. The deduced amino acid sequence had some similarity to glucose-fructose oxidoreductase, D-xylose 1-dehydrogenase, and D-galactose 1-dehydrogenase. Site-directed mutagenesis revealed that the enzyme possesses unique catalytic amino acid residues. Northern blot analysis showed that this gene was induced by L-arabinose but not by D-galactose. Furthermore, a disruptant of the L-arabinose 1-dehydrogenase gene did not grow on L-arabinose but grew on D-galactose at the same growth rate as the wild-type strain. There was a partial gene for L-arabinose transport in the flanking region of the L-arabinose 1-dehydrogenase gene. These results indicated that the enzyme is involved in the metabolism of L-arabinose but not D-galactose. This is the first identification of a gene involved in an alternative pathway of L-arabinose metabolism in bacterium.
Collapse
Affiliation(s)
- Seiya Watanabe
- Faculty of Engineering, Kyoto University, Kyotodaigakukatsura, Saikyo-ku, Kyoto 615-8530
| | | | | | | |
Collapse
|
50
|
Siebers B, Schönheit P. Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. Curr Opin Microbiol 2005; 8:695-705. [PMID: 16256419 DOI: 10.1016/j.mib.2005.10.014] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 10/13/2005] [Indexed: 11/29/2022]
Abstract
Sugar-utilizing hyperthermophilic and halophilic Archaea degrade glucose and glucose polymers to acetate or to CO2 using O2, nitrate, sulfur or sulfate as electron acceptors. Comparative analyses of glycolytic pathways in these organisms indicate a variety of differences from the classical Emden-Meyerhof and Entner-Doudoroff pathways that are operative in Bacteria and Eukarya, respectively. The archaeal pathways are characterized by the presence of numerous novel enzymes and enzyme families that catalyze, for example, the phosphorylation of glucose and of fructose 6-phosphate, the isomerization of glucose 6-phosphate, the cleavage of fructose 1,6-bisphosphate, the oxidation of glyceraldehyde 3-phosphate and the conversion of acetyl-CoA to acetate. Recent major advances in deciphering the complexity of archaeal central carbohydrate metabolism were gained by combination of classical biochemical and genomic-based approaches.
Collapse
Affiliation(s)
- Bettina Siebers
- Universität Duisburg-Essen, Campus Essen, FB Biologie und Geografie, Mikrobiologie, Universitätsstr.5, D-45117 Essen, Germany
| | | |
Collapse
|