1
|
Kim N, Peng D, Sandoval N. Nucleotide-level characterization and improvement of l-arabinose- and l-rhamnose-inducible systems in E. coli using a high-throughput approach. Nucleic Acids Res 2025; 53:gkaf224. [PMID: 40210244 PMCID: PMC11983282 DOI: 10.1093/nar/gkaf224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/24/2025] [Accepted: 03/19/2025] [Indexed: 04/12/2025] Open
Abstract
The commonly used arabinose- and rhamnose-inducible Escherichia coli promoters, PBAD and PRha, exhibit tight regulation through activation via their respective transcription factors, AraC and RhaS, alongside the cyclic AMP receptor protein. The mechanisms of these promoters have been characterized on a parts level, but nucleotide-level analysis has yet to be elucidated. Therefore, we describe here a massively parallel reporter assay that maps regulatory sites at the nucleotide level. The relative importance of nucleotides in each binding site is revealed, including loci not included in previous annotations. For PBAD, we confirm known sites and reveal novel binding sites involved in modulating gene expression. In PRha, we refine the length and sequence specificity of rhaI half-sites, updating previous annotations and providing nucleotide level insights into RhaS-mediated regulation. Mutations that lead to increased promoter strength, wider dynamic range, and altered basal expression are identified for both promoters. Engineered versions of PBAD and PRha promoters based on this data show improvements in dynamic range alongside a seven- and three-fold increase in promoter strength, respectively, with a slight increase in basal expression for the PBAD promoters and no significant increase for PRha. This work expands the genetic parts "toolkit" and increases the understanding of these important commonly used promoters.
Collapse
Affiliation(s)
- Nancy M Kim
- Interdisciplinary Bioinnovation PhD Program, Tulane University, New Orleans, LA 70118, United States
| | - Danqia Peng
- Department of Chemical & Biomolecular Engineering, Tulane University, New Orleans, LA 70118, United States
| | - Nicholas R Sandoval
- Department of Chemical & Biomolecular Engineering, Tulane University, New Orleans, LA 70118, United States
| |
Collapse
|
2
|
Weeramange C, Menjivar C, O'Neil PT, El Qaidi S, Harrison KS, Meinhardt S, Bird CL, Sreenivasan S, Hardwidge PR, Fenton AW, Hefty PS, Bose JL, Swint-Kruse L. Fructose-1-kinase has pleiotropic roles in Escherichia coli. J Biol Chem 2024; 300:107352. [PMID: 38723750 PMCID: PMC11157272 DOI: 10.1016/j.jbc.2024.107352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/21/2024] Open
Abstract
In Escherichia coli, the master transcription regulator catabolite repressor activator (Cra) regulates >100 genes in central metabolism. Cra binding to DNA is allosterically regulated by binding to fructose-1-phosphate (F-1-P), but the only documented source of F-1-P is from the concurrent import and phosphorylation of exogenous fructose. Thus, many have proposed that fructose-1,6-bisphosphate (F-1,6-BP) is also a physiological regulatory ligand. However, the role of F-1,6-BP has been widely debated. Here, we report that the E. coli enzyme fructose-1-kinase (FruK) can carry out its "reverse" reaction under physiological substrate concentrations to generate F-1-P from F-1,6-BP. We further show that FruK directly binds Cra with nanomolar affinity and forms higher order, heterocomplexes. Growth assays with a ΔfruK strain and fruK complementation show that FruK has a broader role in metabolism than fructose catabolism. Since fruK itself is repressed by Cra, these newly-reported events add layers to the dynamic regulation of E. coli's central metabolism that occur in response to changing nutrients. These findings might have wide-spread relevance to other γ-proteobacteria, which conserve both Cra and FruK.
Collapse
Affiliation(s)
- Chamitha Weeramange
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Cindy Menjivar
- The Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Pierce T O'Neil
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Samir El Qaidi
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Kelly S Harrison
- The Department of Molecular Biosciences, The University of Kansas - Lawrence, Lawrence, Kansas, USA
| | - Sarah Meinhardt
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Cole L Bird
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Shwetha Sreenivasan
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Aron W Fenton
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - P Scott Hefty
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Jeffrey L Bose
- The Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Liskin Swint-Kruse
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
3
|
Cortés-Avalos D, Borges Farias A, Romero-González LE, Lara-Ochoa C, Villa-Tanaca L, García-Del Portillo F, López-Guerrero V, Bustamante VH, Pérez-Rueda E, Ibarra JA. Interactions between the AraC/XylS-like transcriptional activator InvF of Salmonella Typhimurium, the RNA polymerase alpha subunit and the chaperone SicA. Sci Rep 2024; 14:156. [PMID: 38167847 PMCID: PMC10761746 DOI: 10.1038/s41598-023-50636-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Salmonella enterica serovar Typhimurium causes gastroenteritis and systemic infections in humans. For this bacterium the expression of a type III secretion system (T3SS) and effector proteins encoded in the Salmonella pathogenicity island-1 (SPI-1), is keystone for the virulence of this bacterium. Expression of these is controlled by a regulatory cascade starting with the transcriptional regulators HilD, HilC and RtsA that induce the expression of HilA, which then activates expression of the regulator InvF, a transcriptional regulator of the AraC/XylS family. InvF needs to interact with the chaperone SicA to activate transcription of SPI-1 genes including sicA, sopB, sptP, sopE, sopE2, and STM1239. InvF very likely acts as a classical activator; however, whether InvF interacts with the RNA polymerase alpha subunit RpoA has not been determined. Results from this study confirm the interaction between InvF with SicA and reveal that both proteins interact with the RNAP alpha subunit. Thus, our study further supports that the InvF/SicA complex acts as a classical activator. Additionally, we showed for the first time an interaction between a chaperone of T3SS effectors (SicA) and the RNAP.
Collapse
Affiliation(s)
- Daniel Cortés-Avalos
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prol. Carpio y Plan de Ayala S/N, Col. Santo Tomás 11340, Mexico City, Mexico
| | - André Borges Farias
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Mérida, Mexico
| | - Luis E Romero-González
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prol. Carpio y Plan de Ayala S/N, Col. Santo Tomás 11340, Mexico City, Mexico
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Cristina Lara-Ochoa
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Lourdes Villa-Tanaca
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prol. Carpio y Plan de Ayala S/N, Col. Santo Tomás 11340, Mexico City, Mexico
| | - Francisco García-Del Portillo
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Darwin, 3, 28049, Madrid, Spain
| | - Vanessa López-Guerrero
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Víctor H Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Mérida, Mexico
| | - J Antonio Ibarra
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prol. Carpio y Plan de Ayala S/N, Col. Santo Tomás 11340, Mexico City, Mexico.
| |
Collapse
|
4
|
Weeramange C, Menjivar C, O’Neil PT, El Qaidi S, Harrison KS, Meinhardt S, Bird CL, Sreenivasan S, Hardwidge PR, Fenton AW, Hefty PS, Bose JL, Swint-Kruse L. Fructose-1-kinase has pleiotropic roles in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571569. [PMID: 38168282 PMCID: PMC10760178 DOI: 10.1101/2023.12.14.571569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In Escherichia coli, the master transcription regulator Catabolite Repressor Activator (Cra) regulates >100 genes in central metabolism. Cra binding to DNA is allosterically regulated by binding to fructose-1-phosphate (F-1-P), but the only documented source of F-1-P is from the concurrent import and phosphorylation of exogenous fructose. Thus, many have proposed that fructose-1,6-bisphosphate (F-1,6-BP) is also a physiological regulatory ligand. However, the role of F-1,6-BP has been widely debated. Here, we report that the E. coli enzyme fructose-1-kinase (FruK) can carry out its "reverse" reaction under physiological substrate concentrations to generate F-1-P from F-1,6-BP. We further show that FruK directly binds Cra with nanomolar affinity and forms higher order, heterocomplexes. Growth assays with a ΔfruK strain and fruK complementation show that FruK has a broader role in metabolism than fructose catabolism. The ΔfruK strain also alters biofilm formation. Since fruK itself is repressed by Cra, these newly-reported events add layers to the dynamic regulation of E. coli central metabolism that occur in response to changing nutrients. These findings might have wide-spread relevance to other γ-proteobacteria, which conserve both Cra and FruK.
Collapse
Affiliation(s)
- Chamitha Weeramange
- The Department of Biochemistry and Molecular Biology, 3901 Rainbow Blvd, MSN 3030, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Cindy Menjivar
- The Department of Microbiology, Molecular Genetics and Immunology, 3901 Rainbow Blvd, MSN 3029, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Pierce T. O’Neil
- The Department of Biochemistry and Molecular Biology, 3901 Rainbow Blvd, MSN 3030, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Samir El Qaidi
- College of Veterinary Medicine, 1800 Denison Ave, Kansas State University, Manhattan, KS, USA 66506
| | - Kelly S. Harrison
- The Department of Molecular Biosciences, 2034 Haworth Hall, 1200 Sunnyside Avenue, The University of Kansas – Lawrence, Lawrence, Kansas, USA 66045
| | - Sarah Meinhardt
- The Department of Biochemistry and Molecular Biology, 3901 Rainbow Blvd, MSN 3030, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Cole L. Bird
- The Department of Biochemistry and Molecular Biology, 3901 Rainbow Blvd, MSN 3030, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Shwetha Sreenivasan
- The Department of Biochemistry and Molecular Biology, 3901 Rainbow Blvd, MSN 3030, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Philip R. Hardwidge
- College of Veterinary Medicine, 1800 Denison Ave, Kansas State University, Manhattan, KS, USA 66506
| | - Aron W. Fenton
- The Department of Biochemistry and Molecular Biology, 3901 Rainbow Blvd, MSN 3030, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - P. Scott Hefty
- College of Veterinary Medicine, 1800 Denison Ave, Kansas State University, Manhattan, KS, USA 66506
| | - Jeffrey L. Bose
- The Department of Microbiology, Molecular Genetics and Immunology, 3901 Rainbow Blvd, MSN 3029, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Liskin Swint-Kruse
- The Department of Biochemistry and Molecular Biology, 3901 Rainbow Blvd, MSN 3030, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| |
Collapse
|
5
|
Fricke PM, Gries ML, Mürköster M, Höninger M, Gätgens J, Bott M, Polen T. The l-rhamnose-dependent regulator RhaS and its target promoters from Escherichia coli expand the genetic toolkit for regulatable gene expression in the acetic acid bacterium Gluconobacter oxydans. Front Microbiol 2022; 13:981767. [PMID: 36060754 PMCID: PMC9429829 DOI: 10.3389/fmicb.2022.981767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
For regulatable target gene expression in the acetic acid bacterium (AAB) Gluconobacter oxydans only recently the first plasmids became available. These systems solely enable AraC- and TetR-dependent induction. In this study we showed that the l-rhamnose-dependent regulator RhaS from Escherichia coli and its target promoters PrhaBAD, PrhaT, and PrhaSR could also be used in G. oxydans for regulatable target gene expression. Interestingly, in contrast to the responsiveness in E. coli, in G. oxydans RhaS increased the expression from PrhaBAD in the absence of l-rhamnose and repressed PrhaBAD in the presence of l-rhamnose. Inserting an additional RhaS binding site directly downstream from the −10 region generating promoter variant PrhaBAD(+RhaS-BS) almost doubled the apparent RhaS-dependent promoter strength. Plasmid-based PrhaBAD and PrhaBAD(+RhaS-BS) activity could be reduced up to 90% by RhaS and l-rhamnose, while a genomic copy of PrhaBAD(+RhaS-BS) appeared fully repressed. The RhaS-dependent repression was largely tunable by l-rhamnose concentrations between 0% and only 0.3% (w/v). The RhaS-PrhaBAD and the RhaS-PrhaBAD(+RhaS-BS) systems represent the first heterologous repressible expression systems for G. oxydans. In contrast to PrhaBAD, the E. coli promoter PrhaT was almost inactive in the absence of RhaS. In the presence of RhaS, the PrhaT activity in the absence of l-rhamnose was weak, but could be induced up to 10-fold by addition of l-rhamnose, resulting in a moderate expression level. Therefore, the RhaS-PrhaT system could be suitable for tunable low-level expression of difficult enzymes or membrane proteins in G. oxydans. The insertion of an additional RhaS binding site directly downstream from the E. coli PrhaT −10 region increased the non-induced expression strength and reversed the regulation by RhaS and l-rhamnose from inducible to repressible. The PrhaSR promoter appeared to be positively auto-regulated by RhaS and this activation was increased by l-rhamnose. In summary, the interplay of the l-rhamnose-binding RhaS transcriptional regulator from E. coli with its target promoters PrhaBAD, PrhaT, PrhaSR and variants thereof provide new opportunities for regulatable gene expression in G. oxydans and possibly also for simultaneous l-rhamnose-triggered repression and activation of target genes, which is a highly interesting possibility in metabolic engineering approaches requiring redirection of carbon fluxes.
Collapse
|
6
|
Picard HR, Schwingen KS, Green LM, Shis DL, Egan SM, Bennett MR, Swint-Kruse L. Allosteric regulation within the highly interconnected structural scaffold of AraC/XylS homologs tolerates a wide range of amino acid changes. Proteins 2022; 90:186-199. [PMID: 34369028 PMCID: PMC8671227 DOI: 10.1002/prot.26206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 01/03/2023]
Abstract
To create bacterial transcription "circuits" for biotechnology, one approach is to recombine natural transcription factors, promoters, and operators. Additional novel functions can be engineered from existing transcription factors such as the E. coli AraC transcriptional activator, for which binding to DNA is modulated by binding L-arabinose. Here, we engineered chimeric AraC/XylS transcription activators that recognized ara DNA binding sites and responded to varied effector ligands. The first step, identifying domain boundaries in the natural homologs, was challenging because (i) no full-length, dimeric structures were available and (ii) extremely low sequence identities (≤10%) among homologs precluded traditional assemblies of sequence alignments. Thus, to identify domains, we built and aligned structural models of the natural proteins. The designed chimeric activators were assessed for function, which was then further improved by random mutagenesis. Several mutational variants were identified for an XylS•AraC chimera that responded to benzoate; two enhanced activation to near that of wild-type AraC. For an RhaR•AraC chimera, a variant with five additional substitutions enabled transcriptional activation in response to rhamnose. These five changes were dispersed across the protein structure, and combinatorial experiments testing subsets of substitutions showed significant non-additivity. Combined, the structure modeling and epistasis suggest that the common AraC/XylS structural scaffold is highly interconnected, with complex intra-protein and inter-domain communication pathways enabling allosteric regulation. At the same time, the observed epistasis and the low sequence identities of the natural homologs suggest that the structural scaffold and function of transcriptional regulation are nevertheless highly accommodating of amino acid changes.
Collapse
Affiliation(s)
- Hunter R. Picard
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Kristen S. Schwingen
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Lisa M. Green
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160
| | - David L. Shis
- Department of Biosciences and Department of Bioengineering, Rice University, Houston, TX 77005
| | - Susan M. Egan
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045
| | - Matthew R. Bennett
- Department of Biosciences and Department of Bioengineering, Rice University, Houston, TX 77005
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160,To whom correspondence should be addressed: ; 913-588-0399
| |
Collapse
|
7
|
Lara-Ochoa C, González-Lara F, Romero-González LE, Jaramillo-Rodríguez JB, Vázquez-Arellano SI, Medrano-López A, Cedillo-Ramírez L, Martínez-Laguna Y, Girón JA, Pérez-Rueda E, Puente JL, Ibarra JA. The transcriptional activator of the bfp operon in EPEC (PerA) interacts with the RNA polymerase alpha subunit. Sci Rep 2021; 11:8541. [PMID: 33879812 PMCID: PMC8058060 DOI: 10.1038/s41598-021-87586-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/30/2021] [Indexed: 11/09/2022] Open
Abstract
Enteropathogenic E. coli virulence genes are under the control of various regulators, one of which is PerA, an AraC/XylS-like regulator. PerA directly promotes its own expression and that of the bfp operon encoding the genes involved in the biogenesis of the bundle-forming pilus (BFP); it also activates PerC expression, which in turn stimulates locus of enterocyte effacement (LEE) activation through the LEE-encoded regulator Ler. Monomeric PerA directly binds to the per and bfp regulatory regions; however, it is not known whether interactions between PerA and the RNA polymerase (RNAP) are needed to activate gene transcription as has been observed for other AraC-like regulators. Results showed that PerA interacts with the alpha subunit of the RNAP polymerase and that it is necessary for the genetic and phenotypic expression of bfpA. Furthermore, an in silico analysis shows that PerA might be interacting with specific alpha subunit amino acids residues highlighting the direction of future experiments.
Collapse
Affiliation(s)
- Cristina Lara-Ochoa
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| | - Fabiola González-Lara
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Luis E Romero-González
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Juan B Jaramillo-Rodríguez
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | - Abraham Medrano-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Lilia Cedillo-Ramírez
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ygnacio Martínez-Laguna
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Mexico
| | - José Luis Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - J Antonio Ibarra
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
8
|
Cortés-Avalos D, Martínez-Pérez N, Ortiz-Moncada MA, Juárez-González A, Baños-Vargas AA, Estrada-de Los Santos P, Pérez-Rueda E, Ibarra JA. An update of the unceasingly growing and diverse AraC/XylS family of transcriptional activators. FEMS Microbiol Rev 2021; 45:6219864. [PMID: 33837749 DOI: 10.1093/femsre/fuab020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/31/2021] [Indexed: 01/09/2023] Open
Abstract
Transcriptional factors play an important role in gene regulation in all organisms, especially in Bacteria. Here special emphasis is placed in the AraC/XylS family of transcriptional regulators. This is one of the most abundant as many predicted members have been identified and more members are added because more bacterial genomes are sequenced. Given the way more experimental evidence has mounded in the past decades, we decided to update the information about this captivating family of proteins. Using bioinformatics tools on all the data available for experimentally characterized members of this family, we found that many members that display a similar functional classification can be clustered together and in some cases they have a similar regulatory scheme. A proposal for grouping these proteins is also discussed. Additionally, an analysis of surveyed proteins in bacterial genomes is presented. Altogether, the current review presents a panoramic view into this family and we hope it helps to stimulate future research in the field.
Collapse
Affiliation(s)
- Daniel Cortés-Avalos
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Noemy Martínez-Pérez
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
| | - Mario A Ortiz-Moncada
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Aylin Juárez-González
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Arturo A Baños-Vargas
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Paulina Estrada-de Los Santos
- Laboratorio de Biotecnología Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México.,Facultad de Ciencias, Centro de Genómica y Bioinformática, Universidad Mayor, Santiago, Chile
| | - J Antonio Ibarra
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
9
|
Kelly CL, Taylor GM, Hitchcock A, Torres-Méndez A, Heap JT. A Rhamnose-Inducible System for Precise and Temporal Control of Gene Expression in Cyanobacteria. ACS Synth Biol 2018; 7:1056-1066. [PMID: 29544054 DOI: 10.1021/acssynbio.7b00435] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyanobacteria are important for fundamental studies of photosynthesis and have great biotechnological potential. In order to better study and fully exploit these organisms, the limited repertoire of genetic tools and parts must be expanded. A small number of inducible promoters have been used in cyanobacteria, allowing dynamic external control of gene expression through the addition of specific inducer molecules. However, the inducible promoters used to date suffer from various drawbacks including toxicity of inducers, leaky expression in the absence of inducer and inducer photolability, the latter being particularly relevant to cyanobacteria, which, as photoautotrophs, are grown under light. Here we introduce the rhamnose-inducible rhaBAD promoter of Escherichia coli into the model freshwater cyanobacterium Synechocystis sp. PCC 6803 and demonstrate it has superior properties to previously reported cyanobacterial inducible promoter systems, such as a non-toxic, photostable, non-metabolizable inducer, a linear response to inducer concentration and crucially no basal transcription in the absence of inducer.
Collapse
Affiliation(s)
- Ciarán L. Kelly
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - George M. Taylor
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Andrew Hitchcock
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Antonio Torres-Méndez
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - John T. Heap
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| |
Collapse
|
10
|
Shrestha M, Xiao Y, Robinson H, Schubot FD. Structural Analysis of the Regulatory Domain of ExsA, a Key Transcriptional Regulator of the Type Three Secretion System in Pseudomonas aeruginosa. PLoS One 2015; 10:e0136533. [PMID: 26317977 PMCID: PMC4552939 DOI: 10.1371/journal.pone.0136533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/04/2015] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa employs a type three secretion system to facilitate infections in mammalian hosts. The operons encoding genes of structural components of the secretion machinery and associated virulence factors are all under the control of the AraC-type transcriptional activator protein, ExsA. ExsA belongs to a unique subfamily of AraC-proteins that is regulated through protein-protein contacts rather than small molecule ligands. Prior to infection, ExsA is inhibited through a direct interaction with the anti-activator ExsD. To activate ExsA upon host cell contact this interaction is disrupted by the anti-antiactivator protein ExsC. Here we report the crystal structure of the regulatory domain of ExsA, which is known to mediate ExsA dimerization as well as ExsD binding. The crystal structure suggests two models for the ExsA dimer. Both models confirmed the previously shown involvement of helix α-3 in ExsA dimerization but one also suggest a role for helix α-2. These structural data are supported by the observation that a mutation in α-2 greatly diminished the ability of ExsA to activate transcription in vitro. Additional in vitro transcription studies revealed that a conserved pocket, used by AraC and the related ToxT protein for the binding of small molecule regulators, although present in ExsA is not involved in binding of ExsD.
Collapse
Affiliation(s)
- Manisha Shrestha
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Washington Street, Blacksburg, VA 24060, United States of America
| | - Yi Xiao
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Washington Street, Blacksburg, VA 24060, United States of America
| | - Howard Robinson
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973–5000, United States of America
| | - Florian D. Schubot
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Washington Street, Blacksburg, VA 24060, United States of America
- * E-mail:
| |
Collapse
|
11
|
Harris AWK, Dolan JA, Kelly CL, Anderson J, Papachristodoulou A. Designing Genetic Feedback Controllers. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2015; 9:475-484. [PMID: 26390502 DOI: 10.1109/tbcas.2015.2458435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
By incorporating feedback around systems we wish to manipulate, it is possible to improve their performance and robustness properties to meet pre-specified design objectives. For decades control engineers have been successfully implementing feedback controllers for complex mechanical and electrical systems such as aircraft and sports cars. Natural biological systems use feedback extensively for regulation and adaptation but apart from the most basic designs, there is no systematic framework for designing feedback controllers in Synthetic Biology. In this paper we describe how classical approaches from linear control theory can be used to close the loop. This includes the design of genetic circuits using feedback control and the presentation of a biological phase lag controller.
Collapse
|
12
|
Bates SR, Quake SR. Mapping of protein-protein interactions of E. coli RNA polymerase with microfluidic mechanical trapping. PLoS One 2014; 9:e91542. [PMID: 24643045 PMCID: PMC3958368 DOI: 10.1371/journal.pone.0091542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 02/13/2014] [Indexed: 11/18/2022] Open
Abstract
The biophysical details of how transcription factors and other proteins interact with RNA polymerase are of great interest as they represent the nexus of how structure and function interact to regulate gene expression in the cell. We used an in vitro microfluidic approach to map interactions between a set of ninety proteins, over a third of which are transcription factors, and each of the four subunits of E. coli RNA polymerase, and we compared our results to those of previous large-scale studies. We detected interactions between RNA polymerase and transcription factors that earlier high-throughput screens missed; our results suggest that such interactions can occur without DNA mediation more commonly than previously appreciated.
Collapse
Affiliation(s)
- Steven R. Bates
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
| | - Stephen R. Quake
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
- Department of Bioengineering and HHMI, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Abstract
Bacteria use a variety of mechanisms to direct RNA polymerase to specific promoters in order to activate transcription in response to growth signals or environmental cues. Activation can be due to factors that interact at specific promoters, thereby increasing transcription directed by these promoters. We examine the range of architectures found at activator-dependent promoters and outline the mechanisms by which input from different factors is integrated. Alternatively, activation can be due to factors that interact with RNA polymerase and change its preferences for target promoters. We summarize the different mechanistic options for activation that are focused directly on RNA polymerase.
Collapse
Affiliation(s)
- David J Lee
- School of Biosciences, University of Birmingham, United Kingdom.
| | | | | |
Collapse
|
14
|
Taliaferro LP, Keen EF, Sanchez-Alberola N, Wolf RE. Transcription activation by Escherichia coli Rob at class II promoters: protein-protein interactions between Rob's N-terminal domain and the σ(70) subunit of RNA polymerase. J Mol Biol 2012; 419:139-57. [PMID: 22465792 DOI: 10.1016/j.jmb.2012.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/18/2012] [Accepted: 03/20/2012] [Indexed: 11/16/2022]
Abstract
Bacterial transcription activators regulate transcription by making essential protein-protein interactions with RNA polymerase, for example, with region 4 of the σ(70) subunit (σ(70) R4). Rob, SoxS, and MarA comprise a closely related subset of members of the AraC/XylS family of transcription factors that activate transcription of both class I and class II promoters. Recently, we showed that interactions between SoxS and σ(70) R4 occlude the binding of σ(70) R4 to the -35 promoter element of class II promoters. Although Rob shares many similarities with SoxS, it contains a C-terminal domain (CTD) that the other paralogs do not. Thus, a goal of this study was to determine whether Rob makes protein-protein interactions with σ(70) R4 at class II promoters and, if so, whether the interactions occlude the binding of σ(70) R4 to the -35 hexamer despite the presence of the CTD. We found that although Rob makes fewer interactions with σ(70) R4 than SoxS, the two proteins make the same, unusual, position-dependent interactions. Importantly, we found that Rob occludes σ(70) R4 from binding the -35 hexamer, just as does SoxS. Thus, the CTD does not substantially alter the way Rob interacts with σ(70) R4 at class II promoters. Moreover, in contrast to inferences drawn from the co-crystal structure of Rob bound to robbox DNA, which showed that only one of Rob's dual helix-turn-helix (HTH) DNA binding motifs binds a recognition element of the promoter's robbox, we determined that the two HTH motifs each bind a recognition element in vivo.
Collapse
Affiliation(s)
- Lanyn P Taliaferro
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | | | | | | |
Collapse
|
15
|
Gaballa A, MacLellan S, Helmann JD. Transcription activation by the siderophore sensor Btr is mediated by ligand-dependent stimulation of promoter clearance. Nucleic Acids Res 2011; 40:3585-95. [PMID: 22210890 PMCID: PMC3333878 DOI: 10.1093/nar/gkr1280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacterial transcription factors often function as DNA-binding proteins that selectively activate or repress promoters, although the biochemical mechanisms vary. In most well-understood examples, activators function by either increasing the affinity of RNA polymerase (RNAP) for the target promoter, or by increasing the isomerization of the initial closed complex to the open complex. We report that Bacillus subtilis Btr, a member of the AraC family of activators, functions principally as a ligand-dependent activator of promoter clearance. In the presence of its co-activator, the siderophore bacillibactin (BB), the Btr:BB complex enhances productive transcription, while having only modest effects on either RNAP promoter association or the production of abortive transcripts. Btr binds to two direct repeat sequences adjacent to the −35 region; recognition of the downstream motif is most important for establishing a productive interaction between the Btr:BB complex and RNAP. The resulting Btr:BB dependent increase in transcription enables the production of the ferric-BB importer to be activated by the presence of its cognate substrate.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | | | |
Collapse
|
16
|
Abstract
The increasing interest in genetic manipulation of bacterial host metabolic pathways for protein or small molecule production has led to a need to add new genes to a chromosome quickly and easily without leaving behind a selectable marker. The present report describes a vector and four-day procedure that enable site-specific chromosomal insertion of cloned genes in a context insulated from external transcription, usable once in a construction series. The use of rhamnose-inducible transcription from rhaBp allows regulation of the inserted genes independently of the commonly used IPTG and arabinose strategies. Using lacZ as a reporter, we first show that expression from the rhamnose promoter is tightly regulatable, exhibiting very low leakage of background expression compared with background, and moderate rhamnose-induced expression compared with IPTG-induced expression from lacp. Second, the expression of a DNA methyltransferase was used to show that rhamnose regulation yielded on-off expression of this enzyme, such that a resident high-copy plasmid was either fully sensitive or fully resistant to isoschizomer restriction enzyme cleavage. In both cases, growth medium manipulation allows intermediate levels of expression. The vehicle can also be adapted as an ORF-cloning vector.
Collapse
Affiliation(s)
- Marion H Sibley
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | | |
Collapse
|
17
|
Decker KB, Chen Q, Hsieh ML, Boucher P, Stibitz S, Hinton DM. Different requirements for σ Region 4 in BvgA activation of the Bordetella pertussis promoters P(fim3) and P(fhaB). J Mol Biol 2011; 409:692-709. [PMID: 21536048 PMCID: PMC3141349 DOI: 10.1016/j.jmb.2011.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/07/2011] [Accepted: 04/08/2011] [Indexed: 12/31/2022]
Abstract
Bordetella pertussis BvgA is a global response regulator that activates virulence genes, including adhesin-encoding fim3 and fhaB. At the fhaB promoter, P(fhaB), a BvgA binding site lies immediately upstream of the -35 promoter element recognized by Region 4 of the σ subunit of RNA polymerase (RNAP). We demonstrate that σ Region 4 is required for BvgA activation of P(fhaB), a hallmark of Class II activation. In contrast, the promoter-proximal BvgA binding site at P(fim3) includes the -35 region, which is composed of a tract of cytosines that lacks specific sequence information. We demonstrate that σ Region 4 is not required for BvgA activation at P(fim3). Nonetheless, Region 4 mutations that impair its typical interactions with core and with the -35 DNA affect P(fim3) transcription. Hydroxyl radical cleavage using RNAP with σD581C-FeBABE positions Region 4 near the -35 region of P(fim3); cleavage using RNAP with α276C-FeBABE or α302C-FeBABE also positions an α subunit C-terminal domain within the -35 region, on a different helical face from the promoter-proximal BvgA~P dimer. Our results suggest that the -35 region of P(fim3) accommodates a BvgA~P dimer, an α subunit C-terminal domain, and σ Region 4. Molecular modeling suggests how BvgA, σ Region 4, and α might coexist within this DNA in a conformation that suggests a novel mechanism of activation.
Collapse
Affiliation(s)
- Kimberly B Decker
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Expression of the ctx and tcp genes, which encode cholera toxin and the toxin coregulated pilus, the Vibrio cholerae O1 virulence determinants having the largest contribution to cholera disease, is repressed by the nucleoid-associated protein H-NS and activated by the AraC-like transcriptional regulator ToxT. To elucidate the molecular mechanism by which H-NS controls transcription of the ctxAB operon, H-NS repression and binding were characterized by using a promoter truncation series, gel mobility shift assays, and DNase I footprinting. Promoter regions found to be important for H-NS repression correlated with in vitro binding. Four main H-NS binding regions are present at ctx. One region overlaps the high-affinity ToxT binding site and extends upstream, another overlaps the ToxT low-affinity binding site around the -35 element, and the remaining two are located adjacent to one another downstream of the transcriptional start site. Competition for binding to the overlapping H-NS/ToxT binding sites was observed in gel mobility shift assays, where ToxT was found to displace H-NS from the ctx promoter region. In addition, regulatory differences between the ctx and tcpA promoters were examined. H-NS was found to have a higher relative binding affinity for the ctx promoter than for the tcpA promoter in vitro. In contrast to ToxT-dependent activation of the tcpA promoter, ToxT activation of ctx did not require the C-terminal domain of the α-subunit of RNA polymerase. These findings demonstrate that transcriptional regulation of ctx and tcpA by H-NS and ToxT is mechanistically distinct, and this may lead to important differences in the expression of these coregulated genes.
Collapse
|
19
|
Promoter discrimination at class I MarA regulon promoters mediated by glutamic acid 89 of the MarA transcriptional activator of Escherichia coli. J Bacteriol 2010; 193:506-15. [PMID: 21097628 DOI: 10.1128/jb.00360-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three paralogous transcriptional activators MarA, SoxS, and Rob, activate > 40 Escherichia coli promoters. To understand why MarA does not activate certain promoters as strongly as SoxS, we compared MarA, MarA mutants, and SoxS for their abilities to activate 16 promoters and to bind their cognate marbox binding sites. Replacement of the MarA glutamic acid residue 89 with alanine greatly increased the marbox binding and activation of many class I promoters. Like cells constitutive for SoxS, cells expressing the MarA with the E89A mutation were more resistant to superoxides than those harboring WT MarA. The activities of several other E89 substitutions ranked as follows: E89A > E89G > E89V > WT > E89D. Increased binding and activation occurred only at class I promoters when the 12th base of the promoter's marbox (a position at which there is no known interaction between the marbox and MarA) was not a T residue. Furthermore, WT MarA binding to a synthetic marbox in vitro was enhanced when the phosphate group between positions 12 and 13 was eliminated on one strand. The results demonstrate that relatively minor changes in a single amino acid side chain (e.g., alanine to valine or glutamic acid to aspartic acid) can strongly influence activity despite any evidence that the side chain is involved in positive interactions with either DNA or RNA polymerase. We present a model which attributes the differences in binding and activation to the interference between the β- and γ-carbons of the amino acid at position 89 and the phosphate group between positions 12 and 13.
Collapse
|
20
|
Hinton DM. Transcriptional control in the prereplicative phase of T4 development. Virol J 2010; 7:289. [PMID: 21029433 PMCID: PMC2988021 DOI: 10.1186/1743-422x-7-289] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 10/28/2010] [Indexed: 12/18/2022] Open
Abstract
Control of transcription is crucial for correct gene expression and orderly development. For many years, bacteriophage T4 has provided a simple model system to investigate mechanisms that regulate this process. Development of T4 requires the transcription of early, middle and late RNAs. Because T4 does not encode its own RNA polymerase, it must redirect the polymerase of its host, E. coli, to the correct class of genes at the correct time. T4 accomplishes this through the action of phage-encoded factors. Here I review recent studies investigating the transcription of T4 prereplicative genes, which are expressed as early and middle transcripts. Early RNAs are generated immediately after infection from T4 promoters that contain excellent recognition sequences for host polymerase. Consequently, the early promoters compete extremely well with host promoters for the available polymerase. T4 early promoter activity is further enhanced by the action of the T4 Alt protein, a component of the phage head that is injected into E. coli along with the phage DNA. Alt modifies Arg265 on one of the two α subunits of RNA polymerase. Although work with host promoters predicts that this modification should decrease promoter activity, transcription from some T4 early promoters increases when RNA polymerase is modified by Alt. Transcription of T4 middle genes begins about 1 minute after infection and proceeds by two pathways: 1) extension of early transcripts into downstream middle genes and 2) activation of T4 middle promoters through a process called sigma appropriation. In this activation, the T4 co-activator AsiA binds to Region 4 of σ⁷⁰, the specificity subunit of RNA polymerase. This binding dramatically remodels this portion of σ⁷⁰, which then allows the T4 activator MotA to also interact with σ⁷⁰. In addition, AsiA restructuring of σ⁷⁰ prevents Region 4 from forming its normal contacts with the -35 region of promoter DNA, which in turn allows MotA to interact with its DNA binding site, a MotA box, centered at the -30 region of middle promoter DNA. T4 sigma appropriation reveals how a specific domain within RNA polymerase can be remolded and then exploited to alter promoter specificity.
Collapse
Affiliation(s)
- Deborah M Hinton
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 2A-13, Bethesda, MD 20892-0830, USA.
| |
Collapse
|
21
|
Zafar MA, Shah IM, Wolf RE. Protein-protein interactions between sigma(70) region 4 of RNA polymerase and Escherichia coli SoxS, a transcription activator that functions by the prerecruitment mechanism: evidence for "off-DNA" and "on-DNA" interactions. J Mol Biol 2010; 401:13-32. [PMID: 20595001 PMCID: PMC2917807 DOI: 10.1016/j.jmb.2010.05.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 05/12/2010] [Accepted: 05/21/2010] [Indexed: 10/19/2022]
Abstract
According to the prerecruitment hypothesis, Escherichia coli SoxS activates the transcription of the genes of the SoxRS regulon by forming binary complexes with RNA polymerase (RNAP) that scan the chromosome for class I and class II SoxS-dependent promoters. We showed previously that the alpha subunit's C-terminal domain plays a role in activating both classes of promoter by making protein-protein contacts with SoxS; some of these contacts are made in solution in the absence of promoter DNA, a critical prediction of the prerecruitment hypothesis. Here, we identified seven single-alanine substitutions of the region 4 of sigma(70) (sigma(70) R4) of RNAP that reduce SoxS activation of class II promoters. With genetic epistasis tests between these sigma(70) R4 mutants and positive control mutants of SoxS, we identified 10 pairs of amino acids that interact with each other in E. coli. Using the yeast two-hybrid system and affinity immobilization assays, we showed that SoxS and sigma(70) R4 can interact in solution (i.e., "off-DNA"). The interaction requires amino acids of the class I/II (but not the class II) positive control surface of SoxS, and five amino acids of sigma(70) R4 that reduce activation in E. coli also reduce the SoxS-sigma(70) R4 interaction in yeast. One of the epistatic interactions that occur in E. coli also occurs in the yeast two-hybrid system (i.e., off-DNA). Importantly, we infer that the five epistatic interactions occurring in E. coli that require an amino acid of the class II surface occur "on-DNA" at class II promoters. Finding that SoxS contacts sigma(70) R4 both off-DNA and on-DNA is consistent with the prerecruitment hypothesis. Moreover, SoxS is now the first example of an E. coli transcriptional activator that uses a single positive control surface to make specific protein-protein contacts with two different subunits of RNAP.
Collapse
Affiliation(s)
- M. Ammar Zafar
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | | | - Richard E. Wolf
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| |
Collapse
|
22
|
ExsA recruits RNA polymerase to an extended -10 promoter by contacting region 4.2 of sigma-70. J Bacteriol 2010; 192:3597-607. [PMID: 20453093 DOI: 10.1128/jb.00129-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
ExsA is a member of the AraC family of transcriptional activators and is required for expression of the Pseudomonas aeruginosa type III secretion system (T3SS). ExsA-dependent promoters consist of two binding sites for monomeric ExsA located approximately 50 bp upstream of the transcription start sites. Binding to both sites is required for recruitment of sigma(70)-RNA polymerase (RNAP) to the promoter. ExsA-dependent promoters also contain putative -35 hexamers that closely match the sigma(70) consensus but are atypically spaced 21 or 22 bp from the -10 hexamer. Because several nucleotides located within the putative -35 region are required for ExsA binding, it is unclear whether the putative -35 region makes an additional contribution to transcription initiation. In the present study we demonstrate that the putative -35 hexamer is dispensable for ExsA-independent transcription from the P(exsC) promoter and that deletion of sigma(70) region 4.2, which contacts the -35 hexamer, has no effect on ExsA-independent transcription from P(exsC). Region 4.2 of sigma(70), however, is required for ExsA-dependent activation of the P(exsC) and P(exsD) promoters. Genetic data suggest that ExsA directly contacts region 4.2 of sigma(70), and several amino acids were found to contribute to the interaction. In vitro transcription assays demonstrate that an extended -10 element located in the P(exsC) promoter is important for overall promoter activity. Our collective data suggest a model in which ExsA compensates for the lack of a -35 hexamer by interacting with region 4.2 of sigma(70) to recruit RNAP to the promoter.
Collapse
|
23
|
Schleif R. AraC protein, regulation of the l-arabinose operon in Escherichia coli, and the light switch mechanism of AraC action. FEMS Microbiol Rev 2010; 34:779-96. [PMID: 20491933 DOI: 10.1111/j.1574-6976.2010.00226.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
This review covers the physiological aspects of regulation of the arabinose operon in Escherichia coli and the physical and regulatory properties of the operon's controlling gene, araC. It also describes the light switch mechanism as an explanation for many of the protein's properties. Although many thousands of homologs of AraC exist and regulate many diverse operons in response to many different inducers or physiological states, homologs that regulate arabinose-catabolizing genes in response to arabinose were identified. The sequence similarities among them are discussed in light of the known structure of the dimerization and DNA-binding domains of AraC.
Collapse
Affiliation(s)
- Robert Schleif
- Biology Department, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|
24
|
The AraC/XylS family activator RhaS negatively autoregulates rhaSR expression by preventing cyclic AMP receptor protein activation. J Bacteriol 2010; 192:225-32. [PMID: 19854903 DOI: 10.1128/jb.00829-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli RhaR protein activates expression of the rhaSR operon in the presence of its effector, L-rhamnose. The resulting RhaS protein (plus L-rhamnose) activates expression of the L-rhamnose catabolic and transport operons, rhaBAD and rhaT, respectively. Here, we further investigated our previous finding that rhaS deletion resulted in a threefold increase in rhaSR promoter activity, suggesting RhaS negative autoregulation of rhaSR. We found that RhaS autoregulation required the cyclic AMP receptor protein (CRP) binding site at rhaSR and that RhaS was able to bind to the RhaR binding site at rhaSR. In contrast to the expected repression, we found that in the absence of both RhaR and the CRP binding site at the rhaSR promoter, RhaS activated expression to a level comparable with RhaR activation of the same promoter. However, when the promoter included the RhaR and CRP binding sites, the level of activation by RhaS and CRP was much lower than that by RhaR and CRP, suggesting that CRP could not fully coactivate with RhaS. Taken together, our results indicate that RhaS negative autoregulation involves RhaS competition with RhaR for binding to the RhaR binding site at rhaSR. Although RhaS and RhaR activate rhaSR transcription to similar levels, CRP cannot effectively coactivate with RhaS. Therefore, once RhaS reaches a relatively high protein concentration, presumably sufficient to saturate the RhaS-activated promoters, there will be a decrease in rhaSR transcription. We propose a model in which differential DNA bending by RhaS and RhaR may be the basis for the difference in CRP coactivation.
Collapse
|
25
|
Jeske M, Altenbuchner J. The Escherichia coli rhamnose promoter rhaP(BAD) is in Pseudomonas putida KT2440 independent of Crp-cAMP activation. Appl Microbiol Biotechnol 2009; 85:1923-33. [PMID: 19789867 DOI: 10.1007/s00253-009-2245-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/04/2009] [Accepted: 09/04/2009] [Indexed: 11/27/2022]
Abstract
We developed an expression vector system based on the broad host range plasmid pBBR1MCS2 with the Escherichia coli rhamnose-inducible expression system for applications in Pseudomonas. For validation and comparison to E. coli, enhanced green fluorescent protein (eGFP) was used as a reporter. For further characterization, we also constructed plasmids containing different modifications of the rhaP(BAD) promoter. Induction experiments after the successful transfer of these plasmids into Pseudomonas putida KT2440 wild-type and different knockout strains revealed significant differences. In Pseudomonas, we observed no catabolite repression of the rhaP(BAD) promoter, and in contrast to E. coli, the binding of cyclic adenosine monophosphate (cAMP) receptor protein (Crp)-cAMP to this promoter is not necessary for induction as shown by deletion of the Crp binding site. The crp(-) mutant of P. putida KT2440 lacked eGFP expression, but this is likely due to problems in rhamnose uptake, since this defect was complemented by the insertion of the L-rhamnose-specific transporter rhaT into its genome via transposon mutagenesis. Other global regulators like Crc, PtsN, and CyoB had no or minor effects on rhamnose-induced eGFP expression. Therefore, this expression system may also be generally useful for Pseudomonas and other gamma-proteobacteria.
Collapse
Affiliation(s)
- Marcel Jeske
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | | |
Collapse
|
26
|
Bonocora RP, Caignan G, Woodrell C, Werner MH, Hinton DM. A basic/hydrophobic cleft of the T4 activator MotA interacts with the C-terminus of E.coli sigma70 to activate middle gene transcription. Mol Microbiol 2008; 69:331-43. [PMID: 18485078 PMCID: PMC2631437 DOI: 10.1111/j.1365-2958.2008.06276.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Transcriptional activation often employs a direct interaction between an activator and RNA polymerase. For activation of its middle genes, bacteriophage T4 appropriates Escherichia coli RNA polymerase through the action of two phage-encoded proteins, MotA and AsiA. Alone, AsiA inhibits transcription from a large class of host promoters by structurally remodelling region 4 of sigma(70), the primary specificity subunit of E. coli RNA polymerase. MotA interacts both with sigma(70) region 4 and with a DNA element present in T4 middle promoters. AsiA-induced remodelling is proposed to make the far C-terminus of sigma(70) region 4 accessible for MotA binding. Here, NMR chemical shift analysis indicates that MotA uses a 'basic/hydrophobic' cleft to interact with the C-terminus of AsiA-remodelled sigma(70), but MotA does not interact with AsiA itself. Mutations within this cleft, at residues K3, K28 and Q76, both impair the interaction of MotA with sigma(70) region 4 and MotA-dependent activation. Furthermore, mutations at these residues greatly decrease phage viability. Most previously described activators that target sigma(70) directly use acidic residues to engage a basic surface of region 4. Our work supports accumulated evidence indicating that 'sigma appropriation' by MotA and AsiA uses a fundamentally different mechanism to activate transcription.
Collapse
Affiliation(s)
- Richard P. Bonocora
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, MD
| | - Gregori Caignan
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY
| | | | - Milton H. Werner
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY
| | - Deborah M. Hinton
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, MD
| |
Collapse
|
27
|
Wassem R, Kobayashi H, Kambara K, Le Quéré A, Walker GC, Broughton WJ, Deakin WJ. TtsI regulates symbiotic genes in Rhizobium species NGR234 by binding to tts boxes. Mol Microbiol 2008; 68:736-48. [PMID: 18363648 PMCID: PMC2770584 DOI: 10.1111/j.1365-2958.2008.06187.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infection of legumes by Rhizobium sp. NGR234 and subsequent development of nitrogen-fixing nodules are dependent on the coordinated actions of Nod factors, proteins secreted by a type III secretion system (T3SS) and modifications to surface polysaccharides. The production of these signal molecules is dependent on plant flavonoids which trigger a regulatory cascade controlled by the transcriptional activators NodD1, NodD2, SyrM2 and TtsI. TtsI is known to control the genes responsible for T3SS function and synthesis of a symbiotically important rhamnose-rich lipo-polysaccharide, most probably by binding to cis elements termed tts boxes. Eleven tts boxes were identified in the promoter regions of target genes on the symbiotic plasmid of NGR234. Expression profiles of lacZ fusions to these tts boxes showed that they are part of a TtsI-dependent regulon induced by plant-derived flavonoids. TtsI was purified and demonstrated to bind directly to two of these tts boxes. DNase I footprinting revealed that TtsI occupied not only the tts box consensus sequence, but also upstream and downstream regions in a concentration-dependent manner. Highly conserved bases of the consensus tts box were mutated and, although TtsI binding was still observed in vitro, gfp fusions were no longer transcribed in vivo. Random mutagenesis of a tts box-containing promoter revealed more nucleotides critical for transcriptional activity outside of the consensus.
Collapse
Affiliation(s)
- Roseli Wassem
- Laboratoire de Biologie Moléculaire des Plantes Supérieures (LBMPS), Sciences III, 30 Quai Ernest-Ansermet, Université de Genève, CH-1211 Geneva 4, Switzerland
- Departamento de Genética, Universidade Federal do Paraná, Caixa Postal 19071, CEP 81531–990, Curitiba, PR, Brazil
| | - Hajime Kobayashi
- Laboratoire de Biologie Moléculaire des Plantes Supérieures (LBMPS), Sciences III, 30 Quai Ernest-Ansermet, Université de Genève, CH-1211 Geneva 4, Switzerland
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Kumiko Kambara
- Laboratoire de Biologie Moléculaire des Plantes Supérieures (LBMPS), Sciences III, 30 Quai Ernest-Ansermet, Université de Genève, CH-1211 Geneva 4, Switzerland
| | - Antoine Le Quéré
- Laboratoire de Biologie Moléculaire des Plantes Supérieures (LBMPS), Sciences III, 30 Quai Ernest-Ansermet, Université de Genève, CH-1211 Geneva 4, Switzerland
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - William J. Broughton
- Laboratoire de Biologie Moléculaire des Plantes Supérieures (LBMPS), Sciences III, 30 Quai Ernest-Ansermet, Université de Genève, CH-1211 Geneva 4, Switzerland
| | - William J. Deakin
- Laboratoire de Biologie Moléculaire des Plantes Supérieures (LBMPS), Sciences III, 30 Quai Ernest-Ansermet, Université de Genève, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
28
|
Kolin A, Balasubramaniam V, Skredenske J, Wickstrum J, Egan SM. Differences in the mechanism of the allosteric l-rhamnose responses of the AraC/XylS family transcription activators RhaS and RhaR. Mol Microbiol 2008; 68:448-61. [PMID: 18366439 PMCID: PMC2377013 DOI: 10.1111/j.1365-2958.2008.06164.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteins in the largest subset of AraC/XylS family transcription activators, including RhaS and RhaR, have C-terminal domains (CTDs) that mediate DNA-binding and transcription activation, and N-terminal domains (NTDs) that mediate dimerization and effector binding. The mechanism of the allosteric effector response in this family has been identified only for AraC. Here, we investigated the mechanism by which RhaS and RhaR respond to their effector, l-rhamnose. Unlike AraC, N-terminal truncations suggested that RhaS and RhaR do not use an N-terminal arm to inhibit activity in the absence of effector. We used random mutagenesis to isolate RhaS and RhaR variants with enhanced activation in the absence of l-rhamnose. NTD substitutions largely clustered around the predicted l-rhamnose-binding pockets, suggesting that they mimic the structural outcome of effector binding to the wild-type proteins. RhaS-CTD substitutions clustered in the first HTH motif, and suggested that l-rhamnose induces improved DNA binding. In contrast, RhaR-CTD substitutions clustered at a single residue in the second HTH motif, at a position consistent with improved RNAP contacts. We propose separate allosteric mechanisms for the two proteins: Without l-rhamnose, RhaS does not effectively bind DNA while RhaR does not effectively contact RNAP. Upon l-rhamnose binding, both proteins undergo structural changes that enable transcription activation.
Collapse
Affiliation(s)
| | | | - Jeff Skredenske
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | | | - Susan M. Egan
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| |
Collapse
|
29
|
Roles of effectors in XylS-dependent transcription activation: intramolecular domain derepression and DNA binding. J Bacteriol 2008; 190:3118-28. [PMID: 18296514 DOI: 10.1128/jb.01784-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
XylS, an AraC family protein, activates transcription from the benzoate degradation pathway Pm promoter in the presence of a substrate effector such as 3-methylbenzoate (3MB). We developed a procedure to obtain XylS-enriched preparations which proved suitable to analyze its activation mechanism. XylS showed specific 3MB-independent binding to its target operator, which became strictly 3MB dependent in a dimerization-defective mutant. We demonstrated that the N-terminal domain of the protein can make linker-independent interactions with the C-terminal domain and inhibit its capacity to bind DNA. Interactions are hampered in the presence of 3MB effector. We propose two independent roles for 3MB in XylS activation: in addition to its known influence favoring protein dimerization, the effector is able to modify XylS conformation to trigger N-terminal domain intramolecular derepression. We also show that activation by XylS involves RNA polymerase recruitment to the Pm promoter as demonstrated by chromatin immunoprecipitation assays. RNA polymerase switching in Pm transcription was reproduced in in vitro transcription assays. All sigma(32)-, sigma(38)-, and sigma(70)-dependent RNA polymerases were able to carry out Pm transcription in a rigorous XylS-dependent manner, as demonstrated by the formation of open complexes only in the presence of the regulator.
Collapse
|
30
|
Domínguez-Cuevas P, Marín P, Marqués S, Ramos JL. XylS-Pm promoter interactions through two helix-turn-helix motifs: identifying XylS residues important for DNA binding and activation. J Mol Biol 2007; 375:59-69. [PMID: 18005985 DOI: 10.1016/j.jmb.2007.10.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 10/15/2007] [Accepted: 10/16/2007] [Indexed: 11/25/2022]
Abstract
The XylS protein is the positive transcription regulator of the TOL plasmid meta-cleavage pathway operon Pm. XylS belongs to the AraC family of transcriptional regulators and exhibits an N-terminal domain involved in effector recognition, and a C-terminal domain, made up of seven alpha-helices conforming two helix-turn-helix DNA-binding domains. alpha-Helix 3 and alpha-helix 6 are the recognition helices. In consonance with XylS structural organization, Pm exhibits a bipartite DNA-binding motif consisting of two boxes, called A and B, whose sequences are TGCA and GGNTA, respectively. This bipartite motif is repeated at the Pm promoter so that one of the XylS monomers binds to each of the repeats. An extensive series of genetic epistasis assays combining mutant Pm promoters and XylS single substitution mutant proteins revealed that alpha-helix 3 contacts A box nucleotides, whereas alpha-helix 6 residues contact B box nucleotides. In alpha-helix 3, Asn246 and Arg242 are involved in specific contacts with the TG dinucleotide at box A, whereas Arg296 and Glu299 contact the second G and T nucleotides at box B. On the basis of our results and of the three-dimensional model of the XylS C-terminal domain, we propose that Ser243, Glu249 and Lys250 in alpha-helix 3, and Asn299 and Arg302 in alpha-helix 6 contact the phosphate backbones. Alanine substitutions at the predicted phosphate backbone-contacting residues yielded mutants with low levels of activity, suggesting that XylS-Pm binding specificity not only involves specific amino acid-base interactions, but also relies on secondary DNA structure, which, although at another level, also comes into play. We propose a model in which a XylS dimer binds to the direct repeats in Pm in a head-to-tail conformation that allows the direct interaction of the XylS proximal subunit with the RNA polymerase sigma factor.
Collapse
Affiliation(s)
- Patricia Domínguez-Cuevas
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental Protection, E-18008 Granada, Spain
| | | | | | | |
Collapse
|
31
|
Wickstrum JR, Skredenske JM, Kolin A, Jin DJ, Fang J, Egan SM. Transcription activation by the DNA-binding domain of the AraC family protein RhaS in the absence of its effector-binding domain. J Bacteriol 2007; 189:4984-93. [PMID: 17513476 PMCID: PMC1951867 DOI: 10.1128/jb.00530-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli L-rhamnose-responsive transcription activators RhaS and RhaR both consist of two domains, a C-terminal DNA-binding domain and an N-terminal dimerization domain. Both function as dimers and only activate transcription in the presence of L-rhamnose. Here, we examined the ability of the DNA-binding domains of RhaS (RhaS-CTD) and RhaR (RhaR-CTD) to bind to DNA and activate transcription. RhaS-CTD and RhaR-CTD were both shown by DNase I footprinting to be capable of binding specifically to the appropriate DNA sites. In vivo as well as in vitro transcription assays showed that RhaS-CTD could activate transcription to high levels, whereas RhaR-CTD was capable of only very low levels of transcription activation. As expected, RhaS-CTD did not require the presence of L-rhamnose to activate transcription. The upstream half-site at rhaBAD and the downstream half-site at rhaT were found to be the strongest of the known RhaS half-sites, and a new putative RhaS half-site with comparable strength to known sites was identified. Given that cyclic AMP receptor protein (CRP), the second activator required for full rhaBAD expression, cannot activate rhaBAD expression in a DeltarhaS strain, it was of interest to test whether CRP could activate transcription in combination with RhaS-CTD. We found that RhaS-CTD allowed significant activation by CRP, both in vivo and in vitro, although full-length RhaS allowed somewhat greater CRP activation. We conclude that RhaS-CTD contains all of the determinants necessary for transcription activation by RhaS.
Collapse
Affiliation(s)
- Jason R Wickstrum
- Department of Molecular Biosciences, 1200 Sunnyside Ave., University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | |
Collapse
|
32
|
Typas A, Stella S, Johnson RC, Hengge R. The ?35 sequence location and the Fis?sigma factor interface determine ?Sselectivity of the proP (P2) promoter in Escherichia coli. Mol Microbiol 2007; 63:780-96. [PMID: 17302803 DOI: 10.1111/j.1365-2958.2006.05560.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The P2 promoter of proP, encoding a transporter for proline and glycine betaine in Escherichia coli, is a unique paradigm, where master regulators of different growth stages, Fis and sigma(S) (RpoS), collaborate to achieve promoter activation. It is also the only case described where Fis functions as class II transcriptional activator (centred at -41). Here we show that the degenerate -35 sequence, and the location of the Fis binding site, which forces a suboptimal 16 bp spacing between the -35 and -10 elements, allow only sigma(S) but not sigma(70) to function at proP (P2). Moreover, the interface between Fis and sigma(S) seems better suited to sigma(S), due to a single residue difference between sigma(S) and sigma(70). Nevertheless, Fis can activate RNA polymerase containing sigma(70) at a proP (P2) promoter variant, in which a typical sigma(70)-35 recognition sequence has been introduced at a 17 bp distance from the -10 hexamer. In summary, we elucidate the rules that govern sigma factor selectivity in the presence of a class II activator, provide new insight into transcriptional activation by Fis from this position, and clarify, why the proP (P2) promoter is precisely activated during a short time window of the growth cycle, when Fis and sigma(S) are both present.
Collapse
Affiliation(s)
- Athanasios Typas
- Institut für Biologie, Mikrobiologie, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
33
|
Childers BM, Weber GG, Prouty MG, Castaneda MM, Peng F, Klose KE. Identification of residues critical for the function of the Vibrio cholerae virulence regulator ToxT by scanning alanine mutagenesis. J Mol Biol 2007; 367:1413-30. [PMID: 17320105 DOI: 10.1016/j.jmb.2007.01.061] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 01/22/2007] [Accepted: 01/23/2007] [Indexed: 11/30/2022]
Abstract
Virulence factor expression in Vibrio cholerae is controlled by the transcriptional regulatory protein ToxT. ToxT activates transcription of the genes encoding cholera toxin (ctx) and the toxin co-regulated pilus (tcp), as well as accessory colonization factor (acf) genes. Previous studies of ToxT, a member of the AraC family of proteins, have revealed that it consists of two domains, an N-terminal dimerization and environmental sensing domain, and a C-terminal DNA binding domain. In this study, comprehensive scanning alanine mutagenesis was utilized to identify amino acids critical for the function of ToxT. Forty-eight proteins with Ala substitutions (of 267 total) exhibited defects in ToxT-dependent activation (>90% reduction) in both a V. cholerae acfA-phoA reporter strain and a Salmonella typhimurium ctxAp-lacZ reporter strain. Most of these mutant proteins also caused reductions in cholera toxin (CT) and toxin coregulated pilus (TCP) expression in a DeltatoxT V cholerae strain under in vitro virulence factor inducing conditions. Further analysis with a LexA-based reporter system revealed that one of the 20 Ala substitutions in the N terminus (F151A) diminishes dimerization, and this residue is located in a region of predicted alpha-helical structure, thus identifying a putative dimer interface. Ala substitutions in two putative helix-turn-helix (HTH) recognition helices that caused differential promoter activation (K203A and S249A) did not appear to alter specific DNA binding, suggesting these residues contribute to other aspects of transcriptional activation. A number of Ala substitutions were also found that result in a higher level of ToxT transcriptional activity, and these mutations were almost exclusively found within the N terminus, consistent with this domain being involved in modulation of ToxT activity. This study illuminates the contribution of specific amino acids to the dimerization, DNA binding, and transcriptional activity of ToxT.
Collapse
Affiliation(s)
- Brandon M Childers
- South Texas Center for Emerging Infectious Diseases, University of Texas San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | |
Collapse
|
34
|
Kolin A, Jevtic V, Swint-Kruse L, Egan SM. Linker regions of the RhaS and RhaR proteins. J Bacteriol 2007; 189:269-71. [PMID: 17071764 PMCID: PMC1797203 DOI: 10.1128/jb.01456-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 10/13/2006] [Indexed: 11/20/2022] Open
Abstract
Substitutions within the interdomain linkers of the AraC/XylS family proteins RhaS and RhaR were tested to determine whether side chain identity or linker structure was required for function. Neither was found crucial, suggesting that the linkers do not play a direct role in activation, but rather simply connect the two domains.
Collapse
Affiliation(s)
- Ana Kolin
- Department of Molecular Biosciences, 1200 Sunnyside Ave., University of Kansas, Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
35
|
Giacalone MJ, Gentile AM, Lovitt BT, Berkley NL, Gunderson CW, Surber MW. Toxic protein expression in Escherichia coli using a rhamnose-based tightly regulated and tunable promoter system. Biotechniques 2006; 40:355-64. [PMID: 16568824 DOI: 10.2144/000112112] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The refinement of tightly regulated prokaryotic expression systems that permit functional expression of toxic recombinant proteins is a continually evolving process. Unfortunately, the current best promoter options are either tightly repressed and produce little protein, or produce substantial protein but lack the necessary repression to avoid mutations stimulated by leaky expression in the absence of inducer. In this report, we present three novel prokaryotic expression constructs that are tightly regulated by L-rhamnose and D-glucose. These expression vectors utilize the Escherichia coli rhaT promoter and corresponding regulatory genes to provide titratable, high-level protein yield without compromising clone integrity. Together, these components may enable the stable cloning and functional expression of otherwise toxic proteins.
Collapse
|
36
|
Wang L, Li J, March JC, Valdes JJ, Bentley WE. luxS-dependent gene regulation in Escherichia coli K-12 revealed by genomic expression profiling. J Bacteriol 2006; 187:8350-60. [PMID: 16321939 PMCID: PMC1316998 DOI: 10.1128/jb.187.24.8350-8360.2005] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The bacterial quorum-sensing autoinducer 2 (AI-2) has received intense interest because the gene for its synthase, luxS, is common among a large number of bacterial species. We have identified luxS-controlled genes in Escherichia coli under two different growth conditions using DNA microarrays. Twenty-three genes were affected by luxS deletion in the presence of glucose, and 63 genes were influenced by luxS deletion in the absence of glucose. Minimal overlap among these gene sets suggests the role of luxS is condition dependent. Under the latter condition, the metE gene, the lsrACDBFG operon, and the flanking genes of the lsr operon (lsrR, lsrK, tam, and yneE) were among the most significantly induced genes by luxS. The E. coli lsr operon includes an additional gene, tam, encoding an S-adenosyl-l-methionine-dependent methyltransferase. Also, lsrR and lsrK belong to the same operon, lsrRK, which is positively regulated by the cyclic AMP receptor protein and negatively regulated by LsrR. lsrK is additionally transcribed by a promoter between lsrR and lsrK. Deletion of luxS was also shown to affect genes involved in methionine biosynthesis, methyl transfer reactions, iron uptake, and utilization of carbon. It was surprising, however, that so few genes were affected by luxS deletion in this E. coli K-12 strain under these conditions. Most of the highly induced genes are related to AI-2 production and transport. These data are consistent with the function of LuxS as an important metabolic enzyme but appear not to support the role of AI-2 as a true signal molecule for E. coli W3110 under the investigated conditions.
Collapse
Affiliation(s)
- Liang Wang
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
37
|
Wickstrum JR, Santangelo TJ, Egan SM. Cyclic AMP receptor protein and RhaR synergistically activate transcription from the L-rhamnose-responsive rhaSR promoter in Escherichia coli. J Bacteriol 2005; 187:6708-18. [PMID: 16166533 PMCID: PMC1251584 DOI: 10.1128/jb.187.19.6708-6718.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli rhaSR operon encodes two AraC family transcription activator proteins, RhaS and RhaR, which regulate expression of the l-rhamnose catabolic regulon in response to l-rhamnose availability. RhaR positively regulates rhaSR in response to l-rhamnose, and RhaR activation can be enhanced by the cyclic AMP (cAMP) receptor protein (CRP) protein. CRP is a well-studied global transcription regulator that binds to DNA as a dimer and activates transcription in the presence of cAMP. We investigated the mechanism of CRP activation at rhaSR both alone and in combination with RhaR in vivo and in vitro. Base pair substitutions at potential CRP binding sites in the rhaSR-rhaBAD intergenic region demonstrate that CRP site 3, centered at position -111.5 relative to the rhaSR transcription start site, is required for the majority of the CRP-dependent activation of rhaSR. DNase I footprinting confirms that CRP binds to site 3; CRP binding to the other potential CRP sites at rhaSR was not detected. We show that, at least in vitro, CRP is capable of both RhaR-dependent and RhaR-independent activation of rhaSR from a total of three transcription start sites. In vitro transcription assays indicate that the carboxy-terminal domain of the alpha subunit (alpha-CTD) of RNA polymerase is at least partially dispensable for RhaR-dependent activation but that the alpha-CTD is required for CRP activation of rhaSR. Although CRP requires the presence of RhaR for efficient in vivo activation of rhaSR, DNase I footprinting assays indicated that cooperative binding between RhaR and CRP does not make a significant contribution to the mechanism of CRP activation at rhaSR. It therefore appears that CRP activates transcription from rhaSR as it would at simple class I promoters, albeit from a relatively distant position.
Collapse
Affiliation(s)
- Jason R Wickstrum
- Department of Molecular Biosciences, University of Kansas, 8031 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS 66045-7534, USA
| | | | | |
Collapse
|