1
|
Hailemariam TG, Ayele A, Gelanew T, Atnafu A, Brennan M, Tilahun M, Alemayehu DH, Debella ZA, Merid Y, Shibeshi W, Aseffa A, Bobosha K, Hirutu Y, Waddell SJ, Engidawork E. Integrating genomic, transcriptomic, and phenotypic information to explore drug resistance in Mycobacterium tuberculosis sub-lineage 4.2.2.2. J Appl Microbiol 2025; 136:lxaf063. [PMID: 40074543 PMCID: PMC11940716 DOI: 10.1093/jambio/lxaf063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/14/2025]
Abstract
AIMS Mycobacterium tuberculosis (Mtb) remains a major global health challenge, particularly due to increasing drug resistance. Beyond the well-characterized mutations, the mechanisms involved in driving resistance appear to be more complex. This study investigated the differential gene expression of Ethiopian drug-resistant Mtb sub-lineage 4.2.2.2 clinical isolates through an integrated approach combining phenotypic, transcriptomic, and genomic analyses. METHOD AND RESULTS RNA sequencing was performed by isolating RNA from six Mtb strains (three drug-sensitive and three drug-resistant) during mid-logarithmic phase growth. Drug resistance was assessed through whole-genome analysis and phenotypic testing using the BACTEC Mycobacteria growth indicator tube (MGIT)™ 960 system. RNA profiling revealed significantly reduced expression of six genes: Rv0096, Rv2780, Rv3136, Rv3136A, Rv3137, and Rv3230c in drug-resistant isolates. These genes are not associated with known drug targets nor resistance mechanisms. Additionally, a discrepancy was noted between phenotypic resistance profiles and whole genome-based predictions, with the latter suggesting broader resistance. For instance, the missense mutation in rpoB p.Ser450Leu and katG p.Ser315Thr were identified with no change in phenotypic drug sensitivity to rifampicin and isoniazid, respectively. CONCLUSION Identification of these differentially expressed genes and their networks could be useful in unraveling the complexities of Mtb drug resistance and in understanding the impact that drug resistance conferring mutations have on the physiology of drug-resistant Mtb.
Collapse
Affiliation(s)
- Tesfaye Gebreyohannis Hailemariam
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, P.O.Box 9086, Addis Ababa, Ethiopia
- Armauer Hansen Research Institute, P.O.Box 1005, Addis Ababa, Ethiopia
| | - Abaysew Ayele
- Armauer Hansen Research Institute, P.O.Box 1005, Addis Ababa, Ethiopia
| | - Tesfaye Gelanew
- Armauer Hansen Research Institute, P.O.Box 1005, Addis Ababa, Ethiopia
| | - Abay Atnafu
- Armauer Hansen Research Institute, P.O.Box 1005, Addis Ababa, Ethiopia
| | - Michael Brennan
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, BN1 9PX, Brighton, United Kingdom
| | - Melaku Tilahun
- Armauer Hansen Research Institute, P.O.Box 1005, Addis Ababa, Ethiopia
| | | | - Zemedkun Abebe Debella
- Addis Ababa Institute of Technology, Addis Ababa Univeristy, P.O. Box 1000, Addis Ababa, Ethiopia
| | - Yared Merid
- Hawassa University College of Medicine and Health Sciences, P.O.Box 1560, Hawassa, Ethiopia
| | - Workineh Shibeshi
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, P.O.Box 9086, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, P.O.Box 1005, Addis Ababa, Ethiopia
| | - Kidist Bobosha
- Armauer Hansen Research Institute, P.O.Box 1005, Addis Ababa, Ethiopia
| | - Yonas Hirutu
- Armauer Hansen Research Institute, P.O.Box 1005, Addis Ababa, Ethiopia
| | - Simon J Waddell
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, BN1 9PX, Brighton, United Kingdom
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, P.O.Box 9086, Addis Ababa, Ethiopia
| |
Collapse
|
2
|
Jiang Q, Hu R, Liu F, Huang F, Zhang L, Zhang H. Characterization of a Novel Oxidative Stress Responsive Transcription Regulator in Mycobacterium bovis. Biomedicines 2024; 12:1872. [PMID: 39200336 PMCID: PMC11351531 DOI: 10.3390/biomedicines12081872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
The antioxidant defense is critical for the survival of intracellular pathogens such as Mycobacterium tuberculosis complex (MTBC) species, including Mycobacterium bovis, which are often exposed to an oxidative environment caused by reactive oxygen species (ROS) in hosts. However, the signaling pathway in mycobacteria for sensing and responding to oxidative stress remains largely unclear. In this study, we characterize a TetR-type transcription regulator BCG_3893c, designated AotM, as a novel redox sensor in Mycobacterium bovis that increases mycobacterial tolerance to oxidative stress. AotM is required for the growth of M. bovis in the presence of 1 mM hydrogen peroxide. Loss of the aotM gene leads to altered transcriptional profiles with 352 genes significantly up-regulated and 25 genes significantly down-regulated. AotM recognizes a 14-bp palindrome sequence motif and negatively regulates the expression of a FAD-dependent oxidoreductase encoded by bcg_3892c. Overexpression of BCG_3892c increases intracellular ROS production and reduces the growth of M. bovis. In summary, we propose that AotM enhances the mycobacterial resistance against oxidative stress probably by inhibiting intracellular ROS production. Our findings reveal a novel underlying regulatory mechanism behind mycobacterial oxidative stress adaptation.
Collapse
Affiliation(s)
- Qiang Jiang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.J.)
| | - Rong Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.J.)
| | - Feng Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.J.)
| | - Feng Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.J.)
| | - Lei Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.J.)
| |
Collapse
|
3
|
Sangal V, Marrs ECL, Nelson A, Perry JD. Phylogenomic analyses of multidrug resistant Corynebacterium striatum strains isolated from patients in a tertiary care hospital in the UK. Eur J Clin Microbiol Infect Dis 2024; 43:1495-1501. [PMID: 38801486 PMCID: PMC11271431 DOI: 10.1007/s10096-024-04857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Corynebacterium striatum is an emerging nosocomial pathogen. This is the first report showing the presence of three distinct multidrug resistant lineages of C. striatum among patients in a UK hospital. The presence of ErmX, Tet(W), Bla and AmpC proteins, and mutations in gyrA gene are associated with the resistance to clindamycin, doxycycline, penicillin and moxifloxacin, respectively. These strains are equipped with several corynebacterial virulence genes including two SpaDEF-type and a novel pilus gene cluster, which needs further molecular characterisation. This study highlights a need of developing an active surveillance strategy for routine monitoring and preventing potential cross-transmission among susceptible patients.
Collapse
Affiliation(s)
- Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK.
| | - Emma C L Marrs
- Microbiology Research Department, Freeman Hospital, Newcastle upon Tyne, UK
| | - Andrew Nelson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - John D Perry
- Microbiology Research Department, Freeman Hospital, Newcastle upon Tyne, UK
| |
Collapse
|
4
|
Liu Y, Li H, Dai D, He J, Liang Z. Gene Regulatory Mechanism of Mycobacterium Tuberculosis during Dormancy. Curr Issues Mol Biol 2024; 46:5825-5844. [PMID: 38921019 PMCID: PMC11203133 DOI: 10.3390/cimb46060348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) complex, is a zoonotic disease that remains one of the leading causes of death worldwide. Latent tuberculosis infection reactivation is a challenging obstacle to eradicating TB globally. Understanding the gene regulatory network of Mtb during dormancy is important. This review discusses up-to-date information about TB gene regulatory networks during dormancy, focusing on the regulation of lipid and energy metabolism, dormancy survival regulator (DosR), White B-like (Wbl) family, Toxin-Antitoxin (TA) systems, sigma factors, and MprAB. We outline the progress in vaccine and drug development associated with Mtb dormancy.
Collapse
Affiliation(s)
- Yiduo Liu
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Han Li
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Dejia Dai
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Jiakang He
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Zhengmin Liang
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| |
Collapse
|
5
|
Hart EM, Lyerly E, Bernhardt TG. The conserved σD envelope stress response monitors multiple aspects of envelope integrity in corynebacteria. PLoS Genet 2024; 20:e1011127. [PMID: 38829907 PMCID: PMC11175481 DOI: 10.1371/journal.pgen.1011127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/13/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
The cell envelope fortifies bacterial cells against antibiotics and other insults. Species in the Mycobacteriales order have a complex envelope that includes an outer layer of mycolic acids called the mycomembrane (MM) and a cell wall composed of peptidoglycan and arabinogalactan. This envelope architecture is unique among bacteria and contributes significantly to the virulence of pathogenic Mycobacteriales like Mycobacterium tuberculosis. Characterization of pathways that govern envelope biogenesis in these organisms is therefore critical in understanding their biology and for identifying new antibiotic targets. To better understand MM biogenesis, we developed a cell sorting-based screen for mutants defective in the surface exposure of a porin normally embedded in the MM of the model organism Corynebacterium glutamicum. The results revealed a requirement for the conserved σD envelope stress response in porin export and identified MarP as the site-1 protease, respectively, that activate the response by cleaving the membrane-embedded anti-sigma factor. A reporter system revealed that the σD pathway responds to defects in mycolic acid and arabinogalactan biosynthesis, suggesting that the stress response has the unusual property of being induced by activating signals that arise from defects in the assembly of two distinct envelope layers. Our results thus provide new insights into how C. glutamicum and related bacteria monitor envelope integrity and suggest a potential role for members of the σD regulon in protein export to the MM.
Collapse
Affiliation(s)
- Elizabeth M. Hart
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Evan Lyerly
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas G. Bernhardt
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Sturm A, Sun P, Avila-Pacheco J, Clatworthy AE, Bloom-Ackermann Z, Wuo MG, Gomez JE, Jin S, Clish CB, Kiessling LL, Hung DT. Genetic factors affecting storage and utilization of lipids during dormancy in Mycobacterium tuberculosis. mBio 2024; 15:e0320823. [PMID: 38236034 PMCID: PMC10865790 DOI: 10.1128/mbio.03208-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) can adopt a non-growing dormant state during infection that may be critical to both active and latent tuberculosis. During dormancy, Mtb is widely tolerant toward antibiotics, a significant obstacle in current anti-tubercular drug regimens, and retains the ability to persist in its environment. We aimed to identify novel mechanisms that permit Mtb to survive dormancy in an in vitro carbon starvation model using transposon insertion sequencing and gene expression analysis. We identified a previously uncharacterized component of the lipid transport machinery, omamC, which was upregulated and required for survival during carbon starvation. We show that OmamC plays a role both in increasing fatty acid stores during growth in rich media and enhancing fatty acid utilization during starvation. Besides its involvement in lipid metabolism, OmamC levels affected the expression of the anti-anti-sigma factor rv0516c and other genes to improve Mtb survival during carbon starvation and increase its tolerance toward rifampicin, a first-line drug effective against non-growing Mtb. Importantly, we show that Mtb can be eradicated during carbon starvation, in an OmamC-dependent manner, by inhibiting lipid metabolism with the lipase inhibitor tetrahydrolipstatin. This work casts new light into the survival processes of non-replicating, drug-tolerant Mtb by identifying new proteins involved in lipid metabolism required for the survival of dormant bacteria and exposing a potential vulnerability that could be exploited for antibiotic discovery.IMPORTANCETuberculosis is a global threat, with ~10 million yearly active cases. Many more people, however, live with "latent" infection, where Mycobacterium tuberculosis survives in a non-replicative form. When latent bacteria activate and regrow, they elicit immune responses and result in significant host damage. Replicating and non-growing bacilli can co-exist; however, non-growing bacteria are considerably less sensitive to antibiotics, thus complicating treatment by necessitating long treatment durations. Here, we sought to identify genes important for bacterial survival in this non-growing state using a carbon starvation model. We found that a previously uncharacterized gene, omamC, is involved in storing and utilizing fatty acids as bacteria transition between these two states. Importantly, inhibiting lipid metabolism using a lipase inhibitor eradicates non-growing bacteria. Thus, targeting lipid metabolism may be a viable strategy for treating the non-growing population in strategies to shorten treatment durations of tuberculosis.
Collapse
Affiliation(s)
- Alexander Sturm
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Penny Sun
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
| | | | - Anne E. Clatworthy
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Zohar Bloom-Ackermann
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael G. Wuo
- Department of Chemistry, MIT, Cambridge, Massachusetts, USA
| | - James E. Gomez
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Soomin Jin
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Clary B. Clish
- Metabolomics Platform, Broad Institute, Cambridge, Massachusetts, USA
| | | | - Deborah T. Hung
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Comín J, Campos E, Gonzalo-Asensio J, Samper S. Transcriptomic profile of the most successful Mycobacterium tuberculosis strain in Aragon, the MtZ strain, during exponential and stationary growth phases. Microbiol Spectr 2023; 11:e0468522. [PMID: 37882511 PMCID: PMC10714837 DOI: 10.1128/spectrum.04685-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/21/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Aragon Community suffered, during the first years of the beginning of this century, a large outbreak caused by the MtZ strain, producing more than 240 cases to date. MtZ strain and the outbreak have been previously studied from an epidemiological and molecular point of view. In this work, we analyzed the transcriptomic profile of the strain for better understanding of its success among our population. We have discovered that MtZ has some upregulated virulence pathways, such as the ESX-1 system, the cholesterol degradation pathway or the peptidoglycan biosynthesis. Interestingly, MtZ has downregulated the uptake of iron. Another special feature of MtZ strain is the interruption of desA3 gene, essential for producing oleic acid. Although the strain takes a long time to grow in the initial culture media, eventually it is able to reach normal optical densities, suggestive of the presence of another route for obtaining oleic acid in Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Jessica Comín
- Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | | | - Jesús Gonzalo-Asensio
- Universidad de Zaragoza, Zaragoza, Spain
- Fundación IIS Aragón, Zaragoza, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Sofía Samper
- Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
- Fundación IIS Aragón, Zaragoza, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
8
|
Nelson SJ, Williams JT, Buglino JA, Nambi S, Lojek LJ, Glickman MS, Ioerger TR, Sassetti CM. The Rip1 intramembrane protease contributes to iron and zinc homeostasis in Mycobacterium tuberculosis. mSphere 2023; 8:e0038922. [PMID: 37318217 PMCID: PMC10449499 DOI: 10.1128/msphere.00389-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
Mycobacterium tuberculosis is exposed to a variety of stresses during a chronic infection, as the immune system simultaneously produces bactericidal compounds and starves the pathogen of essential nutrients. The intramembrane protease, Rip1, plays an important role in the adaptation to these stresses, at least partially by the cleavage of membrane-bound transcriptional regulators. Although Rip1 is known to be critical for surviving copper intoxication and nitric oxide exposure, these stresses do not fully account for the regulatory protein's essentiality during infection. In this work, we demonstrate that Rip1 is also necessary for growth in low-iron and low-zinc conditions, similar to those imposed by the immune system. Using a newly generated library of sigma factor mutants, we show that the known regulatory target of Rip1, SigL, shares this defect. Transcriptional profiling under iron-limiting conditions supported the coordinated activity of Rip1 and SigL and demonstrated that the loss of these proteins produces an exaggerated iron starvation response. These observations demonstrate that Rip1 coordinates several aspects of metal homeostasis and suggest that a Rip1- and SigL-dependent pathway is necessary to thrive in the iron-deficient environments encountered during infection. IMPORTANCE Metal homeostasis represents a critical point of interaction between the mammalian immune system and potential pathogens. While the host attempts to intoxicate microbes with high concentrations of copper or starve the invader of iron and zinc, successful pathogens have acquired mechanisms to overcome these defenses. Our work identifies a regulatory pathway consisting of the Rip1 intramembrane protease and the sigma factor, SigL, that is essential for the important human pathogen, Mycobacterium tuberculosis, to grow in low-iron or low-zinc conditions such as those encountered during infection. In conjunction with Rip1's known role in resisting copper toxicity, our work implicates this protein as a critical integration point that coordinates the multiple metal homeostatic systems required for this pathogen to survive in host tissue.
Collapse
Affiliation(s)
- Samantha J. Nelson
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - John T. Williams
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - John A. Buglino
- Immunology Program, Sloan Kettering Institute, New York City, New York, USA
| | - Subhalaxmi Nambi
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lisa J. Lojek
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | | - Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
9
|
Singha B, Behera D, Khan MZ, Singh NK, Sowpati DT, Gopal B, Nandicoori VK. The unique N-terminal region of Mycobacterium tuberculosis sigma factor A plays a dominant role in the essential function of this protein. J Biol Chem 2023; 299:102933. [PMID: 36690275 PMCID: PMC10011835 DOI: 10.1016/j.jbc.2023.102933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
SigA (σA) is an essential protein and the primary sigma factor in Mycobacterium tuberculosis (Mtb). However, due to the absence of genetic tools, our understanding of the role and regulation of σA activity and its molecular attributes that help modulate Mtb survival is scant. Here, we generated a conditional gene replacement of σA in Mtb and showed that its depletion results in a severe survival defect in vitro, ex vivo, and in vivo in a murine infection model. Our RNA-seq analysis suggests that σA either directly or indirectly regulates ∼57% of the Mtb transcriptome, including ∼28% of essential genes. Surprisingly, we note that despite having ∼64% similarity with σA, overexpression of the primary-like σ factor SigB (σB) fails to compensate for the absence of σA, suggesting minimal functional redundancy. RNA-seq analysis of the Mtb σB deletion mutant revealed that 433 genes are regulated by σB, of which 283 overlap with the σA transcriptome. Additionally, surface plasmon resonance, in vitro transcription, and functional complementation experiments reveal that σA residues between 132-179 that are disordered and missing from all experimentally determined σA-RNAP structural models are imperative for σA function. Moreover, phosphorylation of σA in the intrinsically disordered N-terminal region plays a regulatory role in modulating its activity. Collectively, these observations and analysis provide a rationale for the centrality of σA for the survival and pathogenicity of this bacillus.
Collapse
Affiliation(s)
- Biplab Singha
- National Institute of Immunology, New Delhi, India; CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Debashree Behera
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | | | | | | - Vinay Kumar Nandicoori
- National Institute of Immunology, New Delhi, India; CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.
| |
Collapse
|
10
|
Jesus HNR, Ramos JN, Rocha DJPG, Alves DA, Silva CS, Cruz JVO, Vieira VV, Souza C, Santos LS, Navas J, Ramos RTJ, Azevedo V, Aguiar ERGR, Mattos-Guaraldi AL, Pacheco LGC. The pan-genome of the emerging multidrug-resistant pathogen Corynebacterium striatum. Funct Integr Genomics 2022; 23:5. [PMID: 36534203 DOI: 10.1007/s10142-022-00932-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Corynebacterium striatum, a common constituent of the human skin microbiome, is now considered an emerging multidrug-resistant pathogen of immunocompromised and chronically ill patients. However, little is known about the molecular mechanisms in the transition from colonization to the multidrug-resistant (MDR) invasive phenotype in clinical isolates. This study performed a comprehensive pan-genomic analysis of C. striatum, including isolates from "normal skin microbiome" and from MDR infections, to gain insights into genetic factors contributing to pathogenicity and multidrug resistance in this species. For this, three novel genome sequences were obtained from clinical isolates of C. striatum of patients from Brazil, and other 24 complete or draft C. striatum genomes were retrieved from GenBank, including the ATCC6940 isolate from the Human Microbiome Project. Analysis of C. striatum strains demonstrated the presence of an open pan-genome (α = 0.852803) containing 3816 gene families, including 15 antimicrobial resistance (AMR) genes and 32 putative virulence factors. The core and accessory genomes included 1297 and 1307 genes, respectively. The identified AMR genes are primarily associated with resistance to aminoglycosides and tetracyclines. Of these, 66.6% are present in genomic islands, and four AMR genes, including aac(6')-ib7, are located in a class 1-integron. In conclusion, our data indicated that C. striatum possesses genomic characteristics favorable to the invasive phenotype, with high genomic plasticity, a robust genetic arsenal for iron acquisition, and important virulence determinants and AMR genes present in mobile genetic elements.
Collapse
Affiliation(s)
- Hendor N R Jesus
- Multicenter Post-Graduate Program in Biochemistry and Molecular Biology (PMBqBM), Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Juliana N Ramos
- Laboratory of Diphtheria and Corinebacteria of Clinical Relevance, School of Medical Sciences, Rio de Janeiro State University - LDCIC/FCM/UERJ, Rio de Janeiro, RJ, Brazil
| | - Danilo J P G Rocha
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Daniele A Alves
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil.,Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carolina S Silva
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - João V O Cruz
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Verônica V Vieira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brazil
| | - Cassius Souza
- Laboratory of Diphtheria and Corinebacteria of Clinical Relevance, School of Medical Sciences, Rio de Janeiro State University - LDCIC/FCM/UERJ, Rio de Janeiro, RJ, Brazil
| | - Louisy S Santos
- Laboratory of Diphtheria and Corinebacteria of Clinical Relevance, School of Medical Sciences, Rio de Janeiro State University - LDCIC/FCM/UERJ, Rio de Janeiro, RJ, Brazil
| | - Jesus Navas
- Cantabria University, Instituto de Investigación Valdecilla (IDIVAL), Santander, Spain
| | - Rommel T J Ramos
- Institute of Biological Sciences, Federal University of Para, Belem, PA, Brazil.,Biological Engineering Laboratory, Science and Technology Park Guama, Belem, PA, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eric R G R Aguiar
- Department of Biological Sciences, State University of Santa Cruz, Ilhéus, BA, Brazil
| | - Ana L Mattos-Guaraldi
- Laboratory of Diphtheria and Corinebacteria of Clinical Relevance, School of Medical Sciences, Rio de Janeiro State University - LDCIC/FCM/UERJ, Rio de Janeiro, RJ, Brazil
| | - Luis G C Pacheco
- Multicenter Post-Graduate Program in Biochemistry and Molecular Biology (PMBqBM), Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil. .,Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
11
|
Jiang Z, Zhuang Z, Mi K. Experimental Evolution Reveals Redox State Modulates Mycobacterial Pathogenicity. Front Genet 2022; 13:758304. [PMID: 35368697 PMCID: PMC8965865 DOI: 10.3389/fgene.2022.758304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/10/2022] [Indexed: 11/19/2022] Open
Abstract
Understanding how Mycobacterium tuberculosis has evolved into a professional pathogen is helpful in studying its pathogenesis and for designing vaccines. We investigated how the evolutionary adaptation of M. smegmatis mc251 to an important clinical stressor H2O2 allows bacteria to undergo coordinated genetic mutations, resulting in increased pathogenicity. Whole-genome sequencing identified a mutation site in the fur gene, which caused increased expression of katG. Using a Wayne dormancy model, mc251 showed a growth advantage over its parental strain mc2155 in recovering from dormancy under anaerobic conditions. Meanwhile, the high level of KatG in mc251 was accompanied by a low level of ATP, which meant that mc251 is at a low respiratory level. Additionally, the redox-related protein Rv1996 showed different phenotypes in different specific redox states in M. smegmatis mc2155 and mc251, M. bovis BCG, and M. tuberculosis mc27000. In conclusion, our study shows that the same gene presents different phenotypes under different physiological conditions. This may partly explain why M. smegmatis and M. tuberculosis have similar virulence factors and signaling transduction systems such as two-component systems and sigma factors, but due to the different redox states in the corresponding bacteria, M. smegmatis is a nonpathogen, while M. tuberculosis is a pathogen. As mc251 overcomes its shortcomings of rapid removal, it can potentially be developed as a vaccine vector.
Collapse
Affiliation(s)
- Zheng Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zengfang Zhuang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Kaixia Mi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Kaixia Mi,
| |
Collapse
|
12
|
Blumenstein J, Rädisch R, Štěpánek V, Grulich M, Dostálová H, Pátek M. Identification of Rhodococcus erythropolis Promoters Controlled by Alternative Sigma Factors Using In Vivo and In Vitro Systems and Heterologous RNA Polymerase. Curr Microbiol 2022; 79:55. [PMID: 34982253 DOI: 10.1007/s00284-021-02747-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/10/2021] [Indexed: 11/03/2022]
Abstract
Rhodococcus erythropolis CCM2595 is a bacterial strain, which has been studied for its capability to degrade phenol and other toxic aromatic compounds. Its cell wall contains mycolic acids, which are also an attribute of other bacteria of the Mycolata group, such as Corynebacterium and Mycobacterium species. We suppose that many genes upregulated by phenol stress in R. erythropolis are controlled by the alternative sigma factors of RNA polymerase, which are active in response to the cell envelope or oxidative stress. We developed in vitro and in vivo assays to examine the connection between the stress sigma factors and genes activated by various extreme conditions, e.g., heat, cell surface, and oxidative stress. These assays are based on the procedures of such tests carried out in the related species, Corynebacterium glutamicum. We showed that the R. erythropolis CCM2595 genes frmB1 and frmB2, which encode S-formylglutathione hydrolases (named corynomycolyl transferases in C. glutamicum), are controlled by SigD, just like the homologous genes cmt1 and cmt2 in C. glutamicum. The new protocol of the in vivo and in vitro assays will enable us to classify R. erythropolis promoters according to their connection to sigma factors and to assign the genes to the corresponding sigma regulons. The complex stress responses, such as that induced by phenol, could, thus, be analyzed with respect to the gene regulation by sigma factors.
Collapse
Affiliation(s)
- Jan Blumenstein
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Robert Rädisch
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Václav Štěpánek
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | - Michal Grulich
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | - Hana Dostálová
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | - Miroslav Pátek
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic.
| |
Collapse
|
13
|
Grigorov A, Bychenko O, Salina EG, Skvortsova Y, Mazurova A, Skvortsov T, Kaprelyants A, Azhikina T. Small RNA F6 Provides Mycobacterium smegmatis Entry into Dormancy. Int J Mol Sci 2021; 22:11536. [PMID: 34768965 PMCID: PMC8583896 DOI: 10.3390/ijms222111536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Regulatory small non-coding RNAs play a significant role in bacterial adaptation to changing environmental conditions. Various stresses such as hypoxia and nutrient starvation cause a reduction in the metabolic activity of Mycobacterium smegmatis, leading to entry into dormancy. We investigated the functional role of F6, a small RNA of M. smegmatis, and constructed an F6 deletion strain of M. smegmatis. Using the RNA-seq approach, we demonstrated that gene expression changes that accompany F6 deletion contributed to bacterial resistance against oxidative stress. We also found that F6 directly interacted with 5'-UTR of MSMEG_4640 mRNA encoding RpfE2, a resuscitation-promoting factor, which led to the downregulation of RpfE2 expression. The F6 deletion strain was characterized by the reduced ability to enter into dormancy (non-culturability) in the potassium deficiency model compared to the wild-type strain, indicating that F6 significantly contributes to bacterial adaptation to non-optimal growth conditions.
Collapse
Affiliation(s)
- Artem Grigorov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (O.B.); (Y.S.); (A.M.)
| | - Oksana Bychenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (O.B.); (Y.S.); (A.M.)
| | - Elena G. Salina
- Research Center of Biotechnology, Bach Institute of Biochemistry, 119071 Moscow, Russia; (E.G.S.); (A.K.)
| | - Yulia Skvortsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (O.B.); (Y.S.); (A.M.)
| | - Arina Mazurova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (O.B.); (Y.S.); (A.M.)
| | - Timofey Skvortsov
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK;
| | - Arseny Kaprelyants
- Research Center of Biotechnology, Bach Institute of Biochemistry, 119071 Moscow, Russia; (E.G.S.); (A.K.)
| | - Tatyana Azhikina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (O.B.); (Y.S.); (A.M.)
| |
Collapse
|
14
|
Bokolia NP, Khan IA. Regulation of polyphosphate glucokinase gene expression through co-transcriptional processing in Mycobacterium tuberculosis H37Rv. J Biochem 2021; 170:593-609. [PMID: 34247237 DOI: 10.1093/jb/mvab080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/01/2021] [Indexed: 11/14/2022] Open
Abstract
Transcription is a molecular process that involves the synthesis of RNA chain into the 5'-3' direction, and simultaneously nascent RNA chain tends to form geometric structures, known as co-transcriptional folding. This folding determines the functional properties of RNA molecules and possibly has a critical role during the synthesis. This functioning includes the characterized properties of riboswitches and ribozymes, which are significant when the transcription rate is comparable to the cellular environment. This study reports a novel non-coding region important in the genetic expression of polyphosphate glucokinase (ppgk) in Mycobacterium tuberculosis. This non-coding element of ppgk gene undergoes cleavage activity during the transcriptional process in Mycobacterium tuberculosis. We revealed that cleavage occurs within the nascent RNA, and the resultant cleaved 3'RNA fragment carries the Shine- Dalgarno (SD) sequence and expression platform. We concluded co-transcriptional processing at the non-coding region as the required mechanism for ppgk expression that remains constitutive within the bacterial environment. This study defines the molecular mechanism dependent on the transient but highly active structural features of the nascent RNA.
Collapse
Affiliation(s)
- Naveen Prakash Bokolia
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Inshad Ali Khan
- Department of Microbiology, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| |
Collapse
|
15
|
Genome-wide identification of novel genes involved in Corynebacteriales cell envelope biogenesis using Corynebacterium glutamicum as a model. PLoS One 2021; 15:e0240497. [PMID: 33383576 PMCID: PMC7775120 DOI: 10.1371/journal.pone.0240497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/16/2020] [Indexed: 01/06/2023] Open
Abstract
Corynebacteriales are Actinobacteria that possess an atypical didermic cell envelope. One of the principal features of this cell envelope is the presence of a large complex made up of peptidoglycan, arabinogalactan and mycolic acids. This covalent complex constitutes the backbone of the cell wall and supports an outer membrane, called mycomembrane in reference to the mycolic acids that are its major component. The biosynthesis of the cell envelope of Corynebacteriales has been extensively studied, in particular because it is crucial for the survival of important pathogens such as Mycobacterium tuberculosis and is therefore a key target for anti-tuberculosis drugs. In this study, we explore the biogenesis of the cell envelope of Corynebacterium glutamicum, a non-pathogenic Corynebacteriales, which can tolerate dramatic modifications of its cell envelope as important as the loss of its mycomembrane. For this purpose, we used a genetic approach based on genome-wide transposon mutagenesis. We developed a highly effective immunological test based on the use of anti-cell wall antibodies that allowed us to rapidly identify bacteria exhibiting an altered cell envelope. A very large number (10,073) of insertional mutants were screened by means of this test, and 80 were finally selected, representing 55 different loci. Bioinformatics analyses of these loci showed that approximately 60% corresponded to genes already characterized, 63% of which are known to be directly involved in cell wall processes, and more specifically in the biosynthesis of the mycoloyl-arabinogalactan-peptidoglycan complex. We identified 22 new loci potentially involved in cell envelope biogenesis, 76% of which encode putative cell envelope proteins. A mutant of particular interest was further characterized and revealed a new player in mycolic acid metabolism. Because a large proportion of the genes identified by our study is conserved in Corynebacteriales, the library described here provides a new resource of genes whose characterization could lead to a better understanding of the biosynthesis of the envelope components of these bacteria.
Collapse
|
16
|
Abdalla AE, Yan S, Zeng J, Deng W, Xie L, Xie J. Mycobacterium tuberculosis Rv0341 Promotes Mycobacterium Survival in In Vitro Hostile Environments and within Macrophages and Induces Cytokines Expression. Pathogens 2020; 9:pathogens9060454. [PMID: 32521796 PMCID: PMC7350357 DOI: 10.3390/pathogens9060454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 01/02/2023] Open
Abstract
Mycobacterium tuberculosis represents an ancient deadly human pathogen that can survive and multiply within macrophages. The effectors are key players for the successful pathogenesis of this bacterium. M. tuberculosis open reading frame (ORF) Rv0341, a pathogenic mycobacteria-specific gene, was found to be upregulated in macrophages isolated from human tuberculosis granuloma and inside the macrophages during in vitro infection by M. tuberculosis. To understand the exact role of this gene, we expressed the Rv0341 gene in M. smegmatis, which is a non-pathogenic Mycobacterium. We found that Rv0341 expression can alter colony morphology, reduce the sliding capability, and decrease the cell wall permeability of M. smegmatis. Furthermore, Rv0341 remarkably enhanced M. smegmatis survival within macrophages and under multiple in vitro stress conditions when compared with the control strain. Ms_Rv0341 significantly induced expression of TNF-α, IL-1β, and IL-10 compared with M. smegmatis harboring an empty vector. In summary, these data suggest that Rv0341 is one of the M. tuberculosis virulence determinants that can promote bacilli survival in harsh conditions and inside macrophages.
Collapse
Affiliation(s)
- Abualgasim Elgaili Abdalla
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Beibei, Chongqing 400715, China; (A.E.A.); (S.Y.); (J.Z.); (W.D.)
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka, Al Jouf 2014, Saudi Arabia
| | - Shuangquan Yan
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Beibei, Chongqing 400715, China; (A.E.A.); (S.Y.); (J.Z.); (W.D.)
| | - Jie Zeng
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Beibei, Chongqing 400715, China; (A.E.A.); (S.Y.); (J.Z.); (W.D.)
| | - Wanyan Deng
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Beibei, Chongqing 400715, China; (A.E.A.); (S.Y.); (J.Z.); (W.D.)
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Beibei, Chongqing 400715, China; (A.E.A.); (S.Y.); (J.Z.); (W.D.)
- Correspondence: ; Tel.: +86-135-9439-2126
| |
Collapse
|
17
|
Shahbaaz M, Potemkin V, Bisetty K, Hassan MI, Hussien MA. Classification and functional analyses of putative virulence factors of Mycobacterium tuberculosis: A combined sequence and structure based study. Comput Biol Chem 2020; 87:107270. [PMID: 32438116 DOI: 10.1016/j.compbiolchem.2020.107270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/16/2020] [Accepted: 04/26/2020] [Indexed: 11/17/2022]
Abstract
The emergence of the drug-resistant mechanisms in Mycobacterium tuberculosis poses the biggest challenges to the current therapeutic measures, which necessitates the identification of new drug targets. The Hypothetical Proteins (HPs), a class of functionally uncharacterized proteins, may provide a new class of undiscovered therapeutic targets. The genome of M. tuberculosis contains 1000 HPs with their sequences were analyzed using a variety of bioinformatics tools and the functional annotations were performed. The functions of 662 HPs were successfully predicted and further classified 483 HPs as enzymes, 141 HPs were predicted to be involved in the diverse cellular mechanisms and 38 HPs may function as transporters and carriers proteins. Furthermore, 28 HPs were predicted to be virulent in nature. Amongst them, the HP P95201, HP P9WM79, HP I6WZ30, HP I6 × 9T8, HP P9WKP3, and HP P9WK89 showed the highest virulence scores. Therefore, these proteins were subjected to extensive structure analyses and dynamics of their conformations were investigated using the principles of molecular dynamics simulations, each for a 150 ns time scale. This study provides a deeper understanding of the undiscovered drug targets and the generated outputs will facilitate the process of drug design and discovery against the infection of M. tuberculosis.
Collapse
Affiliation(s)
- Mohd Shahbaaz
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute (SANBI), University of the Western Cape, Private Bag X17, Bellville 7535, Cape Town, South Africa; Laboratory of Computational Modeling of Drugs, South Ural State University, 76 Lenin prospekt, 454080 Chelyabinsk, Russia
| | - Vladimir Potemkin
- Laboratory of Computational Modeling of Drugs, South Ural State University, 76 Lenin prospekt, 454080 Chelyabinsk, Russia
| | - Krishna Bisetty
- Department of Chemistry, Durban University of Technology, Durban, 4000, South Africa
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mostafa A Hussien
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203 Jeddah 21589, Saudi Arabia; Department of Chemistry, Faculty of Science, Port Said University, Port Said, 42521, Egypt
| |
Collapse
|
18
|
Behra PRK, Pettersson BMF, Ramesh M, Dasgupta S, Kirsebom LA. Insight into the biology of Mycobacterium mucogenicum and Mycobacterium neoaurum clade members. Sci Rep 2019; 9:19259. [PMID: 31848383 PMCID: PMC6917791 DOI: 10.1038/s41598-019-55464-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/12/2019] [Indexed: 11/09/2022] Open
Abstract
Nontuberculous mycobacteria, NTM, are of growing concern and among these members of the Mycobacterium mucogenicum (Mmuc) and Mycobacterium neoaurum (Mneo) clades can cause infections in humans and they are resistant to first-line anti-tuberculosis drugs. They can be isolated from different ecological niches such as soil, tap water and ground water. Mycobacteria, such as Mmuc and Mneo, are classified as rapid growing mycobacteria, RGM, while the most familiar, Mycobacterium tuberculosis, belongs to the slow growing mycobacteria, SGM. Modern “omics” approaches have provided new insights into our understanding of the biology and evolution of this group of bacteria. Here we present comparative genomics data for seventeen NTM of which sixteen belong to the Mmuc- and Mneo-clades. Focusing on virulence genes, including genes encoding sigma/anti-sigma factors, serine threonine protein kinases (STPK), type VII (ESX genes) secretion systems and mammalian cell entry (Mce) factors we provide insight into their presence as well as phylogenetic relationship in the case of the sigma/anti-sigma factors and STPKs. Our data further suggest that these NTM lack ESX-5 and Mce2 genes, which are known to affect virulence. In this context, Mmuc- and Mneo-clade members lack several of the genes in the glycopeptidolipid (GLP) locus, which have roles in colony morphotype appearance and virulence. For the M. mucogenicum type strain, MmucT, we provide RNASeq data focusing on mRNA levels for sigma factors, STPK, ESX proteins and Mce proteins. These data are discussed and compared to in particular the SGM and fish pathogen Mycobacterium marinum. Finally, we provide insight into as to why members of the Mmuc- and Mneo-clades show resistance to rifampin and isoniazid, and why MmucT forms a rough colony morphotype.
Collapse
Affiliation(s)
- Phani Rama Krishna Behra
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden
| | - B M Fredrik Pettersson
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden
| | - Malavika Ramesh
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden
| | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden.
| |
Collapse
|
19
|
Ganguli G, Mukherjee U, Sonawane A. Peroxisomes and Oxidative Stress: Their Implications in the Modulation of Cellular Immunity During Mycobacterial Infection. Front Microbiol 2019; 10:1121. [PMID: 31258517 PMCID: PMC6587667 DOI: 10.3389/fmicb.2019.01121] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
Host redox dependent physiological responses play crucial roles in the determination of mycobacterial infection process. Mtb explores oxygen rich lung microenvironments to initiate infection process, however, later on the bacilli adapt to oxygen depleted conditions and become non-replicative and unresponsive toward anti-TB drugs to enter in the latency stage. Mtb is equipped with various sensory mechanisms and a battery of pro- and anti-oxidant enzymes to protect themselves from the host oxidative stress mechanisms. After host cell invasion, mycobacteria induces the expression of NADPH oxidase 2 (NOX2) to generate superoxide radicals (O 2 - ), which are then converted to more toxic hydrogen peroxide (H2O2) by superoxide dismutase (SOD) and subsequently reduced to water by catalase. However, the metabolic cascades and their key regulators associated with cellular redox homeostasis are poorly understood. Phagocytosed mycobacteria en route through different subcellular organelles, where the local environment generated during infection determines the outcome of disease. For a long time, mitochondria were considered as the key player in the redox regulation, however, accumulating evidences report vital role for peroxisomes in the maintenance of cellular redox equilibrium in eukaryotic cells. Deletion of peroxisome-associated peroxin genes impaired detoxification of reactive oxygen species and peroxisome turnover post-infection, thereby leading to altered synthesis of transcription factors, various cell-signaling cascades in favor of the bacilli. This review focuses on how mycobacteria would utilize host peroxisomes to alter redox balance and metabolic regulatory mechanisms to support infection process. Here, we discuss implications of peroxisome biogenesis in the modulation of host responses against mycobacterial infection.
Collapse
Affiliation(s)
- Geetanjali Ganguli
- School of Biotechnology, KIIT (deemed to be University), Bhubaneswar, India
| | - Utsav Mukherjee
- School of Biotechnology, KIIT (deemed to be University), Bhubaneswar, India
| | - Avinash Sonawane
- School of Biotechnology, KIIT (deemed to be University), Bhubaneswar, India
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
20
|
Martini MC, Zhou Y, Sun H, Shell SS. Defining the Transcriptional and Post-transcriptional Landscapes of Mycobacterium smegmatis in Aerobic Growth and Hypoxia. Front Microbiol 2019; 10:591. [PMID: 30984135 PMCID: PMC6448022 DOI: 10.3389/fmicb.2019.00591] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
The ability of Mycobacterium tuberculosis to infect, proliferate, and survive during long periods in the human lungs largely depends on the rigorous control of gene expression. Transcriptome-wide analyses are key to understanding gene regulation on a global scale. Here, we combine 5′-end-directed libraries with RNAseq expression libraries to gain insight into the transcriptome organization and post-transcriptional mRNA cleavage landscape in mycobacteria during log phase growth and under hypoxia, a physiologically relevant stress condition. Using the model organism Mycobacterium smegmatis, we identified 6,090 transcription start sites (TSSs) with high confidence during log phase growth, of which 67% were categorized as primary TSSs for annotated genes, and the remaining were classified as internal, antisense, or orphan, according to their genomic context. Interestingly, over 25% of the RNA transcripts lack a leader sequence, and of the coding sequences that do have leaders, 53% lack a strong consensus Shine-Dalgarno site. This indicates that like M. tuberculosis, M. smegmatis can initiate translation through multiple mechanisms. Our approach also allowed us to identify over 3,000 RNA cleavage sites, which occur at a novel sequence motif. To our knowledge, this represents the first report of a transcriptome-wide RNA cleavage site map in mycobacteria. The cleavage sites show a positional bias toward mRNA regulatory regions, highlighting the importance of post-transcriptional regulation in gene expression. We show that in low oxygen, a condition associated with the host environment during infection, mycobacteria change their transcriptomic profiles and endonucleolytic RNA cleavage is markedly reduced, suggesting a mechanistic explanation for previous reports of increased mRNA half-lives in response to stress. In addition, a number of TSSs were triggered in hypoxia, 56 of which contain the binding motif for the sigma factor SigF in their promoter regions. This suggests that SigF makes direct contributions to transcriptomic remodeling in hypoxia-challenged mycobacteria. Taken together, our data provide a foundation for further study of both transcriptional and posttranscriptional regulation in mycobacteria.
Collapse
Affiliation(s)
- M Carla Martini
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Ying Zhou
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Huaming Sun
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Scarlet S Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States.,Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
21
|
Selectivity among Anti-σ Factors by Mycobacterium tuberculosis ClpX Influences Intracellular Levels of Extracytoplasmic Function σ Factors. J Bacteriol 2019; 201:JB.00748-18. [PMID: 30617240 DOI: 10.1128/jb.00748-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/01/2019] [Indexed: 11/20/2022] Open
Abstract
Extracytoplasmic function σ factors that are stress inducible are often sequestered in an inactive complex with a membrane-associated anti-σ factor. Mycobacterium tuberculosis membrane-associated anti-σ factors have a small, stable RNA gene A (ssrA)-like degron for targeted proteolysis. Interaction between the unfoldase, ClpX, and a substrate with an accessible degron initiates energy-dependent proteolysis. Four anti-σ factors with a mutation in the degron provided a set of natural substrates to evaluate the influence of the degron on degradation strength in ClpX-substrate processivity. We note that a point mutation in the degron (X-Ala-Ala) leads to an order-of-magnitude difference in the dwell time of the substrate on ClpX. Differences in ClpX/anti-σ interactions were correlated with changes in unfoldase activities. Green fluorescent protein (GFP) chimeras or polypeptides with a length identical to that of the anti-σ factor degron also demonstrate degron-dependent variation in ClpX activities. We show that degron-dependent ClpX activity leads to differences in anti-σ degradation, thereby regulating the release of free σ from the σ/anti-σ complex. M. tuberculosis ClpX activity thus influences changes in gene expression by modulating the cellular abundance of ECF σ factors.IMPORTANCE The ability of Mycobacterium tuberculosis to quickly adapt to changing environmental stimuli occurs by maintaining protein homeostasis. Extracytoplasmic function (ECF) σ factors play a significant role in coordinating the transcription profile to changes in environmental conditions. Release of the σ factor from the anti-σ is governed by the ClpXP2P1 assembly. M. tuberculosis ECF anti-σ factors have an ssrA-like degron for targeted degradation. A point mutation in the degron leads to differences in ClpX-mediated proteolysis and affects the cellular abundance of ECF σ factors. ClpX activity thus synchronizes changes in gene expression with environmental stimuli affecting M. tuberculosis physiology.
Collapse
|
22
|
Dostálová H, Busche T, Holátko J, Rucká L, Štěpánek V, Barvík I, Nešvera J, Kalinowski J, Pátek M. Overlap of Promoter Recognition Specificity of Stress Response Sigma Factors SigD and SigH in Corynebacterium glutamicum ATCC 13032. Front Microbiol 2019; 9:3287. [PMID: 30687273 PMCID: PMC6338062 DOI: 10.3389/fmicb.2018.03287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022] Open
Abstract
Corynebacterium glutamicum ATCC 13032 harbors five sigma subunits of RNA polymerase belonging to Group IV, also called extracytoplasmic function (ECF) σ factors. These factors σC, σD, σE, σH, and σM are mostly involved in stress responses. The role of σD consists in the control of cell wall integrity. The σD regulon is involved in the synthesis of components of the mycomembrane which is part of the cell wall in C. glutamicum. RNA sequencing of the transcriptome from a strain overexpressing the sigD gene provided 29 potential σD-controlled genes and enabled us to precisely localize their transcriptional start sites. Analysis of the respective promoters by both in vitro transcription and the in vivo two-plasmid assay confirmed that transcription of 11 of the tested genes is directly σD-dependent. The key sequence elements of all these promoters were found to be identical or closely similar to the motifs -35 GTAACA/G and -10 GAT. Surprisingly, nearly all of these σD-dependent promoters were also active to a much lower extent with σHin vivo and one (Pcg0607) also in vitro, although the known highly conserved consensus sequence of the σH-dependent promoters is different (-35 GGAAT/C and -10 GTT). In addition to the activity of σH at the σD-controlled promoters, we discovered separated or overlapping σA- or σB-regulated or σH-regulated promoters within the upstream region of 8 genes of the σD-regulon. We found that phenol in the cultivation medium acts as a stress factor inducing expression of some σD-dependent genes. Computer modeling revealed that σH binds to the promoter DNA in a similar manner as σD to the analogous promoter elements. The homology models together with mutational analysis showed that the key amino acids, Ala 60 in σD and Lys 53 in σH, bind to the second nucleotide within the respective -10 promoter elements (GAT and GTT, respectively). The presented data obtained by integrating in vivo, in vitro and in silico approaches demonstrate that most of the σD-controlled genes also belong to the σH-regulon and are also transcribed from the overlapping or closely located housekeeping (σA-regulated) and/or general stress (σB-regulated) promoters.
Collapse
Affiliation(s)
- Hana Dostálová
- Institute of Microbiology of the CAS, v. v. i., Prague, Czechia
| | - Tobias Busche
- Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - Jiří Holátko
- Institute of Microbiology of the CAS, v. v. i., Prague, Czechia
| | - Lenka Rucká
- Institute of Microbiology of the CAS, v. v. i., Prague, Czechia
| | - Václav Štěpánek
- Institute of Microbiology of the CAS, v. v. i., Prague, Czechia
| | - Ivan Barvík
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | - Jan Nešvera
- Institute of Microbiology of the CAS, v. v. i., Prague, Czechia
| | - Jörn Kalinowski
- Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - Miroslav Pátek
- Institute of Microbiology of the CAS, v. v. i., Prague, Czechia
| |
Collapse
|
23
|
Li W, Deng W, Xie J. Expression and regulatory networks of Mycobacterium tuberculosis PE/PPE family antigens. J Cell Physiol 2018; 234:7742-7751. [PMID: 30478834 DOI: 10.1002/jcp.27608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/21/2018] [Indexed: 01/06/2023]
Abstract
PE/PPE family antigens are distributed mainly in pathogenic mycobacteria and serve as potential antituberculosis (TB) vaccine components. Some PE/PPE family antigens can regulate the host innate immune response, interfere with macrophage activation and phagolysosome fusion, and serve as major sources of antigenic variation. PE/PPE antigens have been associated with mycobacteria pathogenesis; pe/ppe genes are mainly found in pathogenic mycobacteria and are differentially expressed between Mtb and Mycobacterium bovis. PE/PPE proteins were essential for the growth of Mtb, and PE/PPE proteins were differentially expressed under a variety of conditions. Multiple mycobacterial-virulence-related transcription factors, sigma factors, the global transcriptional regulation factor Lsr2, MprAB, and PhoPR two-component regulatory systems, and cyclic adenine monophosphate-dependent regulators, regulate the expression of PE/PPE family antigens. Multiple-scale integrative analysis revealed the expression and regulatory networks of PE/PPE family antigens underlying the virulence and pathogenesis of Mtb, providing important clues for the discovery of new anti-TB measures.
Collapse
Affiliation(s)
- Wu Li
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, China
| | - Wanyan Deng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
24
|
Otchere ID, Coscollá M, Sánchez-Busó L, Asante-Poku A, Brites D, Loiseau C, Meehan C, Osei-Wusu S, Forson A, Laryea C, Yahayah AI, Baddoo A, Ansa GA, Aboagye SY, Asare P, Borrell S, Gehre F, Beckert P, Kohl TA, N'dira S, Beisel C, Antonio M, Niemann S, de Jong BC, Parkhill J, Harris SR, Gagneux S, Yeboah-Manu D. Comparative genomics of Mycobacterium africanum Lineage 5 and Lineage 6 from Ghana suggests distinct ecological niches. Sci Rep 2018; 8:11269. [PMID: 30050166 PMCID: PMC6062541 DOI: 10.1038/s41598-018-29620-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 07/16/2018] [Indexed: 11/09/2022] Open
Abstract
Mycobacterium africanum (Maf) causes a substantial proportion of human tuberculosis in some countries of West Africa, but little is known on this pathogen. We compared the genomes of 253 Maf clinical isolates from Ghana, including N = 175 Lineage 5 (L5) and N = 78 Lineage 6 (L6). We found that the genomic diversity of L6 was higher than in L5 despite the smaller sample size. Regulatory proteins appeared to evolve neutrally in L5 but under purifying selection in L6. Even though over 90% of the human T cell epitopes were conserved in both lineages, L6 showed a higher ratio of non-synonymous to synonymous single nucleotide variation in these epitopes overall compared to L5. Of the 10% human T cell epitopes that were variable, most carried mutations that were lineage-specific. Our findings indicate that Maf L5 and L6 differ in some of their population genomic characteristics, possibly reflecting different selection pressures linked to distinct ecological niches.
Collapse
Affiliation(s)
- Isaac Darko Otchere
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Mireia Coscollá
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Leonor Sánchez-Busó
- Wellcome Trust Sanger Institute, University of Cambridge, Hinxton, United Kingdom
| | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Daniela Brites
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Chloe Loiseau
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Conor Meehan
- Institute of Tropical Medicine, Antwerp, Belgium
| | - Stephen Osei-Wusu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Audrey Forson
- Chest Clinic, Korle-Bu Teaching Hospital, Accra, Ghana
| | | | | | - Akosua Baddoo
- Chest Clinic, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Gloria Akosua Ansa
- Public Health Department, University of Ghana Hospital, Legon, Accra, Ghana
| | - Samuel Yaw Aboagye
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Prince Asare
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Florian Gehre
- Institute of Tropical Medicine, Antwerp, Belgium
- Medical Research Council Unit The Gambia at The London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Patrick Beckert
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck, Lübeck, Germany
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck, Lübeck, Germany
| | - Sanoussi N'dira
- National Reference Laboratory for Mycobacteria, Cotonou, Benin
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Antonio
- Medical Research Council Unit The Gambia at The London School of Hygiene and Tropical Medicine, Banjul, The Gambia
- Division of Microbiology & Immunity, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck, Lübeck, Germany
| | - Bouke C de Jong
- Institute of Tropical Medicine, Antwerp, Belgium
- Medical Research Council Unit The Gambia at The London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, University of Cambridge, Hinxton, United Kingdom
| | - Simon R Harris
- Wellcome Trust Sanger Institute, University of Cambridge, Hinxton, United Kingdom
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
25
|
Dow A, Prisic S. Alternative ribosomal proteins are required for growth and morphogenesis of Mycobacterium smegmatis under zinc limiting conditions. PLoS One 2018; 13:e0196300. [PMID: 29684089 PMCID: PMC5912738 DOI: 10.1371/journal.pone.0196300] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/10/2018] [Indexed: 01/19/2023] Open
Abstract
Zinc is an essential micronutrient required for proper structure and function of many proteins. Bacteria regularly encounter zinc depletion and have evolved diverse mechanisms to continue growth when zinc is limited, including the expression of zinc-independent paralogs of zinc-binding proteins. Mycobacteria have a conserved operon encoding four zinc-independent alternative ribosomal proteins (AltRPs) that are expressed when zinc is depleted. It is unknown if mycobacterial AltRPs replace their primary paralogs in the ribosome and maintain protein synthesis under zinc-limited conditions, and if such replacements contribute to their physiology. This study shows that AltRPs from Mycobacterium smegmatis are essential for growth when zinc ion is scarce. Specifically, the deletion mutant of this operon (ΔaltRP) is unable to grow in media containing a high-affinity zinc chelator, while growth of the wild type strain is unaffected under the same conditions. However, when zinc is gradually depleted during growth in zinc-limited medium, the ΔaltRP mutant maintains the same growth rate as seen for the wild type strain. In contrast to M. smegmatis grown with sufficient zinc supplementation that forms shorter cells when transitioning from logarithmic to stationary phase, M. smegmatis deficient for zinc elongates after the expression of AltRPs in late logarithmic phase. These zinc-depleted bacteria also exhibit a remarkable morphology characterized by a condensed chromosome, increased number of polyphosphate granules, and distinct appearance of lipid bodies and the cell wall compared to the zinc-replete cells. However, the ΔaltRP cells fail to elongate and transition into the zinc-limited morphotype, resembling the wild type zinc-replete bacteria instead. Therefore, the altRP operon in M. smegmatis has a vital role in continuation of growth when zinc is scarce and in triggering specific morphogenesis during the adaptation to zinc limitation, suggesting that AltRPs can functionally replace their zinc-dependent paralogs, but also contribute to mycobacterial physiology in a unique way.
Collapse
Affiliation(s)
- Allexa Dow
- Department of Microbiology, University of Hawai‛i at Mānoa, Honolulu, Hawai‛i, United States of America
| | - Sladjana Prisic
- Department of Microbiology, University of Hawai‛i at Mānoa, Honolulu, Hawai‛i, United States of America
- * E-mail:
| |
Collapse
|
26
|
Uhía I, Krishnan N, Robertson BD. Characterising resuscitation promoting factor fluorescent-fusions in mycobacteria. BMC Microbiol 2018; 18:30. [PMID: 29649975 PMCID: PMC5898023 DOI: 10.1186/s12866-018-1165-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 03/15/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Resuscitation promoting factor proteins (Rpfs) are peptidoglycan glycosidases capable of resuscitating dormant mycobacteria, and have been found to play a role in the pathogenesis of tuberculosis. However, the specific roles and localisation of each of the 5 Rpfs in Mycobacterium tuberculosis remain mostly unknown. In this work our aim was to construct fluorescent fusions of M. tuberculosis Rpf proteins as tools to investigate their function. RESULTS We found that Rpf-fusions to the fluorescent protein mCherry are functional and able to promote cell growth under different conditions. However, fusions to Enhanced Green Fluorescent Protein (EGFP) were non-functional in the assays used and none were secreted into the extracellular medium, which suggests Rpfs may be secreted via the Sec pathway. No specific cellular localization was observed for either set of fusions using time-lapse video microscopy. CONCLUSIONS We present the validation and testing of five M. tuberculosis Rpfs fused to mCherry, which are functional in resuscitation assays, but do not show any specific cellular localisation under the conditions tested. Our results suggest that Rpfs are likely to be secreted via the Sec pathway. We propose that such mCherry fusions will be useful tools for the further study of Rpf localisation, individual expression, and function.
Collapse
Affiliation(s)
- Iria Uhía
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Nitya Krishnan
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Brian D. Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
27
|
Kim WS, Jung ID, Kim JS, Kim HM, Kwon KW, Park YM, Shin SJ. Mycobacterium tuberculosis GrpE, A Heat-Shock Stress Responsive Chaperone, Promotes Th1-Biased T Cell Immune Response via TLR4-Mediated Activation of Dendritic Cells. Front Cell Infect Microbiol 2018; 8:95. [PMID: 29637049 PMCID: PMC5881000 DOI: 10.3389/fcimb.2018.00095] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/12/2018] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is an extremely successful pathogen with multifactorial ability to control the host immune response. Insights into the Mtb factors modulating host response are required for the discovery of novel vaccine antigen targets as well as a better understanding of dynamic interactions between the bacterial factors and host cells. Here, we exploited the functional role of Mtb GrpE, a cofactor of heat-shock protein 70 (HSP70), in promoting naïve CD4+/CD8+T cell differentiation toward Th1-type T-cell immunity through interaction with dendritic cells (DCs). GrpE functionally induced DC maturation by up-regulating the expression of cell surface molecules (CD80, CD86, and MHC class I and II) and production of several pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-12p70) in DCs. These effects of GrpE in DC activation were initiated upon binding to Toll-like receptor 4 (TLR4) followed by activation of downstream MyD88-, TRIF-, MAPK-, and NF-κB-dependent signaling pathways. GrpE-activated DCs displayed an excellent capacity to effectively polarize naïve CD4+ and CD8+ T cells toward Th1-type T-cell immunity with the dose-dependent secretion of IFN-γ and IL-2 together with increased levels of CXCR3 expression. Notably, GrpE-stimulated DCs induced the proliferation of GrpE-specific Th1-type effector/memory CD4+/CD8+CD44highCD62Llow T cells from the spleen of Mtb-infected mice in a TLR4-dependent manner. Collectively, these results demonstrate that GrpE is a novel immune activator that interacts with DCs, in particular, via TLR4, to generate Th1-biased memory T cells in an antigen-specific manner. GrpE may contribute to the enhanced understanding of host-pathogen interactions as well as providing a rational basis for the discovery of new potential targets to develop an effective tuberculosis vaccine.
Collapse
Affiliation(s)
- Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Department of Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - In Duk Jung
- Lab of Dendritic Cell Differentiation and Regulation, Department of Immunology, College of Medicine, Konkuk University, Chungju, South Korea
| | - Jong-Seok Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong Min Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Yeong-Min Park
- Lab of Dendritic Cell Differentiation and Regulation, Department of Immunology, College of Medicine, Konkuk University, Chungju, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
28
|
Carette X, Platig J, Young DC, Helmel M, Young AT, Wang Z, Potluri LP, Moody CS, Zeng J, Prisic S, Paulson JN, Muntel J, Madduri AVR, Velarde J, Mayfield JA, Locher C, Wang T, Quackenbush J, Rhee KY, Moody DB, Steen H, Husson RN. Multisystem Analysis of Mycobacterium tuberculosis Reveals Kinase-Dependent Remodeling of the Pathogen-Environment Interface. mBio 2018; 9:e02333-17. [PMID: 29511081 PMCID: PMC5845002 DOI: 10.1128/mbio.02333-17] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis is the leading killer among infectious diseases worldwide. Increasing multidrug resistance has prompted new approaches for tuberculosis drug development, including targeted inhibition of virulence determinants and of signaling cascades that control many downstream pathways. We used a multisystem approach to determine the effects of a potent small-molecule inhibitor of the essential Mycobacterium tuberculosis Ser/Thr protein kinases PknA and PknB. We observed differential levels of phosphorylation of many proteins and extensive changes in levels of gene expression, protein abundance, cell wall lipids, and intracellular metabolites. The patterns of these changes indicate regulation by PknA and PknB of several pathways required for cell growth, including ATP synthesis, DNA synthesis, and translation. These data also highlight effects on pathways for remodeling of the mycobacterial cell envelope via control of peptidoglycan turnover, lipid content, a SigE-mediated envelope stress response, transmembrane transport systems, and protein secretion systems. Integrated analysis of phosphoproteins, transcripts, proteins, and lipids identified an unexpected pathway whereby threonine phosphorylation of the essential response regulator MtrA decreases its DNA binding activity. Inhibition of this phosphorylation is linked to decreased expression of genes for peptidoglycan turnover, and of genes for mycolyl transferases, with concomitant changes in mycolates and glycolipids in the cell envelope. These findings reveal novel roles for PknA and PknB in regulating multiple essential cell functions and confirm that these kinases are potentially valuable targets for new antituberculosis drugs. In addition, the data from these linked multisystems provide a valuable resource for future targeted investigations into the pathways regulated by these kinases in the M. tuberculosis cell.IMPORTANCE Tuberculosis is the leading killer among infectious diseases worldwide. Increasing drug resistance threatens efforts to control this epidemic; thus, new antitubercular drugs are urgently needed. We performed an integrated, multisystem analysis of Mycobacterium tuberculosis responses to inhibition of its two essential serine/threonine protein kinases. These kinases allow the bacterium to adapt to its environment by phosphorylating cellular proteins in response to extracellular signals. We identified differentially phosphorylated proteins, downstream changes in levels of specific mRNA and protein abundance, and alterations in the metabolite and lipid content of the cell. These results include changes previously linked to growth arrest and also reveal new roles for these kinases in regulating essential processes, including growth, stress responses, transport of proteins and other molecules, and the structure of the mycobacterial cell envelope. Our multisystem data identify PknA and PknB as promising targets for drug development and provide a valuable resource for future investigation of their functions.
Collapse
Affiliation(s)
- Xavier Carette
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - John Platig
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - David C Young
- Division of Rheumatology, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Michaela Helmel
- Department of Pathology, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Albert T Young
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Zhe Wang
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Lakshmi-Prasad Potluri
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | | | - Jumei Zeng
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Sladjana Prisic
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph N Paulson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jan Muntel
- Department of Pathology, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Ashoka V R Madduri
- Division of Rheumatology, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Jorge Velarde
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Jacob A Mayfield
- Division of Rheumatology, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | | | - Tiansheng Wang
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts, USA
| | - John Quackenbush
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kyu Y Rhee
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - D Branch Moody
- Division of Rheumatology, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Hanno Steen
- Department of Pathology, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Robert N Husson
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Zhou P, Wang X, Zhao Y, Yuan W, Xie J. Sigma factors mediated signaling in Mycobacterium tuberculosis. Future Microbiol 2018; 13:231-240. [DOI: 10.2217/fmb-2017-0127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Activation of signaling cascades is critical for Mycobacterium tuberculosis (Mtb) to adapt the macrophage lifestyle. Parallel to several signal systems, sigma factor systems, especially the extra-cytoplasmic function sigma factors, are crucial for Mtb signaling. Most sigma factors lack a signal sensory domain and often are activated by various proteins that perceive the environmental cues and relay the signals through variegated post-translational modifications via the activity of antisigma factor, protein kinase and related transcriptional regulators. Antisigma factors are further controlled by multiple mechanisms. SigK senses the environmental redox state directly. Phosphorylation and lysine acetylation added another dimension to the regulatory hierarchy. This review will provide insights into Mtb pathogenesis, and lay the foundation for the discovery of novel approaches for therapeutic interventions.
Collapse
Affiliation(s)
- Peifu Zhou
- Institute of Ethnic-Minority Medicine, School of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang 550025, PR China
| | - Xinpeng Wang
- School of Humanities & Sciences, Guizhou Minzu University, Guiyang 550025, PR China
| | - Yuzhong Zhao
- Institute of Ethnic-Minority Medicine, School of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang 550025, PR China
| | - Wei Yuan
- Institute of Tuberculosis Control & Prevention, Guizhou Provincial Center for Disease Control & Prevention, Guiyang 550004, PR China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
30
|
Toyoda K, Inui M. Extracytoplasmic function sigma factor σDconfers resistance to environmental stress by enhancing mycolate synthesis and modifying peptidoglycan structures inCorynebacterium glutamicum. Mol Microbiol 2017; 107:312-329. [DOI: 10.1111/mmi.13883] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Koichi Toyoda
- Research institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawa; Kyoto 619-0292 Japan
| | - Masayuki Inui
- Research institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawa; Kyoto 619-0292 Japan
- Graduate School of Biological Sciences; Nara Institute of Science and Technology, 8916-5; Takayama, Ikoma, Nara 630-0101 Japan
| |
Collapse
|
31
|
Zimpel CK, Brandão PE, de Souza Filho AF, de Souza RF, Ikuta CY, Ferreira Neto JS, Camargo NCS, Heinemann MB, Guimarães AMS. Complete Genome Sequencing of Mycobacterium bovis SP38 and Comparative Genomics of Mycobacterium bovis and M. tuberculosis Strains. Front Microbiol 2017; 8:2389. [PMID: 29259589 PMCID: PMC5723337 DOI: 10.3389/fmicb.2017.02389] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium bovis causes bovine tuberculosis and is the main organism responsible for zoonotic tuberculosis in humans. We performed the sequencing, assembly and annotation of a Brazilian strain of M. bovis named SP38, and performed comparative genomics of M. bovis genomes deposited in GenBank. M. bovis SP38 has a traditional tuberculous mycobacterium genome of 4,347,648 bp, with 65.5% GC, and 4,216 genes. The majority of CDSs (2,805, 69.3%) have predictive function, while 1,206 (30.07%) are hypothetical. For comparative analysis, 31 M. bovis, 32 M. bovis BCG, and 23 Mycobacterium tuberculosis genomes available in GenBank were selected. M. bovis RDs (regions of difference) and Clonal Complexes (CC) were identified in silico. Genome dynamics of bacterial groups were analyzed by gene orthology and polymorphic sites identification. M. bovis polymorphic sites were used to construct a phylogenetic tree. Our RD analyses resulted in the exclusion of three genomes, mistakenly annotated as virulent M. bovis. M. bovis SP38 along with strain 35 represent the first report of CC European 2 in Brazil, whereas two other M. bovis strains failed to be classified within current CC. Results of M. bovis orthologous genes analysis suggest a process of genome remodeling through genomic decay and gene duplication. Quantification, pairwise comparisons and distribution analyses of polymorphic sites demonstrate greater genetic variability of M. tuberculosis when compared to M. bovis and M. bovis BCG (p ≤ 0.05), indicating that currently defined M. tuberculosis lineages are more genetically diverse than M. bovis CC and animal-adapted MTC (M. tuberculosis Complex) species. As expected, polymorphic sites annotation shows that M. bovis BCG are subjected to different evolutionary pressures when compared to virulent mycobacteria. Lastly, M. bovis phylogeny indicates that polymorphic sites may be used as markers of M. bovis lineages in association with CC. Our findings highlight the need to better understand host-pathogen co-evolution in genetically homogeneous and/or diverse host populations, considering the fact that M. bovis has a broader host range when compared to M. tuberculosis. Also, the identification of M. bovis genomes not classified within CC indicates that the diversity of M. bovis lineages may be larger than previously thought or that current classification should be reviewed.
Collapse
Affiliation(s)
- Cristina Kraemer Zimpel
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Paulo E Brandão
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Antônio F de Souza Filho
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Robson F de Souza
- Laboratory of Protein Structure and Evolution, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cássia Y Ikuta
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - José Soares Ferreira Neto
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Naila C Soler Camargo
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcos Bryan Heinemann
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana M S Guimarães
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Chatterjee A, Sharma AK, Mahatha AC, Banerjee SK, Kumar M, Saha S, Basu J, Kundu M. Global mapping of MtrA-binding sites links MtrA to regulation of its targets in Mycobacterium tuberculosis. MICROBIOLOGY-SGM 2017; 164:99-110. [PMID: 29182512 DOI: 10.1099/mic.0.000585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacterium tuberculosis employs two-component systems (TCSs) for survival within its host. The TCS MtrAB is conserved among mycobacteria. The response regulator MtrA is essential in M. tuberculosis. The genome-wide chromatin immunoprecipitation (ChIP) sequencing performed in this study suggested that MtrA binds upstream of at least 45 genes of M. tuberculosis, including those involved in cell wall remodelling, stress responses, persistence and regulation of transcription. It binds to the promoter regions and regulates the peptidoglycan hydrolases rpfA and rpfC, which are required for resuscitation from dormancy. It also regulates the expression of whiB4, a critical regulator of the oxidative stress response, and relF, one-half of the toxin-antitoxin locus relFG. We have identified a new consensus 9 bp loose motif for MtrA binding. Mutational changes in the consensus sequence greatly reduced the binding of MtrA to its newly identified targets. Importantly, we observed that overexpression of a gain-of-function mutant, MtrAY102C, enhanced expression of the aforesaid genes in M. tuberculosis isolated from macrophages, whereas expression of each of these targets was lower in M. tuberculosis overexpressing a phosphorylation-defective mutant, MtrAD56N. This result suggests that phosphorylated MtrA (MtrA-P) is required for the expression of its targets in macrophages. Our data have uncovered new MtrA targets that suggest that MtrA is required for a transcriptional response that likely enables M. tuberculosis to persist within its host and emerge out of dormancy when the conditions are favourable.
Collapse
Affiliation(s)
- Ayan Chatterjee
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata-700009, India
| | - Arun Kumar Sharma
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata-700009, India
| | - Amar Chandra Mahatha
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata-700009, India
| | - Srijon Kaushik Banerjee
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata-700009, India
| | - Manish Kumar
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata-700009, India
| | - Sudipto Saha
- Bioinformatics Centre, Bose Institute (Centenary Building), P 1/12, C. I. T. Road, Scheme-VIIM, Kolkata-700054, India
| | - Joyoti Basu
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata-700009, India
| | - Manikuntala Kundu
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata-700009, India
| |
Collapse
|
33
|
Taniguchi H, Busche T, Patschkowski T, Niehaus K, Pátek M, Kalinowski J, Wendisch VF. Physiological roles of sigma factor SigD in Corynebacterium glutamicum. BMC Microbiol 2017; 17:158. [PMID: 28701150 PMCID: PMC5508688 DOI: 10.1186/s12866-017-1067-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/04/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sigma factors are one of the components of RNA polymerase holoenzymes, and an essential factor of transcription initiation in bacteria. Corynebacterium glutamicum possesses seven genes coding for sigma factors, most of which have been studied to some detail; however, the role of SigD in transcriptional regulation in C. glutamicum has been mostly unknown. RESULTS In this work, pleiotropic effects of sigD overexpression at the level of phenotype, transcripts, proteins and metabolites were investigated. Overexpression of sigD decreased the growth rate of C. glutamicum cultures, and induced several physiological effects such as reduced culture foaming, turbid supernatant and cell aggregation. Upon overexpression of sigD, the level of Cmt1 (corynomycolyl transferase) in the supernatant was notably enhanced, and carbohydrate-containing compounds were excreted to the supernatant. The real-time PCR analysis revealed that sigD overexpression increased the expression of genes related to corynomycolic acid synthesis (fadD2, pks), genes encoding corynomycolyl transferases (cop1, cmt1, cmt2, cmt3), L, D-transpeptidase (lppS), a subunit of the major cell wall channel (porH), and the envelope lipid regulation factor (elrF). Furthermore, overexpression of sigD resulted in trehalose dicorynomycolate accumulation in the cell envelope. CONCLUSIONS This study demonstrated that SigD regulates the synthesis of corynomycolate and related compounds, and expanded the knowledge of regulatory functions of sigma factors in C. glutamicum.
Collapse
Affiliation(s)
- Hironori Taniguchi
- Genetics of Prokaryotes, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Thomas Patschkowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Karsten Niehaus
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Miroslav Pátek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
34
|
Nikitushkin VD, Demina GR, Kaprelyants AS. Rpf proteins are the factors of reactivation of the dormant forms of actinobacteria. BIOCHEMISTRY (MOSCOW) 2017; 81:1719-1734. [DOI: 10.1134/s0006297916130095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Delogu G, Brennan MJ, Manganelli R. PE and PPE Genes: A Tale of Conservation and Diversity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:191-207. [PMID: 29116636 DOI: 10.1007/978-3-319-64371-7_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PE and PPE are two large families of proteins typical of mycobacteria whose structural genes in the Mycobacterium tuberculosis complex (MTBC) occupy about 7% of the total genome. The most ancestral PE and PPE proteins are expressed by genes that belong to the same operon and in most cases are found inserted in the esx clusters, encoding a type VII secretion system. Duplication and expansion of pe and ppe genes, coupled with intragenomic and intergenomic recombination events, led to the emergence of the polymorphic pe_pgrs and ppe_mptr genes in the MTBC genome. The role and function of these proteins, and particularly of the polymorphic subfamilies, remains elusive, although it is widely accepted that PE and PPE proteins may represent a specialized collection used by MTBC to interact with the complex host immune system of mammals. In this chapter, we summarize what has been discovered since the identification of these genes in 1998, focusing on M. tuberculosis genetic variability, host-pathogen interaction and TB pathogenesis.
Collapse
Affiliation(s)
- Giovanni Delogu
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168, Rome, Italy.
| | | | - Riccardo Manganelli
- Department of Molecular Medicine, University of Padua, Via A. Gabelli, 63, 35121, Padua, Italy
| |
Collapse
|
36
|
Namouchi A, Gómez-Muñoz M, Frye SA, Moen LV, Rognes T, Tønjum T, Balasingham SV. The Mycobacterium tuberculosis transcriptional landscape under genotoxic stress. BMC Genomics 2016; 17:791. [PMID: 27724857 PMCID: PMC5057432 DOI: 10.1186/s12864-016-3132-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/27/2016] [Indexed: 11/10/2022] Open
Abstract
Background As an intracellular human pathogen, Mycobacterium tuberculosis (Mtb) is facing multiple stressful stimuli inside the macrophage and the granuloma. Understanding Mtb responses to stress is essential to identify new virulence factors and pathways that play a role in the survival of the tubercle bacillus. The main goal of this study was to map the regulatory networks of differentially expressed (DE) transcripts in Mtb upon various forms of genotoxic stress. We exposed Mtb cells to oxidative (H2O2 or paraquat), nitrosative (DETA/NO), or alkylation (MNNG) stress or mitomycin C, inducing double-strand breaks in the DNA. Total RNA was isolated from treated and untreated cells and subjected to high-throughput deep sequencing. The data generated was analysed to identify DE genes encoding mRNAs, non-coding RNAs (ncRNAs), and the genes potentially targeted by ncRNAs. Results The most significant transcriptomic alteration with more than 700 DE genes was seen under nitrosative stress. In addition to genes that belong to the replication, recombination and repair (3R) group, mainly found under mitomycin C stress, we identified DE genes important for bacterial virulence and survival, such as genes of the type VII secretion system (T7SS) and the proline-glutamic acid/proline-proline-glutamic acid (PE/PPE) family. By predicting the structures of hypothetical proteins (HPs) encoded by DE genes, we found that some of these HPs might be involved in mycobacterial genome maintenance. We also applied a state-of-the-art method to predict potential target genes of the identified ncRNAs and found that some of these could regulate several genes that might be directly involved in the response to genotoxic stress. Conclusions Our study reflects the complexity of the response of Mtb in handling genotoxic stress. In addition to genes involved in genome maintenance, other potential key players, such as the members of the T7SS and PE/PPE gene family, were identified. This plethora of responses is detected not only at the level of DE genes encoding mRNAs but also at the level of ncRNAs and their potential targets. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3132-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amine Namouchi
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway
| | | | - Stephan A Frye
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway
| | - Line Victoria Moen
- Department of Informatics, University of Oslo, Oslo, Norway.,Current address: Department of Nutrition, University of Oslo, Oslo, Norway
| | - Torbjørn Rognes
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway.,Department of Informatics, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway.,Department of Microbiology, University of Oslo, Oslo, Norway
| | - Seetha V Balasingham
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway.
| |
Collapse
|
37
|
Vemula MH, Medisetti R, Ganji R, Jakkala K, Sankati S, Chatti K, Banerjee S. Mycobacterium tuberculosis Zinc Metalloprotease-1 Assists Mycobacterial Dissemination in Zebrafish. Front Microbiol 2016; 7:1347. [PMID: 27621726 PMCID: PMC5002425 DOI: 10.3389/fmicb.2016.01347] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/15/2016] [Indexed: 11/15/2022] Open
Abstract
Zinc metalloprotease-1 (Zmp1) from Mycobacterium tuberculosis (M.tb), the tuberculosis (TB) causing bacillus, is a virulence factor involved in inflammasome inactivation and phagosome maturation arrest. We earlier reported that Zmp1 was secreted under granuloma-like stress conditions, induced Th2 cytokine microenvironment and was highly immunogenic in TB patients as evident from high anti-Zmp1 antibody titers in their sera. In this study, we deciphered a new physiological role of Zmp1 in mycobacterial dissemination. Exogenous treatment of THP-1 cells with 500 nM and 1 μM of recombinant Zmp1 (rZmp1) resulted in necrotic cell death. Apart from inducing secretion of necrotic cytokines, TNFα, IL-6, and IL-1β, it also induced the release of chemotactic chemokines, MCP-1, MIP-1β, and IL-8, suggesting its likely function in cell migration and mycobacterial dissemination. This was confirmed by Gap closure and Boyden chamber assays, where Zmp1 treated CHO or THP-1 cells showed ∼2 fold increased cell migration compared to the untreated cells. Additionally, Zebrafish-M. marinum based host–pathogen model was used to study mycobacterial dissemination in vivo. Td-Tomato labeled M. marinum (TdM. marinum) when injected with rZmp1 showed increased dissemination to tail region from the site of injection as compared to the untreated control fish in a dose-dependent manner. Summing up these observations along with the earlier reports, we propose that Zmp1, a multi-faceted protein, when released by mycobacteria in granuloma, may lead to necrotic cell damage and release of chemotactic chemokines by surrounding infected macrophages, attracting new immune cells, which in turn may lead to fresh cellular infections, thus assisting mycobacterial dissemination.
Collapse
Affiliation(s)
- Mani H Vemula
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | | | - Rakesh Ganji
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | - Kiran Jakkala
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | - Swetha Sankati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | - Kiranam Chatti
- Biology Department, Dr. Reddy's Institute of Life Sciences Hyderabad, India
| | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| |
Collapse
|
38
|
Chauhan R, Ravi J, Datta P, Chen T, Schnappinger D, Bassler KE, Balázsi G, Gennaro ML. Reconstruction and topological characterization of the sigma factor regulatory network of Mycobacterium tuberculosis. Nat Commun 2016; 7:11062. [PMID: 27029515 PMCID: PMC4821874 DOI: 10.1038/ncomms11062] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 02/15/2016] [Indexed: 01/26/2023] Open
Abstract
Accessory sigma factors, which reprogram RNA polymerase to transcribe specific gene sets, activate bacterial adaptive responses to noxious environments. Here we reconstruct the complete sigma factor regulatory network of the human pathogen Mycobacterium tuberculosis by an integrated approach. The approach combines identification of direct regulatory interactions between M. tuberculosis sigma factors in an E. coli model system, validation of selected links in M. tuberculosis, and extensive literature review. The resulting network comprises 41 direct interactions among all 13 sigma factors. Analysis of network topology reveals (i) a three-tiered hierarchy initiating at master regulators, (ii) high connectivity and (iii) distinct communities containing multiple sigma factors. These topological features are likely associated with multi-layer signal processing and specialized stress responses involving multiple sigma factors. Moreover, the identification of overrepresented network motifs, such as autoregulation and coregulation of sigma and anti-sigma factor pairs, provides structural information that is relevant for studies of network dynamics. Sigma factors are regulatory proteins that reprogram the bacterial RNA polymerase in response to stress conditions to transcribe certain genes, including those for other sigma factors. Here, Chauhan et al. describe the complete sigma factor regulatory network of the pathogen Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Rinki Chauhan
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| | - Janani Ravi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| | - Pratik Datta
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| | - Tianlong Chen
- Department of Physics, University of Houston, Houston, Texas 77204-5005, USA.,Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5002, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10021, USA
| | - Kevin E Bassler
- Department of Physics, University of Houston, Houston, Texas 77204-5005, USA.,Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5002, USA.,Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - Gábor Balázsi
- Laufer Center for Physical &Quantitative Biology and Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Maria Laura Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| |
Collapse
|
39
|
Sigma Factors: Key Molecules in Mycobacterium tuberculosis Physiology and Virulence. Microbiol Spectr 2015; 2:MGM2-0007-2013. [PMID: 26082107 DOI: 10.1128/microbiolspec.mgm2-0007-2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid adaptation to changing environments is one of the keys to the success of microorganisms. Since infection is a dynamic process, it is possible to predict that Mycobacterium tuberculosis adaptation involves continuous modulation of its global transcriptional profile in response to the changing environment found in the human body. In the last 18 years several studies have stressed the role of sigma (σ) factors in this process. These are small interchangeable subunits of the RNA polymerase holoenzyme that are required for transcriptional initiation and that determine promoter specificity. The M. tuberculosis genome encodes 13 of these proteins, one of which--the principal σ factor σA--is essential. Of the other 12 σ factors, at least 6 are required for virulence. In this article we review our current knowledge of mycobacterial σ factors, their regulons, the complex mechanisms determining their regulation, and their roles in M. tuberculosis physiology and virulence.
Collapse
|
40
|
Deng W, Zeng J, Xiang X, Li P, Xie J. PE11 (Rv1169c) selectively alters fatty acid components of Mycobacterium smegmatis and host cell interleukin-6 level accompanied with cell death. Front Microbiol 2015; 6:613. [PMID: 26157429 PMCID: PMC4477156 DOI: 10.3389/fmicb.2015.00613] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/02/2015] [Indexed: 11/26/2022] Open
Abstract
PE/PPE family proteins, named after their conserved PE (Pro-Glu) and PPE (Pro-Pro-Glu) domains of N-terminal, are most intriguing aspects of pathologic mycobacterial genome. The roles of most members of this family remain unknown, although selected genes of this family are related to the virulence of Mycobacterium tuberculosis. In order to decipher the role of Rv1169c, the Mycobacterium smegmatis strain heterologous expressed this ORF was constructed and identified that Rv1169c was a cell wall associated protein with a novel function in modifying the cell wall fatty acids. The growth of Rv1169c expressing strain was affected under surface stress, acidic condition and antibiotics treatment. M. smegmatis expressing Rv1169c induced necrotic cell death of macrophage after infection and significantly decreased interlukin-6 production compared to controls. In general, these results underscore a proposing role of Rv1169c in virulence of M. tuberculosis, as it's role in the susceptibility of anti-mycobacteria factors caused by modified cell wall fatty acid, and the induced necrotic cell death by Rv1169c is crucial for M. tuberculosis virulence during infection.
Collapse
Affiliation(s)
- Wanyan Deng
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University Chongqing, China
| | - Jie Zeng
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University Chongqing, China
| | - Xiaohong Xiang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University Chongqing, China
| | - Ping Li
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University Chongqing, China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University Chongqing, China
| |
Collapse
|
41
|
Prisic S, Hwang H, Dow A, Barnaby O, Pan TS, Lonzanida JA, Chazin WJ, Steen H, Husson RN. Zinc regulates a switch between primary and alternative S18 ribosomal proteins in Mycobacterium tuberculosis. Mol Microbiol 2015; 97:263-80. [PMID: 25858183 DOI: 10.1111/mmi.13022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2015] [Indexed: 12/21/2022]
Abstract
The Mycobacterium tuberculosis genome encodes five putative 'alternative' ribosomal proteins whose expression is repressed at high Zn(2+) concentration. Each alternative protein has a primary homologue that is predicted to bind Zn(2+). We hypothesized that zinc triggers a switch between these paired homologous proteins and therefore chose one of these pairs, S18-1/S18-2, to study mechanisms of the predicted competition for their incorporation into ribosomes. Our data show that Zn(2+)-depletion causes accumulation of both S18-2 mRNA and protein. In contrast, S18-1 mRNA levels are unchanged to slightly elevated under Zn(2+)-limited conditions. However, the amount of S18-1 protein is markedly decreased. We further demonstrate that both S18 proteins interact with ribosomal protein S6, a committed step in ribosome biogenesis. Zn(2+) is absolutely required for the S18-1/S6 interaction while it is dispensable for S18-2/S6 dimer formation. These data suggest a model in which S18-1 is the dominant ribosome constituent in high zinc conditions, e.g. inside of phagosomes, but that it can be replaced by S18-2 when zinc is deficient, e.g. in the extracellular milieu. Consequently, Zn(2+)-depletion may serve as a signal for building alternative ribosomes when M. tuberculosis is released from macrophages, to allow survival in the extracellular environment.
Collapse
Affiliation(s)
- Sladjana Prisic
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA.,Department of Microbiology, University of Hawaii at Manoa, Honolulu, HI
| | - Hyonson Hwang
- Department of Pathology, Boston Children's Hospital/Harvard Medical School, Boston, MA
| | - Allexa Dow
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, HI
| | - Omar Barnaby
- Department of Pathology, Boston Children's Hospital/Harvard Medical School, Boston, MA
| | - Tenny S Pan
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, HI
| | | | - Walter J Chazin
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Hanno Steen
- Department of Pathology, Boston Children's Hospital/Harvard Medical School, Boston, MA
| | - Robert N Husson
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA
| |
Collapse
|
42
|
Uhía I, Williams KJ, Shahrezaei V, Robertson BD. Mycobacterial Growth. Cold Spring Harb Perspect Med 2015; 5:cshperspect.a021097. [PMID: 25957314 DOI: 10.1101/cshperspect.a021097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this work, we review progress made in understanding the molecular underpinnings of growth and division in mycobacteria, concentrating on work published since the last comprehensive review ( Hett and Rubin 2008). We have focused on exciting work making use of new time-lapse imaging technologies coupled with reporter-gene fusions and antimicrobial treatment to generate insights into how mycobacteria grow and divide in a heterogeneous manner. We try to reconcile the different observations reported, providing a model of how they might fit together. We also review the topic of mycobacterial spores, which has generated considerable discussion during the last few years. Resuscitation promoting factors, and regulation of growth and division, have also been actively researched, and we summarize progress in these areas.
Collapse
Affiliation(s)
- Iria Uhía
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Kerstin J Williams
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Vahid Shahrezaei
- Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Brian D Robertson
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
43
|
Fishbein S, van Wyk N, Warren RM, Sampson SL. Phylogeny to function: PE/PPE protein evolution and impact on Mycobacterium tuberculosis pathogenicity. Mol Microbiol 2015; 96:901-16. [PMID: 25727695 DOI: 10.1111/mmi.12981] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 01/08/2023]
Abstract
The pe/ppe genes represent one of the most intriguing aspects of the Mycobacterium tuberculosis genome. These genes are especially abundant in pathogenic mycobacteria, with more than 160 members in M. tuberculosis. Despite being discovered over 15 years ago, their function remains unclear, although various lines of evidence implicate selected family members in mycobacterial virulence. In this review, we use PE/PPE phylogeny as a framework within which we examine the diversity and putative functions of these proteins. We report on the evolution and diversity of the respective gene families, as well as the implications thereof for function and host immune recognition. We summarize recent findings on pe/ppe gene regulation, also placing this in the context of PE/PPE phylogeny. We collate data from several large proteomics datasets, providing an overview of PE/PPE localization, and discuss the implications this may have for host responses. Assessment of the current knowledge of PE/PPE diversity suggests that these proteins are not variable antigens as has been so widely speculated; however, they do clearly play important roles in virulence. Viewing the growing body of pe/ppe literature through the lens of phylogeny reveals trends in features and function that may be associated with the evolution of mycobacterial pathogenicity.
Collapse
Affiliation(s)
- S Fishbein
- Harvard School of Public Health, Boston, MA, USA.,DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - N van Wyk
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - R M Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - S L Sampson
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| |
Collapse
|
44
|
Abstract
In recent years, chemical biology and chemical genomics have been increasingly applied to the field of microbiology to uncover new potential therapeutics as well as to probe virulence mechanisms in pathogens. The approach offers some clear advantages, as identified compounds (i) can serve as a proof of principle for the applicability of drugs to specific targets; (ii) can serve as conditional effectors to explore the function of their targets in vitro and in vivo; (iii) can be used to modulate gene expression in otherwise genetically intractable organisms; and (iv) can be tailored to a narrow or broad range of bacteria. This review highlights recent examples from the literature to illustrate how the use of small molecules has advanced discovery of novel potential treatments and has been applied to explore biological mechanisms underlying pathogenicity. We also use these examples to discuss practical considerations that are key to establishing a screening or discovery program. Finally, we discuss the advantages and challenges of different approaches and the methods that are emerging to address these challenges.
Collapse
Affiliation(s)
- Rebecca Anthouard
- Laboratory of Genetics & Molecular Biology of Intestinal Pathogens, Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Victor J DiRita
- Laboratory of Genetics & Molecular Biology of Intestinal Pathogens, Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
45
|
Chauviac FX, Robertson G, Quay DHX, Bagnéris C, Dumas C, Henderson B, Ward J, Keep NH, Cohen-Gonsaud M. The RpfC (Rv1884) atomic structure shows high structural conservation within the resuscitation-promoting factor catalytic domain. Acta Crystallogr F Struct Biol Commun 2014; 70:1022-6. [PMID: 25084374 PMCID: PMC4118796 DOI: 10.1107/s2053230x1401317x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/05/2014] [Indexed: 11/27/2022] Open
Abstract
The first structure of the catalytic domain of RpfC (Rv1884), one of the resuscitation-promoting factors (RPFs) from Mycobacterium tuberculosis, is reported. The structure was solved using molecular replacement once the space group had been correctly identified as twinned P21 rather than the apparent C2221 by searching for anomalous scattering sites in P1. The structure displays a very high degree of structural conservation with the previously published structures of the catalytic domains of RpfB (Rv1009) and RpfE (Rv2450). This structural conservation highlights the importance of the versatile domain composition of the RPF family.
Collapse
Affiliation(s)
- Francois-Xavier Chauviac
- Crystallography, Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, England
| | - Giles Robertson
- Crystallography, Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, England
| | - Doris H. X. Quay
- Crystallography, Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, England
| | - Claire Bagnéris
- Crystallography, Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, England
| | - Christian Dumas
- Centre de Biochimie Structurale, CNRS UMR 5048, 29 Rue de Navacelles, 34090 Montpellier, France; INSERM U1054, Université Montpellier I, Montpellier, France
| | - Brian Henderson
- Department of Microbial Diseases, UCL–Eastman Dental Institute, University College London, 256 Gray’s Inn Road, London WC1X 8LD, England
| | - John Ward
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, England
| | - Nicholas H. Keep
- Crystallography, Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, England
| | - Martin Cohen-Gonsaud
- Crystallography, Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, England
- Centre de Biochimie Structurale, CNRS UMR 5048, 29 Rue de Navacelles, 34090 Montpellier, France; INSERM U1054, Université Montpellier I, Montpellier, France
| |
Collapse
|
46
|
Mycobacterial gene cuvA is required for optimal nutrient utilization and virulence. Infect Immun 2014; 82:4104-17. [PMID: 25047842 DOI: 10.1128/iai.02207-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To persist and cause disease in the host, Mycobacterium tuberculosis must adapt to its environment during infection. Adaptations include changes in nutrient utilization and alterations in growth rate. M. tuberculosis Rv1422 is a conserved gene of unknown function that was found in a genetic screen to interact with the mce4 cholesterol uptake locus. The Rv1422 protein is phosphorylated by the M. tuberculosis Ser/Thr kinases PknA and PknB, which regulate cell growth and cell wall synthesis. Bacillus subtilis strains lacking the Rv1422 homologue yvcK grow poorly on several carbon sources, and yvcK is required for proper localization of peptidoglycan synthesis. Here we show that Mycobacterium smegmatis and M. tuberculosis strains lacking Rv1422 have growth defects in minimal medium containing limiting amounts of several different carbon sources. These strains also have morphological abnormalities, including shortened and bulging cells, suggesting a cell wall defect. In both mycobacterial species, the Rv1422 protein localizes uniquely to the growing cell pole, the site of peptidoglycan synthesis in mycobacteria. An M. tuberculosis ΔRv1422 strain is markedly attenuated for virulence in a mouse infection model, where it elicits decreased inflammation in the lungs and shows impaired bacterial persistence. These findings led us to name this gene cuvA (carbon utilization and virulence protein A) and to suggest a model in which deletion of cuvA leads to changes in nutrient uptake and/or metabolism that affect cell wall structure, morphology, and virulence. Its role in virulence suggests that CuvA may be a useful target for novel inhibitors of M. tuberculosis during infection.
Collapse
|
47
|
Souza BM, Castro TLDP, Carvalho RDDO, Seyffert N, Silva A, Miyoshi A, Azevedo V. σ(ECF) factors of gram-positive bacteria: a focus on Bacillus subtilis and the CMNR group. Virulence 2014; 5:587-600. [PMID: 24921931 PMCID: PMC4105308 DOI: 10.4161/viru.29514] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The survival of bacteria to different environmental conditions depends on the activation of adaptive mechanisms, which are intricately driven through gene regulation. Because transcriptional initiation is considered to be the major step in the control of bacterial genes, we discuss the characteristics and roles of the sigma factors, addressing (1) their structural, functional and phylogenetic classification; (2) how their activity is regulated; and (3) the promoters recognized by these factors. Finally, we focus on a specific group of alternative sigma factors, the so-called σ(ECF) factors, in Bacillus subtilis and some of the main species that comprise the CMNR group, providing information on the roles they play in the microorganisms' physiology and indicating some of the genes whose transcription they regulate.
Collapse
Affiliation(s)
- Bianca Mendes Souza
- Laboratório de Genética Celular e Molecular; Instituto de Ciências Biológicas; Departamento de Biologia Geral; Universidade Federal de Minas Gerais; Belo Horizonte, MG Brazil
| | - Thiago Luiz de Paula Castro
- Laboratório de Genética Celular e Molecular; Instituto de Ciências Biológicas; Departamento de Biologia Geral; Universidade Federal de Minas Gerais; Belo Horizonte, MG Brazil
| | - Rodrigo Dias de Oliveira Carvalho
- Laboratório de Genética Celular e Molecular; Instituto de Ciências Biológicas; Departamento de Biologia Geral; Universidade Federal de Minas Gerais; Belo Horizonte, MG Brazil
| | - Nubia Seyffert
- Laboratório de Genética Celular e Molecular; Instituto de Ciências Biológicas; Departamento de Biologia Geral; Universidade Federal de Minas Gerais; Belo Horizonte, MG Brazil
| | - Artur Silva
- Laboratório de Polimorfismo de DNA; Instituto de Ciências Biológicas; Departamento de Genética; Universidade Federal do Pará; Belém, PA Brazil
| | - Anderson Miyoshi
- Laboratório de Genética Celular e Molecular; Instituto de Ciências Biológicas; Departamento de Biologia Geral; Universidade Federal de Minas Gerais; Belo Horizonte, MG Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular; Instituto de Ciências Biológicas; Departamento de Biologia Geral; Universidade Federal de Minas Gerais; Belo Horizonte, MG Brazil
| |
Collapse
|
48
|
Abstract
Regulated intramembrane proteolysis of membrane-embedded substrates by site-2 proteases (S2Ps) is a widespread mechanism of transmembrane signal transduction in bacteria and bacterial pathogens. We previously demonstrated that the Mycobacterium tuberculosis S2P Rip1 is required for full virulence in the mouse model of infection. Rip1 controls transcription in part through proteolysis of three transmembrane anti-sigma factors, anti-SigK, -L, and -M, but there are also Rip1-dependent, SigKLM-independent pathways. To determine the contribution of the sigma factors K, L, and M to the Δrip1 attenuation phenotype, we constructed an M. tuberculosis ΔsigKΔ sigL ΔsigM mutant and found that this strain fails to recapitulate the marked attenuation of Δrip1 in mice. In a search for additional pathways controlled by Rip1, we demonstrated that the SigD regulon is positively regulated by the Rip1 pathway. Rip1 cleavage of transmembrane anti-SigD is required for expression of SigD target genes. In the absence of Rip1, proteolytic maturation of RsdA is impaired. These findings identify RsdA/SigD as a fourth arm of the branched pathway controlled by Rip1 in M. tuberculosis.
Collapse
|
49
|
Song T, Park Y, Shamputa IC, Seo S, Lee SY, Jeon HS, Choi H, Lee M, Glynne RJ, Barnes SW, Walker JR, Batalov S, Yusim K, Feng S, Tung CS, Theiler J, Via LE, Boshoff HIM, Murakami KS, Korber B, Barry CE, Cho SN. Fitness costs of rifampicin resistance in Mycobacterium tuberculosis are amplified under conditions of nutrient starvation and compensated by mutation in the β' subunit of RNA polymerase. Mol Microbiol 2014; 91:1106-19. [PMID: 24417450 DOI: 10.1111/mmi.12520] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2014] [Indexed: 12/31/2022]
Abstract
Rifampicin resistance, a defining attribute of multidrug-resistant tuberculosis, is conferred by mutations in the β subunit of RNA polymerase. Sequencing of rifampicin-resistant (RIF-R) clinical isolates of Mycobacterium tuberculosis revealed, in addition to RIF-R mutations, enrichment of potential compensatory mutations around the double-psi β-barrel domain of the β' subunit comprising the catalytic site and the exit tunnel for newly synthesized RNA. Sequential introduction of the resistance allele followed by the compensatory allele in isogenic Mycobacterium smegmatis showed that these mutations respectively caused and compensated a starvation enhanced growth defect by altering RNA polymerase activity. While specific combinations of resistance and compensatory alleles converged in divergent lineages, other combinations recurred among related isolates suggesting transmission of compensated RIF-R strains. These findings suggest nutrient poor growth conditions impose larger selective pressure on RIF-R organisms that results in the selection of compensatory mutations in a domain involved in catalysis and starvation control of RNA polymerase transcription.
Collapse
Affiliation(s)
- Taeksun Song
- International Tuberculosis Research Center, Changwon, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Key role for the alternative sigma factor, SigH, in the intracellular life of Mycobacterium avium subsp. paratuberculosis during macrophage stress. Infect Immun 2013; 81:2242-57. [PMID: 23569115 DOI: 10.1128/iai.01273-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis causes Johne's disease, an enteric infection in cattle and other ruminants, greatly afflicting the dairy industry worldwide. Once inside the cell, M. avium subsp. paratuberculosis is known to survive harsh microenvironments, especially those inside activated macrophages. To improve our understanding of M. avium subsp. paratuberculosis pathogenesis, we examined phagosome maturation associated with transcriptional responses of M. avium subsp. paratuberculosis during macrophage infection. Monitoring cellular markers, only live M. avium subsp. paratuberculosis bacilli were able to prevent phagosome maturation and reduce its acidification. On the transcriptional level, over 300 M. avium subsp. paratuberculosis genes were significantly and differentially regulated in both naive and IFN-γ-activated macrophages. These genes include the sigma factor H (sigH) that was shown to be important for M. avium subsp. paratuberculosis survival inside gamma interferon (IFN-γ)-activated bovine macrophages. Interestingly, an sigH-knockout mutant showed increased sensitivity to a sustained level of thiol-specific oxidative stress. Large-scale RNA sequence analysis revealed that a large number of genes belong to the sigH regulon, especially following diamide stress. Genes involved in oxidative stress and virulence were among the induced genes in the sigH regulon with a putative consensus sequence for SigH binding that was recognized in a subset of these genes (n = 30), suggesting direct regulation by SigH. Finally, mice infections showed a significant attenuation of the ΔsigH mutant compared to its parental strain, suggesting a role for sigH in M. avium subsp. paratuberculosis virulence. Such analysis could identify potential targets for further testing as vaccine candidates against Johne's disease.
Collapse
|