1
|
Wright M, Kaur M, Thompson LK, Cox G. A historical perspective on the multifunctional outer membrane channel protein TolC in Escherichia coli. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:6. [PMID: 39863731 PMCID: PMC11762307 DOI: 10.1038/s44259-025-00078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Since its discovery nearly 60 years ago, TolC has been associated with various cellular functions in Escherichia coli, including the efflux of environmental stressors and virulence factors. It also acts as a receptor for specific bacteriophages and the colicin E1 toxin. This review highlights key discoveries over the past six decades and emphasizes the remaining gaps in understanding how TolC contributes to physiological functions in E. coli.
Collapse
Affiliation(s)
- Mallory Wright
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, Canada
| | - Mandeep Kaur
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, Canada
| | - Laura K Thompson
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, Canada.
| |
Collapse
|
2
|
Gorelik MG, Yakhnin H, Pannuri A, Walker AC, Pourciau C, Czyz D, Romeo T, Babitzke P. Multitier regulation of the E. coli extreme acid stress response by CsrA. J Bacteriol 2024; 206:e0035423. [PMID: 38319100 PMCID: PMC11210196 DOI: 10.1128/jb.00354-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
CsrA is an RNA-binding protein that regulates processes critical for growth and survival, including central carbon metabolism, motility, biofilm formation, stress responses, and expression of virulence factors in pathogens. Transcriptomics studies in Escherichia coli suggested that CsrA repressed genes involved in surviving extremely acidic conditions. Here, we examine the effects of disrupting CsrA-dependent regulation on the expression of genes and circuitry for acid stress survival and demonstrate CsrA-mediated repression at multiple levels. We show that this repression is critical for managing the trade-off between growth and survival; overexpression of acid stress genes caused by csrA disruption enhances survival under extreme acidity but is detrimental for growth under mildly acidic conditions. In vitro studies confirmed that CsrA binds specifically to mRNAs of structural and regulatory genes for acid stress survival, causing translational repression. We also found that translation of the top-tier acid stress regulator, evgA, is coupled to that of a small leader peptide, evgL, which is repressed by CsrA. Unlike dedicated acid stress response genes, csrA and its sRNA antagonists, csrB and csrC, did not exhibit a substantial response to acid shock. Furthermore, disruption of CsrA regulation of acid stress genes impacted host-microbe interactions in Caenorhabditis elegans, alleviating GABA deficiencies. This study expands the known regulon of CsrA to genes of the extreme acid stress response of E. coli and highlights a new facet of the global role played by CsrA in balancing the opposing physiological demands of stress resistance with the capacity for growth and modulating host interactions.IMPORTANCETo colonize/infect the mammalian intestinal tract, bacteria must survive exposure to the extreme acidity of the stomach. E. coli does this by expressing proteins that neutralize cytoplasmic acidity and cope with molecular damage caused by low pH. Because of the metabolic cost of these processes, genes for surviving acid stress are tightly regulated. Here, we show that CsrA negatively regulates the cascade of expression responsible for the acid stress response. Increased expression of acid response genes due to csrA disruption improved survival at extremely low pH but inhibited growth under mildly acidic conditions. Our findings define a new layer of regulation in the acid stress response of E. coli and a novel physiological function for CsrA.
Collapse
Affiliation(s)
- Mark G. Gorelik
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Archana Pannuri
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Alyssa C. Walker
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Christine Pourciau
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Daniel Czyz
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
3
|
Zhang R, Wang Y. EvgS/EvgA, the unorthodox two-component system regulating bacterial multiple resistance. Appl Environ Microbiol 2023; 89:e0157723. [PMID: 38019025 PMCID: PMC10734491 DOI: 10.1128/aem.01577-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE EvgS/EvgA, one of the five unorthodox two-component systems in Escherichia coli, plays an essential role in adjusting bacterial behaviors to adapt to the changing environment. Multiple resistance regulated by EvgS/EvgA endows bacteria to survive in adverse conditions such as acidic pH, multidrug, and heat. In this minireview, we summarize the specific structures and regulation mechanisms of EvgS/EvgA and its multiple resistance. By discussing several unresolved issues and proposing our speculations, this review will be helpful and enlightening for future directions about EvgS/EvgA.
Collapse
Affiliation(s)
- Ruizhen Zhang
- MoE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yan Wang
- MoE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
4
|
Schumacher K, Gelhausen R, Kion-Crosby W, Barquist L, Backofen R, Jung K. Ribosome profiling reveals the fine-tuned response of Escherichia coli to mild and severe acid stress. mSystems 2023; 8:e0103723. [PMID: 37909716 PMCID: PMC10746267 DOI: 10.1128/msystems.01037-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Bacteria react very differently to survive in acidic environments, such as the human gastrointestinal tract. Escherichia coli is one of the extremely acid-resistant bacteria and has a variety of acid-defense mechanisms. Here, we provide the first genome-wide overview of the adaptations of E. coli K-12 to mild and severe acid stress at both the transcriptional and translational levels. Using ribosome profiling and RNA sequencing, we uncover novel adaptations to different degrees of acidity, including previously hidden stress-induced small proteins and novel key transcription factors for acid defense, and report mRNAs with pH-dependent differential translation efficiency. In addition, we distinguish between acid-specific adaptations and general stress response mechanisms using denoising autoencoders. This workflow represents a powerful approach that takes advantage of next-generation sequencing techniques and machine learning to systematically analyze bacterial stress responses.
Collapse
Affiliation(s)
- Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Rick Gelhausen
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Willow Kion-Crosby
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
5
|
Yang W, Sun H, Yan J, Kang C, Wu J, Yang B. Enterohemorrhagic Escherichia coli senses microbiota-derived nicotinamide to increase its virulence and colonization in the large intestine. Cell Rep 2023; 42:112638. [PMID: 37294635 DOI: 10.1016/j.celrep.2023.112638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 06/11/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a foodborne pathogen that specifically colonizes and infects the human large intestine. EHEC O157:H7 engages intricate regulatory pathways to detect host intestinal signals and regulate virulence-related gene expression during colonization and infection. However, the overall EHEC O157:H7 virulence regulatory network in the human large intestine remains incompletely understood. Here, we report a complete signal regulatory pathway where the EvgSA two-component system responds to high-nicotinamide levels produced by microbiota in the large intestine and directly activates loci of enterocyte effacement genes to promote EHEC O157:H7 adherence and colonization. This EvgSA-mediated nicotinamide signaling regulatory pathway is conserved and widespread among several other EHEC serotypes. Moreover, disruption of this virulence-regulating pathway by the deletion of evgS or evgA significantly decreased EHEC O157:H7 adherence and colonization in the mouse intestinal tract, indicating that these genes could be potential targets for the development of new therapeutics for EHEC O157:H7 infection.
Collapse
Affiliation(s)
- Wen Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Jun Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Junli Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China.
| |
Collapse
|
6
|
Kumar GD, Oguadinma IC, Mishra A, Suh JH, Singh M. Influence of antibiotic-resistance and exudate on peroxyacetic acid tolerance in O157 and non-O157 Shiga toxin producing E. coli. Int J Food Microbiol 2023; 391-393:110144. [PMID: 36842254 DOI: 10.1016/j.ijfoodmicro.2023.110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
Shiga toxin producing Escherichia coli (STEC) continues to cause foodborne outbreaks associated with beef and beef products despite consistent use of antimicrobial interventions. In this study, the influence of antibiotic resistance (ABR) in E. coli O157:H7 H1730, O157:H7 43,895, O121:H19 and O26:H11 on tolerance to peroxyacetic acid (PAA) was evaluated. Further, bactericidal concentrations of PAA in the presence of nutrient rich media (Tryptic Soy Broth, TSB and beef exudates) and nutrient deficient media (Sterile Deionized Water, SDW and Phosphate Buffered Saline, PBS) were evaluated for all bacterial strains. Antibiotic resistance to ampicillin (amp C), or ampicillin and streptomycin (amp P strep C) was generated in each bacterial strain through incremental exposure to the antibiotics or by plasmid transformation (n = 12 total strains). The mean bactericidal concentrations of PAA were higher (p ≤ 0.05) in nutrient rich media (205.55 ± 31.11 in beef exudate and 195.83 ± 25.00 ppm in TSB) than in nutrient deficient media (57.91 ± 11.97 ppm in SDW and 56.66 ± 9.56 ppm in PBS). Strain O157: H7 ampP strepC was the most tolerant to PAA (p ≤ 0.05). At 200 ppm in nutrient rich media and 60 ppm in nutrient deficient media, all bacterial strains declined in population to below the limit of detection. Analysis of the beef exudates indicated the presence of diverse amino acids that have been associated with acid tolerance. The results from this study indicate that beef exudates could contribute to acid tolerance and suggest that some STEC bacterial strains with certain ABR profiles might be more tolerant to PAA.
Collapse
Affiliation(s)
- Govindaraj Dev Kumar
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA, USA.
| | | | - Abhinav Mishra
- Department of Food Science & Technology, University of Georgia, Athens, GA, USA
| | - Joon Hyuk Suh
- Department of Food Science & Technology, University of Georgia, Athens, GA, USA
| | - Manpreet Singh
- Department of Food Science & Technology, University of Georgia, Athens, GA, USA
| |
Collapse
|
7
|
Yang X, Huo X, Tang Y, Zhao M, Tao Y, Huang J, Ke C. Integrating Enzyme Evolution and Metabolic Engineering to Improve the Productivity of Γ-Aminobutyric Acid by Whole-Cell Biosynthesis in Escherichia Coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4656-4664. [PMID: 36881553 DOI: 10.1021/acs.jafc.2c07613] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
γ-Aminobutyric acid (GABA) is used widely in various fields, such as agriculture, food, pharmaceuticals, and biobased chemicals. Based on glutamate decarboxylase (GadBM4) derived from our previous work, three mutants, GadM4-2, GadM4-8, and GadM4-31, were obtained by integrating enzyme evolution and high-throughput screening methods. The GABA productivity obtained through whole-cell bioconversion using recombinant Escherichia coli cells harboring mutant GadBM4-2 was enhanced by 20.27% compared to that of the original GadBM4. Further introduction of the central regulator GadE of the acid resistance system and the enzymes from the deoxyxylulose-5-phosphate-independent pyridoxal 5'-phosphate biosynthesis pathway resulted in a 24.92% improvement in GABA productivity, reaching 76.70 g/L/h without any cofactor addition with a greater than 99% conversion ratio. Finally, when one-step bioconversion was applied for the whole-cell catalysis in a 5 L bioreactor, the titer of GABA reached 307.5 ± 5.94 g/L with a productivity of 61.49 g/L/h by using crude l-glutamic acid (l-Glu) as the substrate. Thus, the biocatalyst constructed above combined with the whole-cell bioconversion method represents an effective approach for industrial GABA production.
Collapse
Affiliation(s)
- Xinwei Yang
- National and Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology; College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, People's Republic of China
| | - Xiaojing Huo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Yaqian Tang
- National and Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology; College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, People's Republic of China
| | - Mingyue Zhao
- National and Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology; College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, People's Republic of China
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Jianzhong Huang
- National and Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology; College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, People's Republic of China
| | - Chongrong Ke
- National and Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology; College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, People's Republic of China
| |
Collapse
|
8
|
Derdouri N, Ginet N, Denis Y, Ansaldi M, Battesti A. The prophage-encoded transcriptional regulator AppY has pleiotropic effects on E. coli physiology. PLoS Genet 2023; 19:e1010672. [PMID: 36930675 PMCID: PMC10057817 DOI: 10.1371/journal.pgen.1010672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2023] [Accepted: 02/18/2023] [Indexed: 03/18/2023] Open
Abstract
Bacterial genome diversity is influenced by prophages, which are viral genomes integrated into the bacterial chromosome. Most prophage genes are silent but those that are expressed can provide unexpected properties to their host. Using as a model E. coli K-12 that carries 9 defective prophages in its genome, we aimed at highlighting the impact of genes encoded by prophages on host physiology. We focused our work on AppY, a transcriptional regulator encoded on the DLP12 prophage. By performing RNA-Seq experiments, we showed that AppY production modulates the expression of more than 200 genes. Among them, 11 were identified by ChIP-Seq as direct AppY targets. AppY directly and positively regulates several genes involved in the acid stress response including the master regulator gene gadE but also nhaR and gadY, two genes important for biofilm formation. Moreover, AppY indirectly and negatively impacts bacterial motility by favoring the degradation of FlhDC, the master regulator of the flagella biosynthesis. As a consequence of these regulatory effects, AppY increases acid stress resistance and biofilm formation while also causing a strong defect in motility. Our research shed light on the importance to consider the genetic interactions occurring between prophages and bacteria to fully understand bacterial physiology. It also highlights how a prophage-encoded transcriptional regulator integrates in a complex manner into the host regulatory network and how it benefits its host, allowing it to cope with changing environmental conditions.
Collapse
Affiliation(s)
- Naoual Derdouri
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Nicolas Ginet
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Yann Denis
- Aix Marseille Université, Centre National de la Recherche Scientifique, Plateforme Transcriptome, Institut de Microbiologie de la Méditerranée-, Marseille, France
| | - Mireille Ansaldi
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Aurélia Battesti
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
- * E-mail:
| |
Collapse
|
9
|
Van Riet S, Tadesse W, Mortier J, Schlegel S, Simoens K, Bernaerts K, Dal Co A, Aertsen A. Heterogeneity and Evolutionary Tunability of Escherichia coli Resistance against Extreme Acid Stress. Microbiol Spectr 2022; 10:e0375722. [PMID: 36453903 PMCID: PMC9769608 DOI: 10.1128/spectrum.03757-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/27/2022] [Indexed: 12/05/2022] Open
Abstract
Since acidic environments often serve as an important line of defense against bacterial pathogens, it is important to fully understand how the latter manage to mount and evolve acid resistance mechanisms. Escherichia coli, a species harboring many pathovars, is typically equipped with the acid fitness island (AFI), a genomic region encoding the GadE master regulator together with several GadE-controlled functions to counter acid stress. This study reveals that gadE and consequently AFI functions are heterogeneously expressed even in the absence of any prior acid stress, thereby preemptively creating acid-resistant subpopulations within a clonal E. coli population. Directed evolution efforts selecting for modulated gadE expression confirm that a gain-of-function mutation in the EvgS sensor kinase can constitutively upregulate gadE expression and concomitant acid resistance. However, we reveal that such upregulation of EvgS also causes cross-resistance to heat stress because of SafA-mediated cross-activation of the PhoPQ regulon. Surprisingly, loss of function of the serC gene (encoding phosphoserine/phosphohydroxythreonine aminotransferase) can also significantly upregulate gadE expression, acid resistance, and heat cross-resistance, although via a currently cryptic mechanism. As such, our data reveal a noisy expression of gadE in E. coli that is functional for the survival of sudden acid stress and that can readily be genetically tuned. IMPORTANCE Acidic environments constitute one of the most important stresses for enteric bacteria and can be encountered in both natural (e.g., host gastrointestinal tract) and manmade (e.g., food processing) environments. The enteric species Escherichia coli harbors many pathovars and is well known for its ability to cope with acid stress. In this study, we uncover that E. coli's acid fitness island (AFI), a genomic region that encodes important functions to deal with acid stress, is by default expressed in a heterogeneous manner. In fact, using microfluidics-based single-cell approaches, we further demonstrate that this heterogeneity preemptively creates a clonal subpopulation that is much better equipped to survive a sudden acid shock. In addition, we reveal that environments with recurring acid stress can readily select for mutants displaying a higher fraction of AFI-expressing cells. These new insights are important to properly understand and anticipate the survival characteristics of E. coli.
Collapse
Affiliation(s)
- Stefanie Van Riet
- Department of Molecular and Microbial Systems, KU Leuven, Leuven, Belgium
| | - Wubishet Tadesse
- Department of Molecular and Microbial Systems, KU Leuven, Leuven, Belgium
| | - Julien Mortier
- Department of Molecular and Microbial Systems, KU Leuven, Leuven, Belgium
| | - Susan Schlegel
- Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Kenneth Simoens
- Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | | | - Alma Dal Co
- Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Abram Aertsen
- Department of Molecular and Microbial Systems, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Schwarz J, Schumacher K, Brameyer S, Jung K. Bacterial battle against acidity. FEMS Microbiol Rev 2022; 46:6652135. [PMID: 35906711 DOI: 10.1093/femsre/fuac037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population.
Collapse
Affiliation(s)
- Julia Schwarz
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| |
Collapse
|
11
|
Kim Y, Lee S, Park K, Yoon H. Cooperative Interaction between Acid and Copper Resistance in Escherichia coli. J Microbiol Biotechnol 2022; 32:602-611. [PMID: 35283428 PMCID: PMC9628877 DOI: 10.4014/jmb.2201.01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022]
Abstract
The persistence of pathogenic Escherichia coli under acidic conditions poses a serious risk to food safety, especially in acidic foods such as kimchi. To identify the bacterial factors required for acid resistance, transcriptomic analysis was conducted on an acid-resistant enterotoxigenic E. coli strain and the genes with significant changes in their expression under acidic pH were selected as putative resistance factors against acid stress. These genes included those associated with a glutamatedependent acid resistance (GDAR) system and copper resistance. E. coli strains lacking GadA, GadB, or YbaST, the components of the GDAR system, exhibited significantly attenuated growth and survival under acidic stress conditions. Accordantly, the inhibition of the GDAR system by 3-mercaptopropionic acid and aminooxyacetic acid abolished bacterial adaptation and survival under acidic conditions, indicating the indispensable role of a GDAR system in acid resistance. Intriguingly, the lack of cueR encoding a transcriptional regulator for copper resistance genes markedly impaired bacterial resistance to acid stress as well as copper. Conversely, the absence of YbaST severely compromised bacterial resistance against copper, suggesting an interplay between acid and copper resistance. These results suggest that a GDAR system can be a promising target for developing control measures to prevent E. coli resistance to acid and copper treatments.
Collapse
Affiliation(s)
- Yeeun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Seohyeon Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Kyungah Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Republic of Korea,Corresponding author Phone: +82-31-219-2450 Fax: +82-31-219-1610 E-mail:
| |
Collapse
|
12
|
Schwan WR, Luedtke J, Engelbrecht K, Mollinger J, Wheaton A, Foster JW, Wolchak R. Regulation of Escherichia coli fim gene transcription by GadE and other acid tolerance gene products. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001149. [PMID: 35316170 PMCID: PMC9558354 DOI: 10.1099/mic.0.001149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/26/2022] [Indexed: 11/18/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) cause millions of urinary tract infections each year in the United States. Type 1 pili are important for adherence of UPEC to uroepithelial cells in the human and murine urinary tracts where osmolality and pH vary. Previous work has shown that an acidic pH adversely affects the expression of type 1 pili. To determine if acid tolerance gene products may be regulating E. coli fim gene expression, a bank of K-12 strain acid tolerance gene mutants were screened using fimA-lux, fimB-lux, and fimE-lux fusions on single copy number plasmids. We have determined that a mutation in gadE increased transcription of all three fim genes, suggesting that GadE may be acting as a repressor in a low pH environment. Complementation of the gadE mutation restored fim gene transcription to wild-type levels. Moreover, mutations in gadX, gadW, crp, and cya also affected transcription of the three fim genes. To verify the role GadE plays in type 1 pilus expression, the NU149 gadE UPEC strain was tested. The gadE mutant had higher fimE gene transcript levels, a higher frequency of Phase-OFF positioning of fimS, and hemagglutination titres that were lower in strain NU149 gadE cultured in low pH medium as compared to the wild-type bacteria. The data demonstrate that UPEC fim genes are regulated directly or indirectly by the GadE protein and this could have some future bearing on the ability to prevent urinary tract infections by acidifying the urine and shutting off fim gene expression.
Collapse
Affiliation(s)
| | | | | | | | | | - John W. Foster
- University South Alabama College of Medicine, Mobile, AL, USA
| | | |
Collapse
|
13
|
Bhowmik P, Rajagopal S, Hmar RV, Singh P, Saxena P, Amar P, Thomas T, Ravishankar R, Nagaraj S, Katagihallimath N, Sarangapani RK, Ramachandran V, Datta S. Validated In Silico Model for Biofilm Formation in Escherichia coli. ACS Synth Biol 2022; 11:713-731. [PMID: 35025506 DOI: 10.1021/acssynbio.1c00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using Escherichia coli as the representative biofilm former, we report here the development of an in silico model built by simulating events that transform a free-living bacterial entity into self-encased multicellular biofilms. Published literature on ∼300 genes associated with pathways involved in biofilm formation was curated, static maps were created, and suitably interconnected with their respective metabolites using ordinary differential equations. Precise interplay of genetic networks that regulate the transitory switching of bacterial growth pattern in response to environmental changes and the resultant multicomponent synthesis of the extracellular matrix were appropriately represented. Subsequently, the in silico model was analyzed by simulating time-dependent changes in the concentration of components by using the R and python environment. The model was validated by simulating and verifying the impact of key gene knockouts (KOs) and systematic knockdowns on biofilm formation, thus ensuring the outcomes were comparable with the reported literature. Similarly, specific gene KOs in laboratory and pathogenic E. coli were constructed and assessed. MiaA, YdeO, and YgiV were found to be crucial in biofilm development. Furthermore, qRT-PCR confirmed the elevation of expression in biofilm-forming clinical isolates. Findings reported in this study offer opportunities for identifying biofilm inhibitors with applications in multiple industries. The application of this model can be extended to the health care sector specifically to develop novel adjunct therapies that prevent biofilms in medical implants and reduce emergence of biofilm-associated resistant polymicrobial-chronic infections. The in silico framework reported here is open source and accessible for further enhancements.
Collapse
Affiliation(s)
- Purnendu Bhowmik
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka 560064, India
| | - Sreenath Rajagopal
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Rothangamawi Victoria Hmar
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Purnima Singh
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Pragya Saxena
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Prakruthi Amar
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Teby Thomas
- St. John’s Research Institute, Bengaluru, Karnataka 560034, India
| | - Rajani Ravishankar
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Savitha Nagaraj
- St. John’s Medical College, Bengaluru, Karnataka 560034, India
| | - Nainesh Katagihallimath
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka 560064, India
| | - Ramanujan Kadambi Sarangapani
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Vasanthi Ramachandran
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka 560064, India
| | - Santanu Datta
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| |
Collapse
|
14
|
Sharma VK, Akavaram S, Bayles DO. Genomewide transcriptional response of Escherichia coli O157:H7 to norepinephrine. BMC Genomics 2022; 23:107. [PMID: 35135480 PMCID: PMC8822769 DOI: 10.1186/s12864-021-08167-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/10/2021] [Indexed: 01/18/2023] Open
Abstract
Background Chemical signaling between a mammalian host and intestinal microbes is health and maintenance of ‘healthy’ intestinal microbiota. Escherichia coli O157:H7 can hijack host- and microbiota-produced chemical signals for survival in a harsh and nutritionally competitive gastrointestinal environment and for intestinal colonization. Norepinephrine (NE) produced by sympathetic neurons of the enteric nervous system has been shown in vitro to induce expression of genes controlling E. coli O157:H7 swimming motility, acid resistance, and adherence to epithelial cells. A previous study used a microarray approach to identify differentially expressed genes in E. coli O157:H7 strain EDL933 in response to NE. To elucidate a comprehensive transcriptional response to NE, we performed RNA-Seq on rRNA-depleted RNA of E. coli O157:H7 strain NADC 6564, an isolate of a foodborne E. coli O157:H7 strain 86–24. The reads generated by RNA-Seq were mapped to NADC 6564 genome using HiSat2. The mapped reads were quantified by htseq-count against the genome of strain NADC 6564. The differentially expressed genes were identified by analyzing quantified reads by DESeq2. Results Of the 585 differentially expressed genes (≥ 2.0-fold; p < 0.05), many encoded pathways promoting ability of E. coli O157:H7 strain NADC 6564 to colonize intestines of carrier animals and to produce disease in an incidental human host through increased adherence to epithelial cells and production of Shiga toxins. In addition, NE exposure also induced the expression of genes encoding pathways conferring prolonged survival at extreme acidity, controlling influx/efflux of specific nutrients/metabolites, and modulating tolerance to various stressors. A correlation was also observed between the EvgS/EvgA signal transduction system and the ability of bacterial cells to survive exposure to high acidity for several hours. Many genes involved in nitrogen, sulfur, and amino acid uptake were upregulated while genes linked to iron (Fe3+) acquisition and transport were downregulated. Conclusion The availability of physiological levels of NE in gastrointestinal tract could serve as an important cue for E. coli O157:H7 to engineer its virulence, stress, and metabolic pathways for colonization in reservoir animals, such as cattle, causing illness in humans, and surviving outside of a host. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08167-z.
Collapse
Affiliation(s)
- Vijay K Sharma
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA.
| | - Suryatej Akavaram
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA.,Current address: 4302 TX-332, Freeport, TX, 77541, USA
| | - Darrell O Bayles
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA
| |
Collapse
|
15
|
The hdeD Gene Represses the Expression of Flagella Biosynthesis via LrhA in Escherichia coli K-12. J Bacteriol 2021; 204:e0042021. [PMID: 34694904 DOI: 10.1128/jb.00420-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli survives under acid stress conditions by the glutamic acid-dependent acid resistance (GAD) system, which enzymatically decreases intracellular protons. We found a linkage between GAD and flagellar systems in E. coli. The hdeD gene, one of the GAD cluster genes, encodes an uncharacterized membrane protein. A reporter assay showed that the hdeD promoter was induced in a GadE-dependent manner when grown in the M9 glycerol medium. Transcriptome analysis revealed that most of the transcripts were from genes involved in flagella synthesis, and cell motility increased not only in the hdeD-deficient mutant but also in the gadE-deficient mutant. Defects in both the hdeD and gadE increased the intracellular level of FliA, an alternative sigma factor for flagella synthesis, activated by the master regulator FlhDC. The promoter activity of the lrhA gene, which encodes repressor for the flhDC operon, was found to decrease in both the hdeD- and gadE-deficient mutants. Transmission electron microscopy showed that the number of flagellar filaments on the hdeD-, gadE-, and lrhA-deficient cells increased, and all three mutants showed higher motility than the parent strain. Thus, HdeD in the GAD system activates the lrhA promoter, resulting in a decrease in flagellar filaments in E. coli cells. We speculated that the synthesis of HdeD, stimulated in E. coli exposed to acid stress, could control the flagella biosynthesis by sensing slight changes in pH at the cytoplasmic membrane. This could help in saving energy through termination of flagella biosynthesis and improve bacterial survival efficiency within the animal digestive system. IMPORTANCE E. coli cells encounter various environments from the mouth down to the intestines within the host animals. The pH of gastric juice is lower than 2.0, and the bacterial must quickly respond and adapt to the following environmental changes before reaching the intestines. The quick response plays a role in cellular survival in the population, whereas adaptation may contribute to species survival. The GAD and flagella systems are important for response to low pH in E. coli. Here, we identified the novel inner membrane regulator HdeD, encoding in the GAD cluster, to repress the synthesis of flagella. These insights provide a deeper understanding of how the bacteria enter the animal digestive system, survive, and form colonies in the intestines.
Collapse
|
16
|
Schaffner SH, Lee AV, Pham MTN, Kassaye BB, Li H, Tallada S, Lis C, Lang M, Liu Y, Ahmed N, Galbraith LG, Moore JP, Bischof KM, Menke CC, Slonczewski JL. Extreme Acid Modulates Fitness Trade-Offs of Multidrug Efflux Pumps MdtEF-TolC and AcrAB-TolC in Escherichia coli K-12. Appl Environ Microbiol 2021; 87:e0072421. [PMID: 34085861 PMCID: PMC8315180 DOI: 10.1128/aem.00724-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/29/2021] [Indexed: 12/26/2022] Open
Abstract
Bacterial genomes encode various multidrug efflux pumps (MDR) whose specific conditions for fitness advantage are unknown. We show that the efflux pump MdtEF-TolC, in Escherichia coli, confers a fitness advantage during exposure to extreme acid (pH 2). Our flow cytometry method revealed pH-dependent fitness trade-offs between bile acids (a major pump substrate) and salicylic acid, a membrane-permeant aromatic acid that induces a drug resistance regulon but depletes proton motive force (PMF). The PMF drives MdtEF-TolC and related pumps such as AcrAB-TolC. Deletion of mdtE (with loss of the pump MdtEF-TolC) increased the strain's relative fitness during growth with or without salicylate or bile acids. However, when the growth cycle included a 2-h incubation at pH 2 (below the pH growth range), MdtEF-TolC conferred a fitness advantage. The fitness advantage required bile salts but was decreased by the presence of salicylate, whose uptake is amplified by acid. For comparison, AcrAB-TolC, the primary efflux pump for bile acids, conferred a PMF-dependent fitness advantage with or without acid exposure in the growth cycle. A different MDR pump, EmrAB-TolC, conferred no selective benefit during growth in the presence of bile acids. Without bile acids, all three MDR pumps incurred a large fitness cost with salicylate when exposed at pH 2. These results are consistent with the increased uptake of salicylate at low pH. Overall, we showed that MdtEF-TolC is an MDR pump adapted for transient extreme-acid exposure and that low pH amplifies the salicylate-dependent fitness cost for drug pumps. IMPORTANCE Antibiotics and other drugs that reach the gut must pass through stomach acid. However, little is known of how extreme acid modulates the effect of drugs on gut bacteria. We find that extreme-acid exposure leads to a fitness advantage for a multidrug pump that otherwise incurs a fitness cost. At the same time, extreme acid amplifies the effect of salicylate selection against multidrug pumps. Thus, organic acids and stomach acid could play important roles in regulating multidrug resistance in the gut microbiome. Our flow cytometry assay provides a way to measure the fitness effects of extreme-acid exposure to various membrane-soluble organic acids, including plant-derived nutrients and pharmaceutical agents. Therapeutic acids might be devised to control the prevalence of multidrug pumps in environmental and host-associated habitats.
Collapse
Affiliation(s)
| | - Abigail V. Lee
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | - Haofan Li
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | - Cassandra Lis
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | - Mark Lang
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | - Yangyang Liu
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | - Nafeez Ahmed
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | | | | | | |
Collapse
|
17
|
Inada S, Okajima T, Utsumi R, Eguchi Y. Acid-Sensing Histidine Kinase With a Redox Switch. Front Microbiol 2021; 12:652546. [PMID: 34093469 PMCID: PMC8174306 DOI: 10.3389/fmicb.2021.652546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
The EvgS/EvgA two-component signal transduction system in Escherichia coli is activated under mildly acidic pH conditions. Upon activation, this system induces the expression of a number of genes that confer acid resistance. The EvgS histidine kinase sensor has a large periplasmic domain that is required for perceiving acidic signals. In addition, we have previously proposed that the cytoplasmic linker region of EvgS is also involved in the activation of this sensor. The cytoplasmic linker region resembles a Per-ARNT-Sim (PAS) domain, which is known to act as a molecular sensor that is responsive to chemical and physical stimuli and regulates the activity of diverse effector domains. Our EvgS/EvgA reporter assays revealed that under EvgS-activating mildly acidic pH conditions, EvgS was activated only during aerobic growth conditions, and not during anaerobic growth. Studies using EvgS mutants revealed that C671A and C683A mutations in the cytoplasmic PAS domain activated EvgS even under anaerobic conditions. Furthermore, among the electron carriers of the electron transport chain, ubiquinone was required for EvgS activation. The present study proposes a model of EvgS activation by oxidation and suggests that the cytoplasmic PAS domain serves as an intermediate redox switch for this sensor.
Collapse
Affiliation(s)
- Shinya Inada
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Toshihide Okajima
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | - Ryutaro Utsumi
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | - Yoko Eguchi
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| |
Collapse
|
18
|
Sheikh SW, Ali A, Ahsan A, Shakoor S, Shang F, Xue T. Insights into Emergence of Antibiotic Resistance in Acid-Adapted Enterohaemorrhagic Escherichia coli. Antibiotics (Basel) 2021; 10:522. [PMID: 34063307 PMCID: PMC8147483 DOI: 10.3390/antibiotics10050522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
The emergence of multidrug-resistant pathogens presents a global challenge for treating and preventing disease spread through zoonotic transmission. The water and foodborne Enterohaemorrhagic Escherichia coli (EHEC) are capable of causing intestinal and systemic diseases. The root cause of the emergence of these strains is their metabolic adaptation to environmental stressors, especially acidic pH. Acid treatment is desired to kill pathogens, but the protective mechanisms employed by EHECs cross-protect against antimicrobial peptides and thus facilitate opportunities for survival and pathogenesis. In this review, we have discussed the correlation between acid tolerance and antibiotic resistance, highlighting the identification of novel targets for potential production of antimicrobial therapeutics. We have also summarized the molecular mechanisms used by acid-adapted EHECs, such as the two-component response systems mediating structural modifications, competitive inhibition, and efflux activation that facilitate cross-protection against antimicrobial compounds. Moving beyond the descriptive studies, this review highlights low pH stress as an emerging player in the development of cross-protection against antimicrobial agents. We have also described potential gene targets for innovative therapeutic approaches to overcome the risk of multidrug-resistant diseases in healthcare and industry.
Collapse
Affiliation(s)
- Salma Waheed Sheikh
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China;
| | - Ahmad Ali
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China;
| | - Asma Ahsan
- Faculty of Life Sciences, University of Central Punjab, Lahore 54000, Punjab, Pakistan;
| | - Sidra Shakoor
- Station de Neucfchateau, CIRAD, 97130 Sainte-Marie, Capesterre Belle Eau, Guadeloupe, France;
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China;
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China;
| |
Collapse
|
19
|
Absence of osmoregulated periplasmic glucan confers antimicrobial resistance and increases virulence in Escherichia coli. J Bacteriol 2021; 203:e0051520. [PMID: 33846116 DOI: 10.1128/jb.00515-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clarifying the molecular mechanisms by which bacteria acquire virulence traits is important toward understanding the bacterial virulence system. In the present study, we utilized a bacterial evolution method in a silkworm-infection model and revealed that deletion of the opgGH operon encoding synthases for osmoregulated periplasmic glucan (OPG) increased the virulence of non-pathogenic laboratory strain of Escherichia coli against silkworms. The opgGH knockout mutant exhibited resistance to the host antimicrobial peptides and antibiotics. Compared with the parent strain, the opgGH knockout mutant produced greater amounts of colanic acid, which is involved in E. coli resistance to antibiotics. RNA sequence analysis revealed that the opgGH knockout altered the expression of various genes, including the evgS/evgA two-component system that functions in antibiotic resistance. In both a colanic acid-negative background and evgS-null background, the opgGH knockout increased E. coli resistance to antibiotics and increased the silkworm killing activity of E. coli In the null background of the envZ/ompR two-component system, which genetically interacts with opgGH, the opgGH knockout increased the antibiotic resistance and the virulence in silkworms. These findings suggest that the absence of OPG confers antimicrobial resistance and virulence of E. coli in a colanic acid-, evgS/evgA-, and envZ/ompR- independent manner.IMPORTANCEThe gene mutation types that increase bacterial virulence of Escherichia coli remain unclear, in part due to the limited number of methods available for isolating bacterial mutants with increased virulence. We utilized a bacterial evolution method in the silkworm infection model, in which silkworms were infected with mutagenized bacteria and highly virulent bacterial mutants were isolated from dead silkworms. We revealed that knockout of OPG synthases increases E. coli virulence against silkworms. The OPG-knockout mutants were resistant to host antimicrobial peptides as well as antibiotics. Our findings not only suggest a novel mechanism for virulence acquisition in E. coli, but also support the usefulness of utilizing the bacterial experimental evolution method in the silkworm infection model.
Collapse
|
20
|
Vandelle E, Colombo T, Regaiolo A, Maurizio V, Libardi T, Puttilli MR, Danzi D, Polverari A. Transcriptional Profiling of Three Pseudomonas syringae pv. actinidiae Biovars Reveals Different Responses to Apoplast-Like Conditions Related to Strain Virulence on the Host. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:376-396. [PMID: 33356409 DOI: 10.1094/mpmi-09-20-0248-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pseudomonas syringae pv. actinidiae is a phytopathogen that causes devastating bacterial canker in kiwifruit. Among five biovars defined by genetic, biochemical, and virulence traits, P. syringae pv. actinidiae biovar 3 (Psa3) is the most aggressive and is responsible for the most recent reported outbreaks; however, the molecular basis of its heightened virulence is unclear. Therefore, we designed the first P. syringae multistrain whole-genome microarray, encompassing biovars Psa1, Psa2, and Psa3 and the well-established model P. syringae pv. tomato, and analyzed early bacterial responses to an apoplast-like minimal medium. Transcriptomic profiling revealed i) the strong activation in Psa3 of all hypersensitive reaction and pathogenicity (hrp) and hrp conserved (hrc) cluster genes, encoding components of the type III secretion system required for bacterial pathogenicity and involved in responses to environmental signals; ii) potential repression of the hrp/hrc cluster in Psa2; and iii) activation of flagellum-dependent cell motility and chemotaxis genes in Psa1. The detailed investigation of three gene families encoding upstream regulatory proteins (histidine kinases, their cognate response regulators, and proteins with diguanylate cyclase or phosphodiesterase domains) indicated that cyclic di-GMP may be a key regulator of virulence in P. syringae pv. actinidiae biovars. The gene expression data were supported by the quantification of biofilm formation. Our findings suggest that diverse early responses to the host apoplast, even among bacteria belonging to the same pathovar, can lead to different virulence strategies and may explain the differing outcomes of infections. Based on our detailed structural analysis of hrp operons, we also propose a revision of hrp cluster organization and operon regulation in P. syringae.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Elodie Vandelle
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Teresa Colombo
- National Research Council of Italy (CNR), Institute of Molecular Biology and Pathology (IBPM) c/o Department of Biochemical Sciences "A. Rossi Fanelli", "Sapienza" University of Rome, Rome, 00185, Italy
| | - Alice Regaiolo
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Vanessa Maurizio
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Tommaso Libardi
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | | | - Davide Danzi
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | | |
Collapse
|
21
|
Arcari T, Feger ML, Guerreiro DN, Wu J, O’Byrne CP. Comparative Review of the Responses of Listeria monocytogenes and Escherichia coli to Low pH Stress. Genes (Basel) 2020; 11:genes11111330. [PMID: 33187233 PMCID: PMC7698193 DOI: 10.3390/genes11111330] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Acidity is one of the principal physicochemical factors that influence the behavior of microorganisms in any environment, and their response to it often determines their ability to grow and survive. Preventing the growth and survival of pathogenic bacteria or, conversely, promoting the growth of bacteria that are useful (in biotechnology and food production, for example), might be improved considerably by a deeper understanding of the protective responses that these microorganisms deploy in the face of acid stress. In this review, we survey the molecular mechanisms used by two unrelated bacterial species in their response to low pH stress. We chose to focus on two well-studied bacteria, Escherichia coli (phylum Proteobacteria) and Listeria monocytogenes (phylum Firmicutes), that have both evolved to be able to survive in the mammalian gastrointestinal tract. We review the mechanisms that these species use to maintain a functional intracellular pH as well as the protective mechanisms that they deploy to prevent acid damage to macromolecules in the cells. We discuss the mechanisms used to sense acid in the environment and the regulatory processes that are activated when acid is encountered. We also highlight the specific challenges presented by organic acids. Common themes emerge from this comparison as well as unique strategies that each species uses to cope with acid stress. We highlight some of the important research questions that still need to be addressed in this fascinating field.
Collapse
|
22
|
Serdyukov DS, Goryachkovskaya TN, Mescheryakova IA, Bannikova SV, Kuznetsov SA, Cherkasova OP, Popik VM, Peltek SE. Study on the effects of terahertz radiation on gene networks of Escherichia coli by means of fluorescent biosensors. BIOMEDICAL OPTICS EXPRESS 2020; 11:5258-5273. [PMID: 33014613 PMCID: PMC7510871 DOI: 10.1364/boe.400432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 05/03/2023]
Abstract
Three novel fluorescent biosensors sensitive to terahertz (THz) radiation were developed via transformation of Escherichia coli (E. coli) cells with plasmids, in which a promotor of genes matA, safA, or chbB controls the expression of a fluorescent protein. The biosensors were exposed to THz radiation from two sources: a high-intensity pulsed short-wave free electron laser and a low-intensity continuous long-wave IMPATT-diode-based device. The threshold and dynamics of fluorescence were found to depend on radiation parameters and exposure time. Heat shock or chemical stress yielded the absence of fluorescence induction. The biosensors are evaluated to be suitable for studying influence of THz radiation on the activity of gene networks related with considered gene promoters.
Collapse
Affiliation(s)
- Danil S. Serdyukov
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, 15B Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Tatiana N. Goryachkovskaya
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Irina A. Mescheryakova
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Svetlana V. Bannikova
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Sergei A. Kuznetsov
- Physics Department, Novosibirsk State University, 2 Pirogov Street, Novosibirsk 630090, Russia
- Technological Design Institute of Applied Microelectronics, Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences, 2/1 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Olga P. Cherkasova
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, 15B Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Vasiliy M. Popik
- Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, 11 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Sergey E. Peltek
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| |
Collapse
|
23
|
Boon N, Kaur M, Aziz A, Bradnick M, Shibayama K, Eguchi Y, Lund PA. The Signaling Molecule Indole Inhibits Induction of the AR2 Acid Resistance System in Escherichia coli. Front Microbiol 2020; 11:474. [PMID: 32351457 PMCID: PMC7174508 DOI: 10.3389/fmicb.2020.00474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/04/2020] [Indexed: 12/19/2022] Open
Abstract
Induction of the AR2 acid response system of Escherichia coli occurs at a moderately low pH (pH 5.5) and leads to high levels of resistance to pH levels below 2.5 in the presence of glutamate. Induction is mediated in part by the EvgAS two component system. Here, we show that the bacterial signaling molecule indole inhibits the induction of key promoters in the AR2 system and blocks the development of glutamate-dependent acid resistance. The addition of tryptophan, the precursor for indole biosynthesis, had the same effects, and this block was relieved in a tnaA mutant, which is unable to synthesize indole. Expression of a constitutively active EvgS protein was able to relieve the inhibition caused by indole, consistent with EvgS being inhibited directly or indirectly by indole. Indole had no effect on autophosphorylation of the isolated cytoplasmic domain of EvgS. This is consistent with a model where indole directly or indirectly affects the ability of EvgS to detect its inducing signal or to transduce this information across the cytoplasmic membrane. The inhibitory activity of indole on the AR2 system is not related to its ability to act as an ionophore, and, conversely, the ionophore CCCP had no effect on acid-induced AR2 promoter activity, showing that the proton motive force is unlikely to be a signal for induction of the AR2 system.
Collapse
Affiliation(s)
- Nathaniel Boon
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Manpreet Kaur
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Amina Aziz
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Morissa Bradnick
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Kenta Shibayama
- Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Yoko Eguchi
- Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Peter A Lund
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
24
|
Moore JP, Li H, Engmann ML, Bischof KM, Kunka KS, Harris ME, Tancredi AC, Ditmars FS, Basting PJ, George NS, Bhagwat AA, Slonczewski JL. Inverted Regulation of Multidrug Efflux Pumps, Acid Resistance, and Porins in Benzoate-Evolved Escherichia coli K-12. Appl Environ Microbiol 2019; 85:e00966-19. [PMID: 31175192 PMCID: PMC6677852 DOI: 10.1128/aem.00966-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/30/2019] [Indexed: 01/23/2023] Open
Abstract
Benzoic acid, a partial uncoupler of the proton motive force (PMF), selects for sensitivity to chloramphenicol and tetracycline during the experimental evolution of Escherichia coli K-12. Transcriptomes of E. coli isolates evolved with benzoate showed the reversal of benzoate-dependent regulation, including the downregulation of multidrug efflux pump genes, the gene for the Gad acid resistance regulon, the nitrate reductase genes narHJ, and the gene for the acid-consuming hydrogenase Hyd-3. However, the benzoate-evolved strains had increased expression of OmpF and other large-hole porins that admit fermentable substrates and antibiotics. Candidate genes identified from benzoate-evolved strains were tested for their roles in benzoate tolerance and in chloramphenicol sensitivity. Benzoate or salicylate tolerance was increased by deletion of the Gad activator ariR or of the acid fitness island from slp to the end of the gadX gene encoding Gad regulators and the multidrug pump genes mdtEF Benzoate tolerance was also increased by deletion of multidrug component gene emrA, RpoS posttranscriptional regulator gene cspC, adenosine deaminase gene add, hydrogenase gene hyc (Hyd-3), and the RNA chaperone/DNA-binding regulator gene hfq Chloramphenicol resistance was decreased by mutations in genes for global regulators, such as RNA polymerase alpha subunit gene rpoA, the Mar activator gene rob, and hfq Deletion of lipopolysaccharide biosynthetic kinase gene rfaY decreased the rate of growth in chloramphenicol. Isolates from experimental evolution with benzoate had many mutations affecting aromatic biosynthesis and catabolism, such as aroF (encoding tyrosine biosynthesis) and apt (encoding adenine phosphoribosyltransferase). Overall, benzoate or salicylate exposure selects for the loss of multidrug efflux pumps and of hydrogenases that generate a futile cycle of PMF and upregulates porins that admit fermentable nutrients and antibiotics.IMPORTANCE Benzoic acid is a common food preservative, and salicylic acid (2-hydroxybenzoic acid) is the active form of aspirin. At high concentrations, benzoic acid conducts a proton across the membrane, depleting the proton motive force. In the absence of antibiotics, benzoate exposure selects against proton-driven multidrug efflux pumps and upregulates porins that admit fermentable substrates but that also allow the entry of antibiotics. Thus, evolution with benzoate and related molecules, such as salicylates, requires a trade-off for antibiotic sensitivity, a trade-off that could help define a stable gut microbiome. Benzoate and salicylate are naturally occurring plant signal molecules that may modulate the microbiomes of plants and animal digestive tracts so as to favor fermenters and exclude drug-resistant pathogens.
Collapse
Affiliation(s)
- Jeremy P Moore
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | - Haofan Li
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | - Karina S Kunka
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | - Mary E Harris
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | | | - Nadja S George
- Environmental Microbiology and Food Safety Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Beltsville, Maryland, USA
| | - Arvind A Bhagwat
- Environmental Microbiology and Food Safety Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Beltsville, Maryland, USA
| | | |
Collapse
|
25
|
Regulation of arginine biosynthesis, catabolism and transport in Escherichia coli. Amino Acids 2019; 51:1103-1127. [DOI: 10.1007/s00726-019-02757-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/27/2019] [Indexed: 11/26/2022]
|
26
|
Xu J, Li T, Gao Y, Deng J, Gu J. MgrB affects the acid stress response of Escherichia coli by modulating the expression of iraM. FEMS Microbiol Lett 2019; 366:fnz123. [PMID: 31158277 DOI: 10.1093/femsle/fnz123] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/01/2019] [Indexed: 10/18/2023] Open
Abstract
Although MgrB is established to be a feedback inhibitor of the PhoP/Q system in Escherichia coli, the biological functions of MgrB remain largely unknown. To explore new functions of MgrB, a comparative transcriptome analysis was performed (E. coli K-12 W3110 ΔmgrB vs E. coli K-12 W3110). The results showed that many genes involved in acid stress are upregulated, suggesting that MgrB is related to acid sensitivity in E. coli. The survival rates under acid stress of the ΔmgrB mutant and wild-type showed that deletion of mgrB resulted in acid resistance. According to previous research, we deleted phoP, phoQ and iraM in the ΔmgrB mutant, and found that further deletion of phoP/phoQ only partially restored acid sensitivity. Additionally, we found that deletion of mgrB resulted in increased accumulation of RpoS during the exponential growth phase, which could be blocked by further deletion of iraM. Mutation of iraM or rpoS completely suppressed the effect of mgrB mutation on acid resistance. Taken together, the data suggest that MgrB affects the acid resistance of E. coli by modulating the expression of iraM, but not completely through PhoP/Q. This indicates that MgrB may have other protein interactors aside from PhoQ, which merits further investigation.
Collapse
Affiliation(s)
- Jintian Xu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ting Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yunrong Gao
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou 510623, China
| | - Jiaoyu Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Guangdong Province Key Laboratory of TB Systems Biology and Translational Medicine, Foshan Institude of Industrial Technology, Chinese Academic of Sciences, Foshan 528000, China
| | - Jing Gu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
27
|
Zhang B, Ran L, Wu M, Li Z, Jiang J, Wang Z, Cheng S, Fu J, Liu X. Shigellaflexneri Regulator SlyA Controls Bacterial Acid Resistance by Directly Activating the Glutamate Decarboxylation System. Front Microbiol 2018; 9:2071. [PMID: 30233544 PMCID: PMC6128205 DOI: 10.3389/fmicb.2018.02071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/14/2018] [Indexed: 01/02/2023] Open
Abstract
Shigella flexneri is an important foodborne bacterial pathogen with infectious dose as low as 10–100 cells. SlyA, a transcriptional regulator of the MarR family, has been shown to regulate virulence in a closely related bacterial pathogen, Salmonella Typhimurium. However, the regulatory role of SlyA in S. flexneri is less understood. Here we applied unbiased proteomic profiling to define the SlyA regulon in S. flexneri. We found that the genetic ablation of slyA led to the alteration of 18 bacterial proteins among over 1400 identifications. Intriguingly, most down-regulated proteins (whose expression is SlyA-dependent) were associated with bacterial acid resistance such as the glutamate decarboxylation system. We further demonstrated that SlyA directly regulates the expression of GadA, a glutamate decarboxylase, by binding to the promotor region of its coding gene. Importantly, overexpression of GadA was able to rescue the survival defect of the ΔslyA mutant under acid stress. Therefore, our study highlights a major role of SlyA in controlling S. flexneri acid resistance and provides a molecular mechanism underlying such regulation as well.
Collapse
Affiliation(s)
- Buyu Zhang
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Longhao Ran
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Mei Wu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zezhou Li
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jiezhang Jiang
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhen Wang
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Sen Cheng
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jiaqi Fu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| |
Collapse
|
28
|
Pulmonary Surfactant Promotes Virulence Gene Expression and Biofilm Formation in Klebsiella pneumoniae. Infect Immun 2018; 86:IAI.00135-18. [PMID: 29712730 DOI: 10.1128/iai.00135-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
The interactions between Klebsiella pneumoniae and the host environment at the site of infection are largely unknown. Pulmonary surfactant serves as an initial point of contact for inhaled bacteria entering the lung and is thought to contain molecular cues that aid colonization and pathogenesis. To gain insight into this ecological transition, we characterized the transcriptional response of K. pneumoniae MGH 78578 to purified pulmonary surfactant. This work revealed changes within the K. pneumoniae transcriptome that likely contribute to host colonization, adaptation, and virulence in vivo Notable transcripts expressed under these conditions include genes involved in capsule synthesis, lipopolysaccharide modification, antibiotic resistance, biofilm formation, and metabolism. In addition, we tested the contributions of other surfactant-induced transcripts to K. pneumoniae survival using engineered isogenic KPPR1 deletion strains in a murine model of acute pneumonia. In these infection studies, we identified the MdtJI polyamine efflux pump and the ProU glycine betaine ABC transporter to be significant mediators of K. pneumoniae survival within the lung and confirmed previous evidence for the importance of de novo leucine synthesis to bacterial survival during infection. Finally, we determined that pulmonary surfactant promoted type 3 fimbria-mediated biofilm formation in K. pneumoniae and identified two surfactant constituents, phosphatidylcholine and cholesterol, that drive this response. This study provides novel insight into the interactions occurring between K. pneumoniae and the host at an important infection site and demonstrates the utility of purified lung surfactant preparations for dissecting host-lung pathogen interactions in vitro.
Collapse
|
29
|
Roggiani M, Yadavalli SS, Goulian M. Natural variation of a sensor kinase controlling a conserved stress response pathway in Escherichia coli. PLoS Genet 2017; 13:e1007101. [PMID: 29140975 PMCID: PMC5706723 DOI: 10.1371/journal.pgen.1007101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/29/2017] [Accepted: 11/03/2017] [Indexed: 12/02/2022] Open
Abstract
Previous studies have shown that exponentially growing Escherichia coli can detect mild acidity (~pH 5.5) and, in response, synthesize enzymes that protect against severe acid shock. This adaptation is controlled by the EvgS/EvgA phosphorelay, a signal transduction system present in virtually every E. coli isolate whose genome has been sequenced. Here we show that, despite this high level of conservation, the EvgS/EvgA system displays a surprising natural variation in pH-sensing capacity, with some strains entirely non-responsive to low pH stimulus. In most cases that we have tested, however, activation of the EvgA regulon still confers acid resistance. From analyzing selected E. coli isolates, we find that the natural variation results from polymorphisms in the sensor kinase EvgS. We further show that this variation affects the pH response of a second kinase, PhoQ, which senses pH differently from the closely related PhoQ in Salmonella enterica. The within-species diversification described here suggests EvgS likely responds to additional input signals that may be correlated with acid stress. In addition, this work highlights the fact that even for highly conserved sensor kinases, the activities identified from a subset of isolates may not necessarily generalize to other members of the same bacterial species. Bacteria employ a class of proteins, sensor kinases, to sense environmental cues and initiate cellular responses through phosphorylation of partner response regulator proteins. Individual kinases are generally assumed to have the same sensory activity across members of a bacterial species. In this work, we report an unexpected counterexample in which the well-established capacity of the kinase EvgS to sense mild acidity is limited to a subset of Escherichia coli isolates. Despite this natural variation, EvgS activation still confers resistance to acid stress in strains that have lost EvgS pH-sensing activity. Thus, most E. coli share a conserved output of the Evg system but do not require identical sensory functions. This work highlights the potential for significant functional divergence of a sensor kinase within a species and also indicates that there are additional input signals for the highly conserved EvgS protein.
Collapse
Affiliation(s)
- Manuela Roggiani
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Srujana S. Yadavalli
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
30
|
Structural and Functional Analysis of the Escherichia coli Acid-Sensing Histidine Kinase EvgS. J Bacteriol 2017; 199:JB.00310-17. [PMID: 28674068 PMCID: PMC5573083 DOI: 10.1128/jb.00310-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/19/2017] [Indexed: 01/31/2023] Open
Abstract
The EvgS/EvgA two-component system of Escherichia coli is activated in response to low pH and alkali metals and regulates many genes, including those for the glutamate-dependent acid resistance system and a number of efflux pumps. EvgS, the sensor kinase, is one of five unconventional histidine kinases (HKs) in E. coli and has a large periplasmic domain and a cytoplasmic PAS domain in addition to phospho-acceptor, HK and dimerization, internal receiver, and phosphotransfer domains. Mutations that constitutively activate the protein at pH 7 map to the PAS domain. Here, we built a homology model of the periplasmic region of EvgS, based on the structure of the equivalent region of the BvgS homologue, to guide mutagenesis of potential key residues in this region. We show that histidine 226 is required for induction and that it is structurally colocated with a proline residue (P522) at the top of the predicted transmembrane helix that is expected to play a key role in passing information to the cytoplasmic domains. We also show that the constitutive mutations in the PAS domain can be further activated by low external pH. Expression of the cytoplasmic part of the protein alone also gives constitutive activation, which is lost if the constitutive PAS mutations are present. These findings are consistent with a model in which EvgS senses both external and internal pH and is activated by a shift from a tight inactive to a weak active dimer, and we present an analysis of the purified cytoplasmic portion of EvgS that supports this. IMPORTANCE One of the ways bacteria sense their environment is through two-component systems, which have one membrane-bound protein to do the sensing and another inside the cell to turn genes on or off in response to what the membrane-bound protein has detected. The membrane-bound protein must thus be able to detect the stress and signal this detection event to the protein inside the cell. To understand this process, we studied a protein that helps E. coli to survive exposure to low pH, which it must do before taking up residence in the gastrointestinal tract. We describe a predicted structure for the main sensing part of the protein and identify some key residues within it that are involved in the sensing and signaling processes. We propose a mechanism for how the protein may become activated and present some evidence to support our proposal.
Collapse
|
31
|
Noisy Response to Antibiotic Stress Predicts Subsequent Single-Cell Survival in an Acidic Environment. Cell Syst 2017; 4:393-403.e5. [PMID: 28342718 DOI: 10.1016/j.cels.2017.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/14/2016] [Accepted: 03/01/2017] [Indexed: 11/23/2022]
Abstract
Antibiotics elicit drastic changes in microbial gene expression, including the induction of stress response genes. While certain stress responses are known to "cross-protect" bacteria from other stressors, it is unclear whether cellular responses to antibiotics have a similar protective role. By measuring the genome-wide transcriptional response dynamics of Escherichia coli to four antibiotics, we found that trimethoprim induces a rapid acid stress response that protects bacteria from subsequent exposure to acid. Combining microfluidics with time-lapse imaging to monitor survival and acid stress response in single cells revealed that the noisy expression of the acid resistance operon gadBC correlates with single-cell survival. Cells with higher gadBC expression following trimethoprim maintain higher intracellular pH and survive the acid stress longer. The seemingly random single-cell survival under acid stress can therefore be predicted from gadBC expression and rationalized in terms of GadB/C molecular function. Overall, we provide a roadmap for identifying the molecular mechanisms of single-cell cross-protection between antibiotics and other stressors.
Collapse
|
32
|
Aquino P, Honda B, Jaini S, Lyubetskaya A, Hosur K, Chiu JG, Ekladious I, Hu D, Jin L, Sayeg MK, Stettner AI, Wang J, Wong BG, Wong WS, Alexander SL, Ba C, Bensussen SI, Bernstein DB, Braff D, Cha S, Cheng DI, Cho JH, Chou K, Chuang J, Gastler DE, Grasso DJ, Greifenberger JS, Guo C, Hawes AK, Israni DV, Jain SR, Kim J, Lei J, Li H, Li D, Li Q, Mancuso CP, Mao N, Masud SF, Meisel CL, Mi J, Nykyforchyn CS, Park M, Peterson HM, Ramirez AK, Reynolds DS, Rim NG, Saffie JC, Su H, Su WR, Su Y, Sun M, Thommes MM, Tu T, Varongchayakul N, Wagner TE, Weinberg BH, Yang R, Yaroslavsky A, Yoon C, Zhao Y, Zollinger AJ, Stringer AM, Foster JW, Wade J, Raman S, Broude N, Wong WW, Galagan JE. Coordinated regulation of acid resistance in Escherichia coli. BMC SYSTEMS BIOLOGY 2017; 11:1. [PMID: 28061857 PMCID: PMC5217608 DOI: 10.1186/s12918-016-0376-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 12/07/2016] [Indexed: 12/29/2022]
Abstract
Background Enteric Escherichia coli survives the highly acidic environment of the stomach through multiple acid resistance (AR) mechanisms. The most effective system, AR2, decarboxylates externally-derived glutamate to remove cytoplasmic protons and excrete GABA. The first described system, AR1, does not require an external amino acid. Its mechanism has not been determined. The regulation of the multiple AR systems and their coordination with broader cellular metabolism has not been fully explored. Results We utilized a combination of ChIP-Seq and gene expression analysis to experimentally map the regulatory interactions of four TFs: nac, ntrC, ompR, and csiR. Our data identified all previously in vivo confirmed direct interactions and revealed several others previously inferred from gene expression data. Our data demonstrate that nac and csiR directly modulate AR, and leads to a regulatory network model in which all four TFs participate in coordinating acid resistance, glutamate metabolism, and nitrogen metabolism. This model predicts a novel mechanism for AR1 by which the decarboxylation enzymes of AR2 are used with internally derived glutamate. This hypothesis makes several testable predictions that we confirmed experimentally. Conclusions Our data suggest that the regulatory network underlying AR is complex and deeply interconnected with the regulation of GABA and glutamate metabolism, nitrogen metabolism. These connections underlie and experimentally validated model of AR1 in which the decarboxylation enzymes of AR2 are used with internally derived glutamate. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0376-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patricia Aquino
- Department of Biomedical Engineering, Boston University, Boston, USA.,BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Brent Honda
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - Suma Jaini
- Department of Biomedical Engineering, Boston University, Boston, USA
| | | | - Krutika Hosur
- Department of Biomedical Engineering, Boston University, Boston, USA.,BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Joanna G Chiu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Iriny Ekladious
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Dongjian Hu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Lin Jin
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Marianna K Sayeg
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Arion I Stettner
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Julia Wang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Brandon G Wong
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Winnie S Wong
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Cong Ba
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Seth I Bensussen
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - David B Bernstein
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Dana Braff
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Susie Cha
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel I Cheng
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jang Hwan Cho
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Kenny Chou
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - James Chuang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel E Gastler
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel J Grasso
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Chen Guo
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Anna K Hawes
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Divya V Israni
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Saloni R Jain
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jessica Kim
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Junyu Lei
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hao Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - David Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Qian Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Ning Mao
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Salwa F Masud
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Cari L Meisel
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jing Mi
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Minhee Park
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hannah M Peterson
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Alfred K Ramirez
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel S Reynolds
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Nae Gyune Rim
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jared C Saffie
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hang Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Wendell R Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Yaqing Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Meng Sun
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Meghan M Thommes
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Tao Tu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Tyler E Wagner
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Rouhui Yang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Christine Yoon
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Yanyu Zhao
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Anne M Stringer
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - John W Foster
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Joseph Wade
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Sahadaven Raman
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Natasha Broude
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - Wilson W Wong
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - James E Galagan
- Department of Biomedical Engineering, Boston University, Boston, USA. .,Bioinformatics program, Boston University, Boston, USA. .,National Emerging Infectious Diseases Laboratory, Boston University, Boston, USA.
| |
Collapse
|
33
|
Zhang J, Caiyin Q, Feng W, Zhao X, Qiao B, Zhao G, Qiao J. Enhance nisin yield via improving acid-tolerant capability of Lactococcus lactis F44. Sci Rep 2016; 6:27973. [PMID: 27306587 PMCID: PMC4910042 DOI: 10.1038/srep27973] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/27/2016] [Indexed: 11/09/2022] Open
Abstract
Traditionally, nisin was produced industrially by using Lactococcus lactis in the neutral fermentation process. However, nisin showed higher activity in the acidic environment. How to balance the pH value for bacterial normal growth and nisin activity might be the key problem. In this study, 17 acid-tolerant genes and 6 lactic acid synthetic genes were introduced in L. lactis F44, respectively. Comparing to the 2810 IU/mL nisin yield of the original strain F44, the nisin titer of the engineered strains over-expressing hdeAB, ldh and murG, increased to 3850, 3979 and 4377 IU/mL, respectively. These engineered strains showed more stable intracellular pH value during the fermentation process. Improvement of lactate production could partly provide the extra energy for the expression of acid tolerance genes during growth. Co-overexpression of hdeAB, murG, and ldh(Z) in strain F44 resulted in the nisin titer of 4913 IU/mL. The engineered strain (ABGL) could grow on plates with pH 4.2, comparing to the surviving pH 4.6 of strain F44. The fed-batch fermentation showed nisin titer of the co-expression L. lactis strain could reach 5563 IU/mL with lower pH condition and longer cultivation time. This work provides a novel strategy of constructing robust strains for use in industry process.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering, Ministry of Education Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Qinggele Caiyin
- Key Laboratory of Systems Bioengineering, Ministry of Education Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Wenjing Feng
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering, Ministry of Education Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xiuli Zhao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering, Ministry of Education Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Bin Qiao
- Key Laboratory of Systems Bioengineering, Ministry of Education Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Guangrong Zhao
- Key Laboratory of Systems Bioengineering, Ministry of Education Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering, Ministry of Education Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
34
|
Gao X, Jiang L, Zhu L, Xu Q, Xu X, Huang H. Tailoring of global transcription sigma D factor by random mutagenesis to improve Escherichia coli tolerance towards low-pHs. J Biotechnol 2016; 224:55-63. [PMID: 26971973 DOI: 10.1016/j.jbiotec.2016.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 03/02/2016] [Accepted: 03/08/2016] [Indexed: 11/17/2022]
Abstract
Bioconversion processes of organic acid or acid hydrolysis of raw material for microbial metabolism often suffer limitations as a result of microbial sensitivity in low-pH conditions. We adopted a three-step method called RAndom Insertional-deletional Strand Exchange mutagenesis (RAISE) to engineer the components of global regulator Sigma D factor (RpoD) of Escherichia coli to improve its acid tolerance. The best strain Mutant VII was identified from random mutagenesis libraries based on the growth performance, which exhibited much higher growth rate than the control (0.22h(-1) vs. 0.15h(-1)) at pH as low as 3.17. Combined transcriptome and phenome analysis of E. coli was carried out to better understand the global effects of RpoD on the regulatory networks. Our analysis showed that 95 (2.1%) of all E. coli genes were induced and 178 (4.0%) genes were repressed, including those for trehalose biosynthesis, nucleotides biosynthesis, carbon metabolism, amino acid utilization, except for acid resistance. Also regulated were the master regulators (ArcA, EvgA, H-NS and RpoS) and gene/operon-specific transcription factors (GadX, GadW, AppY, YdeO, KdgR). These results demonstrated that RpoD acts as global regulator in the growth phase of E. coli and consequently improves acid tolerances.
Collapse
Affiliation(s)
- Xi Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, PR China.
| | - Liying Zhu
- College of Sciences, Nanjing Tech University, Nanjing 210009, PR China.
| | - Qing Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Xian Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - He Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| |
Collapse
|
35
|
Global Regulator of Virulence A (GrvA) Coordinates Expression of Discrete Pathogenic Mechanisms in Enterohemorrhagic Escherichia coli through Interactions with GadW-GadE. J Bacteriol 2015; 198:394-409. [PMID: 26527649 DOI: 10.1128/jb.00556-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/28/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Global regulator of virulence A (GrvA) is a ToxR-family transcriptional regulator that activates locus of enterocyte effacement (LEE)-dependent adherence in enterohemorrhagic Escherichia coli (EHEC). LEE activation by GrvA requires the Rcs phosphorelay response regulator RcsB and is sensitive to physiologically relevant concentrations of bicarbonate, a known stimulant of virulence systems in intestinal pathogens. This study determines the genomic scale of GrvA-dependent regulation and uncovers details of the molecular mechanism underlying GrvA-dependent regulation of pathogenic mechanisms in EHEC. In a grvA-null background of EHEC strain TW14359, RNA sequencing analysis revealed the altered expression of over 700 genes, including the downregulation of LEE- and non-LEE-encoded effectors and the upregulation of genes for glutamate-dependent acid resistance (GDAR). Upregulation of GDAR genes corresponded with a marked increase in acid resistance. GrvA-dependent regulation of GDAR and the LEE required gadE, the central activator of GDAR genes and a direct repressor of the LEE. Control of gadE by GrvA was further determined to occur through downregulation of the gadE activator GadW. This interaction of GrvA with GadW-GadE represses the acid resistance phenotype, while it concomitantly activates the LEE-dependent adherence and secretion of immune subversion effectors. The results of this study significantly broaden the scope of GrvA-dependent regulation and its role in EHEC pathogenesis. IMPORTANCE Enterohemorrhagic Escherichia coli (EHEC) is an intestinal human pathogen causing acute hemorrhagic colitis and life-threatening hemolytic-uremic syndrome. For successful transmission and gut colonization, EHEC relies on the glutamate-dependent acid resistance (GDAR) system and a type III secretion apparatus, encoded on the LEE pathogenicity island. This study investigates the mechanism whereby the DNA-binding regulator GrvA coordinates activation of the LEE with repression of GDAR. Investigating how these systems are regulated leads to an understanding of pathogenic behavior and novel strategies aimed at disease prevention and control.
Collapse
|
36
|
The functional landscape bound to the transcription factors of Escherichia coli K-12. Comput Biol Chem 2015; 58:93-103. [PMID: 26094112 DOI: 10.1016/j.compbiolchem.2015.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 05/31/2015] [Accepted: 06/03/2015] [Indexed: 01/05/2023]
Abstract
Motivated by the experimental evidences accumulated in the last ten years and based on information deposited in RegulonDB, literature look up, and sequence analysis, we analyze the repertoire of 304 DNA-binding Transcription factors (TFs) in Escherichia coli K-12. These regulators were grouped in 78 evolutionary families and are regulating almost half of the total genes in this bacterium. In structural terms, 60% of TFs are composed by two-domains, 30% are monodomain, and 10% three- and four-structural domains. As previously noticed, the most abundant DNA-binding domain corresponds to the winged helix-turn-helix, with few alternative DNA-binding structures, resembling the hypothesis of successful protein structures with the emergence of new ones at low scales. In summary, we identified and described the characteristics associated to the DNA-binding TF in E. coli K-12. We also identified twelve functional modules based on a co-regulated gene matrix. Finally, diverse regulons were predicted based on direct associations between the TFs and potential regulated genes. This analysis should increase our knowledge about the gene regulation in the bacterium E. coli K-12, and provide more additional clues for comprehensive modelling of transcriptional regulatory networks in other bacteria.
Collapse
|
37
|
Chattopadhyay MK, Keembiyehetty CN, Chen W, Tabor H. Polyamines Stimulate the Level of the σ38 Subunit (RpoS) of Escherichia coli RNA Polymerase, Resulting in the Induction of the Glutamate Decarboxylase-dependent Acid Response System via the gadE Regulon. J Biol Chem 2015; 290:17809-17821. [PMID: 26025365 DOI: 10.1074/jbc.m115.655688] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 02/02/2023] Open
Abstract
To study the physiological roles of polyamines, we carried out a global microarray analysis on the effect of adding polyamines to an Escherichia coli mutant that lacks polyamines because of deletions in the genes in the polyamine biosynthetic pathway. Previously, we have reported that the earliest response to polyamine addition is the increased expression of the genes for the glutamate-dependent acid resistance system (GDAR). We also presented preliminary evidence for the involvement of rpoS and gadE regulators. In the current study, further confirmation of the regulatory roles of rpoS and gadE is shown by a comparison of genome-wide expression profiling data from a series of microarrays comparing the genes induced by polyamine addition to polyamine-free rpoS(+)/gadE(+) cells with genes induced by polyamine addition to polyamine-free ΔrpoS/gadE(+) and rpoS(+)/ΔgadE cells. The results indicate that most of the genes in the E. coli GDAR system that are induced by polyamines require rpoS and gadE. Our data also show that gadE is the main regulator of GDAR and other acid fitness island genes. Both polyamines and rpoS are necessary for the expression of gadE gene from the three promoters of gadE (P1, P2, and P3). The most important effect of polyamine addition is the very rapid increase in the level of RpoS sigma factor. Our current hypothesis is that polyamines increase the level of RpoS protein and that this increased RpoS level is responsible for the stimulation of gadE expression, which in turn induces the GDAR system in E. coli.
Collapse
Affiliation(s)
- Manas K Chattopadhyay
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| | | | - Weiping Chen
- Genomic Core Facility, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Herbert Tabor
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
38
|
Buckles EL, Luterbach CL, Wang X, Lockatell CV, Johnson DE, Mobley HLT, Donnenberg MS. Signature-tagged mutagenesis and co-infection studies demonstrate the importance of P fimbriae in a murine model of urinary tract infection. Pathog Dis 2015; 73:ftv014. [PMID: 25673667 DOI: 10.1093/femspd/ftv014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2015] [Indexed: 12/30/2022] Open
Abstract
Escherichia coli is the leading cause of urinary tract infections (UTIs), one of the most common infections in humans. P fimbria was arguably the first proposed virulence factor for uropathogenic E. coli, based on the capacity of E. coli isolated from UTIs to adhere to exfoliated epithelial cells in higher numbers than fecal strains of E. coli. Overwhelming epidemiologic evidence has been presented for involvement of P fimbriae in colonization. It has been difficult, however, to demonstrate this requirement for uropathogenic strains in animal models of infections or in humans. In this study, a signature-tagged mutagenesis screen identified a P-fimbrial gene (papC) and 18 other genes as being among those required for full fitness of cystitis isolate E. coli F11. A P-fimbrial mutant was outcompeted by the wild-type strain in cochallenge in the murine model of ascending UTI, and this colonization defect could be complemented with the cloned pap operon. To our knowledge, this study is the first to fulfill molecular Koch's postulates in which a pathogenic strain was attenuated by mutation of pap genes and then complemented to restore fitness, confirming P fimbria as a virulence factor in a pathogenic clinical isolate.
Collapse
Affiliation(s)
- Eric L Buckles
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, HSF II, 20 Penn Street, Baltimore, MD 21201, USA
| | - Courtney L Luterbach
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Xiaolin Wang
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, HSF II, 20 Penn Street, Baltimore, MD 21201, USA
| | - C Virginia Lockatell
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, HSF II, 20 Penn Street, Baltimore, MD 21201, USA
| | - David E Johnson
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, HSF II, 20 Penn Street, Baltimore, MD 21201, USA Department of Veterans Affairs, Baltimore, MD 21201, USA
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael S Donnenberg
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, HSF II, 20 Penn Street, Baltimore, MD 21201, USA
| |
Collapse
|
39
|
De Biase D, Lund PA. The Escherichia coli Acid Stress Response and Its Significance for Pathogenesis. ADVANCES IN APPLIED MICROBIOLOGY 2015; 92:49-88. [PMID: 26003933 DOI: 10.1016/bs.aambs.2015.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Escherichia coli has a remarkable ability to survive low pH and possesses a number of different genetic systems that enable it to do this. These may be expressed constitutively, typically in stationary phase, or induced by growth under a variety of conditions. The activities of these systems have been implicated in the ability of E. coli to pass the acidic barrier of the stomach and to become established in the gastrointestinal tract, something causing serious infections. However, much of the work characterizing these systems has been done on standard laboratory strains of E. coli and under conditions which do not closely resemble those found in the human gut. Here we review what is known about acid resistance in E. coli as a model laboratory organism and in the context of its lifestyle as an inhabitant-sometimes an unwelcome one-of the human gut.
Collapse
|
40
|
Yamanaka Y, Oshima T, Ishihama A, Yamamoto K. Characterization of the YdeO regulon in Escherichia coli. PLoS One 2014; 9:e111962. [PMID: 25375160 PMCID: PMC4222967 DOI: 10.1371/journal.pone.0111962] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 10/09/2014] [Indexed: 11/23/2022] Open
Abstract
Enterobacteria are able to survive under stressful conditions within animals, such as acidic conditions in the stomach, bile salts during transfer to the intestine and anaerobic conditions within the intestine. The glutamate-dependent (GAD) system plays a major role in acid resistance in Escherichia coli, and expression of the GAD system is controlled by the regulatory cascade consisting of EvgAS > YdeO > GadE. To understand the YdeO regulon in vivo, we used ChIP-chip to interrogate the E. coli genome for candidate YdeO binding sites. All of the seven operons identified by ChIP-chip as being potentially regulated by YdeO were confirmed as being under the direct control of YdeO using RT-qPCR, EMSA, DNaseI-footprinting and reporter assays. Within this YdeO regulon, we identified four stress-response transcription factors, DctR, NhaR, GadE, and GadW and enzymes for anaerobic respiration. Both GadE and GadW are involved in regulation of the GAD system and NhaR is an activator for the sodium/proton antiporter gene. In conjunction with co-transcribed Slp, DctR is involved in protection against metabolic endoproducts under acidic conditions. Taken all together, we suggest that YdeO is a key regulator of E. coli survival in both acidic and anaerobic conditions.
Collapse
Affiliation(s)
- Yuki Yamanaka
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Taku Oshima
- Graduate School of Information Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Akira Ishihama
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
- Micro-Nano Technology Research Center, Hosei University, Koganei, Tokyo, Japan
| | - Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
- Micro-Nano Technology Research Center, Hosei University, Koganei, Tokyo, Japan
| |
Collapse
|
41
|
Johnson MD, Bell J, Clarke K, Chandler R, Pathak P, Xia Y, Marshall RL, Weinstock GM, Loman NJ, Winn PJ, Lund PA. Characterization of mutations in the PAS domain of the EvgS sensor kinase selected by laboratory evolution for acid resistance in Escherichia coli. Mol Microbiol 2014; 93:911-27. [PMID: 24995530 PMCID: PMC4283999 DOI: 10.1111/mmi.12704] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2014] [Indexed: 01/25/2023]
Abstract
Laboratory-based evolution and whole-genome sequencing can link genotype and phenotype. We used evolution of acid resistance in exponential phase Escherichia coli to study resistance to a lethal stress. Iterative selection at pH 2.5 generated five populations that were resistant to low pH in early exponential phase. Genome sequencing revealed multiple mutations, but the only gene mutated in all strains was evgS, part of a two-component system that has already been implicated in acid resistance. All these mutations were in the cytoplasmic PAS domain of EvgS, and were shown to be solely responsible for the resistant phenotype, causing strong upregulation at neutral pH of genes normally induced by low pH. Resistance to pH 2.5 in these strains did not require the transporter GadC, or the sigma factor RpoS. We found that EvgS-dependent constitutive acid resistance to pH 2.5 was retained in the absence of the regulators GadE or YdeO, but was lost if the oxidoreductase YdeP was also absent. A deletion in the periplasmic domain of EvgS abolished the response to low pH, but not the activity of the constitutive mutants. On the basis of these results we propose a model for how EvgS may become activated by low pH.
Collapse
Affiliation(s)
- Matthew D Johnson
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK; Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, 3062, Vic., Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lund P, Tramonti A, De Biase D. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev 2014; 38:1091-125. [PMID: 24898062 DOI: 10.1111/1574-6976.12076] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 12/31/2022] Open
Abstract
As part of their life cycle, neutralophilic bacteria are often exposed to varying environmental stresses, among which fluctuations in pH are the most frequent. In particular, acid environments can be encountered in many situations from fermented food to the gastric compartment of the animal host. Herein, we review the current knowledge of the molecular mechanisms adopted by a range of Gram-positive and Gram-negative bacteria, mostly those affecting human health, for coping with acid stress. Because organic and inorganic acids have deleterious effects on the activity of the biological macromolecules to the point of significantly reducing growth and even threatening their viability, it is not unexpected that neutralophilic bacteria have evolved a number of different protective mechanisms, which provide them with an advantage in otherwise life-threatening conditions. The overall logic of these is to protect the cell from the deleterious effects of a harmful level of protons. Among the most favoured mechanisms are the pumping out of protons, production of ammonia and proton-consuming decarboxylation reactions, as well as modifications of the lipid content in the membrane. Several examples are provided to describe mechanisms adopted to sense the external acidic pH. Particular attention is paid to Escherichia coli extreme acid resistance mechanisms, the activity of which ensure survival and may be directly linked to virulence.
Collapse
Affiliation(s)
- Peter Lund
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
43
|
Alkali metals in addition to acidic pH activate the EvgS histidine kinase sensor in Escherichia coli. J Bacteriol 2014; 196:3140-9. [PMID: 24957621 DOI: 10.1128/jb.01742-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Two-component signal transduction systems (TCSs) in bacteria perceive environmental stress and transmit the information via phosphorelay to adjust multiple cellular functions for adaptation. The EvgS/EvgA system is a TCS that confers acid resistance to Escherichia coli cells. Activation of the EvgS sensor initiates a cascade of transcription factors, EvgA, YdeO, and GadE, which induce the expression of a large group of acid resistance genes. We searched for signals activating EvgS and found that a high concentration of alkali metals (Na(+), K(+)) in addition to low pH was essential for the activation. EvgS is a histidine kinase, with a large periplasmic sensor region consisting of two tandem PBPb (bacterial periplasmic solute-binding protein) domains at its N terminus. The periplasmic sensor region of EvgS was necessary for EvgS activation, and Leu152, located within the first PBPb domain, was involved in the activation. Furthermore, chimeras of EvgS and PhoQ histidine kinases suggested that alkali metals were perceived at the periplasmic sensor region, whereas the cytoplasmic linker domain, connecting the transmembrane region and the histidine kinase domain, was required for low-pH perception.
Collapse
|
44
|
Molecular Mechanism of Transcriptional Cascade Initiated by the EvgS/EvgA System inEscherichia coliK-12. Biosci Biotechnol Biochem 2014; 73:870-8. [DOI: 10.1271/bbb.80795] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
NtrBC and Nac contribute to efficient Shigella flexneri intracellular replication. J Bacteriol 2014; 196:2578-86. [PMID: 24794563 DOI: 10.1128/jb.01613-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri two-component regulatory systems (TCRS) are responsible for sensing changes in environmental conditions and regulating gene expression accordingly. We examined 12 TCRS that were previously uncharacterized for potential roles in S. flexneri growth within the eukaryotic intracellular environment. We demonstrate that the TCRS EvgSA, NtrBC, and RstBA systems are required for wild-type plaque formation in cultured epithelial cells. The phenotype of the NtrBC mutant depended in part on the Nac transcriptional regulator. Microarray analysis was performed to identify S. flexneri genes differentially regulated by the NtrBC system or Nac in the intracellular environment. This study contributes to our understanding of the transcriptional regulation necessary for Shigella to effectively adapt to the mammalian host cell.
Collapse
|
46
|
Evolved osmotolerant Escherichia coli mutants frequently exhibit defective N-acetylglucosamine catabolism and point mutations in cell shape-regulating protein MreB. Appl Environ Microbiol 2014; 80:3729-40. [PMID: 24727267 DOI: 10.1128/aem.00499-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Biocatalyst robustness toward stresses imposed during fermentation is important for efficient bio-based production. Osmotic stress, imposed by high osmolyte concentrations or dense populations, can significantly impact growth and productivity. In order to better understand the osmotic stress tolerance phenotype, we evolved sexual (capable of in situ DNA exchange) and asexual Escherichia coli strains under sodium chloride (NaCl) stress. All isolates had significantly improved growth under selection and could grow in up to 0.80 M (47 g/liter) NaCl, a concentration that completely inhibits the growth of the unevolved parental strains. Whole genome resequencing revealed frequent mutations in genes controlling N-acetylglucosamine catabolism (nagC, nagA), cell shape (mrdA, mreB), osmoprotectant uptake (proV), and motility (fimA). Possible epistatic interactions between nagC, nagA, fimA, and proV deletions were also detected when reconstructed as defined mutations. Biofilm formation under osmotic stress was found to be decreased in most mutant isolates, coupled with perturbations in indole secretion. Transcriptional analysis also revealed significant changes in ompACGL porin expression and increased transcription of sulfonate uptake systems in the evolved mutants. These findings expand our current knowledge of the osmotic stress phenotype and will be useful for the rational engineering of osmotic tolerance into industrial strains in the future.
Collapse
|
47
|
Aiso T, Kamiya S, Yonezawa H, Gamou S. Overexpression of an antisense RNA, ArrS, increases the acid resistance of Escherichia coli. MICROBIOLOGY-SGM 2014; 160:954-961. [PMID: 24600026 DOI: 10.1099/mic.0.075994-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The antisense RNA ArrS is complementary to a sequence in the 5' untranslated region of the gadE T3 mRNA, the largest transcript of gadE, which encodes a transcriptional activator of the glutamate-dependent acid resistance system in Escherichia coli. Expression of arrS is strongly induced during the stationary growth phase, particularly under acidic conditions, and transcription is dependent on σ(S) and GadE. The aim of the present study was to clarify the role of ArrS in controlling gadE expression by overexpressing arrS in E. coli. The results showed a marked increase in the survival of arrS-overexpressing cells at 2 h after a shift to pH 2.5. This was accompanied by increased expression of gadA, gadBC and gadE. The level of gadE T3 mRNA decreased markedly in response to arrS overexpression, and was accompanied by a marked increase in gadE mRNA T2. T2 mRNA had a monophosphorylated 5' terminus, which is usually found in cleaved mRNAs, and no T2 mRNA was observed in an RNase III-deficient cell strain. In addition, T2 mRNA was not generated by a P3-deleted gadE-luc translational fusion. These results suggest strongly that T2 mRNA is generated via the processing of T3 mRNA. Moreover, the T2 mRNA, which was abundant in arrS-overexpressing cells, was more stable than T3 mRNA in non-overexpressing cells. These results suggest that overexpression of ArrS positively regulates gadE expression in a post-transcriptional manner.
Collapse
Affiliation(s)
- Toshiko Aiso
- Department of Molecular Biology, Faculty of Health Sciences, Kyorin University, Hachioji, Tokyo 192-8508, Japan
| | - Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Hideo Yonezawa
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Shinobu Gamou
- Department of Molecular Biology, Faculty of Health Sciences, Kyorin University, Hachioji, Tokyo 192-8508, Japan
| |
Collapse
|
48
|
Bak G, Han K, Kim D, Lee Y. Roles of rpoS-activating small RNAs in pathways leading to acid resistance of Escherichia coli. Microbiologyopen 2013; 3:15-28. [PMID: 24319011 PMCID: PMC3937726 DOI: 10.1002/mbo3.143] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 11/07/2022] Open
Abstract
Escherichia coli and related enteric bacteria can survive under extreme acid stress condition at least for several hours. RpoS is a key factor for acid stress management in many enterobacteria. Although three rpoS-activating sRNAs, DsrA, RprA, and ArcZ, have been identified in E. coli, it remains unclear how these small RNA molecules participate in pathways leading to acid resistance (AR). Here, we showed that overexpression of ArcZ, DsrA, or RprA enhances AR in a RpoS-dependent manner. Mutant strains with deletion of any of three sRNA genes showed lowered AR, and deleting all three sRNA genes led to more severe defects in protecting against acid stress. Overexpression of any of the three sRNAs fully rescued the acid tolerance defects of the mutant strain lacking all three genes, suggesting that all three sRNAs perform the same function in activating RpoS required for AR. Notably, acid stress led to the induction of DsrA and RprA but not ArcZ.
Collapse
Affiliation(s)
- Geunu Bak
- Department of Chemistry, KAIST, Daejeon, 305-701, Korea
| | | | | | | |
Collapse
|
49
|
Deng Z, Shan Y, Pan Q, Gao X, Yan A. Anaerobic expression of the gadE-mdtEF multidrug efflux operon is primarily regulated by the two-component system ArcBA through antagonizing the H-NS mediated repression. Front Microbiol 2013; 4:194. [PMID: 23874328 PMCID: PMC3708157 DOI: 10.3389/fmicb.2013.00194] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/24/2013] [Indexed: 12/28/2022] Open
Abstract
The gadE-mdtEF operon encodes a central acid resistance regulator GadE and two multidrug efflux proteins MdtEF. Although transcriptional regulation of gadE in the context of acid resistance under the aerobic growth environment of Escherichia coli has been extensively studied, regulation of the operon under the physiologically relevant environment of anaerobic growth and its effect on the expression of the multidrug efflux proteins MdtEF in the operon has not been disclosed. Our previous study revealed that anaerobic induction of the operon was dependent on ArcA, the response regulator of the ArcBA two-component system, in the M9 glucose minimal medium. However, the detailed regulatory mechanism remains unknown. In this study, we showed that anaerobic activation of mdtEF was driven by the 798 bp unusually long gadE promoter. Deletion of evgA, ydeO, rpoS, and gadX which has been shown to activate the gadE expression during acid stresses under aerobic condition did not have a significant effect on the anaerobic activation of the operon. Rather, anaerobic activation of the operon was largely dependent on the global regulator ArcA and a GTPase MnmE. Under aerobic condition, transcription of gadE was repressed by the global DNA silencer H-NS in M9 minimal medium. Interestingly, under anaerobic condition, while ΔarcA almost completely abolished transcription of gadE-mdtEF, further deletion of hns in ΔarcA mutant restored the transcription of the full-length PgadE-lacZ, and P1- and P3-lacZ fusions, suggesting an antagonistic effect of ArcA on the H-NS mediated repression. Taken together, we conclude that the anaerobic activation of the gadE-mdtEF was primarily mediated by the two-component system ArcBA through antagonizing the H-NS mediated repression.
Collapse
Affiliation(s)
- Ziqing Deng
- School of Biological Sciences, The University of Hong Kong Hong Kong, China
| | | | | | | | | |
Collapse
|
50
|
YfdW and YfdU are required for oxalate-induced acid tolerance in Escherichia coli K-12. J Bacteriol 2013; 195:1446-55. [PMID: 23335415 DOI: 10.1128/jb.01936-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli has several mechanisms for surviving low-pH stress. We report that oxalic acid, a small-chain organic acid (SCOA), induces a moderate acid tolerance response (ATR) in two ways. Adaptation of E. coli K-12 at pH 5.5 with 50 mM oxalate and inclusion of 25 mM oxalate in pH 3.0 minimal challenge medium separately conferred protection, with 67% ± 7% and 87% ± 17% survival after 2 h, respectively. The combination of oxalate adaptation and oxalate supplementation in the challenge medium resulted in increased survival over adaptation or oxalate in the challenge medium alone. The enzymes YfdW, a formyl coenzyme A (CoA) transferase, and YfdU, an oxalyl-CoA decarboxylase, are required for the adaptation effect but not during challenge. Unlike other SCOAs, this oxalate ATR is not a part of the RpoS regulon but appears to be linked to the signal protein GadE. We theorize that this oxalate ATR could enhance the pathogenesis of virulent E. coli consumed with oxalate-containing foods like spinach.
Collapse
|