1
|
Zhu L, Olsen RJ, Beres SB, Saavedra MO, Kubiak SL, Cantu CC, Jenkins L, Waller AS, Sun Z, Palzkill T, Porter AR, DeLeo FR, Musser JM. Streptococcus pyogenes genes that promote pharyngitis in primates. JCI Insight 2020; 5:137686. [PMID: 32493846 DOI: 10.1172/jci.insight.137686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/30/2020] [Indexed: 02/02/2023] Open
Abstract
Streptococcus pyogenes (group A streptococcus; GAS) causes 600 million cases of pharyngitis annually worldwide. There is no licensed human GAS vaccine despite a century of research. Although the human oropharynx is the primary site of GAS infection, the pathogenic genes and molecular processes used to colonize, cause disease, and persist in the upper respiratory tract are poorly understood. Using dense transposon mutant libraries made with serotype M1 and M28 GAS strains and transposon-directed insertion sequencing, we performed genome-wide screens in the nonhuman primate (NHP) oropharynx. We identified many potentially novel GAS fitness genes, including a common set of 115 genes that contribute to fitness in both genetically distinct GAS strains during experimental NHP pharyngitis. Targeted deletion of 4 identified fitness genes/operons confirmed that our newly identified targets are critical for GAS virulence during experimental pharyngitis. Our screens discovered many surface-exposed or secreted proteins - substrates for vaccine research - that potentially contribute to GAS pharyngitis, including lipoprotein HitA. Pooled human immune globulin reacted with purified HitA, suggesting that humans produce antibodies against this lipoprotein. Our findings provide new information about GAS fitness in the upper respiratory tract that may assist in translational research, including developing novel vaccines.
Collapse
Affiliation(s)
- Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA.,Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Stephen B Beres
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Samantha L Kubiak
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Concepcion C Cantu
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Leslie Jenkins
- Department of Comparative Medicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Andrew S Waller
- Animal Health Trust, Lanwades Park, Newmarket, United Kingdom
| | - Zhizeng Sun
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Adeline R Porter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA.,Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
2
|
Frost HR, Sanderson-Smith M, Walker M, Botteaux A, Smeesters PR. Group A streptococcal M-like proteins: From pathogenesis to vaccine potential. FEMS Microbiol Rev 2018; 42:193-204. [PMID: 29228173 DOI: 10.1093/femsre/fux057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/06/2017] [Indexed: 12/27/2022] Open
Abstract
M and M-like surface proteins from group A Streptococcus (GAS) act as virulence factors and have been used in multiple vaccine candidates. While the M protein has been extensively studied, the two genetically and functionally related M-like proteins, Mrp and Enn, although present in most streptococcal strains have been relatively less characterised. We compile the current state of knowledge for these two proteins, from discovery to recent studies on function and immunogenicity, using the M protein for comparison as a prototype of this family of proteins. We focus on the known interactions between M-like proteins and host ligand proteins, and analyse the genetic data supporting these interactions. We discuss known and possible functions of M-like proteins during GAS infections, and highlight knowledge gaps where further investigation is warranted.
Collapse
Affiliation(s)
- Hannah R Frost
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels 1070, Belgium.,Group A Streptococcus Research Group, Murdoch Children's Research Institute, Melbourne 3052, VIC, Australia
| | - Martina Sanderson-Smith
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, 2522, NSW, Australia
| | - Mark Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Anne Botteaux
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Pierre R Smeesters
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels 1070, Belgium.,Group A Streptococcus Research Group, Murdoch Children's Research Institute, Melbourne 3052, VIC, Australia.,Department of Pediatrics, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels 1020, Belgium.,Centre for International Child Health, University of Melbourne, Melbourne 3052, VIC, Australia
| |
Collapse
|
3
|
Oppegaard O, Mylvaganam H, Skrede S, Jordal S, Glambek M, Kittang BR. Clinical and molecular characteristics of infective β-hemolytic streptococcal endocarditis. Diagn Microbiol Infect Dis 2017; 89:135-142. [PMID: 28780243 DOI: 10.1016/j.diagmicrobio.2017.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/15/2017] [Accepted: 06/23/2017] [Indexed: 10/19/2022]
Abstract
Streptococcus pyogenes (S. pyogenes) and Streptococcus dysgalactiae subspecies equisimilis (SDSE) cause considerable morbidity and mortality, and show similarities in disease manifestations and pathogenic mechanisms. Their involvement in infective endocarditis, however, has not been well described. Invasive S. pyogenes and SDSE infections in Health Region Bergen, Norway, in the period 1999-2013 were reviewed, and sixteen cases of endocarditis were identified. The median duration of symptoms was 2.5days, the frequency of embolic events 50%, 38% received valve replacement and the 30-day mortality was 25%. In S. pyogenes, a significant correlation was observed between the repertoire of fibronectin-binding genes, phenotypic binding ability to fibronectin and disease manifestations. Conversely, no associations between phenotypic and genotypic characteristics were detected in SDSE. S. pyogenes and SDSE endocarditis is characterized by rapid and severe clinical manifestations. The pathogenesis is multifactorial, but our results infer a potential role of fibronectin binding in the development of S. pyogenes endocarditis.
Collapse
Affiliation(s)
- Oddvar Oppegaard
- Department of Medicine, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Haima Mylvaganam
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway.
| | - Steinar Skrede
- Department of Medicine, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Stina Jordal
- Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Marte Glambek
- Department of Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway.
| | | |
Collapse
|
4
|
Brouwer S, Barnett TC, Rivera-Hernandez T, Rohde M, Walker MJ. Streptococcus pyogenes adhesion and colonization. FEBS Lett 2016; 590:3739-3757. [PMID: 27312939 DOI: 10.1002/1873-3468.12254] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 12/19/2022]
Abstract
Streptococcus pyogenes (group A Streptococcus, GAS) is a human-adapted pathogen responsible for a wide spectrum of disease. GAS can cause relatively mild illnesses, such as strep throat or impetigo, and less frequent but severe life-threatening diseases such as necrotizing fasciitis and streptococcal toxic shock syndrome. GAS is an important public health problem causing significant morbidity and mortality worldwide. The main route of GAS transmission between humans is through close or direct physical contact, and particularly via respiratory droplets. The upper respiratory tract and skin are major reservoirs for GAS infections. The ability of GAS to establish an infection in the new host at these anatomical sites primarily results from two distinct physiological processes, namely bacterial adhesion and colonization. These fundamental aspects of pathogenesis rely upon a variety of GAS virulence factors, which are usually under strict transcriptional regulation. Considerable progress has been made in better understanding these initial infection steps. This review summarizes our current knowledge of the molecular mechanisms of GAS adhesion and colonization.
Collapse
Affiliation(s)
- Stephan Brouwer
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Timothy C Barnett
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre For Infection Research, Braunschweig, Germany
| | - Mark J Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
5
|
The FasX Small Regulatory RNA Negatively Regulates the Expression of Two Fibronectin-Binding Proteins in Group A Streptococcus. J Bacteriol 2015; 197:3720-30. [PMID: 26391206 DOI: 10.1128/jb.00530-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/12/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The group A Streptococcus (GAS; Streptococcus pyogenes) causes more than 700 million human infections each year. The success of this pathogen can be traced in part to the extensive arsenal of virulence factors that are available for expression in temporally and spatially specific manners. To modify the expression of these virulence factors, GAS use both protein- and RNA-based regulators, with the best-characterized RNA-based regulator being the small regulatory RNA (sRNA) FasX. FasX is a 205-nucleotide sRNA that contributes to GAS virulence by enhancing the expression of the thrombolytic secreted virulence factor streptokinase and by repressing the expression of the collagen-binding cell surface pili. Here, we have expanded the FasX regulon, showing that this sRNA also negatively regulates the expression of the adhesion- and internalization-promoting, fibronectin-binding proteins PrtF1 and PrtF2. FasX posttranscriptionally regulates the expression of PrtF1/2 through a mechanism that involves base pairing to the prtF1 and prtF2 mRNAs within their 5' untranslated regions, overlapping the mRNA ribosome-binding sites. Thus, duplex formation between FasX and the prtF1 and prtF2 mRNAs blocks ribosome access, leading to an inhibition of mRNA translation. Given that FasX positively regulates the expression of the spreading factor streptokinase and negatively regulates the expression of the collagen-binding pili and of the fibronectin-binding PrtF1/2, our data are consistent with FasX functioning as a molecular switch that governs the transition of GAS between the colonization and dissemination stages of infection. IMPORTANCE More than half a million deaths each year are a consequence of infections caused by GAS. Insights into how this pathogen regulates the production of proteins during infection may facilitate the development of novel therapeutic or preventative regimens aimed at inhibiting this activity. Here, we have expanded insight into the regulatory activity of the GAS small RNA FasX. In addition to identifying that FasX reduces the abundance of the cell surface-located fibronectin-binding proteins PrtF1/2, fibronectin is present in high abundance in human tissues, and we have determined the mechanism behind this regulation. Importantly, as FasX is the only mechanistically characterized regulatory RNA in GAS, it serves as a model RNA in this and related pathogens.
Collapse
|
6
|
Henningham A, Yamaguchi M, Aziz RK, Kuipers K, Buffalo CZ, Dahesh S, Choudhury B, Van Vleet J, Yamaguchi Y, Seymour LM, Ben Zakour NL, He L, Smith HV, Grimwood K, Beatson SA, Ghosh P, Walker MJ, Nizet V, Cole JN. Mutual exclusivity of hyaluronan and hyaluronidase in invasive group A Streptococcus. J Biol Chem 2014; 289:32303-32315. [PMID: 25266727 PMCID: PMC4231703 DOI: 10.1074/jbc.m114.602847] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A recent analysis of group A Streptococcus (GAS) invasive infections in Australia has shown a predominance of M4 GAS, a serotype recently reported to lack the antiphagocytic hyaluronic acid (HA) capsule. Here, we use molecular genetics and bioinformatics techniques to characterize 17 clinical M4 isolates associated with invasive disease in children during this recent epidemiology. All M4 isolates lacked HA capsule, and whole genome sequence analysis of two isolates revealed the complete absence of the hasABC capsule biosynthesis operon. Conversely, M4 isolates possess a functional HA-degrading hyaluronate lyase (HylA) enzyme that is rendered nonfunctional in other GAS through a point mutation. Transformation with a plasmid expressing hasABC restored partial encapsulation in wild-type (WT) M4 GAS, and full encapsulation in an isogenic M4 mutant lacking HylA. However, partial encapsulation reduced binding to human complement regulatory protein C4BP, did not enhance survival in whole human blood, and did not increase virulence of WT M4 GAS in a mouse model of systemic infection. Bioinformatics analysis found no hasABC homologs in closely related species, suggesting that this operon was a recent acquisition. These data showcase a mutually exclusive interaction of HA capsule and active HylA among strains of this leading human pathogen.
Collapse
Affiliation(s)
- Anna Henningham
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093; School of Chemistry and Molecular Biosciences and The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Masaya Yamaguchi
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093; Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Ramy K Aziz
- Systems Biology Research Group, University of California San Diego, La Jolla, California 92093; Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Kirsten Kuipers
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093; Department of Pediatrics, Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, 6500 HC Nijmegen, The Netherlands
| | - Cosmo Z Buffalo
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093
| | - Samira Dahesh
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093
| | - Biswa Choudhury
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California 92093
| | - Jeremy Van Vleet
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California 92093
| | - Yuka Yamaguchi
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093
| | - Lisa M Seymour
- School of Chemistry and Molecular Biosciences and The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Nouri L Ben Zakour
- School of Chemistry and Molecular Biosciences and The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Lingjun He
- Department of Mathematics and Statistics, San Diego State University, San Diego, California 92182
| | - Helen V Smith
- Queensland Health Forensic and Scientific Services, Coopers Plains, Queensland 4108, Australia
| | - Keith Grimwood
- Queensland Children's Medical Research Institute, Herston, Queensland 4029, Australia, and
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences and The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Partho Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences and The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093; Skaggs School of Pharmacy and Pharmaceutical Sciences, and University of California San Diego, La Jolla, California 92093; Rady Children's Hospital, San Diego, California 92123
| | - Jason N Cole
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093; School of Chemistry and Molecular Biosciences and The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia,.
| |
Collapse
|
7
|
Unique genomic arrangements in an invasive serotype M23 strain of Streptococcus pyogenes identify genes that induce hypervirulence. J Bacteriol 2014; 196:4089-102. [PMID: 25225265 DOI: 10.1128/jb.02131-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first genome sequence of a group A Streptococcus pyogenes serotype M23 (emm23) strain (M23ND), isolated from an invasive human infection, has been completed. The genome of this opacity factor-negative (SOF(-)) strain is composed of a circular chromosome of 1,846,477 bp. Gene profiling showed that this strain contained six phage-encoded and 24 chromosomally inherited well-known virulence factors, as well as 11 pseudogenes. The bacterium has acquired four large prophage elements, ΦM23ND.1 to ΦM23ND.4, harboring genes encoding streptococcal superantigen (ssa), streptococcal pyrogenic exotoxins (speC, speH, and speI), and DNases (spd1 and spd3), with phage integrase genes being present at one flank of each phage insertion, suggesting that the phages were integrated by horizontal gene transfer. Comparative analyses revealed unique large-scale genomic rearrangements that result in genomic rearrangements that differ from those of previously sequenced GAS strains. These rearrangements resulted in an imbalanced genomic architecture and translocations of chromosomal virulence genes. The covS sensor in M23ND was identified as a pseudogene, resulting in the attenuation of speB function and increased expression of the genes for the chromosomal virulence factors multiple-gene activator (mga), M protein (emm23), C5a peptidase (scpA), fibronectin-binding proteins (sfbI and fbp54), streptolysin O (slo), hyaluronic acid capsule (hasA), streptokinase (ska), and DNases (spd and spd3), which were verified by PCR. These genes are responsible for facilitating host epithelial cell binding and and/or immune evasion, thus further contributing to the virulence of M23ND. In conclusion, strain M23ND has become highly pathogenic as the result of a combination of multiple genetic factors, particularly gene composition and mutations, prophage integrations, unique genomic rearrangements, and regulated expression of critical virulence factors.
Collapse
|
8
|
Ma C, Liu Z, Li W, Qian X, Zhang S, Gao X, Jiang S, Wei L. FbaA- and M protein-based multi-epitope vaccine elicits strong protective immune responses against group A streptococcus in mouse model. Microbes Infect 2014; 16:409-18. [PMID: 24704476 DOI: 10.1016/j.micinf.2014.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/20/2014] [Accepted: 03/20/2014] [Indexed: 11/25/2022]
Abstract
We report the construction of a recombinant multivalent vaccine against group A streptococcus (GAS), designated F7M5. It contains seven predominant epitopes of FbaA identified by phage display technology, five non-tissue cross-reactive M protein fragments expressed on four selected serotypes prevalent in China, a Trojan antigen (TA) and a poly-alanine DR epitope (PADRE). BALB/c mice were immunized subcutaneously with F7M5 formulated with Freund's adjuvant, using recombinant FbaA and M protein in parallel as control. Using enzyme-linked immunosorbent assay (ELISA), mouse immune sera were assayed for IgG titers, IgG subclasses, and binding of F7M5 with M1GAS. Results indicated that the multivalent vaccine was highly immunogenic and elicited a balanced IgG1/IgG2a response. We also tested the reactivity of F7M5 to antistreptolysin O (ASO) antibodies in sera of GAS-infected patients and found a 95.8% positive rate, indicating that the epitopes of the vaccine were widely expressed in the prevalent serotypes of GAS. More importantly, the F7M5 vaccine elicited strong protective immune responses against lethal-dose challenge with a survival rate of 90%, but induced no cross-reactions or pathological lesions in mouse model, suggesting that F7M5 can be further developed as an effective and safe anti-GAS vaccine.
Collapse
Affiliation(s)
- Cuiqing Ma
- Department of Immunology, Basic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Zheng Liu
- Department of Immunology, Basic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Wenjian Li
- Department of Immunology, Basic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Xuesong Qian
- Department of Immunology, Basic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Song Zhang
- Third Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xue Gao
- Department of Immunology, Basic Medical College, Hebei Medical University, Shijiazhuang 050017, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai 200032, China.
| | - Lin Wei
- Department of Immunology, Basic Medical College, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
9
|
Henningham A, Chiarot E, Gillen CM, Cole JN, Rohde M, Fulde M, Ramachandran V, Cork AJ, Hartas J, Magor G, Djordjevic SP, Cordwell SJ, Kobe B, Sriprakash KS, Nizet V, Chhatwal GS, Margarit IYR, Batzloff MR, Walker MJ. Conserved anchorless surface proteins as group A streptococcal vaccine candidates. J Mol Med (Berl) 2012; 90:1197-207. [PMID: 22527883 DOI: 10.1007/s00109-012-0897-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 03/25/2012] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
Abstract
Streptococcus pyogenes (group A Streptococcus (GAS)) causes ∼700 million human infections each year, resulting in over 500,000 deaths. The development of a commercial GAS vaccine is hampered by the occurrence of many unique GAS serotypes, antigenic variation within the same serotype, differences in serotype geographical distribution, and the production of antibodies cross-reactive with human tissue that may lead to autoimmune disease. Several independent studies have documented a number of GAS cell wall-associated or secreted metabolic enzymes that contain neither N-terminal leader sequences nor C-terminal cell wall anchors. Here, we applied a proteomic analysis of serotype M1T1 GAS cell wall extracts for the purpose of vaccine development. This approach catalogued several anchorless proteins and identified two protective vaccine candidates, arginine deiminase and trigger factor. These surface-exposed enzymes are expressed across multiple GAS serotypes exhibiting ≥99% amino acid sequence identity. Vaccine safety concerns are alleviated by the observation that these vaccine candidates lack human homologs, while sera from human populations suffering repeated GAS infections and high levels of autoimmune complications do not recognize these enzymes. Our study demonstrates anchorless cell surface antigens as promising vaccine candidates for the prevention of GAS disease.
Collapse
Affiliation(s)
- Anna Henningham
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Maamary PG, Ben Zakour NL, Cole JN, Hollands A, Aziz RK, Barnett TC, Cork AJ, Henningham A, Sanderson-Smith M, McArthur JD, Venturini C, Gillen CM, Kirk JK, Johnson DR, Taylor WL, Kaplan EL, Kotb M, Nizet V, Beatson SA, Walker MJ. Tracing the evolutionary history of the pandemic group A streptococcal M1T1 clone. FASEB J 2012; 26:4675-84. [PMID: 22878963 DOI: 10.1096/fj.12-212142] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The past 50 years has witnessed the emergence of new viral and bacterial pathogens with global effect on human health. The hyperinvasive group A Streptococcus (GAS) M1T1 clone, first detected in the mid-1980s in the United States, has since disseminated worldwide and remains a major cause of severe invasive human infections. Although much is understood regarding the capacity of this pathogen to cause disease, much less is known of the precise evolutionary events selecting for its emergence. We used high-throughput technologies to sequence a World Health Organization strain collection of serotype M1 GAS and reconstructed its phylogeny based on the analysis of core genome single-nucleotide polymorphisms. We demonstrate that acquisition of a 36-kb genome segment from serotype M12 GAS and the bacteriophage-encoded DNase Sda1 led to increased virulence of the M1T1 precursor and occurred relatively early in the molecular evolutionary history of this strain. The more recent acquisition of the phage-encoded superantigen SpeA is likely to have provided selection advantage for the global dissemination of the M1T1 clone. This study provides an exemplar for the evolution and emergence of virulent clones from microbial populations existing commensally or causing only superficial infection.
Collapse
Affiliation(s)
- Peter G Maamary
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Maddocks SE, Lopez MS, Rowlands RS, Cooper RA. Manuka honey inhibits the development of Streptococcus pyogenes biofilms and causes reduced expression of two fibronectin binding proteins. MICROBIOLOGY-SGM 2012; 158:781-790. [PMID: 22294681 DOI: 10.1099/mic.0.053959-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Streptococcus pyogenes (group A Streptococcus; GAS) is always of clinical significance in wounds where it can initiate infection, destroy skin grafts and persist as a biofilm. Manuka honey has broad spectrum antimicrobial activity and its use in the clinical setting is beginning to gain acceptance with the continuing emergence of antibiotic resistance and the inadequacy of established systemic therapies; novel inhibitors may affect clinical practice. In this study, the effect of manuka honey on S. pyogenes (M28) was investigated in vitro with planktonic and biofilm cultures using MIC, MBC, microscopy and aggregation efficiency. Bactericidal effects were found in both planktonic cultures and biofilms, although higher concentrations of manuka honey were needed to inhibit biofilms. Abrogation of adherence and intercellular aggregation was observed. Manuka honey permeated 24 h established biofilms of S. pyogenes, resulting in significant cell death and dissociation of cells from the biofilm. Sublethal concentrations of manuka honey effectively prevented the binding of S. pyogenes to the human tissue protein fibronectin, but did not inhibit binding to fibrinogen. The observed inhibition of fibronectin binding was confirmed by a reduction in the expression of genes encoding two major fibronectin-binding streptococcal surface proteins, Sof and SfbI. These findings indicate that manuka honey has potential in the topical treatment of wounds containing S. pyogenes.
Collapse
Affiliation(s)
- Sarah E Maddocks
- Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK
| | | | | | - Rose A Cooper
- Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK
| |
Collapse
|
12
|
Abstract
Diseases caused by Streptococcus pyogenes (Group A streptococcus, GAS) range from superficial infections such as pharyngitis and impetigo to potentially fatal rheumatic heart disease and invasive disease. Studies spanning emm-typing surveillance to population genomics are providing new insights into the epidemiology, pathogenesis, and biology of this organism. Such studies have demonstrated the differences that exist in the epidemiology of streptococcal disease between developing and developed nations. In developing nations, where streptococcal disease is endemic, the diversity of GAS emm-types circulating is much greater than that found in developed nations. An association between emm-type and disease, as observed in developed countries is also lacking. Intriguingly, comparative genetic studies suggest that emm-type is not always a good predictor of the evolutionary relatedness of geographically distant isolates. A view of GAS as a highly dynamic organism, in possession of a core set of virulence genes that contribute to host niche specialization and common pathogenic processes, augmented by accessory genes that change the relative virulence of specific lineages is emerging. Our inability to definitively identify genetic factors that contribute to specific disease outcome underscores the complex nature of streptococcal diseases.
Collapse
|
13
|
Amelung S, Nerlich A, Rohde M, Spellerberg B, Cole JN, Nizet V, Chhatwal GS, Talay SR. The FbaB-type fibronectin-binding protein of Streptococcus pyogenes promotes specific invasion into endothelial cells. Cell Microbiol 2011; 13:1200-11. [PMID: 21615663 DOI: 10.1111/j.1462-5822.2011.01610.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Invasive serotype M3 Streptococcus pyogenes are among the most frequently isolated organisms from patients suffering from invasive streptococcal disease and have the potential to invade primary human endothelial cells (EC) via a rapid and efficient mechanism. FbaB protein, the fibronectin-binding protein expressed by M3 S. pyogenes, was herein identified as a potent invasin for EC. By combining heterologous gene expression with allelic replacement, we demonstrate that FbaB is essential and sufficient to trigger EC invasion via a Rac1-dependent phagocytosis-like uptake. FbaB-mediated uptake follows the classical endocytic pathway with lysosomal destination. FbaB is demonstrated to be a streptococcal invasin exhibiting EC tropism. FbaB thus initiates a process that may contribute to the deep tissue tropism and spread of invasive S. pyogenes isolates into the vascular EC lining.
Collapse
Affiliation(s)
- Silva Amelung
- Department of Medical Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Seymour LM, Falconer L, Deutscher AT, Minion FC, Padula MP, Dixon NE, Djordjevic SP, Walker MJ. Mhp107 is a member of the multifunctional adhesin family of Mycoplasma hyopneumoniae. J Biol Chem 2011; 286:10097-104. [PMID: 21245147 DOI: 10.1074/jbc.m110.208140] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycoplasma hyopneumoniae is the causative pathogen of porcine enzootic pneumonia, an economically significant disease that disrupts the mucociliary escalator in the swine respiratory tract. Expression of Mhp107, a P97 paralog encoded by the gene mhp107, was confirmed using ESI-MS/MS. To investigate the function of Mhp107, three recombinant proteins, F1(Mhp107), F2(Mhp107), and F3(Mhp107), spanning the N-terminal, central, and C-terminal regions of Mhp107 were constructed. Colonization of swine by M. hyopneumoniae requires adherence of the bacterium to ciliated cells of the respiratory tract. Recent studies have identified a number of M. hyopneumoniae adhesins that bind heparin, fibronectin, and plasminogen. F1(Mhp107) was found to bind porcine heparin (K(D) ∼90 nM) in a dose-dependent and saturable manner, whereas F3(Mhp107) bound fibronectin (K(D) ∼180 nM) at physiologically relevant concentrations. F1(Mhp107) also bound porcine plasminogen (K(D) = 24 nM) in a dose-dependent and physiologically relevant manner. Microspheres coated with F3(Mhp107) mediate adherence to porcine kidney epithelial-like (PK15) cells, and all three recombinant proteins (F1(Mhp107)-F3(Mhp107)) bound swine respiratory cilia. Together, these findings indicate that Mhp107 is a member of the multifunctional M. hyopneumoniae adhesin family of surface proteins and contributes to both adherence to the host and pathogenesis.
Collapse
Affiliation(s)
- Lisa M Seymour
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Köller T, Manetti AGO, Kreikemeyer B, Lembke C, Margarit I, Grandi G, Podbielski A. Typing of the pilus-protein-encoding FCT region and biofilm formationas novel parameters in epidemiological investigations of Streptococcuspyogenes isolates from various infection sites. J Med Microbiol 2010; 59:442-452. [DOI: 10.1099/jmm.0.013581-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptococcus pyogenes is an important human pathogen for whichan association between infection site and selected epidemiological or functionalmarkers has previously been suggested. However, the studies involved oftenused strains with an insufficiently defined clinical background and laboratoryhistory. Thus, the major goal of the present study was to investigate theserelationships in 183 prospectively collected, well-defined, low-passage isolatesfrom a North-East German centre for tertiary care. For each isolate the clinicalbackground (91 respiratory, 71 skin and 21 invasive isolates) andantibiotic-resistance pattern was recorded. All isolates were classified accordingto their emm type, antibiotic-resistance and PFGE pattern (SmaI restriction analysis of genomic DNA). As novel discriminatorymethods we performed a PCR-based typing of the pilus-protein-encoding FCTregion (FCT) and biofilm-formation phenotyping in various culturemedia. Forty-one isolates were found to be resistant to at least one of thetested antibiotics. emm typing revealed emm28, emm12, emm1, emm4, emm89 and emm2 as themost frequent types in our collection. The novel FCT typing showed isolatesencoding FCT types 4 and 2 to be the most common. Overall 113 strains withunique combinations of emm and FCT types, antibiotic-resistance andPFGE patterns were identified. The majority of all isolates revealed an associationof biofilm-formation capacity with growth media. Comparing all results forpotential associations, no correlation could be established between the anatomicalsite of isolation and the emm or the FCT type. There was no relationshipbetween biofilm formation and emm type, antibiotic-resistance orPFGE patterns. However, a novel association between biofilm formation andFCT type became obvious among strains from our collection.
Collapse
Affiliation(s)
- Thomas Köller
- Institute of Medical Microbiology, Virology and Hygiene,University Hospital, Schillingallee 70, D-18057 Rostock, Germany
| | | | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene,University Hospital, Schillingallee 70, D-18057 Rostock, Germany
| | - Cordula Lembke
- Institute of Medical Microbiology, Virology and Hygiene,University Hospital, Schillingallee 70, D-18057 Rostock, Germany
| | | | - Guido Grandi
- Novartis Vaccines and Diagnostics, Via Fiorentina1, 53100 Siena, Italy
| | - Andreas Podbielski
- Institute of Medical Microbiology, Virology and Hygiene,University Hospital, Schillingallee 70, D-18057 Rostock, Germany
| |
Collapse
|
16
|
Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization. Microbiol Mol Biol Rev 2009; 73:407-50, Table of Contents. [PMID: 19721085 PMCID: PMC2738137 DOI: 10.1128/mmbr.00014-09] [Citation(s) in RCA: 437] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Streptococci readily colonize mucosal tissues in the nasopharynx; the respiratory, gastrointestinal, and genitourinary tracts; and the skin. Each ecological niche presents a series of challenges to successful colonization with which streptococci have to contend. Some species exist in equilibrium with their host, neither stimulating nor submitting to immune defenses mounted against them. Most are either opportunistic or true pathogens responsible for diseases such as pharyngitis, tooth decay, necrotizing fasciitis, infective endocarditis, and meningitis. Part of the success of streptococci as colonizers is attributable to the spectrum of proteins expressed on their surfaces. Adhesins enable interactions with salivary, serum, and extracellular matrix components; host cells; and other microbes. This is the essential first step to colonization, the development of complex communities, and possible invasion of host tissues. The majority of streptococcal adhesins are anchored to the cell wall via a C-terminal LPxTz motif. Other proteins may be surface anchored through N-terminal lipid modifications, while the mechanism of cell wall associations for others remains unclear. Collectively, these surface-bound proteins provide Streptococcus species with a "coat of many colors," enabling multiple intimate contacts and interplays between the bacterial cell and the host. In vitro and in vivo studies have demonstrated direct roles for many streptococcal adhesins as colonization or virulence factors, making them attractive targets for therapeutic and preventive strategies against streptococcal infections. There is, therefore, much focus on applying increasingly advanced molecular techniques to determine the precise structures and functions of these proteins, and their regulatory pathways, so that more targeted approaches can be developed.
Collapse
Affiliation(s)
- Angela H Nobbs
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, United Kingdom
| | | | | |
Collapse
|
17
|
McShan WM, Ferretti JJ, Karasawa T, Suvorov AN, Lin S, Qin B, Jia H, Kenton S, Najar F, Wu H, Scott J, Roe BA, Savic DJ. Genome sequence of a nephritogenic and highly transformable M49 strain of Streptococcus pyogenes. J Bacteriol 2008; 190:7773-85. [PMID: 18820018 PMCID: PMC2583620 DOI: 10.1128/jb.00672-08] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 09/17/2008] [Indexed: 11/20/2022] Open
Abstract
The 1,815,783-bp genome of a serotype M49 strain of Streptococcus pyogenes (group A streptococcus [GAS]), strain NZ131, has been determined. This GAS strain (FCT type 3; emm pattern E), originally isolated from a case of acute post-streptococcal glomerulonephritis, is unusually competent for electrotransformation and has been used extensively as a model organism for both basic genetic and pathogenesis investigations. As with the previously sequenced S. pyogenes genomes, three unique prophages are a major source of genetic diversity. Two clustered regularly interspaced short palindromic repeat (CRISPR) regions were present in the genome, providing genetic information on previous prophage encounters. A unique cluster of genes was found in the pathogenicity island-like emm region that included a novel Nudix hydrolase, and, further, this cluster appears to be specific for serotype M49 and M82 strains. Nudix hydrolases eliminate potentially hazardous materials or prevent the unbalanced accumulation of normal metabolites; in bacteria, these enzymes may play a role in host cell invasion. Since M49 S. pyogenes strains have been known to be associated with skin infections, the Nudix hydrolase and its associated genes may have a role in facilitating survival in an environment that is more variable and unpredictable than the uniform warmth and moisture of the throat. The genome of NZ131 continues to shed light upon the evolutionary history of this human pathogen. Apparent horizontal transfer of genetic material has led to the existence of highly variable virulence-associated regions that are marked by multiple rearrangements and genetic diversification while other regions, even those associated with virulence, vary little between genomes. The genome regions that encode surface gene products that will interact with host targets or aid in immune avoidance are the ones that display the most sequence diversity. Thus, while natural selection favors stability in much of the genome, it favors diversity in these regions.
Collapse
Affiliation(s)
- W Michael McShan
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, P.O. Box 26901, CPB307, Oklahoma City, OK, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sanderson-Smith ML, Dinkla K, Cole JN, Cork AJ, Maamary PG, McArthur JD, Chhatwal GS, Walker MJ. M protein-mediated plasminogen binding is essential for the virulence of an invasive Streptococcus pyogenes isolate. FASEB J 2008; 22:2715-22. [PMID: 18467595 DOI: 10.1096/fj.07-105643] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The human protease plasmin plays a crucial role in the capacity of the group A streptococcus (GAS; Streptococcus pyogenes) to initiate invasive disease. The GAS strain NS88.2 was isolated from a case of bacteremia from the Northern Territory of Australia, a region with high rates of GAS invasive disease. Mutagenesis of the NS88.2 plasminogen binding M protein Prp was undertaken to examine the contribution of plasminogen binding and cell surface plasmin acquisition to virulence. The isogenic mutant NS88.2prp was engineered whereby four amino acid residues critical for plasminogen binding were converted to alanine codons in the GAS genome sequence. The mutated residues were reverse complemented to the wild-type sequence to construct GAS strain NS88.2prpRC. In comparison to NS88.2 and NS88.2prpRC, the NS88.2prp mutant exhibited significantly reduced ability to bind human plasminogen and accumulate cell surface plasmin activity during growth in human plasma. Utilizing a humanized plasminogen mouse model of invasive infection, we demonstrate that the capacity to bind plasminogen and accumulate surface plasmin activity plays an essential role in GAS virulence.
Collapse
Affiliation(s)
- M L Sanderson-Smith
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kratovac Z, Manoharan A, Luo F, Lizano S, Bessen DE. Population genetics and linkage analysis of loci within the FCT region of Streptococcus pyogenes. J Bacteriol 2007; 189:1299-310. [PMID: 17028269 PMCID: PMC1797367 DOI: 10.1128/jb.01301-06] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 09/29/2006] [Indexed: 11/20/2022] Open
Abstract
The FCT regions of Streptococcus pyogenes strains encode a variety of cell wall-anchored surface proteins that bind the extracellular matrix of the human host and/or give rise to pilus-like appendages. Strong linkage is evident between transcription-regulatory loci positioned within the FCT and emm regions and the emm pattern genotype marker for preferred infection of the throat or skin. These findings provide a basis for the hypothesis that FCT region gene products contribute to tissue-specific infection. In an initial series of steps to address this possibility, the FCT regions of 13 strains underwent comparative sequence analysis, the gene content of the FCT region was characterized for 113 strains via PCR, and genetic linkage was assessed. A history of extensive recombination within FCT regions was evident. The emm pattern D-defined skin specialist strains were highly homogenous in their FCT region gene contents, whereas the emm pattern A-C-defined throat specialist strains displayed a greater variety of forms. Most pattern A-C strains harbored prtF1 (75%) but lacked cpa (75%). In contrast, the majority of emm pattern D strains had cpa (92%) but lacked prtF1 (79%). Models based on FCT and emm region genotypes revealed the most parsimonious pathways of evolution. Using niche-determining candidate genes to infer phylogeny, emm pattern E strains--the so-called generalists, which lack a strong tissue site preference--occupied a transition zone separating most throat specialists from skin specialists. Overall, population genetic analysis supports the possibility that the FCT region gives rise to surface proteins that are largely necessary, but not always sufficient, to confer tissue site preference for infection.
Collapse
Affiliation(s)
- Zerina Kratovac
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | |
Collapse
|
20
|
Variations in the distribution of genes encoding virulence and extracellular proteins in group A streptococcus are largely restricted to 11 genomic loci. Microbes Infect 2006; 9:259-70. [PMID: 17307378 DOI: 10.1016/j.micinf.2006.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 10/05/2006] [Accepted: 11/20/2006] [Indexed: 12/14/2022]
Abstract
Group A streptococcus (GAS) is a human pathogen associated with a wide range of human diseases that vary in symptoms and clinical severity. In this report we describe the use of a targeted low density array representing genes encoding classical virulence factors, purported virulence factors and other extracellular proteins to examine differences in the genetic profiles of 68 clinical GAS isolates. Of the 226 genes on the array (encoding 217 virulence factors or putative extracellular proteins and nine positive control house-keeping proteins) 62 had distributions that were statistically associated with specific GAS M-types. While 32 of these genes were bacteriophage related, the remaining 30 have not previously been described as bacteriophage associated. We show that these 'non-bacteriophage related' genes are found in 11 loci located in five greater chromosomal regions, often near classical GAS virulence factors, and often accompanied by genes associated with mobile genetic elements (MGEs). Many of these loci also demonstrated genetic variation within strains of the same M-type, suggesting these regions to be recombinatorial and mutational hotspots. Evidence for acquisition of genes from other species is also apparent in these loci. Our data suggests that imprecise recombination events involving MGEs not only result in acquisition of new genes, but can also result in deletion of flanking chromosomal genes. Thus MGE related events would appear to be the major contributor to variation of discrete virulence loci, which could account for the disease causing propensity of individual strains. We believe that profiling of the 11 loci could be a meaningful tool in epidemiological GAS typing studies.
Collapse
|
21
|
Podbielski A. Flexible architecture of the Streptococcus pyogenes FCT genome region: finally the clue for understanding purulent skin diseases and long-term persistence? J Bacteriol 2006; 189:1181-4. [PMID: 17142401 PMCID: PMC1797344 DOI: 10.1128/jb.01748-06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Andreas Podbielski
- Department of Medical Microbiology, Virology and Hygiene, University Hospital, Schillingallee 70, D-18057 Rostock, Germany.
| |
Collapse
|
22
|
Timmer AM, Kristian SA, Datta V, Jeng A, Gillen CM, Walker MJ, Beall B, Nizet V. Serum opacity factor promotes group A streptococcal epithelial cell invasion and virulence. Mol Microbiol 2006; 62:15-25. [PMID: 16942605 DOI: 10.1111/j.1365-2958.2006.05337.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Serum opacity factor (SOF) is a bifunctional cell surface protein expressed by 40-50% of group A streptococcal (GAS) strains comprised of a C-terminal domain that binds fibronectin and an N-terminal domain that mediates opacification of mammalian sera. The sof gene was recently discovered to be cotranscribed in a two-gene operon with a gene encoding another fibronectin-binding protein, sfbX. We compared the ability of a SOF(+) wild-type serotype M49 GAS strain and isogenic mutants lacking SOF or SfbX to invade cultured HEp-2 human pharyngeal epithelial cells. Elimination of SOF led to a significant decrease in HEp-2 intracellular invasion while loss of SfbX had minimal effect. The hypoinvasive phenotype of the SOF(-) mutant could be restored upon complementation with the sof gene on a plasmid vector, and heterologous expression of sof49 in M1 GAS or Lactococcus lactis conferred marked increases in HEp-2 cell invasion. Studies using a mutant sof49 gene lacking the fibronectin-binding domain indicated that the N-terminal opacification domain of SOF contributes to HEp-2 invasion independent of the C-terminal fibronectin binding domain, findings corroborated by observations that a purified SOF N-terminal peptide could promote latex bead adherence to HEp-2 cells and inhibit GAS invasion of HEp-2 cells in a dose-dependent manner. Finally, the first in vivo studies to employ a single gene allelic replacement mutant of SOF demonstrate that this protein contributes to GAS virulence in a murine model of necrotizing skin infection.
Collapse
Affiliation(s)
- Anjuli M Timmer
- Department of Pediatrics, Division of Pharmacology and Drug Discovery, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Schwarz-Linek U, Höök M, Potts JR. Fibronectin-binding proteins of Gram-positive cocci. Microbes Infect 2006; 8:2291-8. [PMID: 16782385 DOI: 10.1016/j.micinf.2006.03.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 03/06/2006] [Indexed: 11/30/2022]
Abstract
Cell wall-attached fibronectin-binding proteins are important multifunctional virulence factors of Staphylococcus aureus and Streptococcus pyogenes. This review describes recent advances in the understanding of the function of these proteins on a molecular level and of their role in infections.
Collapse
Affiliation(s)
- Ulrich Schwarz-Linek
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK.
| | | | | |
Collapse
|
24
|
Currie BJ. Group A streptococcal infections of the skin: molecular advances but limited therapeutic progress. Curr Opin Infect Dis 2006; 19:132-8. [PMID: 16514337 DOI: 10.1097/01.qco.0000216623.82950.11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW With the sequencing of several Streptococcus pyogenes (group A Streptococcus) genomes have come major advances in understanding the pathogenesis of group A Streptococcus-associated diseases. This review focuses on group A Streptococcus skin infections and summarizes data published in the English language medical literature in 2004 and 2005. RECENT FINDINGS Group A Streptococcus shows enormous and evolving molecular diversity driven by horizontal transmission between group A Streptococcus strains and between group A Streptococcus and other streptococci. Acquisition of prophages accounts for much of the diversity, conferring both virulence through phage-associated virulence factors and increased bacterial survival against host defences. Studies of group A Streptococcus isolates outside the US also question the generalizability of classic group A Streptococcus M serotype associations with specific disease entities such as acute rheumatic fever and necrotizing fasciitis. The distinction between throat and skin group A Streptococcus has become blurred. Although there have been few advances in treatment of group A Streptococcus skin infections, developments towards group A Streptococcus vaccines are promising. SUMMARY The diversity of group A Streptococcus remains a challenge for vaccine development. As acute rheumatic fever and streptococcal pyoderma occur predominantly in disadvantaged populations, international funding support will be necessary for any group A Streptococcus vaccine to have a sustained impact on the global burden of disease.
Collapse
Affiliation(s)
- Bart J Currie
- Tropical and Emerging Infectious Diseases Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory 0811, Australia.
| |
Collapse
|
25
|
Sanderson-Smith M, Batzloff M, Sriprakash KS, Dowton M, Ranson M, Walker MJ. Divergence in the plasminogen-binding group a streptococcal M protein family: functional conservation of binding site and potential role for immune selection of variants. J Biol Chem 2005; 281:3217-26. [PMID: 16319056 DOI: 10.1074/jbc.m508758200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Group A streptococci (GAS) display receptors for the human zymogen plasminogen on the cell surface, one of which is the plasminogen-binding group A streptococcal M protein (PAM). Characterization of PAM genes from 12 GAS isolates showed significant variation within the plasminogen-binding repeat motifs (a1/a2) of this protein. To determine the impact of sequence variation on protein function, recombinant proteins representing five naturally occurring variants of PAM, together with a recombinant M1 protein, were expressed and purified. Equilibrium dissociation constants for the interaction of PAM variants with biotinylated Glu-plasminogen ranged from 1.58 to 4.99 nm. Effective concentrations of prototype PAM required for 50% inhibition of plasminogen binding to immobilized PAM variants ranged from 0.68 to 22.06 nm. These results suggest that although variation in the a1/a2 region of the PAM protein does affect the comparative affinity of PAM variants, the functional capacity to bind plasminogen is conserved. Additionally, a potential role for the a1 region of PAM in eliciting a protective immune response was investigated by using a mouse model for GAS infection. The a1 region of PAM was found to protect immunized mice challenged with a PAM-positive GAS strain. These data suggest a link between selective immune pressure against the plasminogen-binding repeats and the functional conservation of the binding domain in PAM variants.
Collapse
Affiliation(s)
- Martina Sanderson-Smith
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Nakata M, Podbielski A, Kreikemeyer B. MsmR, a specific positive regulator of the Streptococcus pyogenes FCT pathogenicity region and cytolysin-mediated translocation system genes. Mol Microbiol 2005; 57:786-803. [PMID: 16045622 DOI: 10.1111/j.1365-2958.2005.04730.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As a prerequisite for colonization or causing local infections, Streptococcus pyogenes (group A streptococci, GAS) need to specifically adhere to eukaryotic cell surfaces. Predominantly responsible adhesin genes are contained in a genotype-specific pattern within the FCT region of the GAS genome. In this study, MsmR, belonging to AraC/XylS type transcriptional regulators, was identified in the FCT region as a positive regulator of the major fibronectin-binding adhesin protein F2 in a serotype M49 strain. Compared with the wild-type strain, the msmR mutant showed reduced binding to immobilized fibronectin and decreased adherence to and internalization into human pharyngeal epithelial cells. These results suggested that altered levels of fibronectin-binding proteins in the mutant affect eukaryotic cell attachment and internalization. Complete transcriptome and reporter fusion assay data revealed that MsmR positively regulates FCT region genes including Nra and cytolysin-mediated translocation system genes. Consistent with the genetic data, the mutant showed attenuated streptolysin O activity and eukaryotic cell cytotoxity. Direct binding of recombinant MsmR to nga, nra/cpa and prtF2 promoter regions was confirmed by EMSA assays. As prior analysis demonstrated the Nra regulator negatively affects gene expression from the FCT region, MsmR and Nra appear to adversely control crucial virulence factor expression in GAS and thus contribute to a fine-tuned balance between local destructive process and metastatic spreading of the bacteria.
Collapse
Affiliation(s)
- Masanobu Nakata
- Department of Medical Microbiology and Hospital Hygiene, Hospital of the Rostock University, Schillingallee 70, 18057 Rostock, Germany
| | | | | |
Collapse
|
27
|
Kreikemeyer B, Nakata M, Oehmcke S, Gschwendtner C, Normann J, Podbielski A. Streptococcus pyogenes collagen type I-binding Cpa surface protein. Expression profile, binding characteristics, biological functions, and potential clinical impact. J Biol Chem 2005; 280:33228-39. [PMID: 16040603 DOI: 10.1074/jbc.m502896200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Streptococcus pyogenes collagen type I-binding protein Cpa (collagen-binding protein of group A streptococci) expressed by 28 serotypes of group A streptococci has been extensively characterized at the gene and protein levels. Evidence for three distinct families of cpa genes was found, all of which shared a common sequence encoding a 60-amino acid domain that accounted for selective binding to type I collagen. Surface plasmon resonance-based affinity measurements and functional studies indicated that the expression of Cpa was consistent with an attachment role for bacteria to tissue containing collagen type I. A cpa mutant displayed a significantly decreased internalization rate when incubated with HEp-2 cells but had no effect on the host cell viability. By utilizing serum from patients with a positive titer for streptolysin/DNase antibody, an increased anti-Cpa antibody titer was noted for patients with a clinical history of arthritis or osteomyelitis. Taken together, these results suggest Cpa may be a relevant matrix adhesin contributing to the pathogenesis of S. pyogenes infection of bones and joints.
Collapse
Affiliation(s)
- Bernd Kreikemeyer
- Department of Medical Microbiology and Hospital Hygiene, Hospital of Rostock University, Schillingallee 70, D-18057 Rostock, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Gorton D, Norton R, Layton R, Smith H, Ketheesan N. Presence of fibronectin-binding protein gene prtF2 in invasive group A streptococci in tropical Australia is associated with increased internalisation efficiency. Microbes Infect 2005; 7:421-6. [PMID: 15792638 DOI: 10.1016/j.micinf.2004.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 11/03/2004] [Accepted: 11/22/2004] [Indexed: 11/24/2022]
Abstract
The fibronectin-binding proteins (FnBPs) PrtF1 and PrtF2 are considered to be major group A streptococcal virulence factors, mediating adherence to and internalisation of host cells. The present study investigated an association between the presence of prtF1 and prtF2 genes and internalisation efficiency in group A streptococci (GAS) isolated from patients with invasive disease. Of the 80 isolates tested, 58 (73%) had prtF1 and 71 (89%) possessed prtF2. Three isolates (4%) had neither gene, seven (9%) had prtF1 only, 19 (24%) had prtF2 only and 51 isolates (64%) had both prtF1 and prtF2. prtF2-positive isolates internalised up to three times more efficiently than isolates that had prtF1 alone (P<0.001), and 1.5-fold better than isolates that had neither gene. No significant association was found between internalisation efficiency and presence of the prtF1 gene. Analysis of the fibronectin-binding repeat domain (FBRD) of prtF2 revealed that this gene can contain 2, 3, 4 or 5 repeat regions and that five repeat regions conferred very high internalisation efficiency in invasive GAS isolates.
Collapse
Affiliation(s)
- Davina Gorton
- School of Veterinary and Biomedical Sciences, James Cook University, Townsville 4811, Australia
| | | | | | | | | |
Collapse
|