1
|
Lin H, Huang J, Li T, Li W, Wu Y, Yang T, Nian Y, Lin X, Wang J, Wang R, Zhao X, Su N, Zhang J, Wu X, Fan M. Structure and mechanism of the plastid/parasite ATP/ADP translocator. Nature 2025; 641:797-804. [PMID: 40074904 DOI: 10.1038/s41586-025-08743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
Adenosine triphosphate (ATP) is the principal energy currency of all living cells1,2. Metabolically impaired obligate intracellular parasites, such as the human pathogens Chlamydia trachomatis and Rickettsia prowazekii, can acquire ATP from their host cells through a unique ATP/adenosine diphosphate (ADP) translocator, which mediates the import of ATP into and the export of ADP and phosphate out of the parasite cells, thus allowing the exploitation of the energy reserves of host cells (also known as energy parasitism). This type of ATP/ADP translocator also exists in the obligate intracellular endosymbionts of protists and the plastids of plants and algae and has been implicated to play an important role in endosymbiosis3-31. The plastid/parasite type of ATP/ADP translocator is phylogenetically and functionally distinct from the mitochondrial ATP/ADP translocator, and its structure and transport mechanism are still unknown. Here we report the cryo-electron microscopy structures of two plastid/parasite types of ATP/ADP translocators in the apo and substrate-bound states. The ATP/ADP-binding pocket is located at the interface between the N and C domains of the translocator, and a conserved asparagine residue within the pocket is critical for substrate specificity. The translocator operates through a rocker-switch alternating access mechanism involving the relative rotation of the two domains as rigid bodies. Our results provide critical insights for understanding ATP translocation across membranes in energy parasitism and endosymbiosis and offer a structural basis for developing drugs against obligate intracellular parasites.
Collapse
Affiliation(s)
- Huajian Lin
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Jian Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Tianming Li
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Wenjuan Li
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Yutong Wu
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianjiao Yang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuwei Nian
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Lin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiangqin Wang
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Ruiying Wang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohui Zhao
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Nannan Su
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
| | - Jinru Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China.
| | - Xudong Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Minrui Fan
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Hosseininasab SSM, Ebrahimi R, Yaghoobpoor S, Kazemi K, Khakpour Y, Hajibeygi R, Mohamadkhani A, Fathi M, Vakili K, Tavasol A, Tutunchian Z, Fazel T, Fathi M, Hajiesmaeili M. Alzheimer's disease and infectious agents: a comprehensive review of pathogenic mechanisms and microRNA roles. Front Neurosci 2025; 18:1513095. [PMID: 39840010 PMCID: PMC11747386 DOI: 10.3389/fnins.2024.1513095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Alzheimer's Disease (AD) is the most prevalent type of dementia and is characterized by the presence of senile plaques and neurofibrillary tangles. There are various theories concerning the causes of AD, but the connection between viral and bacterial infections and their potential role in the pathogenesis of AD has become a fascinating area of research for the field. Various viruses such as Herpes simplex virus 1 (HSV-1), Epstein-Barr virus (EBV), Cytomegalovirus (CMV), influenza viruses, and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), as well as bacteria such as Chlamydia pneumoniae (CP), Helicobacter pylori (HP), Porphyromonas gingivalis (P. gingivalis), Spirochetes and eukaryotic unicellular parasites (e.g., Toxoplasma gondii), have been linked to AD due to their ability to activate the immune system, induce inflammation and increase oxidative stress, thereby leading to cognitive decline and AD. In addition, microRNAs (miRNAs) might play a crucial role in the pathogenesis mechanisms of these pathogens since they are utilized to target various protein-coding genes, allowing for immune evasion, maintaining latency, and suppressing cellular signaling molecules. Also, they can regulate gene expression in human cells. This article provides an overview of the association between AD and various infectious agents, with a focus on the mechanisms by which these pathogens may be related to the pathogenesis of AD. These findings suggest important areas for further research to be explored in future studies.
Collapse
Affiliation(s)
- Seyyed Sam Mehdi Hosseininasab
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiarash Kazemi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Khakpour
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramtin Hajibeygi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Tavasol
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Tutunchian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tara Fazel
- Student Research Committee, School of International Campus, Guilan University of Medical Sciences, Tehran, Iran
| | - Mohammad Fathi
- Department of Anesthesiology, Critical Care Quality Improvement Research Center, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
De BC, Cournoyer J, Gao YL, Wallace CL, Bram S, Mehta AP. Photosynthetic directed endosymbiosis to investigate the role of bioenergetics in chloroplast function and evolution. Nat Commun 2024; 15:10622. [PMID: 39658562 PMCID: PMC11632070 DOI: 10.1038/s41467-024-54051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/30/2024] [Indexed: 12/12/2024] Open
Abstract
Cyanobacterial photosynthesis (to produce ATP and NADPH) might have played a pivotal role in the endosymbiotic evolution to chloroplast. However, rather than meeting the ATP requirements of the host cell, the modern-day land plant chloroplasts are suggested to utilize photosynthesized ATP predominantly for carbon assimilation. This is further highlighted by the fact that the plastidic ADP/ATP carrier translocases from land plants preferentially import ATP. Here, we investigate the preferences of plastidic ADP/ATP carrier translocases from key lineages of photosynthetic eukaryotes including red algae, glaucophytes, and land plants. Particularly, we observe that the cyanobacterial endosymbionts expressing plastidic ADP/ATP carrier translocases from red algae and glaucophyte are able to export ATP and support ATP dependent endosymbiosis, whereas those expressing ADP/ATP carrier translocases from land plants preferentially import ATP and are unable to support ATP dependent endosymbiosis. These data are consistent with a scenario where the ancestral plastids may have exported ATP to support the bioenergetic functions of the host cell.
Collapse
Affiliation(s)
- Bidhan Chandra De
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, US
| | - Jay Cournoyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, US
| | - Yang-le Gao
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, US
| | - Catherine L Wallace
- The Imaging Technology Group, Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, US
| | - Stanley Bram
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, US
| | - Angad P Mehta
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, US.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, US.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, US.
| |
Collapse
|
4
|
Porras MÁG, Assié A, Tietjen M, Violette M, Kleiner M, Gruber-Vodicka H, Dubilier N, Leisch N. An intranuclear bacterial parasite of deep-sea mussels expresses apoptosis inhibitors acquired from its host. Nat Microbiol 2024; 9:2877-2891. [PMID: 39242818 PMCID: PMC11521996 DOI: 10.1038/s41564-024-01808-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
A limited number of bacteria are able to colonize the nuclei of eukaryotes. 'Candidatus Endonucleobacter' infects the nuclei of deep-sea mussels, where it replicates to ≥80,000 bacteria per nucleus and causes nuclei to swell to 50 times their original size. How these parasites are able to replicate and avoid apoptosis is not known. Dual RNA-sequencing transcriptomes of infected nuclei isolated using laser-capture microdissection revealed that 'Candidatus Endonucleobacter' does not obtain most of its nutrition from nuclear DNA or RNA. Instead, 'Candidatus Endonucleobacter' upregulates genes for importing and digesting sugars, lipids, amino acids and possibly mucin from its host. It likely prevents apoptosis of host cells by upregulating 7-13 inhibitors of apoptosis, proteins not previously seen in bacteria. Comparative phylogenetic analyses revealed that 'Ca. Endonucleobacter' acquired inhibitors of apoptosis through horizontal gene transfer from their hosts. Horizontal gene transfer from eukaryotes to bacteria is assumed to be rare, but may be more common than currently recognized.
Collapse
Affiliation(s)
| | - Adrien Assié
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Målin Tietjen
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Marlene Violette
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Harald Gruber-Vodicka
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Nikolaus Leisch
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
5
|
Ray A, Moore TF, Naik DSL, Borsch DM. Insights into the Two Most Common Cancers of Primitive Gut-Derived Structures and Their Microbial Connections. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1515. [PMID: 39336556 PMCID: PMC11434611 DOI: 10.3390/medicina60091515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
The gastrointestinal and respiratory systems are closely linked in different ways, including from the embryological, anatomical, cellular, and physiological angles. The highest number (and various types) of microorganisms live in the large intestine/colon, and constitute the normal microbiota in healthy people. Adverse alterations of the microbiota or dysbiosis can lead to chronic inflammation. If this detrimental condition persists, a sequence of pathological events can occur, such as inflammatory bowel disease, dysplasia or premalignant changes, and finally, cancer. One of the most commonly identified bacteria in both inflammatory bowel disease and colon cancer is Escherichia coli. On the other hand, patients with inflammatory bowel disease are at risk of several other diseases-both intestinal (such as malnutrition and intestinal obstruction, besides cancer) and extraintestinal (such as arthritis, bronchiectasis, and cancer risk). Cancers of the lung and colon are the two most common malignancies occurring worldwide (except for female breast cancer). Like the bacterial role in colon cancer, many studies have shown a link between chronic Chlamydia pneumoniae infection and lung cancer. However, in colon cancer, genotoxic colibactin-producing E. coli belonging to the B2 phylogroup may promote tumorigenesis. Furthermore, E. coli is believed to play an important role in the dissemination of cancer cells from the primary colonic site. Currently, seven enteric pathogenic E. coli subtypes have been described. Conversely, three Chlamydiae can cause infections in humans (C. trachomatis may increase the risk of cervical and ovarian cancers). Nonetheless, striking genomic plasticity and genetic modifications allow E. coli to constantly adjust to the surrounding environment. Consequently, E. coli becomes resistant to antibiotics and difficult to manage. To solve this problem, scientists are thinking of utilizing suitable lytic bacteriophages (viruses that infect and kill bacteria). Several bacteriophages of E. coli and Chlamydia species are being evaluated for this purpose.
Collapse
Affiliation(s)
- Amitabha Ray
- School of Health Professions, D’Youville University, 320 Porter Ave, Buffalo, NY 14201, USA
| | - Thomas F. Moore
- College of Health Sciences, Glenville State University, Glenville, WV 26351, USA;
| | - Dayalu S. L. Naik
- ICMR National Institute of Traditional Medicine, Belagavi 590010, India;
| | - Daniel M. Borsch
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA 15601, USA;
| |
Collapse
|
6
|
Mies US, Hervé V, Kropp T, Platt K, Sillam-Dussès D, Šobotník J, Brune A. Genome reduction and horizontal gene transfer in the evolution of Endomicrobia-rise and fall of an intracellular symbiosis with termite gut flagellates. mBio 2024; 15:e0082624. [PMID: 38742878 PMCID: PMC11257099 DOI: 10.1128/mbio.00826-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Bacterial endosymbionts of eukaryotic hosts typically experience massive genome reduction, but the underlying evolutionary processes are often obscured by the lack of free-living relatives. Endomicrobia, a family-level lineage of host-associated bacteria in the phylum Elusimicrobiota that comprises both free-living representatives and endosymbionts of termite gut flagellates, are an excellent model to study evolution of intracellular symbionts. We reconstructed 67 metagenome-assembled genomes (MAGs) of Endomicrobiaceae among more than 1,700 MAGs from the gut microbiota of a wide range of termites. Phylogenomic analysis confirmed a sister position of representatives from termites and ruminants, and allowed to propose eight new genera in the radiation of Endomicrobiaceae. Comparative genome analysis documented progressive genome erosion in the new genus Endomicrobiellum, which comprises all flagellate endosymbionts characterized to date. Massive gene losses were accompanied by the acquisition of new functions by horizontal gene transfer, which led to a shift from a glucose-based energy metabolism to one based on sugar phosphates. The breakdown of glycolysis and many anabolic pathways for amino acids and cofactors in several subgroups was compensated by the independent acquisition of new uptake systems, including an ATP/ADP antiporter, from other gut microbiota. The putative donors are mostly flagellate endosymbionts from other bacterial phyla, including several, hitherto unknown lineages of uncultured Alphaproteobacteria, documenting the importance of horizontal gene transfer in the convergent evolution of these intracellular symbioses. The loss of almost all biosynthetic capacities in some lineages of Endomicrobiellum suggests that their originally mutualistic relationship with flagellates is on its decline.IMPORTANCEUnicellular eukaryotes are frequently colonized by bacterial and archaeal symbionts. A prominent example are the cellulolytic gut flagellates of termites, which harbor diverse but host-specific bacterial symbionts that occur exclusively in termite guts. One of these lineages, the so-called Endomicrobia, comprises both free-living and endosymbiotic representatives, which offers the unique opportunity to study the evolutionary processes underpinning the transition from a free-living to an intracellular lifestyle. Our results revealed a progressive gene loss in energy metabolism and biosynthetic pathways, compensated by the acquisition of new functions via horizontal gene transfer from other gut bacteria, and suggest the eventual breakdown of an initially mutualistic symbiosis. Evidence for convergent evolution of unrelated endosymbionts reflects adaptations to the intracellular environment of termite gut flagellates.
Collapse
Affiliation(s)
- Undine S. Mies
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Vincent Hervé
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tom Kropp
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katja Platt
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - David Sillam-Dussès
- Laboratory of Experimental and Comparative Ethology LEEC, UR 4443, University Sorbonne Paris Nord, Villetaneuse, France
| | - Jan Šobotník
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czechia
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czechia
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
7
|
Castelli M, Nardi T, Gammuto L, Bellinzona G, Sabaneyeva E, Potekhin A, Serra V, Petroni G, Sassera D. Host association and intracellularity evolved multiple times independently in the Rickettsiales. Nat Commun 2024; 15:1093. [PMID: 38321113 PMCID: PMC10847448 DOI: 10.1038/s41467-024-45351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The order Rickettsiales (Alphaproteobacteria) encompasses multiple diverse lineages of host-associated bacteria, including pathogens, reproductive manipulators, and mutualists. Here, in order to understand how intracellularity and host association originated in this order, and whether they are ancestral or convergently evolved characteristics, we built a large and phylogenetically-balanced dataset that includes de novo sequenced genomes and a selection of published genomic and metagenomic assemblies. We perform detailed functional reconstructions that clearly indicates "late" and parallel evolution of obligate host-association in different Rickettsiales lineages. According to the depicted scenario, multiple independent horizontal acquisitions of transporters led to the progressive loss of biosynthesis of nucleotides, amino acids and other metabolites, producing distinct conditions of host-dependence. Each clade experienced a different pattern of evolution of the ancestral arsenal of interaction apparatuses, including development of specialised effectors involved in the lineage-specific mechanisms of host cell adhesion and/or invasion.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Tiago Nardi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Greta Bellinzona
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Elena Sabaneyeva
- Department of Cytology and Histology, Saint Petersburg State University, Petersburg, Russia
| | - Alexey Potekhin
- Department of Microbiology, Saint Petersburg State University, Petersburg, Russia
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | | | | | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
- IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
8
|
Giovannini M, Petroni G, Castelli M. Novel evolutionary insights on the interactions of the Holosporales (Alphaproteobacteria) with eukaryotic hosts from comparative genomics. Environ Microbiol 2024; 26:e16562. [PMID: 38173299 DOI: 10.1111/1462-2920.16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Holosporales are an alphaproteobacterial order engaging in obligate and complex associations with eukaryotes, in particular protists. The functional and evolutionary features of those interactions are still largely undisclosed. Here, we sequenced the genomes of two members of the species Bealeia paramacronuclearis (Holosporales, Holosporaceae) intracellularly associated with the ciliate protist Paramecium, which resulted in high correspondence. Consistent with the short-branched early-divergent phylogenetic position, Bealeia presents a larger functional repertoire than other Holosporaceae, comparable to those of other Holosporales families, particularly for energy metabolism and motility. Our analyses indicate that different Holosporales likely experienced at least partly autonomous genome reduction and adaptation to host interactions, for example regarding dependence on host biotin driven by multiple independent horizontal acquisitions of transporters. Among Alphaproteobacteria, this is reminiscent of the convergently evolved Rickettsiales, which however appear more diverse, possibly due to a probably more ancient origin. We identified in Bealeia and other Holosporales the plasmid-encoded putative genetic determinants of R-bodies, which may be involved in a killer trait towards symbiont-free hosts. While it is not clear whether these genes are ancestral or recently horizontally acquired, an intriguing and peculiar role of R-bodies is suggested in the evolution of the interactions of multiple Holosporales with their hosts.
Collapse
Affiliation(s)
| | | | - Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Takahashi K, Kuwahara H, Horikawa Y, Izawa K, Kato D, Inagaki T, Yuki M, Ohkuma M, Hongoh Y. Emergence of putative energy parasites within Clostridia revealed by genome analysis of a novel endosymbiotic clade. THE ISME JOURNAL 2023; 17:1895-1906. [PMID: 37653056 PMCID: PMC10579323 DOI: 10.1038/s41396-023-01502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
The Clostridia is a dominant bacterial class in the guts of various animals and are considered to nutritionally contribute to the animal host. Here, we discovered clostridial endosymbionts of cellulolytic protists in termite guts, which have never been reported with evidence. We obtained (near-)complete genome sequences of three endosymbiotic Clostridia, each associated with a different parabasalid protist species with various infection rates: Trichonympha agilis, Pseudotrichonympha grassii, and Devescovina sp. All these protists are previously known to harbor permanently-associated, mutualistic Endomicrobia or Bacteroidales that supplement nitrogenous compounds. The genomes of the endosymbiotic Clostridia were small in size (1.0-1.3 Mbp) and exhibited signatures of an obligately-intracellular parasite, such as an extremely limited capability to synthesize amino acids, cofactors, and nucleotides and a disrupted glycolytic pathway with no known net ATP-generating system. Instead, the genomes encoded ATP/ADP translocase and, interestingly, regulatory proteins that are unique to eukaryotes in general and are possibly used to interfere with host cellular processes. These three genomes formed a clade with metagenome-assembled genomes (MAGs) derived from the guts of other animals, including human and ruminants, and the MAGs shared the characteristics of parasites. Gene flux analysis suggested that the acquisition of the ATP/ADP translocase gene in a common ancestor was probably key to the emergence of this parasitic clade. Taken together, we provide novel insights into the multilayered symbiotic system in the termite gut by adding the presence of parasitism and present an example of the emergence of putative energy parasites from a dominant gut bacterial clade.
Collapse
Affiliation(s)
- Kazuki Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
| | - Hirokazu Kuwahara
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Yutaro Horikawa
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Kazuki Izawa
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Daiki Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Tatsuya Inagaki
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Masahiro Yuki
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan
| | - Yuichi Hongoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan.
| |
Collapse
|
10
|
Arastehfar A, Daneshnia F, Hovhannisyan H, Fuentes D, Cabrera N, Quinteros C, Ilkit M, Ünal N, Hilmioğlu-Polat S, Jabeen K, Zaka S, Desai JV, Lass-Flörl C, Shor E, Gabaldon T, Perlin DS. Overlooked Candida glabrata petites are echinocandin tolerant, induce host inflammatory responses, and display poor in vivo fitness. mBio 2023; 14:e0118023. [PMID: 37772846 PMCID: PMC10653939 DOI: 10.1128/mbio.01180-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE Candida glabrata is a major fungal pathogen, which is able to lose mitochondria and form small and slow-growing colonies, called "petite." This attenuated growth rate has created controversies and questioned the clinical importance of petiteness. Herein, we have employed multiple omics technologies and in vivo mouse models to critically assess the clinical importance of petite phenotype. Our WGS identifies multiple genes potentially underpinning petite phenotype. Interestingly, petite C. glabrata cells engulfed by macrophages are dormant and, therefore, are not killed by the frontline antifungal drugs. Interestingly, macrophages infected with petite cells mount distinct transcriptomic responses. Consistent with our ex vivo observations, mitochondrial-proficient parental strains outcompete petites during systemic and gut colonization. Retrospective examination of C. glabrata isolates identified petite prevalence a rare entity, which can significantly vary from country to country. Collectively, our study overcomes the existing controversies and provides novel insights regarding the clinical relevance of petite C. glabrata isolates.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Farnaz Daneshnia
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - Hrant Hovhannisyan
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Diego Fuentes
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nathaly Cabrera
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Macit Ilkit
- Division of Mycology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Nevzat Ünal
- Division of Mycology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | | | - Kauser Jabeen
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Sadaf Zaka
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Jigar V. Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | | | - Erika Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Toni Gabaldon
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| |
Collapse
|
11
|
Arastehfar A, Daneshnia F, Hovhannisyan H, Fuentes D, Cabrera N, Quintin C, Ilkit M, Ünal N, Hilmioğlu-Polat S, Jabeen K, Zaka S, Desai JV, Lass-Flörl C, Shor E, Gabaldon T, Perlin DS. Overlooked Candida glabrata petites are echinocandin tolerant, induce host inflammatory responses, and display poor in vivo fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545195. [PMID: 37398397 PMCID: PMC10312775 DOI: 10.1101/2023.06.15.545195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Small colony variants (SCVs) are relatively common among some bacterial species and are associated with poor prognosis and recalcitrant infections. Similarly, Candida glabrata - a major intracellular fungal pathogen - produces small and slow-growing respiratory-deficient colonies, termed "petite." Despite reports of clinical petite C . glabrata strains, our understanding of petite behavior in the host remains obscure. Moreover, controversies exist regarding in-host petite fitness and its clinical relevance. Herein, we employed whole-genome sequencing (WGS), dual-RNAseq, and extensive ex vivo and in vivo studies to fill this knowledge gap. WGS identified multiple petite-specific mutations in nuclear and mitochondrially-encoded genes. Consistent with dual-RNAseq data, petite C . glabrata cells did not replicate inside host macrophages and were outcompeted by their non-petite parents in macrophages and in gut colonization and systemic infection mouse models. The intracellular petites showed hallmarks of drug tolerance and were relatively insensitive to the fungicidal activity of echinocandin drugs. Petite-infected macrophages exhibited a pro-inflammatory and type I IFN-skewed transcriptional program. Interrogation of international C . glabrata blood isolates ( n =1000) showed that petite prevalence varies by country, albeit at an overall low prevalence (0-3.5%). Collectively, our study sheds new light on the genetic basis, drug susceptibility, clinical prevalence, and host-pathogen responses of a clinically overlooked phenotype in a major fungal pathogen. Importance Candida glabrata is a major fungal pathogen, which is able to lose mitochondria and form small and slow-growing colonies, called "petite". This attenuated growth rate has created controversies and questioned the clinical importance of petiteness. Herein, we have employed multiple omicstechnologies and in vivo mouse models to critically assess the clinical importance of petite phenotype. Our WGS identifies multiple genes potentially underpinning petite phenotype. Interestingly, petite C. glabrata cells engulfed by macrophages are dormant and therefore are not killed by the frontline antifungal drugs. Interestingly, macrophages infected with petite cells mount distinct transcriptomic responses. Consistent with our ex-vivo observations, mitochondrial-proficient parental strains outcompete petites during systemic and gut colonization. Retrospective examination of C. glabrata isolates identified petite prevalence a rare entity, can significantly vary from country to country. Collectively, our study overcomes the existing controversies and provides novel insights regarding the clinical relevance of petite C. glabrata isolates.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114 USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115 USA
| | - Farnaz Daneshnia
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114 USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115 USA
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam1012 WX, The Netherlands
| | - Hrant Hovhannisyan
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Diego Fuentes
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nathaly Cabrera
- Department of Medicine, Harvard Medical School, Boston, MA 02115 USA
| | | | - Macit Ilkit
- Division of Mycology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Nevzat Ünal
- Division of Mycology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | | | - Kauser Jabeen
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Sadaf Zaka
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Jigar V. Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | | | - Erika Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Department of Medical Sciences, Hackensack School of Medicine, Nutley, New Jersey, USA
| | - Toni Gabaldon
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Department of Medical Sciences, Hackensack School of Medicine, Nutley, New Jersey, USA
- Georgetown University Lombardi Comprehensive Cancer Center, Washington DC 20057, USA
| |
Collapse
|
12
|
Hyperactive nanobacteria with host-dependent traits pervade Omnitrophota. Nat Microbiol 2023; 8:727-744. [PMID: 36928026 PMCID: PMC10066038 DOI: 10.1038/s41564-022-01319-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 12/30/2022] [Indexed: 03/18/2023]
Abstract
Candidate bacterial phylum Omnitrophota has not been isolated and is poorly understood. We analysed 72 newly sequenced and 349 existing Omnitrophota genomes representing 6 classes and 276 species, along with Earth Microbiome Project data to evaluate habitat, metabolic traits and lifestyles. We applied fluorescence-activated cell sorting and differential size filtration, and showed that most Omnitrophota are ultra-small (~0.2 μm) cells that are found in water, sediments and soils. Omnitrophota genomes in 6 classes are reduced, but maintain major biosynthetic and energy conservation pathways, including acetogenesis (with or without the Wood-Ljungdahl pathway) and diverse respirations. At least 64% of Omnitrophota genomes encode gene clusters typical of bacterial symbionts, suggesting host-associated lifestyles. We repurposed quantitative stable-isotope probing data from soils dominated by andesite, basalt or granite weathering and identified 3 families with high isotope uptake consistent with obligate bacterial predators. We propose that most Omnitrophota inhabit various ecosystems as predators or parasites.
Collapse
|
13
|
Xia H, Hong Y, Li X, Fan R, Li Q, Ouyang Z, Yao X, Lu S, Guo L, Tang S. BnaNTT2 regulates ATP homeostasis in plastid to sustain lipid metabolism and plant growth in Brassica napus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:54. [PMID: 37313423 PMCID: PMC10248631 DOI: 10.1007/s11032-022-01322-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The plastid inner envelope membrane-bond nucleotide triphosphate transporter (NTT) transports cytosolic adenosine triphosphate (ATP) into plastid, which is necessary for the biochemical activities in plastid. We identified a chloroplast-localized BnaC08.NTT2 and obtained the overexpressed lines of BnaC08.NTT2 and CRISPR/Cas9 edited double mutant lines of BnaC08.NTT2 and BnaA08.NTT2 in B. napus. Further studies certified that overexpression (OE) of BnaC08.NTT2 could help transport ATP into chloroplast and exchange adenosine diphosphate (ADP) and this process was inhibited in BnaNTT2 mutants. Additional results showed that the thylakoid was abnormal in a8 c8 double mutants, which also had lower photosynthetic efficiency, leading to retarded plant growth. The BnaC08.NTT2 OE plants had higher photosynthetic efficiency and better growth compared to WT. OE of BnaC08.NTT2 could improve carbon flowing into protein and oil synthesis from glycolysis both in leaves and seeds. Lipid profile analysis showed that the contents of main chloroplast membrane lipids, including monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylglycerol (PG), were significantly reduced in mutants, while there were no differences in OE lines compared to WT. These results suggest that BnaNTT2 is involved in the regulation of ATP/ADP homeostasis in plastid to impact plant growth and seed oil accumulation in B. napus. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01322-8.
Collapse
Affiliation(s)
- Hui Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Yue Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Xiao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Ruyi Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Zhewen Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Shan Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| |
Collapse
|
14
|
The microbiome of a bacterivorous marine choanoflagellate contains a resource-demanding obligate bacterial associate. Nat Microbiol 2022; 7:1466-1479. [PMID: 35970961 PMCID: PMC9418006 DOI: 10.1038/s41564-022-01174-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
Abstract
Microbial predators such as choanoflagellates are key players in ocean food webs. Choanoflagellates, which are the closest unicellular relatives of animals, consume bacteria and also exhibit marked biological transitions triggered by bacterial compounds, yet their native microbiomes remain uncharacterized. Here we report the discovery of a ubiquitous, uncultured bacterial lineage we name Candidatus Comchoanobacterales ord. nov., related to the human pathogen Coxiella and physically associated with the uncultured marine choanoflagellate Bicosta minor. We analyse complete ‘Comchoano’ genomes acquired after sorting single Bicosta cells, finding signatures of obligate host-dependence, including reduction of pathways encoding glycolysis, membrane components, amino acids and B-vitamins. Comchoano encode the necessary apparatus to import energy and other compounds from the host, proteins for host-cell associations and a type IV secretion system closest to Coxiella’s that is expressed in Pacific Ocean metatranscriptomes. Interactions between choanoflagellates and their microbiota could reshape the direction of energy and resource flow attributed to microbial predators, adding complexity and nuance to marine food webs. Choanoflagellates are the closest living unicellular relatives of animals and are important bacterivorous predators in the ocean. Here the authors show that the microbiome of this predator includes an obligate, host resource-dependent bacterial associate.
Collapse
|
15
|
Schön ME, Martijn J, Vosseberg J, Köstlbacher S, Ettema TJG. The evolutionary origin of host association in the Rickettsiales. Nat Microbiol 2022; 7:1189-1199. [PMID: 35798888 PMCID: PMC9352585 DOI: 10.1038/s41564-022-01169-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/30/2022] [Indexed: 12/14/2022]
Abstract
The evolution of obligate host-association of bacterial symbionts and pathogens remains poorly understood. The Rickettsiales are an alphaproteobacterial order of obligate endosymbionts and parasites that infect a wide variety of eukaryotic hosts, including humans, livestock, insects and protists. Induced by their host-associated lifestyle, Rickettsiales genomes have undergone reductive evolution, leading to small, AT-rich genomes with limited metabolic capacities. Here we uncover eleven deep-branching alphaproteobacterial metagenome assembled genomes from aquatic environments, including data from the Tara Oceans initiative and other publicly available datasets, distributed over three previously undescribed Rickettsiales-related clades. Phylogenomic analyses reveal that two of these clades, Mitibacteraceae and Athabascaceae, branch sister to all previously sampled Rickettsiales. The third clade, Gamibacteraceae, branch sister to the recently identified ectosymbiotic ‘Candidatus Deianiraea vastatrix’. Comparative analyses indicate that the gene complement of Mitibacteraceae and Athabascaceae is reminiscent of that of free-living and biofilm-associated bacteria. Ancestral genome content reconstruction across the Rickettsiales species tree further suggests that the evolution of host association in Rickettsiales was a gradual process that may have involved the repurposing of a type IV secretion system. Phylogenomic analyses reveal novel environmental clades of Rickettsiales providing insights into their evolution from free-living to host-associated lifestyle.
Collapse
Affiliation(s)
- Max E Schön
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Joran Martijn
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Julian Vosseberg
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Stephan Köstlbacher
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden. .,Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
16
|
Chiriac MC, Bulzu PA, Andrei AS, Okazaki Y, Nakano SI, Haber M, Kavagutti VS, Layoun P, Ghai R, Salcher MM. Ecogenomics sheds light on diverse lifestyle strategies in freshwater CPR. MICROBIOME 2022; 10:84. [PMID: 35659305 PMCID: PMC9166423 DOI: 10.1186/s40168-022-01274-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND The increased use of metagenomics and single-cell genomics led to the discovery of organisms from phyla with no cultivated representatives and proposed new microbial lineages such as the candidate phyla radiation (CPR or Patescibacteria). These bacteria have peculiar ribosomal structures, reduced metabolic capacities, small genome, and cell sizes, and a general host-associated lifestyle was proposed for the radiation. So far, most CPR genomes were obtained from groundwaters; however, their diversity, abundance, and role in surface freshwaters is largely unexplored. Here, we attempt to close these knowledge gaps by deep metagenomic sequencing of 119 samples of 17 different freshwater lakes located in Europe and Asia. Moreover, we applied Fluorescence in situ Hybridization followed by Catalyzed Reporter Deposition (CARD-FISH) for a first visualization of distinct CPR lineages in freshwater samples. RESULTS A total of 174 dereplicated metagenome-assembled genomes (MAGs) of diverse CPR lineages were recovered from the investigated lakes, with a higher prevalence from hypolimnion samples (162 MAGs). They have reduced genomes (median size 1 Mbp) and were generally found in low abundances (0.02-14.36 coverage/Gb) and with estimated slow replication rates. The analysis of genomic traits and CARD-FISH results showed that the radiation is an eclectic group in terms of metabolic capabilities and potential lifestyles, ranging from what appear to be free-living lineages to host- or particle-associated groups. Although some complexes of the electron transport chain were present in the CPR MAGs, together with ion-pumping rhodopsins and heliorhodopsins, we believe that they most probably adopt a fermentative metabolism. Terminal oxidases might function in O2 scavenging, while heliorhodopsins could be involved in mitigation against oxidative stress. CONCLUSIONS A high diversity of CPR MAGs was recovered, and distinct CPR lineages did not seem to be limited to lakes with specific trophic states. Their reduced metabolic capacities resemble the ones described for genomes in groundwater and animal-associated samples, apart from Gracilibacteria that possesses more complete metabolic pathways. Even though this radiation is mostly host-associated, we also observed organisms from different clades (ABY1, Paceibacteria, Saccharimonadia) that appear to be unattached to any other organisms or were associated with 'lake snow' particles (ABY1, Gracilibacteria), suggesting a broad range of potential life-strategies in this phylum. Video Abstract.
Collapse
Affiliation(s)
- Maria-Cecilia Chiriac
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Paul-Adrian Bulzu
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Adrian-Stefan Andrei
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Yusuke Okazaki
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Shin-ichi Nakano
- Center of Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga Japan
| | - Markus Haber
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Vinicius Silva Kavagutti
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, Czech Republic
| | - Paul Layoun
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, Czech Republic
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Michaela M. Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
17
|
Halter T, Köstlbacher S, Collingro A, Sixt BS, Tönshoff ER, Hendrickx F, Kostanjšek R, Horn M. Ecology and evolution of chlamydial symbionts of arthropods. ISME COMMUNICATIONS 2022; 2:45. [PMID: 37938728 PMCID: PMC9723776 DOI: 10.1038/s43705-022-00124-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 05/08/2023]
Abstract
The phylum Chlamydiae consists of obligate intracellular bacteria including major human pathogens and diverse environmental representatives. Here we investigated the Rhabdochlamydiaceae, which is predicted to be the largest and most diverse chlamydial family, with the few described members known to infect arthropod hosts. Using published 16 S rRNA gene sequence data we identified at least 388 genus-level lineages containing about 14 051 putative species within this family. We show that rhabdochlamydiae are mainly found in freshwater and soil environments, suggesting the existence of diverse, yet unknown hosts. Next, we used a comprehensive genome dataset including metagenome assembled genomes classified as members of the family Rhabdochlamydiaceae, and we added novel complete genome sequences of Rhabdochlamydia porcellionis infecting the woodlouse Porcellio scaber, and of 'Candidatus R. oedothoracis' associated with the linyphiid dwarf spider Oedothorax gibbosus. Comparative analysis of basic genome features and gene content with reference genomes of well-studied chlamydial families with known host ranges, namely Parachlamydiaceae (protist hosts) and Chlamydiaceae (human and other vertebrate hosts) suggested distinct niches for members of the Rhabdochlamydiaceae. We propose that members of the family represent intermediate stages of adaptation of chlamydiae from protists to vertebrate hosts. Within the genus Rhabdochlamydia, pronounced genome size reduction could be observed (1.49-1.93 Mb). The abundance and genomic distribution of transposases suggests transposable element expansion and subsequent gene inactivation as a mechanism of genome streamlining during adaptation to new hosts. This type of genome reduction has never been described before for any member of the phylum Chlamydiae. This study provides new insights into the molecular ecology, genomic diversity, and evolution of representatives of one of the most divergent chlamydial families.
Collapse
Affiliation(s)
- Tamara Halter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Stephan Köstlbacher
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Astrid Collingro
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Barbara S Sixt
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Elena R Tönshoff
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich (ETH), Zurich, Switzerland
| | | | - Rok Kostanjšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
18
|
Cournoyer J, Altman SD, Gao YL, Wallace CL, Zhang D, Lo GH, Haskin NT, Mehta AP. Engineering artificial photosynthetic life-forms through endosymbiosis. Nat Commun 2022; 13:2254. [PMID: 35474066 PMCID: PMC9042829 DOI: 10.1038/s41467-022-29961-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/08/2022] [Indexed: 12/28/2022] Open
Abstract
The evolutionary origin of the photosynthetic eukaryotes drastically altered the evolution of complex lifeforms and impacted global ecology. The endosymbiotic theory suggests that photosynthetic eukaryotes evolved due to endosymbiosis between non-photosynthetic eukaryotic host cells and photosynthetic cyanobacterial or algal endosymbionts. The photosynthetic endosymbionts, propagating within the cytoplasm of the host cells, evolved, and eventually transformed into chloroplasts. Despite the fundamental importance of this evolutionary event, we have minimal understanding of this remarkable evolutionary transformation. Here, we design and engineer artificial, genetically tractable, photosynthetic endosymbiosis between photosynthetic cyanobacteria and budding yeasts. We engineer various mutants of model photosynthetic cyanobacteria as endosymbionts within yeast cells where, the engineered cyanobacteria perform bioenergetic functions to support the growth of yeast cells under defined photosynthetic conditions. We anticipate that these genetically tractable endosymbiotic platforms can be used for evolutionary studies, particularly related to organelle evolution, and also for synthetic biology applications.
Collapse
Affiliation(s)
- Jay Cournoyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, 61801, USA
| | - Sarah D Altman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, 61801, USA
| | - Yang-le Gao
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, 61801, USA
| | - Catherine L Wallace
- The Imaging Technology Group, Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, 61801, USA
| | - Dianwen Zhang
- The Imaging Technology Group, Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, 61801, USA
| | - Guo-Hsuen Lo
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, 61801, USA
| | - Noah T Haskin
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, 61801, USA
| | - Angad P Mehta
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
19
|
Selberherr E, Penz T, König L, Conrady B, Siegl A, Horn M, Schmitz-Esser S. The life cycle-dependent transcriptional profile of the obligate intracellular amoeba symbiont Amoebophilus asiaticus. FEMS Microbiol Ecol 2022; 98:fiac001. [PMID: 34999767 PMCID: PMC8831229 DOI: 10.1093/femsec/fiac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 12/04/2022] Open
Abstract
Free-living amoebae often harbor obligate intracellular bacterial symbionts. Amoebophilus (A.) asiaticus is a representative of a lineage of amoeba symbionts in the phylum Bacteroidota. Here, we analyse the transcriptome of A. asiaticus strain 5a2 at four time points during its infection cycle and replication within the Acanthamoeba host using RNA sequencing. Our results reveal a dynamic transcriptional landscape throughout different A. asiaticus life cycle stages. Many intracellular bacteria and pathogens utilize eukaryotic-like proteins (ELPs) for host cell interaction and the A. asiaticus 5a2 genome shows a particularly high abundance of ELPs. We show the expression of all genes encoding ELPs and found many ELPs to be differentially expressed. At the replicative stage of A. asiaticus, ankyrin repeat proteins and tetratricopeptide/Sel1-like repeat proteins were upregulated. At the later time points, high expression levels of a type 6 secretion system that likely prepares for a new infection cycle after lysing its host, were found. This study reveals comprehensive insights into the intracellular lifestyle of A. asiaticus and highlights candidate genes for host cell interaction. The results from this study have implications for other intracellular bacteria such as other amoeba-associated bacteria and the arthropod symbionts Cardinium forming the sister lineage of A. asiaticus.
Collapse
Affiliation(s)
- E Selberherr
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - T Penz
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - L König
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - B Conrady
- Department of Veterinary and Animal Science, University of Copenhagen, 1870, Denmark
| | - A Siegl
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - M Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - S Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
20
|
Castelli M, Lanzoni O, Giovannini M, Lebedeva N, Gammuto L, Sassera D, Melekhin M, Potekhin A, Fokin S, Petroni G. 'Candidatus Gromoviella agglomerans', a novel intracellular Holosporaceae parasite of the ciliate Paramecium showing marked genome reduction. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:34-49. [PMID: 34766443 DOI: 10.1111/1758-2229.13021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Holosporales are an alphaproteobacterial lineage encompassing bacteria obligatorily associated with multiple diverse eukaryotes. For most representatives, little is known on the interactions with their hosts. In this study, we characterized a novel Holosporales symbiont of the ciliate Paramecium polycaryum. This bacterium inhabits the host cytoplasm, frequently forming quite large aggregates. Possibly due to such aggregates, host cells sometimes displayed lethal division defects. The symbiont was also able to experimentally stably infect another Paramecium polycaryum strain. The bacterium is phylogenetically related with symbionts of other ciliates and diplonemids, forming a putatively fast-evolving clade within the family Holosporaceae. Similarly to many close relatives, it presents a very small genome (<600 kbp), and, accordingly, a limited predicted metabolism, implying a heavy dependence on Paramecium, thanks also to some specialized membrane transporters. Characterized features, including the presence of specific secretion systems, are overall suggestive of a mild parasitic effect on the host. From an evolutionary perspective, a potential ancestral trend towards pronounced genome reduction and possibly linked to parasitism could be inferred, at least among fast-evolving Holosporaceae, with some lineage-specific traits. Interestingly, similar convergent features could be observed in other host-associated lineages, in particular Rickettsiales among Alphaproteobacteria.
Collapse
Affiliation(s)
- Michele Castelli
- Dipartimento di Biologia e Biotecnologie, Università degli studi di Pavia, Pavia, Italy
| | - Olivia Lanzoni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | | | - Natalia Lebedeva
- Centre of Core Facilities "Culture Collections of Microorganisms", Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Davide Sassera
- Dipartimento di Biologia e Biotecnologie, Università degli studi di Pavia, Pavia, Italy
| | - Maksim Melekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
- Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, Saint Petersburg, Russia
| | - Alexey Potekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
- Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, Saint Petersburg, Russia
| | - Sergei Fokin
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
- Department of Invertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Giulio Petroni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| |
Collapse
|
21
|
Merfa MV, Naranjo E, Shantharaj D, De La Fuente L. Growth of ' Candidatus Liberibacter asiaticus' in Commercial Grapefruit Juice-Based Media Formulations Reveals Common Cell Density-Dependent Transient Behaviors. PHYTOPATHOLOGY 2022; 112:131-144. [PMID: 34340531 DOI: 10.1094/phyto-06-21-0228-fi] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The phloem-restricted, insect-transmitted bacterium 'Candidatus Liberibacter asiaticus' (CLas) is associated with huanglongbing (HLB), the most devastating disease of citrus worldwide. The inability to culture CLas impairs the understanding of its virulence mechanisms and the development of effective management strategies to control this incurable disease. Previously, our research group used commercial grapefruit juice (GJ) to prolong the viability of CLas in vitro. In the present study, GJ was amended with a wide range of compounds and incubated under different conditions to optimize CLas growth. Remarkably, results showed that CLas growth ratios were inversely proportional to the initial inoculum concentration. This correlation is probably regulated by a cell density-dependent mechanism, because diluting samples between subcultures allowed CLas to resume growth. Moreover, strategies to reduce the cell density of CLas, such as subculturing at short intervals and incubating samples under flow conditions, allowed this bacterium to multiply and reach maximum growth as early as 3 days after inoculation, although no sustained exponential growth was observed under any tested condition. Unfortunately, cultures were only transient, because CLas lost viability over time; nevertheless, we obtained populations of about 105 genome equivalents/ml repeatedly. Finally, we established an ex vivo system to grow CLas within periwinkle calli that could be used to propagate bacterial inoculum in the lab. In this study we determined the influence of a comprehensive set of conditions and compounds on CLas growth in culture. We hope our results will help guide future efforts toward the long-sought goal of culturing CLas axenically.
Collapse
Affiliation(s)
- Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Eber Naranjo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Deepak Shantharaj
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | | |
Collapse
|
22
|
Romesberg FE. Creation, Optimization, and Use of Semi-Synthetic Organisms that Store and Retrieve Increased Genetic Information. J Mol Biol 2021; 434:167331. [PMID: 34710400 DOI: 10.1016/j.jmb.2021.167331] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
With few exceptions, natural proteins are built from only 20 canonical (proteogenic) amino acids which limits the functionality and accordingly the properties they can possess. Genetic code expansion, i.e. the creation of codons and the machinery needed to assign them to non-canonical amino acids (ncAAs), promises to enable the discovery of proteins with novel properties that are otherwise difficult or impossible to obtain. One approach to expanding the genetic code is to expand the genetic alphabet via the development of unnatural nucleotides that pair to form an unnatural base pair (UBP). Semi-synthetic organisms (SSOs), i.e. organisms that stably maintain the UBP, transcribe its component nucleotides into RNA, and use it to translate proteins, would have available to them new codons and the anticodons needed to assign them to ncAAs. This review summarizes the development of a family of UBPs, their use to create SSOs, and the optimization and application of the SSOs to produce candidate therapeutic proteins with improved properties that are now undergoing evaluation in clinical trials.
Collapse
|
23
|
Köstlbacher S, Collingro A, Halter T, Schulz F, Jungbluth SP, Horn M. Pangenomics reveals alternative environmental lifestyles among chlamydiae. Nat Commun 2021; 12:4021. [PMID: 34188040 PMCID: PMC8242063 DOI: 10.1038/s41467-021-24294-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Chlamydiae are highly successful strictly intracellular bacteria associated with diverse eukaryotic hosts. Here we analyzed metagenome-assembled genomes of the "Genomes from Earth's Microbiomes" initiative from diverse environmental samples, which almost double the known phylogenetic diversity of the phylum and facilitate a highly resolved view at the chlamydial pangenome. Chlamydiae are defined by a relatively large core genome indicative of an intracellular lifestyle, and a highly dynamic accessory genome of environmental lineages. We observe chlamydial lineages that encode enzymes of the reductive tricarboxylic acid cycle and for light-driven ATP synthesis. We show a widespread potential for anaerobic energy generation through pyruvate fermentation or the arginine deiminase pathway, and we add lineages capable of molecular hydrogen production. Genome-informed analysis of environmental distribution revealed lineage-specific niches and a high abundance of chlamydiae in some habitats. Together, our data provide an extended perspective of the variability of chlamydial biology and the ecology of this phylum of intracellular microbes.
Collapse
Affiliation(s)
- Stephan Köstlbacher
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Astrid Collingro
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Tamara Halter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | | | | | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
24
|
Rayamajhee B, Subedi D, Peguda HK, Willcox MD, Henriquez FL, Carnt N. A Systematic Review of Intracellular Microorganisms within Acanthamoeba to Understand Potential Impact for Infection. Pathogens 2021; 10:pathogens10020225. [PMID: 33670718 PMCID: PMC7922382 DOI: 10.3390/pathogens10020225] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
Acanthamoeba, an opportunistic pathogen is known to cause an infection of the cornea, central nervous system, and skin. Acanthamoeba feeds different microorganisms, including potentially pathogenic prokaryotes; some of microbes have developed ways of surviving intracellularly and this may mean that Acanthamoeba acts as incubator of important pathogens. A systematic review of the literature was performed in order to capture a comprehensive picture of the variety of microbial species identified within Acanthamoeba following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Forty-three studies met the inclusion criteria, 26 studies (60.5%) examined environmental samples, eight (18.6%) studies examined clinical specimens, and another nine (20.9%) studies analysed both types of samples. Polymerase chain reaction (PCR) followed by gene sequencing was the most common technique used to identify the intracellular microorganisms. Important pathogenic bacteria, such as E. coli, Mycobacterium spp. and P. aeruginosa, were observed in clinical isolates of Acanthamoeba, whereas Legionella, adenovirus, mimivirus, and unidentified bacteria (Candidatus) were often identified in environmental Acanthamoeba. Increasing resistance of Acanthamoeba associated intracellular pathogens to antimicrobials is an increased risk to public health. Molecular-based future studies are needed in order to assess the microbiome residing in Acanthamoeba, as a research on the hypotheses that intracellular microbes can affect the pathogenicity of Acanthamoeba infections.
Collapse
Affiliation(s)
- Binod Rayamajhee
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; (H.K.P.); (M.D.W.); (N.C.)
- Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences (KRIBS), Lalitpur 44700, Nepal
- Correspondence: or
| | - Dinesh Subedi
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia;
| | - Hari Kumar Peguda
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; (H.K.P.); (M.D.W.); (N.C.)
| | - Mark Duncan Willcox
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; (H.K.P.); (M.D.W.); (N.C.)
| | - Fiona L. Henriquez
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland (UWS), Paisley PA1 2BE, UK;
| | - Nicole Carnt
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; (H.K.P.); (M.D.W.); (N.C.)
| |
Collapse
|
25
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Persistence of Intracellular Bacterial Pathogens-With a Focus on the Metabolic Perspective. Front Cell Infect Microbiol 2021; 10:615450. [PMID: 33520740 PMCID: PMC7841308 DOI: 10.3389/fcimb.2020.615450] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed. Several factors and pathways have been identified in the past that apparently favor the formation of persistence, such as various toxin/antitoxin modules or stringent response together with the alarmone (p)ppGpp. However, persistence can occur stochastically in few cells even of stress-free bacterial populations. Growth of these cells could then be induced by the stress conditions. In this review, we focus on the persister formation of human intracellular bacterial pathogens, some of which belong to the most successful persister producers but lack some or even all of the assumed persistence-triggering factors and pathways. We propose a mechanism for the persister formation of these bacterial pathogens which is based on their specific intracellular bipartite metabolism. We postulate that this mode of metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA replication initiation which may be causative for the persister state.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|
26
|
Stairs CW, Dharamshi JE, Tamarit D, Eme L, Jørgensen SL, Spang A, Ettema TJG. Chlamydial contribution to anaerobic metabolism during eukaryotic evolution. SCIENCE ADVANCES 2020; 6:eabb7258. [PMID: 32923644 PMCID: PMC7449678 DOI: 10.1126/sciadv.abb7258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The origin of eukaryotes is a major open question in evolutionary biology. Multiple hypotheses posit that eukaryotes likely evolved from a syntrophic relationship between an archaeon and an alphaproteobacterium based on H2 exchange. However, there are no strong indications that modern eukaryotic H2 metabolism originated from archaea or alphaproteobacteria. Here, we present evidence for the origin of H2 metabolism genes in eukaryotes from an ancestor of the Anoxychlamydiales-a group of anaerobic chlamydiae, newly described here, from marine sediments. Among Chlamydiae, these bacteria uniquely encode genes for H2 metabolism and other anaerobiosis-associated pathways. Phylogenetic analyses of several components of H2 metabolism reveal that Anoxychlamydiales homologs are the closest relatives to eukaryotic sequences. We propose that an ancestor of the Anoxychlamydiales contributed these key genes during the evolution of eukaryotes, supporting a mosaic evolutionary origin of eukaryotic metabolism.
Collapse
Affiliation(s)
- Courtney W. Stairs
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Jennah E. Dharamshi
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Daniel Tamarit
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6708 WE Wageningen, Netherlands
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Laura Eme
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Orsay, France
| | - Steffen L. Jørgensen
- Department of Earth Science, Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway
| | - Anja Spang
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, NL-1790 AB Den Burg, Netherlands
| | - Thijs J. G. Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6708 WE Wageningen, Netherlands
| |
Collapse
|
27
|
Pérez‐López E, Hossain MM, Tu J, Waldner M, Todd CD, Kusalik AJ, Wei Y, Bonham‐Smith PC. Transcriptome Analysis Identifies Plasmodiophora brassicae Secondary Infection Effector Candidates. J Eukaryot Microbiol 2020; 67:337-351. [PMID: 31925980 PMCID: PMC7317818 DOI: 10.1111/jeu.12784] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 12/15/2019] [Accepted: 01/04/2020] [Indexed: 12/17/2022]
Abstract
Plasmodiophora brassicae (Wor.) is an obligate intracellular plant pathogen affecting Brassicas worldwide. Identification of effector proteins is key to understanding the interaction between P. brassicae and its susceptible host plants. To date, there is very little information available on putative effector proteins secreted by P. brassicae during a secondary infection of susceptible host plants, resulting in root gall production. A bioinformatics pipeline approach to RNA-Seq data from Arabidopsis thaliana (L.) Heynh. root tissues at 17, 20, and 24 d postinoculation (dpi) identified 32 small secreted P. brassicae proteins (SSPbPs) that were highly expressed over this secondary infection time frame. Functional signal peptides were confirmed for 31 of the SSPbPs, supporting the accuracy of the pipeline designed to identify secreted proteins. Expression profiles at 0, 2, 5, 7, 14, 21, and 28 dpi verified the involvement of some of the SSPbPs in secondary infection. For seven of the SSPbPs, a functional domain was identified using Blast2GO and 3D structure analysis and domain functionality was confirmed for SSPbP22, a kinase localized to the cytoplasm and nucleus.
Collapse
Affiliation(s)
- Edel Pérez‐López
- Department of BiologyUniversity of SaskatchewanSaskatoonSKS7N 5E2Canada
| | | | - Jiangying Tu
- Agriculture and Agri‐food CanadaSaskatoon Research CentreSaskatoonSKS7N 0X2Canada
| | - Matthew Waldner
- Department of Computer ScienceUniversity of SaskatchewanSaskatoonSKS7N 5C9Canada
| | | | - Anthony J. Kusalik
- Department of Computer ScienceUniversity of SaskatchewanSaskatoonSKS7N 5C9Canada
| | - Yangdou Wei
- Department of BiologyUniversity of SaskatchewanSaskatoonSKS7N 5E2Canada
| | | |
Collapse
|
28
|
Dharamshi JE, Tamarit D, Eme L, Stairs CW, Martijn J, Homa F, Jørgensen SL, Spang A, Ettema TJG. Marine Sediments Illuminate Chlamydiae Diversity and Evolution. Curr Biol 2020; 30:1032-1048.e7. [PMID: 32142706 DOI: 10.1016/j.cub.2020.02.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/22/2019] [Accepted: 02/06/2020] [Indexed: 12/20/2022]
Abstract
The bacterial phylum Chlamydiae is so far composed of obligate symbionts of eukaryotic hosts. Well known for Chlamydiaceae, pathogens of humans and other animals, Chlamydiae also include so-called environmental lineages that primarily infect microbial eukaryotes. Environmental surveys indicate that Chlamydiae are found in a wider range of environments than anticipated previously. However, the vast majority of this chlamydial diversity has been underexplored, biasing our current understanding of their biology, ecological importance, and evolution. Here, we report that previously undetected and active chlamydial lineages dominate microbial communities in deep anoxic marine sediments taken from the Arctic Mid-Ocean Ridge. Reaching relative abundances of up to 43% of the bacterial community, and a maximum diversity of 163 different species-level taxonomic units, these Chlamydiae represent important community members. Using genome-resolved metagenomics, we reconstructed 24 draft chlamydial genomes, expanding by over a third the known genomic diversity in this phylum. Phylogenomic analyses revealed several novel clades across the phylum, including a previously unknown sister lineage of the Chlamydiaceae, providing new insights into the origin of pathogenicity in this family. We were unable to identify putative eukaryotic hosts for these marine sediment chlamydiae, despite identifying genomic features that may be indicative of host-association. The high abundance and genomic diversity of Chlamydiae in these anoxic marine sediments indicate that some members could play an important, and thus far overlooked, ecological role in such environments and may indicate alternate lifestyle strategies.
Collapse
Affiliation(s)
- Jennah E Dharamshi
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden
| | - Daniel Tamarit
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden; Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Laura Eme
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden; Unité d'Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Orsay 91400, France
| | - Courtney W Stairs
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden
| | - Joran Martijn
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden; Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Felix Homa
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden; Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Steffen L Jørgensen
- Department of Earth Science, Centre for Deep Sea Research, University of Bergen, Bergen 5020, Norway
| | - Anja Spang
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden; Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg 1790 AB, the Netherlands
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden; Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen 6708 WE, the Netherlands.
| |
Collapse
|
29
|
The Jekyll and Hyde Symbiont: Could Wolbachia Be a Nutritional Mutualist? J Bacteriol 2020; 202:JB.00589-19. [PMID: 31659008 DOI: 10.1128/jb.00589-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The most common intracellular symbiont on the planet-Wolbachia pipientis-is infamous largely for the reproductive manipulations induced in its host. However, more recent evidence suggests that this bacterium may also serve as a nutritional mutualist in certain host backgrounds and for certain metabolites. We performed a large-scale analysis of conserved gene content across all sequenced Wolbachia genomes to infer potential nutrients made by these symbionts. We review and critically evaluate the prior research supporting a beneficial role for Wolbachia and suggest future experiments to test hypotheses of metabolic provisioning.
Collapse
|
30
|
George EE, Husnik F, Tashyreva D, Prokopchuk G, Horák A, Kwong WK, Lukeš J, Keeling PJ. Highly Reduced Genomes of Protist Endosymbionts Show Evolutionary Convergence. Curr Biol 2020; 30:925-933.e3. [PMID: 31978335 DOI: 10.1016/j.cub.2019.12.070] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/24/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
Genome evolution in bacterial endosymbionts is notoriously extreme: the combined effects of strong genetic drift and unique selective pressures result in highly reduced genomes with distinctive adaptations to hosts [1-4]. These processes are mostly known from animal endosymbionts, where nutritional endosymbioses represent the best-studied systems. However, eukaryotic microbes, or protists, also harbor diverse bacterial endosymbionts, but their genome reduction and functional relationships with their hosts are largely unexplored [5-7]. We sequenced the genomes of four bacterial endosymbionts from three species of diplonemids, poorly studied but abundant and diverse heterotrophic protists [8-12]. The endosymbionts come from two bacterial families, Rickettsiaceae and Holosporaceae, that have invaded two families of diplonemids, and their genomes have converged on an extremely small size (605-632 kilobase pairs [kbp]), similar gene content (e.g., metabolite transporters and secretion systems), and reduced metabolic potential (e.g., loss of energy metabolism). These characteristics are generally found in both families, but the diplonemid endosymbionts have evolved greater extremes in parallel. They possess modified type VI secretion systems that could function in manipulating host metabolism or other intracellular interactions. Finally, modified cellular machinery like the ATP synthase without oxidative phosphorylation, and the reduced flagellar apparatus present in some diplonemid endosymbionts and nutritional animal endosymbionts, indicates that intracellular mechanisms have converged in bacterial endosymbionts with various functions and from different eukaryotic hosts across the tree of life.
Collapse
Affiliation(s)
- Emma E George
- University of British Columbia, Department of Botany, Vancouver, BC V6T 1Z4, Canada.
| | - Filip Husnik
- University of British Columbia, Department of Botany, Vancouver, BC V6T 1Z4, Canada
| | - Daria Tashyreva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, 370 05 České Budějovice, Czech Republic
| | - Waldan K Kwong
- University of British Columbia, Department of Botany, Vancouver, BC V6T 1Z4, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, 370 05 České Budějovice, Czech Republic
| | - Patrick J Keeling
- University of British Columbia, Department of Botany, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
31
|
Gruber A, Haferkamp I. Nucleotide Transport and Metabolism in Diatoms. Biomolecules 2019; 9:E761. [PMID: 31766535 PMCID: PMC6995639 DOI: 10.3390/biom9120761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023] Open
Abstract
Plastids, organelles that evolved from cyanobacteria via endosymbiosis in eukaryotes, provide carbohydrates for the formation of biomass and for mitochondrial energy production to the cell. They generate their own energy in the form of the nucleotide adenosine triphosphate (ATP). However, plastids of non-photosynthetic tissues, or during the dark, depend on external supply of ATP. A dedicated antiporter that exchanges ATP against adenosine diphosphate (ADP) plus inorganic phosphate (Pi) takes over this function in most photosynthetic eukaryotes. Additional forms of such nucleotide transporters (NTTs), with deviating activities, are found in intracellular bacteria, and, surprisingly, also in diatoms, a group of algae that acquired their plastids from other eukaryotes via one (or even several) additional endosymbioses compared to algae with primary plastids and higher plants. In this review, we summarize what is known about the nucleotide synthesis and transport pathways in diatom cells, and discuss the evolutionary implications of the presence of the additional NTTs in diatoms, as well as their applications in biotechnology.
Collapse
Affiliation(s)
- Ansgar Gruber
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Ilka Haferkamp
- Pflanzenphysiologie, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany;
| |
Collapse
|
32
|
Castelli M, Sabaneyeva E, Lanzoni O, Lebedeva N, Floriano AM, Gaiarsa S, Benken K, Modeo L, Bandi C, Potekhin A, Sassera D, Petroni G. Deianiraea, an extracellular bacterium associated with the ciliate Paramecium, suggests an alternative scenario for the evolution of Rickettsiales. THE ISME JOURNAL 2019; 13:2280-2294. [PMID: 31073215 PMCID: PMC6776064 DOI: 10.1038/s41396-019-0433-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/19/2019] [Accepted: 04/10/2019] [Indexed: 12/28/2022]
Abstract
Rickettsiales are a lineage of obligate intracellular Alphaproteobacteria, encompassing important human pathogens, manipulators of host reproduction, and mutualists. Here we report the discovery of a novel Rickettsiales bacterium associated with Paramecium, displaying a unique extracellular lifestyle, including the ability to replicate outside host cells. Genomic analyses show that the bacterium possesses a higher capability to synthesise amino acids, compared to all investigated Rickettsiales. Considering these observations, phylogenetic and phylogenomic reconstructions, and re-evaluating the different means of interaction of Rickettsiales bacteria with eukaryotic cells, we propose an alternative scenario for the evolution of intracellularity in Rickettsiales. According to our reconstruction, the Rickettsiales ancestor would have been an extracellular and metabolically versatile bacterium, while obligate intracellularity would have evolved later, in parallel and independently, in different sub-lineages. The proposed new scenario could impact on the open debate on the lifestyle of the last common ancestor of mitochondria within Alphaproteobacteria.
Collapse
Affiliation(s)
- Michele Castelli
- Centro Romeo ed Enrica Invernizzi Ricerca Pediatrica, Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| | - Elena Sabaneyeva
- Department of Cytology and Histology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Olivia Lanzoni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Natalia Lebedeva
- Centre of Core Facilities "Culture Collections of Microorganisms", Saint Petersburg State University, Saint Petersburg, Russia
| | - Anna Maria Floriano
- Dipartimento di Biologia e Biotecnologie, Università degli studi di Pavia, Pavia, Italy
| | - Stefano Gaiarsa
- Dipartimento di Biologia e Biotecnologie, Università degli studi di Pavia, Pavia, Italy
- UOC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Konstantin Benken
- Core Facility Center for Microscopy and Microanalysis, Saint Petersburg State University, Saint Petersburg, Russia
| | - Letizia Modeo
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Claudio Bandi
- Centro Romeo ed Enrica Invernizzi Ricerca Pediatrica, Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| | - Alexey Potekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Davide Sassera
- Dipartimento di Biologia e Biotecnologie, Università degli studi di Pavia, Pavia, Italy.
| | - Giulio Petroni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy.
| |
Collapse
|
33
|
Gruber-Vodicka HR, Leisch N, Kleiner M, Hinzke T, Liebeke M, McFall-Ngai M, Hadfield MG, Dubilier N. Two intracellular and cell type-specific bacterial symbionts in the placozoan Trichoplax H2. Nat Microbiol 2019; 4:1465-1474. [PMID: 31182796 PMCID: PMC6784892 DOI: 10.1038/s41564-019-0475-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/26/2019] [Indexed: 02/02/2023]
Abstract
Placozoa is an enigmatic phylum of simple, microscopic, marine metazoans1,2. Although intracellular bacteria have been found in all members of this phylum, almost nothing is known about their identity, location and interactions with their host3–6. We used metagenomic and metatranscriptomic sequencing of single host individuals, plus metaproteomic and imaging analyses, to show that the placozoan Trichoplax sp. H2 lives in symbiosis with two intracellular bacteria. One symbiont forms an undescribed genus in the Midichloriaceae (Rickettsiales)7,8 and has a genomic repertoire similar to that of rickettsial parasites9,10, but does not seem to express key genes for energy parasitism. Correlative image analyses and three-dimensional electron tomography revealed that this symbiont resides in the rough endoplasmic reticulum of its host’s internal fibre cells. The second symbiont belongs to the Margulisbacteria, a phylum without cultured representatives and not known to form intracellular associations11–13. This symbiont lives in the ventral epithelial cells of Trichoplax, probably metabolizes algal lipids digested by its host and has the capacity to supplement the placozoan’s nutrition. Our study shows that one of the simplest animals has evolved highly specific and intimate associations with symbiotic, intracellular bacteria and highlights that symbioses can provide access to otherwise elusive microbial dark matter. Using a multi-omics approach, together with imaging analyses, the authors characterize the two intracellular bacterial symbionts of Trichoplax, one of the simplest animals.
Collapse
Affiliation(s)
| | - Nikolaus Leisch
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Tjorven Hinzke
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany.,Department of Geoscience, University of Calgary, Calgary, Alberta, Canada
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Margaret McFall-Ngai
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Michael G Hadfield
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA.
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
34
|
Lauri N, Bazzi Z, Alvarez CL, Leal Denis MF, Schachter J, Herlax V, Ostuni MA, Schwarzbaum PJ. ATPe Dynamics in Protozoan Parasites. Adapt or Perish. Genes (Basel) 2018; 10:E16. [PMID: 30591699 PMCID: PMC6356682 DOI: 10.3390/genes10010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 01/25/2023] Open
Abstract
In most animals, transient increases of extracellular ATP (ATPe) are used for physiological signaling or as a danger signal in pathological conditions. ATPe dynamics are controlled by ATP release from viable cells and cell lysis, ATPe degradation and interconversion by ecto-nucleotidases, and interaction of ATPe and byproducts with cell surface purinergic receptors and purine salvage mechanisms. Infection by protozoan parasites may alter at least one of the mechanisms controlling ATPe concentration. Protozoan parasites display their own set of proteins directly altering ATPe dynamics, or control the activity of host proteins. Parasite dependent activation of ATPe conduits of the host may promote infection and systemic responses that are beneficial or detrimental to the parasite. For instance, activation of organic solute permeability at the host membrane can support the elevated metabolism of the parasite. On the other hand ecto-nucleotidases of protozoan parasites, by promoting ATPe degradation and purine/pyrimidine salvage, may be involved in parasite growth, infectivity, and virulence. In this review, we will describe the complex dynamics of ATPe regulation in the context of protozoan parasite⁻host interactions. Particular focus will be given to features of parasite membrane proteins strongly controlling ATPe dynamics. This includes evolutionary, genetic and cellular mechanisms, as well as structural-functional relationships.
Collapse
Affiliation(s)
- Natalia Lauri
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Pharmacy and Biochemistry, Department of Biological Chemistry, Chair of Biological Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| | - Zaher Bazzi
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
| | - Cora L Alvarez
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Exact and Natural Sciences, Department of Biodiversity and Experimental Biology, University of Buenos Aires, Intendente Güiraldes, Buenos Aires 2160, Argentina.
| | - María F Leal Denis
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Chair of Analytical Chemistry and Physicochemistry, Faculty of Pharmacy and Biochemistry, Department of Analytical Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| | - Julieta Schachter
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
| | - Vanesa Herlax
- Biochemistry Research Institute of La Plata (INIBIOLP) "Prof. Dr. Rodolfo R. Brenner", Faculty of Medical Sciences, National University of La Plata, National Scientific and Technical Research Council, Av. 60 y Av. 120 La Plata, Argentina.
- National University of La Plata, Faculty of Medical Sciences, Av. 60 y Av. 120 La Plata, Argentina.
| | - Mariano A Ostuni
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Paris Diderot University, Sorbonne Paris Cité, University of La Réunion, University of Antilles, F-75015 Paris, France.
- National Institute of Blood Transfusion (INTS), Laboratory of Excellence GR-Ex, F-75015 Paris, France.
| | - Pablo J Schwarzbaum
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Pharmacy and Biochemistry, Department of Biological Chemistry, Chair of Biological Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| |
Collapse
|
35
|
Hagen R, Verhoeve VI, Gillespie JJ, Driscoll TP. Conjugative Transposons and Their Cargo Genes Vary across Natural Populations of Rickettsia buchneri Infecting the Tick Ixodes scapularis. Genome Biol Evol 2018; 10:3218-3229. [PMID: 30398619 PMCID: PMC6300072 DOI: 10.1093/gbe/evy247] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2018] [Indexed: 12/11/2022] Open
Abstract
Rickettsia buchneri (formerly Rickettsia endosymbiont of Ixodes scapularis, or REIS) is an obligate intracellular endoparasite of the black-legged tick, the primary vector of Lyme disease in North America. It is noteworthy among the rickettsiae for its relatively large genome (1.8 Mb) and extraordinary proliferation of mobile genetic elements (MGEs), which comprise nearly 35% of its genome. Previous analysis of the R. buchneri genome identified several integrative conjugative elements named Rickettsiales amplified genomic elements (RAGEs); the composition of these RAGEs suggests that continued genomic invasions by MGEs facilitated the proliferation of rickettsial genes related to an intracellular lifestyle. In this study, we compare the genomic diversity at RAGE loci among sequenced rickettsiae that infect three related Ixodes spp., including two strains of R. buchneri and Rickettsia endosymbiont of Ixodes pacificus strain Humboldt, as well as a closely related species R. tamurae infecting Amblyomma testudinarium ticks. We further develop a novel multiplex droplet digital PCR assay and use it to quantify copy number ratios of chromosomal R. buchneri RAGE-A and RAGE-B to the single-copy gene gltA within natural populations of I. scapularis. Our results reveal substantial diversity among R. buchneri at these loci, both within individual ticks as well as in the I. scapularis population at large, demonstrating that genomic rearrangement of MGEs is an active process in these intracellular bacteria.
Collapse
Affiliation(s)
| | | | - Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine
| | | |
Collapse
|
36
|
Engineering yeast endosymbionts as a step toward the evolution of mitochondria. Proc Natl Acad Sci U S A 2018; 115:11796-11801. [PMID: 30373839 DOI: 10.1073/pnas.1813143115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been hypothesized that mitochondria evolved from a bacterial ancestor that initially became established in an archaeal host cell as an endosymbiont. Here we model this first stage of mitochondrial evolution by engineering endosymbiosis between Escherichia coli and Saccharomyces cerevisiae An ADP/ATP translocase-expressing E. coli provided ATP to a respiration-deficient cox2 yeast mutant and enabled growth of a yeast-E. coli chimera on a nonfermentable carbon source. In a reciprocal fashion, yeast provided thiamin to an endosymbiotic E. coli thiamin auxotroph. Expression of several SNARE-like proteins in E. coli was also required, likely to block lysosomal degradation of intracellular bacteria. This chimeric system was stable for more than 40 doublings, and GFP-expressing E. coli endosymbionts could be observed in the yeast by fluorescence microscopy and X-ray tomography. This readily manipulated system should allow experimental delineation of host-endosymbiont adaptations that occurred during evolution of the current, highly reduced mitochondrial genome.
Collapse
|
37
|
Genomes of two archaeal endosymbionts show convergent adaptations to an intracellular lifestyle. ISME JOURNAL 2018; 12:2655-2667. [PMID: 29991760 DOI: 10.1038/s41396-018-0207-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 11/08/2022]
Abstract
Endosymbiosis is a widespread phenomenon in the microbial world and can be based on diverse interactions between endosymbiont and host cell. The vast majority of the known endosymbiotic interactions involve bacteria that have invaded eukaryotic host cells. However, methanogenic archaea have been found to thrive in anaerobic, hydrogenosome-containing protists and it was suggested that this symbiosis is based on the transfer of hydrogen. Here, we used culture-independent genomics approaches to sequence the genomes of two distantly related methanogenic endosymbionts that have been acquired in two independent events by closely related anaerobic ciliate hosts Nyctotherus ovalis and Metopus contortus, respectively. The sequences obtained were then validated as originating from the ciliate endosymbionts by in situ probing experiments. Comparative analyses of these genomes and their closest free-living counterparts reveal that the genomes of both endosymbionts are in an early stage of adaptation towards endosymbiosis as evidenced by the large number of genes undergoing pseudogenization. For instance, the observed loss of genes involved in amino acid biosynthesis in both endosymbiont genomes indicates that the endosymbionts rely on their hosts for obtaining several essential nutrients. Furthermore, the endosymbionts appear to have gained significant amounts of genes of potentially secreted proteins, providing targets for future studies aiming to elucidate possible mechanisms underpinning host-interactions. Altogether, our results provide the first genomic insights into prokaryotic endosymbioses from the archaeal domain of life.
Collapse
|
38
|
Major P, Embley TM, Williams TA. Phylogenetic Diversity of NTT Nucleotide Transport Proteins in Free-Living and Parasitic Bacteria and Eukaryotes. Genome Biol Evol 2018; 9:480-487. [PMID: 28164241 PMCID: PMC5381601 DOI: 10.1093/gbe/evx015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 01/24/2023] Open
Abstract
Plasma membrane-located nucleotide transport proteins (NTTs) underpin the lifestyle of important obligate intracellular bacterial and eukaryotic pathogens by importing energy and nucleotides from infected host cells that the pathogens can no longer make for themselves. As such their presence is often seen as a hallmark of an intracellular lifestyle associated with reductive genome evolution and loss of primary biosynthetic pathways. Here, we investigate the phylogenetic distribution of NTT sequences across the domains of cellular life. Our analysis reveals an unexpectedly broad distribution of NTT genes in both host-associated and free-living prokaryotes and eukaryotes. We also identify cases of within-bacteria and bacteria-to-eukaryote horizontal NTT transfer, including into the base of the oomycetes, a major clade of parasitic eukaryotes. In addition to identifying sequences that retain the canonical NTT structure, we detected NTT gene fusions with HEAT-repeat and cyclic nucleotide binding domains in Cyanobacteria, pathogenic Chlamydiae and Oomycetes. Our results suggest that NTTs are versatile functional modules with a much wider distribution and a broader range of potential roles than has previously been appreciated.
Collapse
Affiliation(s)
- Peter Major
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - T Martin Embley
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Tom A Williams
- School of Earth Sciences, University of Bristol, United Kingdom
| |
Collapse
|
39
|
Nowack ECM, Weber APM. Genomics-Informed Insights into Endosymbiotic Organelle Evolution in Photosynthetic Eukaryotes. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:51-84. [PMID: 29489396 DOI: 10.1146/annurev-arplant-042817-040209] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The conversion of free-living cyanobacteria to photosynthetic organelles of eukaryotic cells through endosymbiosis transformed the biosphere and eventually provided the basis for life on land. Despite the presumable advantage conferred by the acquisition of photoautotrophy through endosymbiosis, only two independent cases of primary endosymbiosis have been documented: one that gave rise to the Archaeplastida, and the other to photosynthetic species of the thecate, filose amoeba Paulinella. Here, we review recent genomics-informed insights into the primary endosymbiotic origins of cyanobacteria-derived organelles. Furthermore, we discuss the preconditions for the evolution of nitrogen-fixing organelles. Recent genomic data on previously undersampled cyanobacterial and protist taxa provide new clues to the origins of the host cell and endosymbiont, and proteomic approaches allow insights into the rearrangement of the endosymbiont proteome during organellogenesis. We conclude that in addition to endosymbiotic gene transfers, horizontal gene acquisitions from a broad variety of prokaryotic taxa were crucial to organelle evolution.
Collapse
Affiliation(s)
- Eva C M Nowack
- Microbial Symbiosis and Organelle Evolution Group, Biology Department, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany;
| |
Collapse
|
40
|
Wang Z, Wu M. Comparative Genomic Analysis of Acanthamoeba Endosymbionts Highlights the Role of Amoebae as a "Melting Pot" Shaping the Rickettsiales Evolution. Genome Biol Evol 2018; 9:3214-3224. [PMID: 29177480 PMCID: PMC5751055 DOI: 10.1093/gbe/evx246] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 11/12/2022] Open
Abstract
Amoebae have been considered as a genetic "melting pot" for its symbionts, facilitating genetic exchanges of the bacteria that co-inhabit the same host. To test the "melting pot" hypothesis, we analyzed six genomes of amoeba endosymbionts within Rickettsiales, four of which belong to Holosporaceae family and two to Candidatus Midichloriaceae. For the first time, we identified plasmids in obligate amoeba endosymbionts, which suggests conjugation as a potential mechanism for lateral gene transfers (LGTs) that underpin the "melting pot" hypothesis. We found strong evidence of recent LGTs between the Rickettsiales amoeba endosymbionts, suggesting that the LGTs are continuous and ongoing. In addition, comparative genomic and phylogenomic analyses revealed pervasive and recurrent LGTs between Rickettsiales and distantly related amoeba-associated bacteria throughout the Rickettsiales evolution. Many of these exchanged genes are important for amoeba-symbiont interactions, including genes in transport system, antibiotic resistance, stress response, and bacterial virulence, suggesting that LGTs have played important roles in the adaptation of endosymbionts to their intracellular habitats. Surprisingly, we found little evidence of LGTs between amoebae and their bacterial endosymbionts. Our study strongly supports the "melting pot" hypothesis and highlights the role of amoebae in shaping the Rickettsiales evolution.
Collapse
Affiliation(s)
- Zhang Wang
- Department of Biology, University of Virginia
| | - Martin Wu
- Department of Biology, University of Virginia
| |
Collapse
|
41
|
Jain M, Munoz-Bodnar A, Gabriel DW. Concomitant Loss of the Glyoxalase System and Glycolysis Makes the Uncultured Pathogen "Candidatus Liberibacter asiaticus" an Energy Scavenger. Appl Environ Microbiol 2017; 83:e01670-17. [PMID: 28939611 PMCID: PMC5691416 DOI: 10.1128/aem.01670-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/09/2017] [Indexed: 01/28/2023] Open
Abstract
Methylglyoxal (MG) is a cytotoxic, nonenzymatic by-product of glycolysis that readily glycates proteins and DNA, resulting in carbonyl stress. Glyoxalase I and II (GloA and GloB) sequentially convert MG into d-lactic acid using glutathione (GSH) as a cofactor. The glyoxalase system is essential for the mitigation of MG-induced carbonyl stress, preventing subsequent cell death, and recycling GSH for maintenance of cellular redox poise. All pathogenic liberibacters identified to date are uncultured, including "Candidatus Liberibacter asiaticus," a psyllid endosymbiont and causal agent of the severely damaging citrus disease "huanglongbing." In silico analysis revealed the absence of gloA in "Ca Liberibacter asiaticus" and all other pathogenic liberibacters. Both gloA and gloB are present in Liberibacter crescens, the only liberibacter that has been cultured. L. crescens GloA was functional in a heterologous host. Marker interruption of gloA in L. crescens appeared to be lethal. Key glycolytic enzymes were either missing or significantly downregulated in "Ca Liberibacter asiaticus" compared to (cultured) L. crescens Marker interruption of sut, a sucrose transporter gene in L. crescens, decreased its ability to take up exogenously supplied sucrose in culture. "Ca Liberibacter asiaticus" lacks a homologous sugar transporter but has a functional ATP/ADP translocase, enabling it to thrive both in psyllids and in the sugar-rich citrus phloem by (i) avoiding sucrose uptake, (ii) avoiding MG generation via glycolysis, and (iii) directly importing ATP from the host cell. MG detoxification enzymes appear to be predictive of "Candidatus" status for many uncultured pathogenic and environmental bacteria.IMPORTANCE Discovered more than 100 years ago, the glyoxalase system is thought to be present across all domains of life and fundamental to cellular growth and viability. The glyoxalase system protects against carbonyl stress caused by methylglyoxal (MG), a highly reactive, mutagenic and cytotoxic compound that is nonenzymatically formed as a by-product of glycolysis. The uncultured alphaproteobacterium "Ca Liberibacter asiaticus" is a well-adapted endosymbiont of the Asian citrus psyllid, which transmits the severely damaging citrus disease "huanglongbing." "Ca Liberibacter asiaticus" lacks a functional glyoxalase pathway. We report here that the bacterium is able to thrive both in psyllids and in the sugar-rich citrus phloem by (i) avoiding sucrose uptake, (ii) avoiding (significant) MG generation via glycolysis, and (iii) directly importing ATP from the host cell. We hypothesize that failure to culture "Ca Liberibacter asiaticus" is at least partly due to its dependence on host cells for both ATP and MG detoxification.
Collapse
Affiliation(s)
- Mukesh Jain
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | | | - Dean W Gabriel
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
42
|
Walenna NF, Kurihara Y, Chou B, Ishii K, Soejima T, Itoh R, Shimizu A, Ichinohe T, Hiromatsu K. Chlamydia pneumoniae exploits adipocyte lipid chaperone FABP4 to facilitate fat mobilization and intracellular growth in murine adipocytes. Biochem Biophys Res Commun 2017; 495:353-359. [PMID: 29108997 DOI: 10.1016/j.bbrc.2017.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/02/2017] [Indexed: 11/28/2022]
Abstract
Fatty acid-binding protein 4 (FABP4), a cytosolic lipid chaperone predominantly expressed in adipocytes and macrophages, modulates lipid fluxes, trafficking, signaling, and metabolism. Recent studies have demonstrated that FABP4 regulates metabolic and inflammatory pathways, and in mouse models its inhibition can improve type 2 diabetes mellitus and atherosclerosis. However, the role of FABP4 in bacterial infection, metabolic crosstalk between host and pathogen, and bacterial pathogenesis have not been studied. As an obligate intracellular pathogen, Chlamydia pneumoniae needs to obtain nutrients such as ATP and lipids from host cells. Here, we show that C. pneumoniae successfully infects and proliferates in murine adipocytes by inducing hormone sensitive lipase (HSL)-mediated lipolysis. Chemical inhibition or genetic manipulation of HSL significantly abrogated the intracellular growth of C. pneumoniae in adipocytes. Liberated free fatty acids were utilized to generate ATP via β-oxidation, which C. pneumoniae usurped for its replication. Strikingly, chemical inhibition or genetic silencing of FABP4 significantly abrogated C. pneumoniae infection-induced lipolysis and mobilization of liberated FFAs, resulting in reduced bacterial growth in adipocytes. Collectively, these results demonstrate that C. pneumoniae exploits host FABP4 to facilitate fat mobilization and intracellular replication in adipocytes. This work uncovers a novel strategy used by intracellular pathogens for acquiring energy via hijacking of the host lipid metabolism pathway.
Collapse
Affiliation(s)
- Nirwana Fitriani Walenna
- Department of Microbiology & Immunology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan; Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yusuke Kurihara
- Department of Microbiology & Immunology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Bin Chou
- Department of Microbiology & Immunology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Kazunari Ishii
- Department of Microbiology & Immunology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Toshinori Soejima
- Department of Microbiology & Immunology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Ryota Itoh
- Department of Microbiology & Immunology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Akinori Shimizu
- Department of Microbiology & Immunology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Takeshi Ichinohe
- Division of Viral Infection, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Kenji Hiromatsu
- Department of Microbiology & Immunology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan.
| |
Collapse
|
43
|
Zhang Y, Kitajima M, Whittle AJ, Liu WT. Benefits of Genomic Insights and CRISPR-Cas Signatures to Monitor Potential Pathogens across Drinking Water Production and Distribution Systems. Front Microbiol 2017; 8:2036. [PMID: 29097994 PMCID: PMC5654357 DOI: 10.3389/fmicb.2017.02036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/05/2017] [Indexed: 11/22/2022] Open
Abstract
The occurrence of pathogenic bacteria in drinking water distribution systems (DWDSs) is a major health concern, and our current understanding is mostly related to pathogenic species such as Legionella pneumophila and Mycobacterium avium but not to bacterial species closely related to them. In this study, genomic-based approaches were used to characterize pathogen-related species in relation to their abundance, diversity, potential pathogenicity, genetic exchange, and distribution across an urban drinking water system. Nine draft genomes recovered from 10 metagenomes were identified as Legionella (4 draft genomes), Mycobacterium (3 draft genomes), Parachlamydia (1 draft genome), and Leptospira (1 draft genome). The pathogenicity potential of these genomes was examined by the presence/absence of virulence machinery, including genes belonging to Type III, IV, and VII secretion systems and their effectors. Several virulence factors known to pathogenic species were detected with these retrieved draft genomes except the Leptospira-related genome. Identical clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins (CRISPR-Cas) genetic signatures were observed in two draft genomes recovered at different stages of the studied system, suggesting that the spacers in CRISPR-Cas could potentially be used as a biomarker in the monitoring of Legionella related strains at an evolutionary scale of several years across different drinking water production and distribution systems. Overall, metagenomics approach was an effective and complementary tool of culturing techniques to gain insights into the pathogenic characteristics and the CRISPR-Cas signatures of pathogen-related species in DWDSs.
Collapse
Affiliation(s)
- Ya Zhang
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Andrew J Whittle
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
44
|
Collingro A, Köstlbacher S, Mussmann M, Stepanauskas R, Hallam SJ, Horn M. Unexpected genomic features in widespread intracellular bacteria: evidence for motility of marine chlamydiae. THE ISME JOURNAL 2017; 11:2334-2344. [PMID: 28644443 PMCID: PMC5604735 DOI: 10.1038/ismej.2017.95] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 01/25/2023]
Abstract
Chlamydiae are obligate intracellular bacteria comprising important human pathogens and symbionts of protists. Molecular evidence indicates a tremendous diversity of chlamydiae particularly in marine environments, yet our current knowledge is based mainly on terrestrial representatives. Here we provide first insights into the biology of marine chlamydiae representing three divergent clades. Our analysis of single-cell amplified genomes revealed hallmarks of the chlamydial lifestyle, supporting the ancient origin of their characteristic developmental cycle and major virulence mechanisms. Surprisingly, these chlamydial genomes encode a complete flagellar apparatus, a previously unreported feature. We show that flagella are an ancient trait that was subject to differential gene loss among extant chlamydiae. Together with a chemotaxis system, these marine chlamydiae are likely motile, with flagella potentially playing a role during host cell infection. This study broadens our view on chlamydial biology and indicates a largely underestimated potential to adapt to different hosts and environments.
Collapse
Affiliation(s)
- Astrid Collingro
- Department of Microbial and Ecosystems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Stephan Köstlbacher
- Department of Microbial and Ecosystems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Marc Mussmann
- Department of Microbial and Ecosystems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | | | - Steven J Hallam
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Genome Science and Technology Program, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
- Peter Wall Institute for Advanced Studies, University of British Columbia, Vancouver, British Columbia, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthias Horn
- Department of Microbial and Ecosystems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
Haferkamp I. Crossing the border - Solute entry into the chlamydial inclusion. Int J Med Microbiol 2017; 308:41-48. [PMID: 28864236 DOI: 10.1016/j.ijmm.2017.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/10/2017] [Accepted: 08/17/2017] [Indexed: 10/19/2022] Open
Abstract
Chlamydiales comprise important human and animal pathogens as well as endosymbionts of amoebae. Generally, these obligate intracellular living bacteria are characterized by a biphasic developmental cycle, a reduced genome and a restricted metabolic capacity. Because of their metabolic impairment, Chlamydiales essentially rely on the uptake of diverse metabolites from their hosts. Chlamydiales thrive in a special compartment, the inclusion, and hence are surrounded by an additional membrane. Solutes might enter the inclusion through pores and open channels or by redirection of host vesicles, which fuse with the inclusion membrane and release their internal cargo. Recent investigations shed new light on the chlamydia-host interaction and identified an additional way for nutrient uptake into the inclusion. Proteome studies and targeting analyses identified chlamydial and host solute carriers in inclusions of Chlamydia trachomatis infected cells. These transporters are involved in the provision of UDP-glucose and biotin, and probably deliver further metabolites to the inclusion. By the controlled recruitment of specific solute carriers to the inclusion, the chlamydial resident thus can actively manipulate the metabolite availability and composition in the inclusion. This review summarizes recent findings and new ideas on carrier mediated solute uptake into the chlamydial inclusion in the context of the bacterial and host metabolism.
Collapse
Affiliation(s)
- Ilka Haferkamp
- Universität Kaiserslautern, Pflanzenphysiologie, Erwin-Schrödinger Str. 22, 67663 Kaiserslautern, Germany.
| |
Collapse
|
46
|
Chu L, Gruber A, Ast M, Schmitz-Esser S, Altensell J, Neuhaus HE, Kroth PG, Haferkamp I. Shuttling of (deoxy-) purine nucleotides between compartments of the diatom Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2017; 213:193-205. [PMID: 27504715 DOI: 10.1111/nph.14126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/25/2016] [Indexed: 05/10/2023]
Abstract
Diatom plastids show several peculiarities when compared with primary plastids of higher plants or algae. They are surrounded by four membranes and depend on nucleotide uptake because, unlike in plants, nucleotide de novo synthesis exclusively occurs in the cytosol. Previous analyses suggest that two specifically adapted nucleotide transporters (NTTs) facilitate the required passage of nucleotides across the innermost plastid membrane. However, nucleotide transport across the additional plastid membranes remains to be clarified. Phylogenetic studies, transport assays with the recombinant protein as well as GFP-based targeting analyses allowed detailed characterization of a novel isoform (PtNTT5) of the six NTTs of Phaeodactylum tricornutum. PtNTT5 exhibits low amino acid similarities and is only distantly related to all previously characterized NTTs. However, in a heterologous expression system, it acts as a nucleotide antiporter and prefers various (deoxy-) purine nucleotides as substrates. Interestingly, PtNTT5 is probably located in the endoplasmic reticulum, which in diatoms also represents the outermost plastid membrane. PtNTT5, with its unusual transport properties, phylogeny and localization, can be taken as further evidence for the establishment of a sophisticated and specifically adapted nucleotide transport system in diatom plastids.
Collapse
Affiliation(s)
- Lili Chu
- Pflanzliche Ökophysiologie, Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany
| | - Ansgar Gruber
- Pflanzliche Ökophysiologie, Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany
| | - Michelle Ast
- Pflanzenphysiologie, Technische Universität Kaiserslautern, 67653, Kaiserslautern, Germany
| | | | - Jacqueline Altensell
- Pflanzenphysiologie, Technische Universität Kaiserslautern, 67653, Kaiserslautern, Germany
| | - Horst Ekkehard Neuhaus
- Pflanzenphysiologie, Technische Universität Kaiserslautern, 67653, Kaiserslautern, Germany
| | - Peter G Kroth
- Pflanzliche Ökophysiologie, Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany
| | - Ilka Haferkamp
- Pflanzenphysiologie, Technische Universität Kaiserslautern, 67653, Kaiserslautern, Germany
| |
Collapse
|
47
|
Bella C, Koehler L, Grosser K, Berendonk TU, Petroni G, Schrallhammer M. Fitness Impact of Obligate Intranuclear Bacterial Symbionts Depends on Host Growth Phase. Front Microbiol 2016; 7:2084. [PMID: 28066397 PMCID: PMC5177645 DOI: 10.3389/fmicb.2016.02084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/08/2016] [Indexed: 01/24/2023] Open
Abstract
According to text book definition, parasites reduce the fitness of their hosts whereas mutualists provide benefits. But biotic and abiotic factors influence symbiotic interactions, thus under certain circumstances parasites can provide benefits and mutualists can harm their host. Here we addressed the question which intrinsic biotic factors shape a symbiosis and are crucial for the outcome of the interaction between the obligate intranuclear bacterium Holospora caryophila (Alphaproteobacteria; Rickettsiales) and its unicellular eukaryotic host Paramecium biaurelia (Alveolata; Ciliophora). The virulence of H. caryophila, i.e., the negative fitness effect on host division and cell number, was determined by growth assays of several P. biaurelia strains. The performances of genetically identical lines either infected with H. caryophila or symbiont-free were compared. Following factors were considered as potentially influencing the outcome of the interaction: (1) host strain, (2) parasite strain, and (3) growth phases of the host. All three factors revealed a strong effect on the symbiosis. In presence of H. caryophila, the Paramecium density in the stationary growth phase decreased. Conversely, a positive effect of the bacteria during the exponential phase was observed for several host × parasite combinations resulting in an increased growth rate of infected P. biaurelia. Furthermore, the fitness impact of the tested endosymbionts on different P. biaurelia lines was not only dependent on one of the two involved strains but distinct for the specific combination. Depending on the current host growth phase, the presence of H. caryophila can be harmful or advantageous for P. biaurelia. Thus, under the tested experimental conditions, the symbionts can switch from the provision of benefits to the exploitation of host resources within the same host population and a time-span of less than 6 days.
Collapse
Affiliation(s)
- Chiara Bella
- Microbiology, Institute of Biology II, Albert-Ludwigs Universität FreiburgFreiburg, Germany
- Zoology-Anthropology Unit, Biology Department, Università di PisaPisa, Italy
| | - Lars Koehler
- Microbiology, Institute of Biology II, Albert-Ludwigs Universität FreiburgFreiburg, Germany
- Institute of Hydrobiology, Technische Universität DresdenDresden, Germany
| | - Katrin Grosser
- Microbiology, Institute of Biology II, Albert-Ludwigs Universität FreiburgFreiburg, Germany
- Institute of Hydrobiology, Technische Universität DresdenDresden, Germany
| | | | - Giulio Petroni
- Zoology-Anthropology Unit, Biology Department, Università di PisaPisa, Italy
| | - Martina Schrallhammer
- Microbiology, Institute of Biology II, Albert-Ludwigs Universität FreiburgFreiburg, Germany
- Institute of Hydrobiology, Technische Universität DresdenDresden, Germany
| |
Collapse
|
48
|
Ntougias S, Polkowska Ż, Nikolaki S, Dionyssopoulou E, Stathopoulou P, Doudoumis V, Ruman M, Kozak K, Namieśnik J, Tsiamis G. Bacterial Community Structures in Freshwater Polar Environments of Svalbard. Microbes Environ 2016; 31:401-409. [PMID: 27725345 PMCID: PMC5158112 DOI: 10.1264/jsme2.me16074] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two thirds of Svalbard archipelago islands in the High Arctic are permanently covered with glacial ice and snow. Polar bacterial communities in the southern part of Svalbard were characterized using an amplicon sequencing approach. A total of 52,928 pyrosequencing reads were analyzed in order to reveal bacterial community structures in stream and lake surface water samples from the Fuglebekken and Revvatnet basins of southern Svalbard. Depending on the samples examined, bacterial communities at a higher taxonomic level mainly consisted either of Bacteroidetes, Betaproteobacteria, and Microgenomates (OP11) or Planctomycetes, Betaproteobacteria, and Bacteroidetes members, whereas a population of Microgenomates was prominent in 2 samples. At the lower taxonomic level, bacterial communities mostly comprised Microgenomates, Comamonadaceae, Flavobacteriaceae, Legionellales, SM2F11, Parcubacteria (OD1), and TM7 members at different proportions in each sample. The abundance of OTUs shared in common among samples was greater than 70%, with the exception of samples in which the proliferation of Planctomycetaceae, Phycisphaeraceae, and Candidatus Methylacidiphilum spp. lowered their relative abundance. A multi-variable analysis indicated that As, Pb, and Sb were the main environmental factors influencing bacterial profiles. We concluded that the bacterial communities in the polar aquatic ecosystems examined mainly consisted of freshwater and marine microorganisms involved in detritus mineralization, with a high proportion of zooplankton-associated taxa also being identified.
Collapse
Affiliation(s)
- Spyridon Ntougias
- Department of Environmental Engineering, Democritus University of Thrace
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bou Khalil JY, Benamar S, Baudoin JP, Croce O, Blanc-Tailleur C, Pagnier I, Raoult D, La Scola B. Developmental Cycle and Genome Analysis of "Rubidus massiliensis," a New Vermamoeba vermiformis Pathogen. Front Cell Infect Microbiol 2016; 6:31. [PMID: 27014641 PMCID: PMC4791399 DOI: 10.3389/fcimb.2016.00031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/01/2016] [Indexed: 12/15/2022] Open
Abstract
The study of amoeba-associated Chlamydiae is a dynamic field in which new species are increasingly reported. In the present work, we characterized the developmental cycle and analyzed the genome of a new member of this group associated with Vermamoeba vermiformis, we propose to name “Rubidus massiliensis.” This bacterium is well-adapted to its amoeba host and do not reside inside of inclusion vacuoles after phagocytosis. It has a developmental cycle typical of this family of bacteria, with a transition from condensed elementary bodies to hypodense replicative reticulate bodies. Multiplication occurs through binary fission of the reticulate bodies. The genome of “R. massiliensis” consists of a 2.8 Mbp chromosome and two plasmids (pRm1, pRm2) consisting of 39,075 bp and 80,897 bp, respectively, a feature that is unique within this group. The Re-analysis of the Chlamydiales genomes including the one of “R. massiliensis” slightly modified the previous phylogeny of the tlc gene encoding the ADP/ATP translocase. Our analysis suggested that the tlc gene could have been transferred to plant and algal plastids before the transfer to Rickettsiales, and that this gene was probably duplicated several times.
Collapse
Affiliation(s)
- Jacques Y Bou Khalil
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Facultés de Médecine et de Pharmacie, UM63 Centre National de la Recherche Scientifique 7278 IRD 198 Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille Université Marseille, France
| | - Samia Benamar
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Facultés de Médecine et de Pharmacie, UM63 Centre National de la Recherche Scientifique 7278 IRD 198 Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille Université Marseille, France
| | - Jean-Pierre Baudoin
- Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Institut Hospitalo-Universitaire Méditerranée Infection, Assistance Publique - Hôpitaux de Marseille Marseille, France
| | - Olivier Croce
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Facultés de Médecine et de Pharmacie, UM63 Centre National de la Recherche Scientifique 7278 IRD 198 Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille Université Marseille, France
| | - Caroline Blanc-Tailleur
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Facultés de Médecine et de Pharmacie, UM63 Centre National de la Recherche Scientifique 7278 IRD 198 Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille Université Marseille, France
| | - Isabelle Pagnier
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Facultés de Médecine et de Pharmacie, UM63 Centre National de la Recherche Scientifique 7278 IRD 198 Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille Université Marseille, France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Facultés de Médecine et de Pharmacie, UM63 Centre National de la Recherche Scientifique 7278 IRD 198 Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille UniversitéMarseille, France; Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Institut Hospitalo-Universitaire Méditerranée Infection, Assistance Publique - Hôpitaux de MarseilleMarseille, France
| | - Bernard La Scola
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Facultés de Médecine et de Pharmacie, UM63 Centre National de la Recherche Scientifique 7278 IRD 198 Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille UniversitéMarseille, France; Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Institut Hospitalo-Universitaire Méditerranée Infection, Assistance Publique - Hôpitaux de MarseilleMarseille, France
| |
Collapse
|
50
|
Yeoh YK, Sekiguchi Y, Parks DH, Hugenholtz P. Comparative Genomics of Candidate Phylum TM6 Suggests That Parasitism Is Widespread and Ancestral in This Lineage. Mol Biol Evol 2015; 33:915-27. [PMID: 26615204 PMCID: PMC4776705 DOI: 10.1093/molbev/msv281] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Candidate phylum TM6 is a major bacterial lineage recognized through culture-independent rRNA surveys to be low abundance members in a wide range of habitats; however, they are poorly characterized due to a lack of pure culture representatives. Two recent genomic studies of TM6 bacteria revealed small genomes and limited gene repertoire, consistent with known or inferred dependence on eukaryotic hosts for their metabolic needs. Here, we obtained additional near-complete genomes of TM6 populations from agricultural soil and upflow anaerobic sludge blanket reactor metagenomes which, together with the two publicly available TM6 genomes, represent seven distinct family level lineages in the TM6 phylum. Genome-based phylogenetic analysis confirms that TM6 is an independent phylum level lineage in the bacterial domain, possibly affiliated with the Patescibacteria superphylum. All seven genomes are small (1.0–1.5 Mb) and lack complete biosynthetic pathways for various essential cellular building blocks including amino acids, lipids, and nucleotides. These and other features identified in the TM6 genomes such as a degenerated cell envelope, ATP/ADP translocases for parasitizing host ATP pools, and protein motifs to facilitate eukaryotic host interactions indicate that parasitism is widespread in this phylum. Phylogenetic analysis of ATP/ADP translocase genes suggests that the ancestral TM6 lineage was also parasitic. We propose the name Dependentiae (phyl. nov.) to reflect dependence of TM6 bacteria on host organisms.
Collapse
Affiliation(s)
- Yun Kit Yeoh
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Yuji Sekiguchi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Donovan H Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|