1
|
Badhai J, Das SK. Genomic evidence and virulence properties decipher the extra-host origin of Bordetella bronchiseptica. J Appl Microbiol 2023; 134:lxad200. [PMID: 37660236 DOI: 10.1093/jambio/lxad200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/12/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Until recently, members of the classical Bordetella species comprised only pathogenic bacteria that were thought to live exclusively in warm-blooded animals. The close phylogenetic relationship of Bordetella with Achromobacter and Alcaligenes, which include primarily environmental bacteria, suggests that the ancestral Bordetellae were probably free-living. Eventually, the Bordetella species evolved to infect and live within warm-blooded animals. The modern history of pathogens related to the genus Bordetella started towards the end of the 19th century when it was discovered in the infected respiratory epithelium of mammals, including humans. The first identified member was Bordetella pertussis, which causes whooping cough, a fatal disease in young children. In due course, B. bronchiseptica was recovered from the trachea and bronchi of dogs with distemper. Later, a second closely related human pathogen, B. parapertussis, was described as causing milder whooping cough. The classical Bordetellae are strictly host-associated pathogens transmitted via the host-to-host aerosol route. Recently, the B. bronchiseptica strain HT200 has been reported from a thermal spring exhibiting unique genomic features that were not previously observed in clinical strains. Therefore, it advocates that members of classical Bordetella species have evolved from environmental sources. This organism can be transmitted via environmental reservoirs as it can survive nutrient-limiting conditions and possesses a motile flagellum. This study aims to review the molecular basis of origin and virulence properties of obligate host-restricted and environmental strains of classical Bordetella.
Collapse
Affiliation(s)
- Jhasketan Badhai
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, India
| | - Subrata K Das
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, India
| |
Collapse
|
2
|
Felice AG, Santos LNQ, Kolossowski I, Zen FL, Alves LG, Rodrigues TCV, Prado LCS, Jaiswal AK, Tiwari S, Miranda FM, Ramos RTJ, Azevedo V, Oliveira CJF, Benevides LJ, Soares SC. Comparative genomics of Bordetella pertussis and prediction of new vaccines and drug targets. J Biomol Struct Dyn 2022; 40:10136-10152. [PMID: 34155952 DOI: 10.1080/07391102.2021.1940279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pertussis is a highly contagious respiratory disease caused by Bordetella pertussis, a Gram-negative bacterium described over a century ago. Despite broad vaccine coverage and treatment options, the disease is remerging as a public health problem especially in infants and older children. Recent data indicate re-emergence of the disease is related to bacterial resistance to immune defences and decreased vaccine effectiveness, which obviously suggests the need of new effective vaccines and drugs. In an attempt to contribute with solutions to this great challenge, bioinformatics tools were used to genetically comprehend the species of these bacteria and predict new vaccines and drug targets. In fact, approaches were used to analysis genomic plasticity, gene synteny and species similarities between the 20 genomes of Bordetella pertussis already available. Furthermore, it was conducted reverse vaccinology and docking analysis to identify proteins with potential to become vaccine and drug targets, respectively. The analyses showed the 20 genomes belongs to a homogeneous group that has preserved most of the genes over time. Besides that, were found genomics islands and good proteins to be candidates for vaccine and drugs. Taken together, these results suggests new possibilities that may be useful to develop new vaccines and drugs that will help the prevention and treatment strategies of pertussis disease caused by these Bordetella strains. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Andrei G Felice
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Leonardo N Q Santos
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Ian Kolossowski
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Felipe L Zen
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Leandro G Alves
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thaís C V Rodrigues
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ligia C S Prado
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Arun K Jaiswal
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sandeep Tiwari
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fábio M Miranda
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.,Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Rommel T J Ramos
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.,Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Carlo J F Oliveira
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Leandro J Benevides
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Siomar C Soares
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
3
|
Mercier A, Simon A, Lapalu N, Giraud T, Bardin M, Walker AS, Viaud M, Gladieux P. Population Genomics Reveals Molecular Determinants of Specialization to Tomato in the Polyphagous Fungal Pathogen Botrytis cinerea in France. PHYTOPATHOLOGY 2021; 111:2355-2366. [PMID: 33829853 DOI: 10.1094/phyto-07-20-0302-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many fungal plant pathogens encompass multiple populations specialized on different plant species. Understanding the factors underlying pathogen adaptation to their hosts is a major challenge of evolutionary microbiology, and it should help to prevent the emergence of new specialized pathogens on novel hosts. Previous studies have shown that French populations of the gray mold pathogen Botrytis cinerea parasitizing tomato and grapevine are differentiated from each other, and have higher aggressiveness on their host of origin than on other hosts, indicating some degree of host specialization in this polyphagous pathogen. Here, we aimed at identifying the genomic features underlying the specialization of B. cinerea populations to tomato and grapevine. Based on whole genome sequences of 32 isolates, we confirmed the subdivision of B. cinerea pathogens into two genetic clusters on grapevine and another, single cluster on tomato. Levels of genetic variation in the different clusters were similar, suggesting that the tomato-specific cluster has not recently emerged following a bottleneck. Using genome scans for selective sweeps and divergent selection, tests of positive selection based on polymorphism and divergence at synonymous and nonsynonymous sites, and analyses of presence and absence variation, we identified several candidate genes that represent possible determinants of host specialization in the tomato-associated population. This work deepens our understanding of the genomic changes underlying the specialization of fungal pathogen populations.
Collapse
Affiliation(s)
- Alex Mercier
- Université Paris-Saclay, Institut National de la Recherche Agronomique (INRAE), AgroParisTech, UMR BIOGER, 78850 Thiverval-Grignon, France
- Université Paris-Saclay, Orsay, France
| | - Adeline Simon
- Université Paris-Saclay, Institut National de la Recherche Agronomique (INRAE), AgroParisTech, UMR BIOGER, 78850 Thiverval-Grignon, France
| | - Nicolas Lapalu
- Université Paris-Saclay, Institut National de la Recherche Agronomique (INRAE), AgroParisTech, UMR BIOGER, 78850 Thiverval-Grignon, France
| | - Tatiana Giraud
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| | - Marc Bardin
- UR0407 Pathologie Végétale, INRAE, 84143 Montfavet, France
| | - Anne-Sophie Walker
- Université Paris-Saclay, Institut National de la Recherche Agronomique (INRAE), AgroParisTech, UMR BIOGER, 78850 Thiverval-Grignon, France
| | - Muriel Viaud
- Université Paris-Saclay, Institut National de la Recherche Agronomique (INRAE), AgroParisTech, UMR BIOGER, 78850 Thiverval-Grignon, France
| | - Pierre Gladieux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
4
|
A Unique Reverse Adaptation Mechanism Assists Bordetella pertussis in Resistance to Both Scarcity and Toxicity of Manganese. mBio 2021; 12:e0190221. [PMID: 34700381 PMCID: PMC8546581 DOI: 10.1128/mbio.01902-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The ability of bacterial pathogens to acquire essential micronutrients is critical for their survival in the host environment. Manganese plays a complex role in the virulence of a variety of pathogens due to its function as an antioxidant and enzymatic cofactor. Therefore, host cells deprive pathogens of manganese to prevent or attenuate infection. Here, we show that evolution of the human-restricted pathogen Bordetella pertussis has selected for an inhibitory duplication within a manganese exporter of the calcium:cation antiporter superfamily. Intriguingly, upon exposure to toxic levels of manganese, the nonfunctional exporter becomes operative in resister cells due to a unique reverse adaptation mechanism. However, compared with wild-type (wt) cells, the resisters carrying a functional copy of the exporter displayed strongly reduced intracellular levels of manganese and impaired growth under oxidative stress. Apparently, inactivation of the manganese exporter and the resulting accumulation of manganese in the cytosol benefited the pathogen by improving its survival under stress conditions. The inhibitory duplication within the exporter gene is highly conserved among B. pertussis strains, absent from all other Bordetella species and from a vast majority of organisms across all kingdoms of life. Therefore, we conclude that inactivation of the exporter gene represents an exceptional example of a flexible genome decay strategy employed by a human pathogen to adapt to its exclusive host.
Collapse
|
5
|
Sharma NC, Anandan S, Devanga Ragupathi NK, Muthuirulandi Sethuvel DP, Vasudevan K, Kumar D, Gupta SK, Sangal L, Veeraraghavan B. Genetic Diversity of Clinical Bordetella Pertussis ST2 Strains in comparison with Vaccine Reference Strains of India. J Genomics 2021; 9:38-42. [PMID: 34527084 PMCID: PMC8437686 DOI: 10.7150/jgen.58823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/11/2021] [Indexed: 11/12/2022] Open
Abstract
Objectives: Pertussis is a highly contagious disease of the respiratory tract caused by Bordetella pertussis, a bacterium that lives in the mouth, nose, and throat. Current study reports the highly accurate complete genomes of two clinical B. pertussis strains from India for the first time. Methods: Complete genome sequencing was performed for two B. pertussis strains using Ion Torrent PGM and Oxford nanopore sequencing method. Data was assembled de novo and the sequence annotation was performed through PATRIC and NCBI server. Downstream analyses of the isolates were performed using CGE server databases for antimicrobial resistance genes, plasmids, and sequence types. The phylogenetic analysis was performed using Roary. Results: The analysis revealed insertional elements flanked by IS481, which has been previously regarded as the important component for bacterial evolution. The two B. pertussis clinical strains exhibited diversity through genome degradation when compared to whole-cell vaccine reference strains of India. These isolates harboured multiple genetic virulence traits and toxin subunits, which belonged to sequence type ST2. Conclusion: The genome information of Indian clinical B. pertussis strains will serve as a baseline data to decipher more information on the genome evolution, virulence factors and their role in pathogenesis for effective vaccine strategies.
Collapse
Affiliation(s)
| | - Shalini Anandan
- Department of Clinical Microbiology, Christian Medical College, Vellore - 632 004, India
| | - Naveen Kumar Devanga Ragupathi
- Department of Clinical Microbiology, Christian Medical College, Vellore - 632 004, India.,Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom
| | | | - Karthick Vasudevan
- Department of Clinical Microbiology, Christian Medical College, Vellore - 632 004, India
| | - Dhirendra Kumar
- Maharishi Valmiki Infectious Diseases Hospital, New Delhi - 110009, India
| | - Sushil Kumar Gupta
- Maharishi Valmiki Infectious Diseases Hospital, New Delhi - 110009, India
| | - Lucky Sangal
- World Health Organization, Country Office, New Delhi - 110029, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore - 632 004, India
| |
Collapse
|
6
|
Dienstbier A, Amman F, Petráčková D, Štipl D, Čapek J, Zavadilová J, Fabiánová K, Držmíšek J, Kumar D, Wildung M, Pouchnik D, Večerek B. Comparative Omics Analysis of Historic and Recent Isolates of Bordetella pertussis and Effects of Genome Rearrangements on Evolution. Emerg Infect Dis 2021; 27:57-68. [PMID: 33350934 PMCID: PMC7774529 DOI: 10.3201/eid2701.191541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite high vaccination coverage, pertussis is increasing in many industrialized countries, including the Czech Republic. To better understand Bordetella pertussis resurgence, we analyzed historic strains and recent clinical isolates by using a comparative omics approach. Whole-genome sequencing showed that historic and recent isolates of B. pertussis have substantial variation in genome organization and form separate phylogenetic clusters. Subsequent RNA sequence analysis and liquid chromatography with mass tandem spectrometry analyses showed that these variations translated into discretely separated transcriptomic and proteomic profiles. When compared with historic strains, recent isolates showed increased expression of flagellar genes and genes involved in lipopolysaccharide biosynthesis and decreased expression of polysaccharide capsule genes. Compared with reference strain Tohama I, all strains had increased expression and production of the type III secretion system apparatus. We detected the potential link between observed effects and insertion sequence element–induced changes in gene context only for a few genes.
Collapse
|
7
|
Badhai J, Das SK. Genomic plasticity and antibody response of Bordetella bronchiseptica strain HT200, a natural variant from a thermal spring. FEMS Microbiol Lett 2021; 368:6226661. [PMID: 33856450 DOI: 10.1093/femsle/fnab035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
Classical Bordetella species are primarily isolated from animals and humans causing asymptomatic infection to lethal pneumonia. However, isolation of these bacteria from any extra-host environmental niche has not been reported so far. Here, we have characterized the genomic plasticity and antibody response of Bordetella bronchiseptica strain HT200, isolated from a thermal spring. Genomic ANI value and SNPs-based phylogenetic tree suggest a divergent evolution of strain HT200 from a human-adapted lineage of B. bronchiseptica. Growth and survivability assay showed strain HT200 retained viability for more than 5 weeks in the filter-sterilized spring water. In addition, genes or loci encoding the Bordetella virulence factors such as DNT, ACT and LPS O-antigen were absent in strain HT200, while genes encoding other virulence factors were highly divergent. Phenotypically, strain HT200 was non-hemolytic and showed weak hemagglutination activity, but was able to colonize in the respiratory organs of mice. Further, both infection and vaccination with strain HT200 induced protective antibody response in mouse against challenge infection with virulent B. bronchiseptica strain RB50. In addition, genome of strain HT200 (DSM 26023) showed presence of accessory genes and operons encoding predicted metabolic functions pertinent to the ecological conditions of the thermal spring.
Collapse
Affiliation(s)
- Jhasketan Badhai
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India
| | - Subrata K Das
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India
| |
Collapse
|
8
|
Luu LDW, Zhong L, Kaur S, Raftery MJ, Lan R. Comparative Phosphoproteomics of Classical Bordetellae Elucidates the Potential Role of Serine, Threonine and Tyrosine Phosphorylation in Bordetella Biology and Virulence. Front Cell Infect Microbiol 2021; 11:660280. [PMID: 33928046 PMCID: PMC8076611 DOI: 10.3389/fcimb.2021.660280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Abstract
The Bordetella genus is divided into two groups: classical and non-classical. Bordetella pertussis, Bordetella bronchiseptica and Bordetella parapertussis are known as classical bordetellae, a group of important human pathogens causing whooping cough or whooping cough-like disease and hypothesized to have evolved from environmental non-classical bordetellae. Bordetella infections have increased globally driving the need to better understand these pathogens for the development of new treatments and vaccines. One unexplored component in Bordetella is the role of serine, threonine and tyrosine phosphorylation. Therefore, this study characterized the phosphoproteome of classical bordetellae and examined its potential role in Bordetella biology and virulence. Applying strict identification of localization criteria, this study identified 70 unique phosphorylated proteins in the classical bordetellae group with a high degree of conservation. Phosphorylation was a key regulator of Bordetella metabolism with proteins involved in gluconeogenesis, TCA cycle, amino acid and nucleotide synthesis significantly enriched. Three key virulence pathways were also phosphorylated including type III secretion system, alcaligin synthesis and the BvgAS master transcriptional regulatory system for virulence genes in Bordetella. Seven new phosphosites were identified in BvgA with 6 located in the DNA binding domain. Of the 7, 4 were not present in non-classical bordetellae. This suggests that serine/threonine phosphorylation may play an important role in stabilizing/destabilizing BvgA binding to DNA for fine-tuning of virulence gene expression and that BvgA phosphorylation may be an important factor separating classical from non-classical bordetellae. This study provides the first insight into the phosphoproteome of classical Bordetella species and the role that Ser/Thr/Tyr phosphorylation may play in Bordetella biology and virulence.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
9
|
Kamanova J. Bordetella Type III Secretion Injectosome and Effector Proteins. Front Cell Infect Microbiol 2020; 10:466. [PMID: 33014891 PMCID: PMC7498569 DOI: 10.3389/fcimb.2020.00466] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
Pertussis, also known as whooping cough, is a resurging acute respiratory disease of humans primarily caused by the Gram-negative coccobacilli Bordetella pertussis, and less commonly by the human-adapted lineage of B. parapertussis HU. The ovine-adapted lineage of B. parapertussis OV infects only sheep, while B. bronchiseptica causes chronic and often asymptomatic respiratory infections in a broad range of mammals but rarely in humans. A largely overlapping set of virulence factors inflicts the pathogenicity of these bordetellae. Their genomes also harbor a pathogenicity island, named bsc locus, that encodes components of the type III secretion injectosome, and adjacent btr locus with the type III regulatory proteins. The Bsc injectosome of bordetellae translocates the cytotoxic BteA effector protein, also referred to as BopC, into the cells of the mammalian hosts. While the role of type III secretion activity in the persistent colonization of the lower respiratory tract by B. bronchiseptica is well recognized, the functionality of the type III secretion injectosome in B. pertussis was overlooked for many years due to the adaptation of laboratory-passaged B. pertussis strains. This review highlights the current knowledge of the type III secretion system in the so-called classical Bordetella species, comprising B. pertussis, B. parapertussis, and B. bronchiseptica, and discusses its functional divergence. Comparison with other well-studied bacterial injectosomes, regulation of the type III secretion on the transcriptional and post-transcriptional level, and activities of BteA effector protein and BopN protein, homologous to the type III secretion gatekeepers, are addressed.
Collapse
Affiliation(s)
- Jana Kamanova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
10
|
Alai S, Ghattargi VC, Gautam M, Patel K, Pawar SP, Dhotre DP, Shaligram U, Gairola S. Comparative genomics of whole-cell pertussis vaccine strains from India. BMC Genomics 2020; 21:345. [PMID: 32381023 PMCID: PMC7204287 DOI: 10.1186/s12864-020-6724-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/06/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Despite high vaccination coverage using acellular (ACV) and whole-cell pertussis (WCV) vaccines, the resurgence of pertussis is observed globally. Genetic divergence in circulating strains of Bordetella pertussis has been reported as one of the contributing factors for the resurgence of the disease. Our current knowledge of B. pertussis genetic evolution in circulating strains is mostly based on studies conducted in countries using ACVs targeting only a few antigens used in the production of ACVs. To better understand the adaptation to vaccine-induced selection pressure, it will be essential to study B. pertussis populations in developing countries which are using WCVs. India is a significant user and global supplier of WCVs. We report here comparative genome analyses of vaccine and clinical isolates reported from India. Whole-genome sequences obtained from vaccine strains: WCV (J445, J446, J447 and J448), ACV (BP165) were compared with Tohama-I reference strain and recently reported clinical isolates from India (BPD1, BPD2). Core genome-based phylogenetic analysis was also performed using 166 isolates reported from countries using ACV. RESULTS Whole-genome analysis of vaccine and clinical isolates reported from India revealed high genetic similarity and conserved genome among strains. Phylogenetic analysis showed that clinical and vaccine strains share genetic closeness with reference strain Tohama-I. The allelic profile of vaccine strains (J445:ptxP1/ptxA2/prn1/fim2-1/fim3-1; J446: ptxP2/ptxA4/prn7/fim2-2/fim3-1; J447 and J448: ptxP1/ptxA1/ prn1/fim2-1/fim3-1), which matched entirely with clinical isolates (BPD1:ptxP1/ptxA1/prn1/fim2-1 and BPD2: ptxP1/ptxA1/prn1/fim2-1) reported from India. Multi-locus sequence typing (MLST) demonstrated the presence of dominant sequence types ST2 and primitive ST1 in vaccine strains which will allow better coverage against circulating strains of B. pertussis. CONCLUSIONS The study provides a detailed characterization of vaccine and clinical strains reported from India, which will further facilitate epidemiological studies on genetic shifts in countries which are using WCVs in their immunization programs.
Collapse
Affiliation(s)
- Shweta Alai
- Department of Health and Biological Sciences, Symbiosis International University, Pune, Maharashtra, 412115, India
| | - Vikas C Ghattargi
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra, 411021, India
| | - Manish Gautam
- Serum Institute of India Pvt. Ltd, Pune, Maharashtra, 411028, India
| | - Krunal Patel
- Serum Institute of India Pvt. Ltd, Pune, Maharashtra, 411028, India
| | - Shrikant P Pawar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra, 411021, India
| | - Dhiraj P Dhotre
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra, 411021, India
| | - Umesh Shaligram
- Serum Institute of India Pvt. Ltd, Pune, Maharashtra, 411028, India
| | - Sunil Gairola
- Serum Institute of India Pvt. Ltd, Pune, Maharashtra, 411028, India.
| |
Collapse
|
11
|
Safarchi A, Octavia S, Nikbin VS, Lotfi MN, Zahraei SM, Tay CY, Lamichhane B, Shahcheraghi F, Lan R. Genomic epidemiology of Iranian Bordetella pertussis: 50 years after the implementation of whole cell vaccine. Emerg Microbes Infect 2020; 8:1416-1427. [PMID: 31543006 PMCID: PMC6764348 DOI: 10.1080/22221751.2019.1665479] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Pertussis caused by Bordetella pertussis, remains a public health problem worldwide, despite high vaccine coverage in infants and children in many countries. Iran has been using whole cell vaccine for the last 50 years with more than 95% vaccination rate since 1988 and has experienced pertussis resurgence in recent years. Here, we sequenced 55 B. pertussis isolates mostly collected from three provinces with the highest number of pertussis cases in Iran, including Tehran, Mazandaran, and Eastern-Azarbayjan from the period of 2008-2016. Most isolates carried ptxP3/prn2 alleles (42/55, 76%), the same genotype as isolates circulating in acellular vaccine-administrating countries. The second most frequent genotype was ptxP3/prn9 (8/55, 14%). Only three isolates (5%) were ptxP1. Phylogenetic analysis showed that Iranian ptxP3 isolates can be divided into eight clades (Clades 1-8) with no temporal association. Most of the isolates from Tehran grouped together as one distinctive clade (Clade 8) with six unique single nucleotide polymorphisms (SNPs). In addition, the prn9 isolates were grouped together as Clade 5 with 12 clade-supporting SNPs. No pertactin deficient isolates were found among the 55 Iranian isolates. Our findings suggest that there is an ongoing adaptation and evolution of B. pertussis regardless of the types of vaccine used.
Collapse
Affiliation(s)
- Azadeh Safarchi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran , Tehran , Islamic Republic of Iran.,School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney , Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney , Australia
| | - Vajihe Sadat Nikbin
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran , Tehran , Islamic Republic of Iran
| | - Masoumeh Nakhost Lotfi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran , Tehran , Islamic Republic of Iran
| | - Seyed Mohsen Zahraei
- Centre for Communicable Disease Control, Ministry of Health and Medical Education , Tehran , Islamic Republic of Iran
| | - Chin Yen Tay
- Pathology and Laboratory Medicine, University of Western Australia , Perth , Australia
| | - Binit Lamichhane
- Pathology and Laboratory Medicine, University of Western Australia , Perth , Australia
| | - Fereshteh Shahcheraghi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran , Tehran , Islamic Republic of Iran
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney , Australia
| |
Collapse
|
12
|
Chen Q, Stibitz S. The BvgASR virulence regulon of Bordetella pertussis. Curr Opin Microbiol 2019; 47:74-81. [PMID: 30870653 DOI: 10.1016/j.mib.2019.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/22/2019] [Indexed: 01/26/2023]
Abstract
The BvgAS two-component system of Bordetella pertussis directly activates the expression of a large number of virulence genes in an environmentally responsive manner. The Bvg+ mode also promotes the expression of the phosphodiesterase BvgR, which turns off the expression of another set of genes, the vrgs, by reducing levels of c-di-GMP. Increased levels of c-di-GMP in the Bvg- mode are required, together with the phosphorylated response regulator protein RisA∼P, to activate vrg expression. Phosphorylation of RisA requires RisK, a non-co-operonic sensor kinase, but not its co-operonic sensor kinase RisS which is truncated in B. pertussis but intact in the ancestral B. bronchiseptica. The loss of RisS during evolution of B. pertussis led to the ability to express the vrgs, potentially enhancing aerosol transmission of B. pertussis.
Collapse
Affiliation(s)
- Qing Chen
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, United States
| | - Scott Stibitz
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, United States.
| |
Collapse
|
13
|
Dienstbier A, Pouchnik D, Wildung M, Amman F, Hofacker IL, Parkhill J, Holubova J, Sebo P, Vecerek B. Comparative genomics of Czech vaccine strains of Bordetella pertussis. Pathog Dis 2018; 76:5089975. [PMID: 30184175 DOI: 10.1093/femspd/fty071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/30/2018] [Indexed: 11/13/2022] Open
Abstract
Bordetella pertussis is a strictly human pathogen causing the respiratory infectious disease called whooping cough or pertussis. B. pertussis adaptation to acellular pertussis vaccine pressure has been repeatedly highlighted, but recent data indicate that adaptation of circulating strains started already in the era of the whole cell pertussis vaccine (wP) use. We sequenced the genomes of five B. pertussis wP vaccine strains isolated in the former Czechoslovakia in the pre-wP (1954-1957) and early wP (1958-1965) eras, when only limited population travel into and out of the country was possible. Four isolates exhibit a similar genome organization and form a distinct phylogenetic cluster with a geographic signature. The fifth strain is rather distinct, both in genome organization and SNP-based phylogeny. Surprisingly, despite isolation of this strain before 1966, its closest sequenced relative appears to be a recent isolate from the US. On the genome content level, the five vaccine strains contained both new and already described regions of difference. One of the new regions contains duplicated genes potentially associated with transport across the membrane. The prevalence of this region in recent isolates indicates that its spread might be associated with selective advantage leading to increased strain fitness.
Collapse
Affiliation(s)
- Ana Dienstbier
- Institute of Microbiology v.v.i., Laboratory of post-transcriptional control of gene expression, 14220 Prague, Czech Republic
| | - Derek Pouchnik
- Laboratory for Biotechnology and Bioanalysis, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-7520
| | - Mark Wildung
- Laboratory for Biotechnology and Bioanalysis, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-7520
| | - Fabian Amman
- University of Vienna, Institute for Theoretical Chemistry, Währinger Straße 17, A-1090 Vienna, Austria
| | - Ivo L Hofacker
- University of Vienna, Institute for Theoretical Chemistry, Währinger Straße 17, A-1090 Vienna, Austria.,University of Vienna, Research group BCB, Faculty of Computer Science, Währinger Straße 24, 1090 Vienna, Austria
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA Cambridge, UK
| | - Jana Holubova
- Institute of Microbiology v.v.i, Laboratory of molecular biology of bacterial pathogens, 14220 Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology v.v.i, Laboratory of molecular biology of bacterial pathogens, 14220 Prague, Czech Republic
| | - Branislav Vecerek
- Institute of Microbiology v.v.i., Laboratory of post-transcriptional control of gene expression, 14220 Prague, Czech Republic
| |
Collapse
|
14
|
A Novel Bvg-Repressed Promoter Causes vrg-Like Transcription of fim3 but Does Not Result in the Production of Serotype 3 Fimbriae in Bvg - Mode Bordetella pertussis. J Bacteriol 2018; 200:JB.00175-18. [PMID: 30061354 DOI: 10.1128/jb.00175-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/27/2018] [Indexed: 11/20/2022] Open
Abstract
In Bordetella pertussis, two serologically distinct fimbriae, FIM2 and FIM3, undergo on/off phase variation independently of each other via variation in the lengths of C stretches in the promoters for their major subunit genes, fim2 and fim3 These two promoters are also part of the BvgAS virulence regulon and therefore, if in an on configuration, are activated by phosporylated BvgA (BvgA~P) under normal growth conditions (Bvg+ mode) but not in the Bvg- mode, inducible by growth in medium containing MgSO4 or other compounds, termed modulators. In the B. pertussis Tohama I strain (FIM2+ FIM3-), the fim3 promoter is in the off state. However, a high level of transcription of the fim3 gene is observed in the Bvg- mode. In this study, we provide an explanation for this anomalous behavior by defining a Bvg-repressed promoter (BRP), located approximately 400 bp upstream of the Pfim3 transcriptional start. Although transcription of the fim3 gene in the Bvg- mode resulted in Fim3 translation, as measured by LacZ translational fusions, no accumulation of Fim3 protein was detectable. We propose that Fim3 protein resulting from translation of mRNA driven by BRP in the Bvg- mode is unstable due to a lack of the fimbrial assembly apparatus encoded by the fimBC genes, located within the fha operon, and therefore is not expressed in the Bvg- mode.IMPORTANCE In Bordetella pertussis, the promoter Pfim3-15C for the major fimbrial subunit gene fim3 is activated by the two-component system BvgAS in the Bvg+ mode but not in the Bvg- mode. However, many transcriptional profiling studies have shown that fim3 is transcribed in the Bvg- mode even when Pfim3 is in a nonpermissive state (Pfim3-13C), suggesting the presence of a reciprocally regulated element upstream of Pfim3 Here, we provide evidence that BRP is the cause of this anomalous behavior of fim3 Although BRP effects vrg-like transcription of fim3 in the Bvg- mode, it does not lead to stable production of FIM3 fimbriae, because expression of the chaperone and usher proteins FimB and FimC occurs only in the Bvg+ mode.
Collapse
|
15
|
Guragain M, Jennings-Gee J, Cattelan N, Finger M, Conover MS, Hollis T, Deora R. The Transcriptional Regulator BpsR Controls the Growth of Bordetella bronchiseptica by Repressing Genes Involved in Nicotinic Acid Degradation. J Bacteriol 2018; 200:JB.00712-17. [PMID: 29581411 PMCID: PMC5971473 DOI: 10.1128/jb.00712-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Many of the pathogenic species of the genus Bordetella have an absolute requirement for nicotinic acid (NA) for laboratory growth. These Gram-negative bacteria also harbor a gene cluster homologous to the nic cluster of Pseudomonas putida which is involved in the aerobic degradation of NA and its transcriptional control. We report here that BpsR, a negative regulator of biofilm formation and Bps polysaccharide production, controls the growth of Bordetella bronchiseptica by repressing the expression of nic genes. The severe growth defect of the ΔbpsR strain in Stainer-Scholte medium was restored by supplementation with NA, which also functioned as an inducer of nic genes at low micromolar concentrations that are usually present in animals and humans. Purified BpsR protein bound to the nic promoter region, and its DNA binding activity was inhibited by 6-hydroxynicotinic acid (6-HNA), the first metabolite of the NA degradative pathway. Reporter assays with the isogenic mutant derivative of the wild-type (WT) strain harboring deletion in nicA, which encodes a putative nicotinic acid hydroxylase responsible for conversion of NA to 6-HNA, showed that 6-HNA is the actual inducer of the nic genes in the bacterial cell. Gene expression profiling further showed that BpsR dually activated and repressed the expression of genes associated with pathogenesis, transcriptional regulation, metabolism, and other cellular processes. We discuss the implications of these findings with respect to the selection of pyridines such as NA and quinolinic acid for optimum bacterial growth depending on the ecological niche.IMPORTANCE BpsR, the previously described regulator of biofilm formation and Bps polysaccharide production, controls Bordetella bronchiseptica growth by regulating the expression of genes involved in the degradation of nicotinic acid (NA). 6-Hydroxynicotinic acid (6-HNA), the first metabolite of the NA degradation pathway prevented BpsR from binding to DNA and was the actual in vivo inducer. We hypothesize that BpsR enables Bordetella bacteria to efficiently and selectively utilize NA for their survival depending on the environment in which they reside. The results reported herein lay the foundation for future investigations of how BpsR and the alteration of its activity by NA orchestrate the control of Bordetella growth, metabolism, biofilm formation, and pathogenesis.
Collapse
Affiliation(s)
- Manita Guragain
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jamie Jennings-Gee
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Natalia Cattelan
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI, CONICET-CCT-La Plata), Universidad Nacional de La Plata, La Plata, Argentina
| | - Mary Finger
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Matt S Conover
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Thomas Hollis
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Rajendar Deora
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Microbiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
16
|
Amman F, D'Halluin A, Antoine R, Huot L, Bibova I, Keidel K, Slupek S, Bouquet P, Coutte L, Caboche S, Locht C, Vecerek B, Hot D. Primary transcriptome analysis reveals importance of IS elements for the shaping of the transcriptional landscape of Bordetella pertussis. RNA Biol 2018; 15:967-975. [PMID: 29683387 PMCID: PMC6161684 DOI: 10.1080/15476286.2018.1462655] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 12/25/2022] Open
Abstract
Bordetella pertussis is the causative agent of whooping cough, a respiratory disease still considered as a major public health threat and for which recent re-emergence has been observed. Constant reshuffling of Bordetella pertussis genome organization was observed during evolution. These rearrangements are essentially mediated by Insertion Sequences (IS), a mobile genetic elements present in more than 230 copies in the genome, which are supposed to be one of the driving forces enabling the pathogen to escape from vaccine-induced immunity. Here we use high-throughput sequencing approaches (RNA-seq and differential RNA-seq), to decipher Bordetella pertussis transcriptome characteristics and to evaluate the impact of IS elements on transcriptome architecture. Transcriptional organization was determined by identification of transcription start sites and revealed also a large variety of non-coding RNAs including sRNAs, leaderless mRNAs or long 3' and 5'UTR including seven riboswitches. Unusual topological organizations, such as overlapping 5'- or 3'-extremities between oppositely orientated mRNA were also unveiled. The pivotal role of IS elements in the transcriptome architecture and their effect on the transcription of neighboring genes was examined. This effect is mediated by the introduction of IS harbored promoters or by emergence of hybrid promoters. This study revealed that in addition to their impact on genome rearrangements, most of the IS also impact on the expression of their flanking genes. Furthermore, the transcripts produced by IS are strain-specific due to the strain to strain variation in IS copy number and genomic context.
Collapse
Affiliation(s)
- Fabian Amman
- University of Vienna, Theoretical Biochemistry Group, Institute for Theoretical Chemistry, Vienna, Austria
| | - Alexandre D'Halluin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Rudy Antoine
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Ludovic Huot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Ilona Bibova
- Institute of Microbiology of the ASCR; Laboratory of post-transcriptional control of gene expression, Prague, Czech Republic
| | - Kristina Keidel
- Institute of Microbiology of the ASCR; Laboratory of post-transcriptional control of gene expression, Prague, Czech Republic
| | - Stéphanie Slupek
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Peggy Bouquet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Loïc Coutte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Ségolène Caboche
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Branislav Vecerek
- Institute of Microbiology of the ASCR; Laboratory of post-transcriptional control of gene expression, Prague, Czech Republic
| | - David Hot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
17
|
Ectopic Expression of O Antigen in Bordetella pertussis by a Novel Genomic Integration System. mSphere 2018; 3:mSphere00417-17. [PMID: 29404410 PMCID: PMC5784241 DOI: 10.1128/msphere.00417-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/18/2017] [Indexed: 11/20/2022] Open
Abstract
Some bacterial phenotypes emerge through the cooperative functions of a number of genes residing within a large genetic locus. To transfer the phenotype of one bacterium to another, a means to introduce the large genetic locus into the recipient bacterium is needed. Therefore, we developed a novel system by combining the advantages of a bacterial artificial chromosome vector and phage-derived gene integration machinery. In this study, we succeeded for the first time in introducing a gene locus involved in O antigen biosynthesis of Bordetella bronchiseptica into the chromosome of B. pertussis, which intrinsically lacks O antigen, and using this system we analyzed phenotypic alterations in the resultant mutant strain of B. pertussis. The present results demonstrate that this system successfully accomplished the above-described purpose. We consider this system to be applicable to a number of bacteria other than Bordetella. We describe a novel genome integration system that enables the introduction of DNA fragments as large as 50 kbp into the chromosomes of recipient bacteria. This system, named BPI, comprises a bacterial artificial chromosome vector and phage-derived gene integration machinery. We introduced the wbm locus of Bordetella bronchiseptica, which is required for O antigen biosynthesis, into the chromosome of B. pertussis, which intrinsically lacks O antigen, using the BPI system. After the introduction of the wbm locus, B. pertussis presented an additional substance in the lipooligosaccharide fraction that was specifically recognized by the anti-B. bronchiseptica antibody but not the anti-B. pertussis antibody, indicating that B. pertussis expressed O antigen corresponding to that of B. bronchiseptica. O antigen-expressing B. pertussis was less sensitive to the bactericidal effects of serum and polymyxin B than the isogenic parental strain. In addition, an in vivo competitive infection assay showed that O antigen-expressing B. pertussis dominantly colonized the mouse respiratory tract over the parental strain. These results indicate that the BPI system provides a means to alter the phenotypes of bacteria by introducing large exogenous DNA fragments. IMPORTANCE Some bacterial phenotypes emerge through the cooperative functions of a number of genes residing within a large genetic locus. To transfer the phenotype of one bacterium to another, a means to introduce the large genetic locus into the recipient bacterium is needed. Therefore, we developed a novel system by combining the advantages of a bacterial artificial chromosome vector and phage-derived gene integration machinery. In this study, we succeeded for the first time in introducing a gene locus involved in O antigen biosynthesis of Bordetella bronchiseptica into the chromosome of B. pertussis, which intrinsically lacks O antigen, and using this system we analyzed phenotypic alterations in the resultant mutant strain of B. pertussis. The present results demonstrate that this system successfully accomplished the above-described purpose. We consider this system to be applicable to a number of bacteria other than Bordetella.
Collapse
|
18
|
Dias WDO, Prestes AFR, Cunegundes PS, Silva EP, Raw I. Immunization against Pertussis: An Almost Solved Problem or a Headache in Public Health. Vaccines (Basel) 2017. [DOI: 10.5772/intechopen.69283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
19
|
Rivera-Millot A, Lesne E, Solans L, Coutte L, Bertrand-Michel J, Froguel P, Dhennin V, Hot D, Locht C, Antoine R, Jacob-Dubuisson F. Characterization of a Bvg-regulated fatty acid methyl-transferase in Bordetella pertussis. PLoS One 2017; 12:e0176396. [PMID: 28493897 PMCID: PMC5426589 DOI: 10.1371/journal.pone.0176396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
The whooping cough agent Bordetella pertussis controls the expression of its large virulence regulon in a coordinated manner through the two-component signal transduction system BvgAS. In addition to the genes coding for bona fide virulence factors, the Bvg regulon comprises genes of unknown function. In this work, we characterized a new Bvg-activated gene called BP2936. Homologs of BP2936 are found in other pathogenic Bordetellae and in several other species, including plant pathogens and environmental bacteria. We showed that the gene product of BP2936 is a membrane-associated methyl-transferase of free fatty acids. We thus propose to name it FmtB, for fatty acid methyl-transferase of Bordetella. The role of this protein was tested in cellular and animal models of infection, but the loss of BP2936 did not appear to affect host-pathogen interactions in those assays. The high level of conservation of BP2936 among B. pertussis isolates nevertheless argues that it probably plays a role in the life cycle of this pathogen.
Collapse
Affiliation(s)
- Alex Rivera-Millot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 8204-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Elodie Lesne
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 8204-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Luis Solans
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 8204-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Loic Coutte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 8204-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| | | | - Philippe Froguel
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8199, European Genomic Institute for Diabetes, Lille, France
- Department of Genomics of Common Diseases, School of Public Health, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Véronique Dhennin
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8199, European Genomic Institute for Diabetes, Lille, France
| | - David Hot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 8204-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 8204-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Rudy Antoine
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 8204-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Françoise Jacob-Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 8204-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| |
Collapse
|
20
|
Seydlova G, Beranova J, Bibova I, Dienstbier A, Drzmisek J, Masin J, Fiser R, Konopasek I, Vecerek B. The extent of the temperature-induced membrane remodeling in two closely related Bordetella species reflects their adaptation to diverse environmental niches. J Biol Chem 2017; 292:8048-8058. [PMID: 28348085 DOI: 10.1074/jbc.m117.781559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/23/2017] [Indexed: 01/06/2023] Open
Abstract
Changes in environmental temperature represent one of the major stresses faced by microorganisms as they affect the function of the cytoplasmic membrane. In this study, we have analyzed the thermal adaptation in two closely related respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica Although B. pertussis represents a pathogen strictly adapted to the human body temperature, B. bronchiseptica causes infection in a broad range of animals and survives also outside of the host. We applied GC-MS to determine the fatty acids of both Bordetella species grown at different temperatures and analyzed the membrane fluidity by fluorescence anisotropy measurement. In parallel, we also monitored the effect of growth temperature changes on the expression and production of several virulence factors. In response to low temperatures, B. pertussis adapted its fatty acid composition and membrane fluidity to a considerably lesser extent when compared with B. bronchiseptica Remarkably, B. pertussis maintained the production of virulence factors at 24 °C, whereas B. bronchiseptica cells resumed the production only upon temperature upshift to 37 °C. This growth temperature-associated differential modulation of virulence factor production was linked to the phosphorylation state of transcriptional regulator BvgA. The observed differences in low-temperature adaptation between B. pertussis and B. bronchiseptica may result from selective adaptation of B. pertussis to the human host. We propose that the reduced plasticity of the B. pertussis membranes ensures sustained production of virulence factors at suboptimal temperatures and may play an important role in the transmission of the disease.
Collapse
Affiliation(s)
- Gabriela Seydlova
- From the Department of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 5, 12843 Prague, Czech Republic
| | - Jana Beranova
- From the Department of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 5, 12843 Prague, Czech Republic
| | - Ilona Bibova
- the Laboratories of Post-transcriptional Control of Gene Expression and
| | - Ana Dienstbier
- the Laboratories of Post-transcriptional Control of Gene Expression and
| | - Jakub Drzmisek
- the Laboratories of Post-transcriptional Control of Gene Expression and
| | - Jiri Masin
- Molecular Biology of Bacterial Pathogens, Institute of Microbiology v.v.i., Academy of Sciences of the Czech Republic, Videnska 1083, 14220 Prague, Czech Republic
| | - Radovan Fiser
- From the Department of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 5, 12843 Prague, Czech Republic
| | - Ivo Konopasek
- From the Department of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 5, 12843 Prague, Czech Republic
| | - Branislav Vecerek
- the Laboratories of Post-transcriptional Control of Gene Expression and
| |
Collapse
|
21
|
de Pedro-Cuesta J, Martínez-Martín P, Rábano A, Ruiz-Tovar M, Alcalde-Cabero E, Calero M. Etiologic Framework for the Study of Neurodegenerative Disorders as Well as Vascular and Metabolic Comorbidities on the Grounds of Shared Epidemiologic and Biologic Features. Front Aging Neurosci 2016; 8:138. [PMID: 27378910 PMCID: PMC4904010 DOI: 10.3389/fnagi.2016.00138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/27/2016] [Indexed: 12/12/2022] Open
Abstract
Background: During the last two decades, protein aggregation at all organismal levels, from viruses to humans, has emerged from a neglected area of protein science to become a central issue in biology and biomedicine. This article constitutes a risk-based review aimed at supporting an etiologic scenario of selected, sporadic, protein-associated, i.e., conformational, neurodegenerative disorders (NDDs), and their vascular- and metabolic-associated ailments. Methods: A rationale is adopted, to incorporate selected clinical data and results from animal-model research, complementing epidemiologic evidences reported in two prior articles. Findings: Theory is formulated assuming an underlying conformational transmission mechanism, mediated either by horizontal transfer of mammalian genes coding for specific aggregation-prone proteins, or by xeno-templating between bacterial and host proteins. We build a few population-based and experimentally-testable hypotheses focusing on: (1) non-disposable surgical instruments for sporadic Creutzfeldt-Jakob disease (sCJD) and other rapid progressive neurodegenerative dementia (sRPNDd), multiple system atrophy (MSA), and motor neuron disease (MND); and (2) specific bacterial infections such as B. pertussis and E. coli for all forms, but particularly for late-life sporadic conformational, NDDs, type 2 diabetes mellitus (T2DM), and atherosclerosis where natural protein fibrils present in such organisms as a result of adaptation to the human host induce prion-like mechanisms. Conclusion: Implications for cohort alignment and experimental animal research are discussed and research lines proposed.
Collapse
Affiliation(s)
- Jesús de Pedro-Cuesta
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of HealthMadrid, Spain; Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos IIIMadrid, Spain
| | - Pablo Martínez-Martín
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of HealthMadrid, Spain; Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos IIIMadrid, Spain
| | - Alberto Rábano
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center Madrid, Spain
| | - María Ruiz-Tovar
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of HealthMadrid, Spain; Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos IIIMadrid, Spain
| | - Enrique Alcalde-Cabero
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of HealthMadrid, Spain; Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos IIIMadrid, Spain
| | - Miguel Calero
- Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos IIIMadrid, Spain; Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer CenterMadrid, Spain; Chronic Disease Programme, Carlos III Institute of Health, MajadahondaMadrid, Spain
| |
Collapse
|
22
|
Basheer SM, Bouchez V, Novikov A, Augusto LA, Guiso N, Caroff M. Structure activity characterization of Bordetella petrii lipid A, from environment to human isolates. Biochimie 2016; 120:87-95. [DOI: 10.1016/j.biochi.2015.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/06/2015] [Indexed: 11/30/2022]
|
23
|
Bentley SD, Parkhill J. Genomic perspectives on the evolution and spread of bacterial pathogens. Proc Biol Sci 2015; 282:20150488. [PMID: 26702036 PMCID: PMC4707741 DOI: 10.1098/rspb.2015.0488] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/19/2015] [Indexed: 12/22/2022] Open
Abstract
Since the first complete sequencing of a free-living organism, Haemophilus influenzae, genomics has been used to probe both the biology of bacterial pathogens and their evolution. Single-genome approaches provided information on the repertoire of virulence determinants and host-interaction factors, and, along with comparative analyses, allowed the proposal of hypotheses to explain the evolution of many of these traits. These analyses suggested many bacterial pathogens to be of relatively recent origin and identified genome degradation as a key aspect of host adaptation. The advent of very-high-throughput sequencing has allowed for detailed phylogenetic analysis of many important pathogens, revealing patterns of global and local spread, and recent evolution in response to pressure from therapeutics and the human immune system. Such analyses have shown that bacteria can evolve and transmit very rapidly, with emerging clones showing adaptation and global spread over years or decades. The resolution achieved with whole-genome sequencing has shown considerable benefits in clinical microbiology, enabling accurate outbreak tracking within hospitals and across continents. Continued large-scale sequencing promises many further insights into genetic determinants of drug resistance, virulence and transmission in bacterial pathogens.
Collapse
Affiliation(s)
- Stephen D Bentley
- The Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Julian Parkhill
- The Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
24
|
Abe A, Nishimura R, Tanaka N, Kurushima J, Kuwae A. The Bordetella Secreted Regulator BspR Is Translocated into the Nucleus of Host Cells via Its N-Terminal Moiety: Evaluation of Bacterial Effector Translocation by the Escherichia coli Type III Secretion System. PLoS One 2015; 10:e0135140. [PMID: 26247360 PMCID: PMC4527748 DOI: 10.1371/journal.pone.0135140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/17/2015] [Indexed: 11/27/2022] Open
Abstract
Bordetella bronchiseptica is genetically related to B. pertussis and B. parapertussis, which cause respiratory tract infections in humans. These pathogens possess a large number of virulence factors, including the type III secretion system (T3SS), which is required for the delivery of effectors into the host cells. In a previous study, we identified a transcriptional regulator, BspR, that is involved in the regulation of the T3SS-related genes in response to iron-starved conditions. A unique feature of BspR is that this regulator is secreted into the extracellular milieu via the T3SS. To further characterize the role of BspR in extracellular localization, we constructed various truncated derivatives of BspR and investigated their translocation into the host cells using conventional translocation assays. In this study, the effector translocation was evaluated by the T3SS of enteropathogenic E. coli (EPEC), since the exogenous expression of BspR triggers severe repression of the Bordetella T3SS expression. The results of the translocation assays using the EPEC T3SS showed that the N-terminal 150 amino acid (aa) residues of BspR are sufficient for translocation into the host cells in a T3SS-dependent manner. In addition, exogenous expression of BspR in HeLa cells demonstrated that the N-terminal 100 aa residues are involved in the nuclear localization. In contrast, the N-terminal 54 aa residues are sufficient for the extracellular secretion into the bacterial culture supernatant via the EPEC T3SS. Thus, BspR is not only a transcriptional regulator in bacteria cytosol, but also functions as an effector that translocates into the nuclei of infected host cells.
Collapse
Affiliation(s)
- Akio Abe
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
- * E-mail:
| | - Ryutaro Nishimura
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Naomichi Tanaka
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Jun Kurushima
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Asaomi Kuwae
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| |
Collapse
|
25
|
Molina-Sánchez MD, López-Contreras JA, Toro N, Fernández-López M. Genomic characterization of Sinorhizobium meliloti AK21, a wild isolate from the Aral Sea Region. SPRINGERPLUS 2015; 4:259. [PMID: 26090306 PMCID: PMC4468178 DOI: 10.1186/s40064-015-1062-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/26/2015] [Indexed: 11/10/2022]
Abstract
The symbiotic, nitrogen-fixing bacterium Sinorhizobium meliloti has been widely studied due to its ability to improve crop yields through direct interactions with leguminous plants. S. meliloti AK21 is a wild type strain that forms nodules on Medicago plants in saline and drought conditions in the Aral Sea Region. The aim of this work was to establish the genetic similarities and differences between S. meliloti AK21 and the reference strain S. meliloti 1021. Comparative genome hybridization with the model reference strain S. meliloti 1021 yielded 365 variable genes, grouped into 11 regions in the three main replicons in S. meliloti AK21. The most extensive regions of variability were found in the symbiotic plasmid pSymA, which also contained the largest number of orthologous and polymorphic sequences identified by suppression subtractive hybridization. This procedure identified a large number of divergent sequences and others without homology in the databases, the further investigation of which could provide new insight into the alternative metabolic pathways present in S. meliloti AK21. We identified a plasmid replication module from the repABC replicon family, together with plasmid mobilization-related genes (traG and a VirB9-like protein), which suggest that this indigenous isolate harbors an accessory plasmid. Furthermore, the transcriptomic profiles reflected differences in gene content and regulation between S. meliloti AK21 and S. meliloti 1021 (ExpR and PhoB regulons), but provided evidence for an as yet unknown, alternative mechanism involving activation of the cbb3 terminal oxidase. Finally, phenotypic microarrays characterization revealed a greater versatility of substrate use and chemical degradation than for S. meliloti 1021.
Collapse
Affiliation(s)
- María Dolores Molina-Sánchez
- Grupo de Ecología Genética, Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Calle Profesor Albareda 1, 18008 Granada, Spain
| | - José Antonio López-Contreras
- Grupo de Ecología Genética, Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Calle Profesor Albareda 1, 18008 Granada, Spain
| | - Nicolás Toro
- Grupo de Ecología Genética, Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Calle Profesor Albareda 1, 18008 Granada, Spain
| | - Manuel Fernández-López
- Grupo de Ecología Genética, Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Calle Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
26
|
Abe H, Kamitani S, Fukui-Miyazaki A, Shinzawa N, Nakamura K, Horiguchi Y. Detection of genes expressed inBordetella bronchisepticacolonizing rat trachea byin vivoexpressed-tag immunoprecipitation method. Microbiol Immunol 2015; 59:249-61. [DOI: 10.1111/1348-0421.12247] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/05/2015] [Accepted: 02/08/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Hiroyuki Abe
- Department of Molecular Bacteriology; Research Institute for Microbial Diseases; Osaka University; 3-1 Yamada-oka Suita Osaka 565-0871
| | - Shigeki Kamitani
- Department of Molecular Bacteriology; Research Institute for Microbial Diseases; Osaka University; 3-1 Yamada-oka Suita Osaka 565-0871
- Graduate School of Comprehensive Rehabilitation; Osaka Prefecture University; 3-7-30 Habikino Habikino Osaka 583-8555 Japan
| | - Aya Fukui-Miyazaki
- Department of Molecular Bacteriology; Research Institute for Microbial Diseases; Osaka University; 3-1 Yamada-oka Suita Osaka 565-0871
| | - Naoaki Shinzawa
- Department of Molecular Bacteriology; Research Institute for Microbial Diseases; Osaka University; 3-1 Yamada-oka Suita Osaka 565-0871
| | - Keiji Nakamura
- Department of Molecular Bacteriology; Research Institute for Microbial Diseases; Osaka University; 3-1 Yamada-oka Suita Osaka 565-0871
| | - Yasuhiko Horiguchi
- Department of Molecular Bacteriology; Research Institute for Microbial Diseases; Osaka University; 3-1 Yamada-oka Suita Osaka 565-0871
| |
Collapse
|
27
|
Polymorphisms influencing expression of dermonecrotic toxin in Bordetella bronchiseptica. PLoS One 2015; 10:e0116604. [PMID: 25642712 PMCID: PMC4314077 DOI: 10.1371/journal.pone.0116604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/11/2014] [Indexed: 11/19/2022] Open
Abstract
Bordetella bronchiseptica is a pathogenic bacterium causing respiratory infections in a broad range of mammals. Recently, we determined the whole genome sequence of B. bronchiseptica S798 strain isolated from a pig infected with atrophic rhinitis and found four single-nucleotide polymorphisms (SNPs) at positions -129, -72, +22, and +38 in the region upstream of dnt encoding dermonecrotic toxin (DNT), when compared with a rabbit isolate, RB50. DNT is known to be involved in turbinate atrophy observed in atrophic rhinitis. Immunoblotting, quantitative real-time PCR, and β-galactosidase reporter assay revealed that these SNPs resulted in the increased promoter activity of dnt and conferred the increased ability to produce DNT on the bacteria. Similar or identical SNPs were also found in other pig isolates kept in our laboratory, all of which produce a larger amount of DNT than RB50. Our analysis revealed that substitution of at least two of the four bases, at positions -72 and +22, influenced the promoter activity for dnt. These results imply that these SNPs are involved in the pathogenicity of bordetellae specific to pig diseases.
Collapse
|
28
|
Investigating genome reduction of Bordetella pertussis using a multiplex PCR-based reverse line blot assay (mPCR/RLB). BMC Res Notes 2014; 7:727. [PMID: 25319278 PMCID: PMC4209057 DOI: 10.1186/1756-0500-7-727] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/02/2014] [Indexed: 11/10/2022] Open
Abstract
Background The genetic composition of the bacterium causing whooping cough, Bordetella pertussis, has been investigated using microarray studies in order to examine potential genetic contributors to the disease re-emergence in the past decade. Regions of difference (RDs) have been previously identified as clusters of genes flanked by insertion sequences which are variably present in different sets of isolates, and have also been shown to be potential markers of B. pertussis evolution. This study used microarray data to identify and select a panel of RDs; primers and probes for these RDs were then designed to test for the presence or absence of these regions in a novel and less expensive multiplex PCR-based reverse line blot (mPCR/RLB) assay. By comparing the presence or absence of RDs, we aimed to determine the genomic variability of a diverse collection of B. pertussis strains and how they have changed over time. Results A B. pertussis specific mPCR/RLB using 43 genes representing 30 RDs, was developed and used to characterise a set of 42 B. pertussis isolates. When mapped against the previously identified evolutionary relationships of the strains, the losses of two RDs - BP0910A - BP00930 and BP1948-BP1962 - were found to be associated with significant events in B. pertussis history: the loss of BP0910A - BP00930 coincided with introduction of whole cell vaccines in the 1950s while that of BP1948-BP1962 occurred after the introduction of acellular vaccines. The loss of BP1948-BP1962 also coincided with expansion of the most recent B. pertussis strains. Conclusions The mPCR/RLB assay offers an inexpensive and fast method of determining the gene content of B. pertussis strains and also confirms that gene losses are an ongoing feature of B. pertussis evolution. Electronic supplementary material The online version of this article (doi:10.1186/1756-0500-7-727) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Complete Genome Sequence of Bordetella bronchiseptica S798, an Isolate from a Pig with Atrophic Rhinitis. GENOME ANNOUNCEMENTS 2014; 2:genomeA.00436-14. [PMID: 24831150 PMCID: PMC4022814 DOI: 10.1128/genomea.00436-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bordetella bronchiseptica colonizes the respiratory tracts of a wide variety of mammals and causes a range of diseases, from lethal pneumonia to asymptomatic chronic infection. We report the complete genome sequence of Bordetella bronchiseptica strain S798, isolated from a pig with atrophic rhinitis in Japan.
Collapse
|
30
|
Kallonen T, He Q. Bordetella pertussisstrain variation and evolution postvaccination. Expert Rev Vaccines 2014; 8:863-75. [DOI: 10.1586/erv.09.46] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Genome implosion elicits host-confinement in Alcaligenaceae: evidence from the comparative genomics of Tetrathiobacter kashmirensis, a pathogen in the making. PLoS One 2013; 8:e64856. [PMID: 23741407 PMCID: PMC3669393 DOI: 10.1371/journal.pone.0064856] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/19/2013] [Indexed: 11/24/2022] Open
Abstract
This study elucidates the genomic basis of the evolution of pathogens alongside free-living organisms within the family Alcaligenaceae of Betaproteobacteria. Towards that end, the complete genome sequence of the sulfur-chemolithoautotroph Tetrathiobacter kashmirensis WT001T was determined and compared with the soil isolate Achromobacter xylosoxidans A8 and the two pathogens Bordetella bronchiseptica RB50 and Taylorella equigenitalis MCE9. All analyses comprehensively indicated that the RB50 and MCE9 genomes were almost the subsets of A8 and WT001T, respectively. In the immediate evolutionary past Achromobacter and Bordetella shared a common ancestor, which was distinct from the other contemporary stock that gave rise to Tetrathiobacter and Taylorella. The Achromobacter-Bordetella precursor, after diverging from the family ancestor, evolved through extensive genome inflation, subsequent to which the two genera separated via differential gene losses and acquisitions. Tetrathiobacter, meanwhile, retained the core characteristics of the family ancestor, and Taylorella underwent massive genome degeneration to reach an evolutionary dead-end. Interestingly, the WT001T genome, despite its conserved architecture, had only 85% coding density, besides which 578 out of its 4452 protein-coding sequences were found to be pseudogenized. Translational impairment of several DNA repair-recombination genes in the first place seemed to have ushered the rampant and indiscriminate frame-shift mutations across the WT001T genome. Presumably, this strain has just come out of a recent evolutionary bottleneck, representing a unique transition state where genome self-degeneration has started comprehensively but selective host-confinement has not yet set in. In the light of this evolutionary link, host-adaptation of Taylorella clearly appears to be the aftereffect of genome implosion in another member of the same bottleneck. Remarkably again, potent virulence factors were found widespread in Alcaligenaceae, corroborating which hemolytic and mammalian cell-adhering abilities were discovered in WT001T. So, while WT001T relatives/derivatives in nature could be going the Taylorella way, the lineage as such was well-prepared for imminent host-confinement.
Collapse
|
32
|
Motta MCM, Martins ACDA, de Souza SS, Catta-Preta CMC, Silva R, Klein CC, de Almeida LGP, de Lima Cunha O, Ciapina LP, Brocchi M, Colabardini AC, de Araujo Lima B, Machado CR, de Almeida Soares CM, Probst CM, de Menezes CBA, Thompson CE, Bartholomeu DC, Gradia DF, Pavoni DP, Grisard EC, Fantinatti-Garboggini F, Marchini FK, Rodrigues-Luiz GF, Wagner G, Goldman GH, Fietto JLR, Elias MC, Goldman MHS, Sagot MF, Pereira M, Stoco PH, de Mendonça-Neto RP, Teixeira SMR, Maciel TEF, de Oliveira Mendes TA, Ürményi TP, de Souza W, Schenkman S, de Vasconcelos ATR. Predicting the proteins of Angomonas deanei, Strigomonas culicis and their respective endosymbionts reveals new aspects of the trypanosomatidae family. PLoS One 2013; 8:e60209. [PMID: 23560078 PMCID: PMC3616161 DOI: 10.1371/journal.pone.0060209] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/22/2013] [Indexed: 11/30/2022] Open
Abstract
Endosymbiont-bearing trypanosomatids have been considered excellent models for the study of cell evolution because the host protozoan co-evolves with an intracellular bacterium in a mutualistic relationship. Such protozoa inhabit a single invertebrate host during their entire life cycle and exhibit special characteristics that group them in a particular phylogenetic cluster of the Trypanosomatidae family, thus classified as monoxenics. In an effort to better understand such symbiotic association, we used DNA pyrosequencing and a reference-guided assembly to generate reads that predicted 16,960 and 12,162 open reading frames (ORFs) in two symbiont-bearing trypanosomatids, Angomonas deanei (previously named as Crithidia deanei) and Strigomonas culicis (first known as Blastocrithidia culicis), respectively. Identification of each ORF was based primarily on TriTrypDB using tblastn, and each ORF was confirmed by employing getorf from EMBOSS and Newbler 2.6 when necessary. The monoxenic organisms revealed conserved housekeeping functions when compared to other trypanosomatids, especially compared with Leishmania major. However, major differences were found in ORFs corresponding to the cytoskeleton, the kinetoplast, and the paraflagellar structure. The monoxenic organisms also contain a large number of genes for cytosolic calpain-like and surface gp63 metalloproteases and a reduced number of compartmentalized cysteine proteases in comparison to other TriTryp organisms, reflecting adaptations to the presence of the symbiont. The assembled bacterial endosymbiont sequences exhibit a high A+T content with a total of 787 and 769 ORFs for the Angomonas deanei and Strigomonas culicis endosymbionts, respectively, and indicate that these organisms hold a common ancestor related to the Alcaligenaceae family. Importantly, both symbionts contain enzymes that complement essential host cell biosynthetic pathways, such as those for amino acid, lipid and purine/pyrimidine metabolism. These findings increase our understanding of the intricate symbiotic relationship between the bacterium and the trypanosomatid host and provide clues to better understand eukaryotic cell evolution.
Collapse
Affiliation(s)
- Maria Cristina Machado Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Allan Cezar de Azevedo Martins
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvana Sant’Anna de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Metabolismo Macromolecular Firmino Torres de Castro, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Moura Costa Catta-Preta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosane Silva
- Laboratório de Metabolismo Macromolecular Firmino Torres de Castro, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cecilia Coimbra Klein
- Laboratório Nacional de Computação Científica, Laboratório de Bioinformática, Petrópolis, Rio de Janeiro, Brazil
- BAMBOO Team, INRIA Grenoble-Rhône-Alpes, Villeurbanne, France
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France
| | | | - Oberdan de Lima Cunha
- Laboratório Nacional de Computação Científica, Laboratório de Bioinformática, Petrópolis, Rio de Janeiro, Brazil
| | - Luciane Prioli Ciapina
- Laboratório Nacional de Computação Científica, Laboratório de Bioinformática, Petrópolis, Rio de Janeiro, Brazil
| | - Marcelo Brocchi
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Ana Cristina Colabardini
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bruna de Araujo Lima
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Christian Macagnan Probst
- Laboratório de Biologia Molecular de Tripanossomatídeos, Instituto Carlos Chagas/Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil
- Laboratório de Genômica Funcional, Instituto Carlos Chagas/Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil
| | - Claudia Beatriz Afonso de Menezes
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Claudia Elizabeth Thompson
- Laboratório Nacional de Computação Científica, Laboratório de Bioinformática, Petrópolis, Rio de Janeiro, Brazil
| | - Daniella Castanheira Bartholomeu
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela Fiori Gradia
- Laboratório de Biologia Molecular de Tripanossomatídeos, Instituto Carlos Chagas/Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil
| | - Daniela Parada Pavoni
- Laboratório de Genômica Funcional, Instituto Carlos Chagas/Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil
| | - Edmundo C. Grisard
- Laboratórios de Protozoologia e de Bioinformática, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Fabiana Fantinatti-Garboggini
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | | - Gabriela Flávia Rodrigues-Luiz
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Glauber Wagner
- Laboratórios de Protozoologia e de Bioinformática, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Gustavo Henrique Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana Lopes Rangel Fietto
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Maria Carolina Elias
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Maria Helena S. Goldman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marie-France Sagot
- BAMBOO Team, INRIA Grenoble-Rhône-Alpes, Villeurbanne, France
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Patrícia H. Stoco
- Laboratórios de Protozoologia e de Bioinformática, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Rondon Pessoa de Mendonça-Neto
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Santuza Maria Ribeiro Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Talles Eduardo Ferreira Maciel
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Tiago Antônio de Oliveira Mendes
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Turán P. Ürményi
- Laboratório de Metabolismo Macromolecular Firmino Torres de Castro, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail: (ATRdV); (SS)
| | - Ana Tereza Ribeiro de Vasconcelos
- Laboratório Nacional de Computação Científica, Laboratório de Bioinformática, Petrópolis, Rio de Janeiro, Brazil
- * E-mail: (ATRdV); (SS)
| |
Collapse
|
33
|
Park J, Zhang Y, Buboltz AM, Zhang X, Schuster SC, Ahuja U, Liu M, Miller JF, Sebaihia M, Bentley SD, Parkhill J, Harvill ET. Comparative genomics of the classical Bordetella subspecies: the evolution and exchange of virulence-associated diversity amongst closely related pathogens. BMC Genomics 2012; 13:545. [PMID: 23051057 PMCID: PMC3533505 DOI: 10.1186/1471-2164-13-545] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 09/21/2012] [Indexed: 12/04/2022] Open
Abstract
Background The classical Bordetella subspecies are phylogenetically closely related, yet differ in some of the most interesting and important characteristics of pathogens, such as host range, virulence and persistence. The compelling picture from previous comparisons of the three sequenced genomes was of genome degradation, with substantial loss of genome content (up to 24%) associated with adaptation to humans. Results For a more comprehensive picture of lineage evolution, we employed comparative genomic and phylogenomic analyses using seven additional diverse, newly sequenced Bordetella isolates. Genome-wide single nucleotide polymorphism (SNP) analysis supports a reevaluation of the phylogenetic relationships between the classical Bordetella subspecies, and suggests a closer link between ovine and human B. parapertussis lineages than has been previously proposed. Comparative analyses of genome content revealed that only 50% of the pan-genome is conserved in all strains, reflecting substantial diversity of genome content in these closely related pathogens that may relate to their different host ranges, virulence and persistence characteristics. Strikingly, these analyses suggest possible horizontal gene transfer (HGT) events in multiple loci encoding virulence factors, including O-antigen and pertussis toxin (Ptx). Segments of the pertussis toxin locus (ptx) and its secretion system locus (ptl) appear to have been acquired by the classical Bordetella subspecies and are divergent in different lineages, suggesting functional divergence in the classical Bordetellae. Conclusions Together, these observations, especially in key virulence factors, reveal that multiple mechanisms, such as point mutations, gain or loss of genes, as well as HGTs, contribute to the substantial phenotypic diversity of these versatile subspecies in various hosts.
Collapse
Affiliation(s)
- Jihye Park
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
van Gent M, Bart MJ, van der Heide HGJ, Heuvelman KJ, Mooi FR. Small mutations in Bordetella pertussis are associated with selective sweeps. PLoS One 2012; 7:e46407. [PMID: 23029513 PMCID: PMC3460923 DOI: 10.1371/journal.pone.0046407] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/31/2012] [Indexed: 01/31/2023] Open
Abstract
Bordetella pertussis is the causative agent of pertussis, a highly contagious disease of the human respiratory tract. Despite high vaccination coverage, pertussis has resurged and has become one of the most prevalent vaccine-preventable diseases in developed countries. We have proposed that both waning immunity and pathogen adaptation have contributed to the persistence and resurgence of pertussis. Allelic variation has been found in virulence-associated genes coding for the pertussis toxin A subunit (ptxA), pertactin (prn), serotype 2 fimbriae (fim2), serotype 3 fimbriae (fim3) and the promoter for pertussis toxin (ptxP). In this study, we investigated how more than 60 years of vaccination has affected the Dutch B. pertussis population by combining data from phylogeny, genomics and temporal trends in strain frequencies. Our main focus was on the ptxA, prn, fim3 and ptxP genes. However, we also compared the genomes of 11 Dutch strains belonging to successful lineages. Our results showed that, between 1949 and 2010, the Dutch B. pertussis population has undergone as least four selective sweeps that were associated with small mutations in ptxA, prn, fim3 and ptxP. Phylogenetic analysis revealed a stepwise adaptation in which mutations accumulated clonally. Genomic analysis revealed a number of additional mutations which may have a contributed to the selective sweeps. Five large deletions were identified which were fixed in the pathogen population. However, only one was linked to a selective sweep. No evidence was found for a role of gene acquisition in pathogen adaptation. Our results suggest that the B. pertussis gene repertoire is already well adapted to its current niche and required only fine tuning to persist in the face of vaccination. Further, this work shows that small mutations, even single SNPs, can drive large changes in the populations of bacterial pathogens within a time span of six to 19 years.
Collapse
Affiliation(s)
- Marjolein van Gent
- Laboratory for Infectious Diseases and Screening, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Marieke J. Bart
- Laboratory for Infectious Diseases and Screening, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Han G. J. van der Heide
- Laboratory for Infectious Diseases and Screening, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Kees J. Heuvelman
- Laboratory for Infectious Diseases and Screening, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Frits R. Mooi
- Laboratory for Infectious Diseases and Screening, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
35
|
Ahuja U, Liu M, Tomida S, Park J, Souda P, Whitelegge J, Li H, Harvill ET, Parkhill J, Miller JF. Phenotypic and genomic analysis of hypervirulent human-associated Bordetella bronchiseptica. BMC Microbiol 2012; 12:167. [PMID: 22863321 PMCID: PMC3462115 DOI: 10.1186/1471-2180-12-167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/17/2012] [Indexed: 01/17/2023] Open
Abstract
Background B. bronchiseptica infections are usually associated with wild or domesticated animals, but infrequently with humans. A recent phylogenetic analysis distinguished two distinct B. bronchiseptica subpopulations, designated complexes I and IV. Complex IV isolates appear to have a bias for infecting humans; however, little is known regarding their epidemiology, virulence properties, or comparative genomics. Results Here we report a characterization of the virulence of human-associated complex IV B. bronchiseptica strains. In in vitro cytotoxicity assays, complex IV strains showed increased cytotoxicity in comparison to a panel of complex I strains. Some complex IV isolates were remarkably cytotoxic, resulting in LDH release levels in A549 cells that were 10- to 20-fold greater than complex I strains. In vivo, a subset of complex IV strains was found to be hypervirulent, with an increased ability to cause lethal pulmonary infections in mice. Hypercytotoxicity in vitro and hypervirulence in vivo were both dependent on the activity of the bsc T3SS and the BteA effector. To clarify differences between lineages, representative complex IV isolates were sequenced and their genomes were compared to complex I isolates. Although our analysis showed there were no genomic sequences that can be considered unique to complex IV strains, there were several loci that were predominantly found in complex IV isolates. Conclusion Our observations reveal a T3SS-dependent hypervirulence phenotype in human-associated complex IV isolates, highlighting the need for further studies on the epidemiology and evolutionary dynamics of this B. bronchiseptica lineage.
Collapse
Affiliation(s)
- Umesh Ahuja
- Department of Microbiology, Immunology and Molecular Genetics, University of California, BSRB 254, 615 Charles E, Young Drive East, Los Angeles, CA 90095-1747, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Georgiades K, Merhej V, Raoult D. The influence of rickettsiologists on post-modern microbiology. Front Cell Infect Microbiol 2011; 1:8. [PMID: 22919574 PMCID: PMC3417371 DOI: 10.3389/fcimb.2011.00008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 10/10/2011] [Indexed: 11/29/2022] Open
Abstract
Many of the definitions in microbiology are currently false. We have reviewed the great denominations of microbiology and attempted to free microorganisms from the theories of the twentieth century. The presence of compartmentation and a nucleoid in Planctomycetes clearly calls into question the accuracy of the definitions of eukaryotes and prokaryotes. Archaea are viewed as prokaryotes resembling bacteria. However, the name archaea, suggesting an archaic origin of lifestyle, is inconsistent with the lifestyle of this family. Viruses are defined as small, filterable infectious agents, but giant viruses challenge the size criteria used for the definition of a virus. Pathogenicity does not require the acquisition of virulence factors (except for toxins), and in many cases, gene loss is significantly inked to the emergence of virulence. Species classification based on 16S rRNA is useless for taxonomic purposes of human pathogens, as a 2% divergence would classify all Rickettsiae within the same species and would not identify bacteria specialized for mammal infection. The use of metagenomics helps us to understand evolution and physiology by elucidating the structure, function, and interactions of the major microbial communities, but it neglects the minority populations. Finally, Darwin’s descent with modification theory, as represented by the tree of life, no longer matches our current genomic knowledge because genomics has revealed the occurrence of de novo-created genes and the mosaic structure of genomes, the Rhizome of life is therefore more appropriate.
Collapse
Affiliation(s)
- Kalliopi Georgiades
- Unité de Recherche en Maladies Infectieuses Tropical Emergentes, CNRS-IRD UMR 6236-198, Université de la Méditerranée Marseille, France.
| | | | | |
Collapse
|
37
|
Gilbert LB, Kasuga T, Glass NL, Taylor JW. Array CGH phylogeny: how accurate are comparative genomic hybridization-based trees? BMC Genomics 2011; 12:487. [PMID: 21978207 PMCID: PMC3206521 DOI: 10.1186/1471-2164-12-487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 10/06/2011] [Indexed: 02/01/2023] Open
Abstract
Background Array-based Comparative Genomic Hybridization (CGH) data have been used to infer phylogenetic relationships. However, the reliability of array CGH analysis to determine evolutionary relationships has not been well established. In most CGH work, all species and strains are compared to a single reference species, whose genome was used to design the array. In the accompanying work, we critically evaluated CGH-based phylogeny using simulated competitive hybridization data. This work showed that a limited number of conditions, principally the tree topology and placement of the reference taxon in the tree, had a strong effect on the ability to recover the correct tree topology. Here, we add to our simulation study by testing the use of CGH as a phylogenetic tool with experimental CGH data from competitive hybridizations between N. crassa and other Neurospora species. In the discussion, we add to our empirical study of Neurospora by reanalyzing of data from a previous CGH phylogenetic analysis of the yeast sensu stricto complex. Results Array ratio data for Neurospora and related species were normalized with loess, robust spline, and linear ratio based methods, and then used to construct Neighbor-Joining and parsimony trees. These trees were compared to published phylogenetic analyses for Neurospora based on multilocus sequence analysis (MLSA). For the Neurospora dataset, the best combination of methods resulted in recovery of the MLSA tree topology less than half the time. Our reanalysis of a yeast dataset found that trees identical to established phylogeny were recovered only by pruning taxa - including the reference taxon - from the analysis. Conclusion Our results indicate that CGH data can be problematic for phylogenetic analysis. Success fluctuates based on the methods utilized to construct the tree and the taxa included. Selective pruning of the taxa improves the results - an impractical approach for normal phylogenetic analysis. From the more successful methods we make suggestions on the normalization and post-normalization methods that work best in estimating genetic distance between taxa.
Collapse
Affiliation(s)
- Luz B Gilbert
- Laboratoire de Recherche en Sciences Végétales, UMR CNRS-Université Paul Sabatier 5546, Chemin de Borde Rouge - Auzeville 31326, Castanet Tolosan, France.
| | | | | | | |
Collapse
|
38
|
Gilbert LB, Chae L, Kasuga T, Taylor JW. Array Comparative Genomic Hybridizations: assessing the ability to recapture evolutionary relationships using an in silico approach. BMC Genomics 2011; 12:456. [PMID: 21936922 PMCID: PMC3196971 DOI: 10.1186/1471-2164-12-456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 09/21/2011] [Indexed: 12/02/2022] Open
Abstract
Background Comparative Genomic Hybridization (CGH) with DNA microarrays has many biological applications including surveys of copy number changes in tumorogenesis, species detection and identification, and functional genomics studies among related organisms. Array CGH has also been used to infer phylogenetic relatedness among species or strains. Although the use of the entire genome can be seen as a considerable advantage for use in phylogenetic analysis, few such studies have questioned the reliability of array CGH to correctly determine evolutionary relationships. A potential flaw in this application lies in the fact that all comparisons are made to a single reference species. This situation differs from traditional DNA sequence, distance-based phylogenetic analyses where all possible pairwise comparisons are made for the isolates in question. By simulating array data based on the Neurospora crassa genome, we address this potential flaw and other questions regarding array CGH phylogeny. Results Our simulation data indicates that having a single reference can, in some cases, be a serious limitation when using this technique. Additionally, the tree building process with a single reference is sensitive to many factors including tree topology, choice of tree reconstruction method, and the distance metric used. Conclusions Without prior knowledge of the topology and placement of the reference taxon in the topology, the outcome is likely to be wrong and the error undetected. Given these limitations, using CGH to reveal phylogeny based on sequence divergence does not offer a robust alternative to traditional phylogenetic analysis.
Collapse
Affiliation(s)
- Luz B Gilbert
- Laboratoire de Recherche en Sciences Végétales, UMR CNRS-Université Paul Sabatier 5546, Chemin de Borde Rouge - Auzeville 31326, Castanet Tolosan, France.
| | | | | | | |
Collapse
|
39
|
Affiliation(s)
- David A Relman
- Department of Medicine, Stanford University, Stanford, California, USA.
| |
Collapse
|
40
|
van Gent M, Bart MJ, van der Heide HGJ, Heuvelman KJ, Kallonen T, He Q, Mertsola J, Advani A, Hallander HO, Janssens K, Hermans PW, Mooi FR. SNP-based typing: a useful tool to study Bordetella pertussis populations. PLoS One 2011; 6:e20340. [PMID: 21647370 PMCID: PMC3103551 DOI: 10.1371/journal.pone.0020340] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/29/2011] [Indexed: 11/19/2022] Open
Abstract
To monitor changes in Bordetella pertussis populations, mainly two typing methods are used; Pulsed-Field Gel Electrophoresis (PFGE) and Multiple-Locus Variable-Number Tandem Repeat Analysis (MLVA). In this study, a single nucleotide polymorphism (SNP) typing method, based on 87 SNPs, was developed and compared with PFGE and MLVA. The discriminatory indices of SNP typing, PFGE and MLVA were found to be 0.85, 0.95 and 0.83, respectively. Phylogenetic analysis, using SNP typing as Gold Standard, revealed false homoplasies in the PFGE and MLVA trees. Further, in contrast to the SNP-based tree, the PFGE- and MLVA-based trees did not reveal a positive correlation between root-to-tip distance and the isolation year of strains. Thus PFGE and MLVA do not allow an estimation of the relative age of the selected strains. In conclusion, SNP typing was found to be phylogenetically more informative than PFGE and more discriminative than MLVA. Further, in contrast to PFGE, it is readily standardized allowing interlaboratory comparisons. We applied SNP typing to study strains with a novel allele for the pertussis toxin promoter, ptxP3, which have a worldwide distribution and which have replaced the resident ptxP1 strains in the last 20 years. Previously, we showed that ptxP3 strains showed increased pertussis toxin expression and that their emergence was associated with increased notification in the Netherlands. SNP typing showed that the ptxP3 strains isolated in the Americas, Asia, Australia and Europe formed a monophyletic branch which recently diverged from ptxP1 strains. Two predominant ptxP3 SNP types were identified which spread worldwide. The widespread use of SNP typing will enhance our understanding of the evolution and global epidemiology of B. pertussis.
Collapse
Affiliation(s)
- Marjolein van Gent
- Laboratory for Infectious Diseases and Screening, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Marieke J. Bart
- Laboratory for Infectious Diseases and Screening, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Han G. J. van der Heide
- Laboratory for Infectious Diseases and Screening, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Kees J. Heuvelman
- Laboratory for Infectious Diseases and Screening, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Teemu Kallonen
- Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Turku, Finland
- Turku Graduate School for Biomedical Sciences, University of Turku, Turku, Finland
| | - Qiushui He
- Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Turku, Finland
| | - Jussi Mertsola
- Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Turku, Finland
| | - Abdolreza Advani
- Department of Bacteriology, Swedish Institute for Infectious Disease Control, Solna, Sweden
| | - Hans O. Hallander
- Department of Bacteriology, Swedish Institute for Infectious Disease Control, Solna, Sweden
| | | | - Peter W. Hermans
- Laboratory of Pediatric Infectious Diseases, Radboud University Nijmegen Medical Center, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Frits R. Mooi
- Laboratory for Infectious Diseases and Screening, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- * E-mail:
| |
Collapse
|
41
|
A novel sensor kinase is required for Bordetella bronchiseptica to colonize the lower respiratory tract. Infect Immun 2011; 79:3216-28. [PMID: 21606184 DOI: 10.1128/iai.00005-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bacterial virulence is influenced by the activity of two-component regulator systems (TCSs), which consist of membrane-bound sensor kinases that allow bacteria to sense the external environment and cytoplasmic, DNA-binding response regulator proteins that control appropriate gene expression. Respiratory pathogens of the Bordetella genus require the well-studied TCS BvgAS to control the expression of many genes required for colonization of the mammalian respiratory tract. Here we describe the identification of a novel gene in Bordetella bronchiseptica, plrS, the product of which shares sequence homology to several NtrY-family sensor kinases and is required for B. bronchiseptica to colonize and persist in the lower, but not upper, respiratory tract in rats and mice. The plrS gene is located immediately 5' to and presumably cotranscribed with a gene encoding a putative response regulator, supporting the idea that PlrS and the product of the downstream gene may compose a TCS. Consistent with this hypothesis, the PlrS-dependent colonization phenotype requires a conserved histidine that serves as the site of autophosphorylation in other sensor kinases, and in strains lacking plrS, the production and/or cellular localization of several immune-recognized proteins is altered in comparison to that in the wild-type strain. Because plrS is required for colonization and persistence only in the lower respiratory tract, a site where innate and adaptive immune mechanisms actively target infectious agents, we hypothesize that its role may be to allow Bordetella to resist the host immune response.
Collapse
|
42
|
Hot D, Slupek S, Wulbrecht B, D'Hondt A, Hubans C, Antoine R, Locht C, Lemoine Y. Detection of small RNAs in Bordetella pertussis and identification of a novel repeated genetic element. BMC Genomics 2011; 12:207. [PMID: 21524285 PMCID: PMC3110155 DOI: 10.1186/1471-2164-12-207] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 04/27/2011] [Indexed: 11/16/2022] Open
Abstract
Background Small bacterial RNAs (sRNAs) have been shown to participate in the regulation of gene expression and have been identified in numerous prokaryotic species. Some of them are involved in the regulation of virulence in pathogenic bacteria. So far, little is known about sRNAs in Bordetella, and only very few sRNAs have been identified in the genome of Bordetella pertussis, the causative agent of whooping cough. Results An in silico approach was used to predict sRNAs genes in intergenic regions of the B. pertussis genome. The genome sequences of B. pertussis, Bordetella parapertussis, Bordetella bronchiseptica and Bordetella avium were compared using a Blast, and significant hits were analyzed using RNAz. Twenty-three candidate regions were obtained, including regions encoding the already documented 6S RNA, and the GCVT and FMN riboswitches. The existence of sRNAs was verified by Northern blot analyses, and transcripts were detected for 13 out of the 20 additional candidates. These new sRNAs were named Bordetella pertussis RNAs, bpr. The expression of 4 of them differed between the early, exponential and late growth phases, and one of them, bprJ2, was found to be under the control of BvgA/BvgS two-component regulatory system of Bordetella virulence. A phylogenetic study of the bprJ sequence revealed a novel, so far undocumented repeat of ~90 bp, found in numerous copies in the Bordetella genomes and in that of other Betaproteobacteria. This repeat exhibits certain features of mobile elements. Conclusion We shown here that B. pertussis, like other pathogens, expresses sRNAs, and that the expression of one of them is controlled by the BvgA/BvgS system, similarly to most virulence genes, suggesting that it is involved in virulence of B. pertussis.
Collapse
Affiliation(s)
- David Hot
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, France.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Bart MJ, van Gent M, van der Heide HGJ, Boekhorst J, Hermans P, Parkhill J, Mooi FR. Comparative genomics of prevaccination and modern Bordetella pertussis strains. BMC Genomics 2010; 11:627. [PMID: 21070624 PMCID: PMC3018138 DOI: 10.1186/1471-2164-11-627] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 11/11/2010] [Indexed: 11/23/2022] Open
Abstract
Background Despite vaccination since the 1950s, pertussis has persisted and resurged. It remains a major cause of infant death worldwide and is the most prevalent vaccine-preventable disease in developed countries. The resurgence of pertussis has been associated with the expansion of Bordetella pertussis strains with a novel allele for the pertussis toxin (Ptx) promoter, ptxP3, which have replaced resident ptxP1 strains. Compared to ptxP1 strains, ptxP3 produce more Ptx resulting in increased virulence and immune suppression. To elucidate how B. pertussis has adapted to vaccination, we compared genome sequences of two ptxP3 strains with four strains isolated before and after the introduction vaccination. Results The distribution of SNPs in regions involved in transcription and translation suggested that changes in gene regulation play an important role in adaptation. No evidence was found for acquisition of novel genes. Modern strains differed significantly from prevaccination strains, both phylogenetically and with respect to particular alleles. The ptxP3 strains were found to have diverged recently from modern ptxP1 strains. Differences between ptxP3 and modern ptxP1 strains included SNPs in a number of pathogenicity-associated genes. Further, both gene inactivation and reactivation was observed in ptxP3 strains relative to modern ptxP1 strains. Conclusions Our work suggests that B. pertussis adapted by successive accumulation of SNPs and by gene (in)activation. In particular changes in gene regulation may have played a role in adaptation.
Collapse
Affiliation(s)
- Marieke J Bart
- Laboratory for Infectious Diseases and Screening, Netherlands Centre for Infectious Diseases Control, RIVM, Bilthoven, Netherlands
| | | | | | | | | | | | | |
Collapse
|
44
|
Vinogradov E, King JD, Pathak AK, Harvill ET, Preston A. Antigenic Variation among Bordetella: Bordetella bronchiseptica strain MO149 expresses a novel o chain that is poorly immunogenic. J Biol Chem 2010; 285:26869-26877. [PMID: 20592026 PMCID: PMC2930686 DOI: 10.1074/jbc.m110.115121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 06/14/2010] [Indexed: 01/31/2023] Open
Abstract
The O chain polysaccharide (O PS) of Bordetella bronchiseptica and Bordetella parapertussis lipopolysaccharide is a homopolymer of 2,3-diacetamido-2,3-dideoxygalacturonic acid (GalNAc3NAcA) in which some of the sugars are present as uronamides. The terminal residue contains several unusual modifications. To date, two types of modification have been characterized, and a survey of numerous strains demonstrated that each contained one of these two modification types. Host antibody responses against the O PS are directed against the terminal residue modifications, and there is little cross-reactivity between the two types. This suggests that Bordetella O PS modifications represent a means of antigenic variation. Here we report the characterization of the O PS of B. bronchiseptica strain MO149. It consists of a novel two-sugar repeating unit and a novel terminal residue modification, with the structure Me-4-alpha-L-GalNAc3NAcA-(4-beta-D-GlcNAc3NAcA-4-alpha-L-GalNAc3NAcA-)(5-6)-, which we propose be defined as the B. bronchiseptica O3 PS. We show that the O3 PS is very poorly immunogenic and that the MO149 strain contains a novel wbm (O PS biosynthesis) locus. Thus, there is greater diversity among Bordetella O PSs than previously recognized, which is likely to be a result of selection pressure from host immunity. We also determine experimentally, for the first time, the absolute configuration of the diacetimido-uronic acid sugars in Bordetella O PS.
Collapse
Affiliation(s)
- Evgeny Vinogradov
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Jerry D King
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ashutosh K Pathak
- Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, Pennsylvania 16802, United Kingdom
| | - Eric T Harvill
- Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, Pennsylvania 16802, United Kingdom
| | - Andrew Preston
- Department of Clinical Veterinary Science, University of Bristol, Langford, North Somerset BS40 5DU, United Kingdom.
| |
Collapse
|
45
|
Abstract
BP3385 has been proposed as a diagnostic PCR target for discriminating between Bordetella pertussis and other Bordetella species that also infect humans. Our results demonstrate that this gene is also present in some strains of Bordetella hinzii and Bordetella bronchiseptica.
Collapse
|
46
|
Sukumar N, Sloan GP, Conover MS, Love CF, Mattoo S, Kock ND, Deora R. Cross-species protection mediated by a Bordetella bronchiseptica strain lacking antigenic homologs present in acellular pertussis vaccines. Infect Immun 2010; 78:2008-16. [PMID: 20176797 PMCID: PMC2863494 DOI: 10.1128/iai.01142-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/06/2009] [Accepted: 12/15/2009] [Indexed: 12/31/2022] Open
Abstract
The Bordetella species are Gram-negative bacterial pathogens that are characterized by long-term colonization of the mammalian respiratory tract and are causative agents of respiratory diseases in humans and animals. Despite widespread and efficient vaccination, there has been a world-wide resurgence of pertussis, which remains the leading cause of vaccine-preventable death in developed countries. It has been proposed that current acellular vaccines (Pa) composed of only a few bacterial proteins may be less efficacious because of vaccine-induced antigenic shifts and adaptations. To gain insight into the development of a newer generation of vaccines, we constructed a Bordetella bronchiseptica strain (LPaV) that does not express the antigenic homologs included in any of the Pa vaccines currently in use. This strain also lacks adenylate cyclase toxin, an essential virulence factor, and BipA, a surface protein. While LPaV colonized the mouse nose as efficiently as the wild-type strain, it was highly deficient in colonization of the lower respiratory tract and was attenuated in induction of inflammation and injury to the lungs. Strikingly, to our surprise, we found that in an intranasal murine challenge model, LPaV elicited cross-species protection against both B. bronchiseptica and Bordetella pertussis. Our data suggest the presence of immunogenic protective components other than those included in the pertussis vaccine. Combined with the whole-genome sequences of many Bordetella spp. that are available, the results of this study should serve as a platform for strategic development of the next generation of acellular pertussis vaccines.
Collapse
Affiliation(s)
- Neelima Sukumar
- Department of Microbiology and Immunology, Program in Molecular Genetics, Department of Pathology/Comparative Medicine, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, Howard Hughes Medical Institute and Department of Pharmacology, University of California, San Diego School of Medicine, San Diego, California
| | - Gina Parise Sloan
- Department of Microbiology and Immunology, Program in Molecular Genetics, Department of Pathology/Comparative Medicine, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, Howard Hughes Medical Institute and Department of Pharmacology, University of California, San Diego School of Medicine, San Diego, California
| | - Matt S. Conover
- Department of Microbiology and Immunology, Program in Molecular Genetics, Department of Pathology/Comparative Medicine, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, Howard Hughes Medical Institute and Department of Pharmacology, University of California, San Diego School of Medicine, San Diego, California
| | - Cheraton F. Love
- Department of Microbiology and Immunology, Program in Molecular Genetics, Department of Pathology/Comparative Medicine, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, Howard Hughes Medical Institute and Department of Pharmacology, University of California, San Diego School of Medicine, San Diego, California
| | - Seema Mattoo
- Department of Microbiology and Immunology, Program in Molecular Genetics, Department of Pathology/Comparative Medicine, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, Howard Hughes Medical Institute and Department of Pharmacology, University of California, San Diego School of Medicine, San Diego, California
| | - Nancy D. Kock
- Department of Microbiology and Immunology, Program in Molecular Genetics, Department of Pathology/Comparative Medicine, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, Howard Hughes Medical Institute and Department of Pharmacology, University of California, San Diego School of Medicine, San Diego, California
| | - Rajendar Deora
- Department of Microbiology and Immunology, Program in Molecular Genetics, Department of Pathology/Comparative Medicine, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, Howard Hughes Medical Institute and Department of Pharmacology, University of California, San Diego School of Medicine, San Diego, California
| |
Collapse
|
47
|
Berglund EC, Ehrenborg C, Vinnere Pettersson O, Granberg F, Näslund K, Holmberg M, Andersson SGE. Genome dynamics of Bartonella grahamii in micro-populations of woodland rodents. BMC Genomics 2010; 11:152. [PMID: 20202191 PMCID: PMC2847970 DOI: 10.1186/1471-2164-11-152] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 03/04/2010] [Indexed: 01/02/2023] Open
Abstract
Background Rodents represent a high-risk reservoir for the emergence of new human pathogens. The recent completion of the 2.3 Mb genome of Bartonella grahamii, one of the most prevalent blood-borne bacteria in wild rodents, revealed a higher abundance of genes for host-cell interaction systems than in the genomes of closely related human pathogens. The sequence variability within the global B. grahamii population was recently investigated by multi locus sequence typing, but no study on the variability of putative host-cell interaction systems has been performed. Results To study the population dynamics of B. grahamii, we analyzed the genomic diversity on a whole-genome scale of 27 B. grahamii strains isolated from four different species of wild rodents in three geographic locations separated by less than 30 km. Even using highly variable spacer regions, only 3 sequence types were identified. This low sequence diversity contrasted with a high variability in genome content. Microarray comparative genome hybridizations identified genes for outer surface proteins, including a repeated region containing the fha gene for filamentous hemaggluttinin and a plasmid that encodes a type IV secretion system, as the most variable. The estimated generation times in liquid culture medium for a subset of strains ranged from 5 to 22 hours, but did not correlate with sequence type or presence/absence patterns of the fha gene or the plasmid. Conclusion Our study has revealed a geographic microstructure of B. grahamii in wild rodents. Despite near-identity in nucleotide sequence, major differences were observed in gene presence/absence patterns that did not segregate with host species. This suggests that genetically similar strains can infect a range of different hosts.
Collapse
Affiliation(s)
- Eva C Berglund
- Department of Moleculcar Evolution, Norbyvägen 18C, S-75236 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
48
|
Eppinger M, Worsham PL, Nikolich MP, Riley DR, Sebastian Y, Mou S, Achtman M, Lindler LE, Ravel J. Genome sequence of the deep-rooted Yersinia pestis strain Angola reveals new insights into the evolution and pangenome of the plague bacterium. J Bacteriol 2010; 192:1685-99. [PMID: 20061468 PMCID: PMC2832528 DOI: 10.1128/jb.01518-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 12/25/2009] [Indexed: 11/20/2022] Open
Abstract
To gain insights into the origin and genome evolution of the plague bacterium Yersinia pestis, we have sequenced the deep-rooted strain Angola, a virulent Pestoides isolate. Its ancient nature makes this atypical isolate of particular importance in understanding the evolution of plague pathogenicity. Its chromosome features a unique genetic make-up intermediate between modern Y. pestis isolates and its evolutionary ancestor, Y. pseudotuberculosis. Our genotypic and phenotypic analyses led us to conclude that Angola belongs to one of the most ancient Y. pestis lineages thus far sequenced. The mobilome carries the first reported chimeric plasmid combining the two species-specific virulence plasmids. Genomic findings were validated in virulence assays demonstrating that its pathogenic potential is distinct from modern Y. pestis isolates. Human infection with this particular isolate would not be diagnosed by the standard clinical tests, as Angola lacks the plasmid-borne capsule, and a possible emergence of this genotype raises major public health concerns. To assess the genomic plasticity in Y. pestis, we investigated the global gene reservoir and estimated the pangenome at 4,844 unique protein-coding genes. As shown by the genomic analysis of this evolutionary key isolate, we found that the genomic plasticity within Y. pestis clearly was not as limited as previously thought, which is strengthened by the detection of the largest number of isolate-specific single-nucleotide polymorphisms (SNPs) currently reported in the species. This study identified numerous novel genetic signatures, some of which seem to be intimately associated with plague virulence. These markers are valuable in the development of a robust typing system critical for forensic, diagnostic, and epidemiological studies.
Collapse
Affiliation(s)
- Mark Eppinger
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| | - Patricia L. Worsham
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| | - Mikeljon P. Nikolich
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| | - David R. Riley
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| | - Yinong Sebastian
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| | - Sherry Mou
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| | - Mark Achtman
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| | - Luther E. Lindler
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| | - Jacques Ravel
- Institute for Genome Sciences (IGS) and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Maryland 21702, Walter Reed Army Institute of Research (WRAIR), Division of Bacterial & Rickettsial Diseases, Silver Spring, Maryland 20910, J. Craig Venter Institute, Rockville, Maryland 20850, Environmental Research Institute (ERI), University College Cork, Lee Road, Cork, Ireland, Department of Defense, Global Emerging Infections Surveillance and Response System, 503 Robert Grant Ave., Silver Spring, Maryland 20910
| |
Collapse
|
49
|
King AJ, van Gorkom T, van der Heide HGJ, Advani A, van der Lee S. Changes in the genomic content of circulating Bordetella pertussis strains isolated from the Netherlands, Sweden, Japan and Australia: adaptive evolution or drift? BMC Genomics 2010; 11:64. [PMID: 20102608 PMCID: PMC2834637 DOI: 10.1186/1471-2164-11-64] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 01/26/2010] [Indexed: 11/17/2022] Open
Abstract
Background Bordetella pertussis is the causative agent of human whooping cough (pertussis) and is particularly severe in infants. Despite worldwide vaccinations, whooping cough remains a public health problem. A significant increase in the incidence of whooping cough has been observed in many countries since the 1990s. Several reasons for the re-emergence of this highly contagious disease have been suggested. A particularly intriguing possibility is based on evidence indicating that pathogen adaptation may play a role in this process. In an attempt to gain insight into the genomic make-up of B. pertussis over the last 60 years, we used an oligonucleotide DNA microarray to compare the genomic contents of a collection of 171 strains of B. pertussis isolates from different countries. Results The CGH microarray analysis estimated the core genome of B. pertussis, to consist of 3,281 CDSs that are conserved among all B. pertussis strains, and represent 84.8% of all CDSs found in the 171 B. pertussis strains. A total of 64 regions of difference consisting of one or more contiguous CDSs were identified among the variable genes. CGH data also revealed that the genome size of B. pertussis strains is decreasing progressively over the past 60 years. Phylogenetic analysis of microarray data generated a minimum spanning tree that depicted the phylogenetic structure of the strains. B. pertussis strains with the same gene content were found in several different countries. However, geographic specificity of the B. pertussis strains was not observed. The gene content was determined to highly correlate with the ptxP-type of the strains. Conclusions An overview of genomic contents of a large collection of isolates from different countries allowed us to derive a core genome and a phylogenetic structure of B. pertussis. Our results show that B. pertussis is a dynamic organism that continues to evolve.
Collapse
Affiliation(s)
- Audrey J King
- Laboratory for Infectious Diseases and Screening (LIS) Centre for Infectious Disease Control, National Institute for Public Health and the Environment - RIVM - Netherlands, 3720 BA Bilthoven, The Netherlands.
| | | | | | | | | |
Collapse
|
50
|
Mooi FR. Bordetella pertussis and vaccination: the persistence of a genetically monomorphic pathogen. INFECTION GENETICS AND EVOLUTION 2009; 10:36-49. [PMID: 19879977 DOI: 10.1016/j.meegid.2009.10.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 10/11/2009] [Accepted: 10/20/2009] [Indexed: 01/08/2023]
Abstract
Before childhood vaccination was introduced in the 1950s, pertussis or whooping cough was a major cause of infant death worldwide. Widespread vaccination of children was successful in significantly reducing morbidity and mortality. However, despite vaccination, pertussis has persisted and, in the 1990s, resurged in a number of countries with highly vaccinated populations. Indeed, pertussis has become the most prevalent vaccine-preventable disease in developed countries with estimated infection frequencies of 1-6%. Recently vaccinated children are well protected against pertussis disease and its increase is mainly seen in adolescents and adults in which disease symptoms are often mild. The etiologic agent of pertussis, Bordetella pertussis, is extremely monomorphic and its ability to persist in the face of intensive vaccination is intriguing. Numerous studies have shown that B. pertussis populations changed after the introduction of vaccination suggesting adaptation. These adaptations did not involve the acquisition of novel genes but small genetic changes, mainly SNPs, and occurred in successive steps in a period of 40 years. The earliest adaptations resulted in antigenic divergence with vaccine strains. More recently, strains emerged with increased pertussis toxin (Ptx) production. Here I argue that the resurgence of pertussis is the compound effect of pathogen adaptation and waning immunity. I propose that the removal by vaccination of naïve infants as the major source for transmission was the crucial event which has driven the changes in B. pertussis populations. This has selected for strains which are more efficiently transmitted by primed hosts in which immunity has waned. The adaptation of B. pertussis to primed hosts involved delaying an effective immune response by antigenic divergence with vaccine strains and by increasing immune suppression through higher levels of Ptx production. Higher levels of Ptx may also benefit transmission by enhancing clinical symptoms. The study of B. pertussis populations has not only increased our understanding of pathogen evolution, but also suggests way to improve pertussis vaccines, underlining the public health significance of population-based studies of pathogens.
Collapse
Affiliation(s)
- Frits R Mooi
- Lab for Infectious Diseases and Screening, Netherlands Centre for Infectious Diseases Control, Natl Institute for Public Health and the Environment, RIVM, PO Box 1, 3720 BA Bilthoven, Netherlands.
| |
Collapse
|