1
|
Evans DCS, Kristensen MF, Minero GAS, Palmén LG, Knap I, Tiwari MK, Schlafer S, Meyer RL. Dental biofilms contain DNase I-resistant Z-DNA and G-quadruplexes but alternative DNase overcomes this resistance. NPJ Biofilms Microbiomes 2025; 11:80. [PMID: 40389511 PMCID: PMC12089357 DOI: 10.1038/s41522-025-00694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 04/04/2025] [Indexed: 05/21/2025] Open
Abstract
Extracellular DNA (eDNA) in bacterial biofilms can form non-canonical structures like Z-DNA and G-quadruplex (G4), which enhance biofilm resilience by providing protection against mammalian DNases. However, the conformation of eDNA in dental biofilms remains unexplored. Using fluorescence immunolabeling and confocal microscopy, we examined dental biofilms from healthy and caries-active subjects, revealing B-DNA, G4-, and Z-DNA structures surrounding clusters of bacteria, with some structures directly associated with the bacterial cell surface. We demonstrated that these non-canonical DNA structures were resistant to mammalian DNase I. Using a Streptococcus mutans biofilm model, we visualised fluorescently labelled eDNA during enzyme treatment and identified both an experimental nuclease and a DNase I-chloroquine combination capable of removing eDNA that was resistant to DNase I. These findings suggest that G4 and Z-DNA structures represent novel targets for improved enzyme formulations in controlling dental biofilms and potentially other biofilms containing these secondary DNA structures.
Collapse
Affiliation(s)
- Dominique C S Evans
- Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus, Denmark
- Novonesis A/S, Bagsværd, Denmark
| | - Mathilde F Kristensen
- Department of Dentistry and Oral Health, Section for Oral Ecology, Cariology, Aarhus University, Aarhus, Denmark
| | | | | | | | | | - Sebastian Schlafer
- Department of Dentistry and Oral Health, Section for Oral Ecology, Cariology, Aarhus University, Aarhus, Denmark
| | - Rikke L Meyer
- Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus, Denmark.
- Department of Biology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
2
|
Oliva RL, Khadka UB, Camenzind T, Dyckmans J, Joergensen RG. Constituent of extracellular polymeric substances (EPS) produced by a range of soil bacteria and fungi. BMC Microbiol 2025; 25:298. [PMID: 40375143 DOI: 10.1186/s12866-025-04034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 05/08/2025] [Indexed: 05/18/2025] Open
Abstract
Extracellular polymeric substances (EPS) produced by soil bacteria and fungi are crucial for microbial growth and provide many functions for the soil and its microbes. EPS composition may depend on microbial community composition and the soil physical and chemical environment, nevertheless, not much is known about the EPS constituents' specific roles nor how they interact to alter biofilm's functions. We hypothesized that EPS production would be enhanced with the presence of a surface and with a more labile carbon source. Also, that even though carbohydrates and proteins are the main constituents of EPS, we could still find quantifiable amounts of mannosamine and galactosamine (two amino sugars previously shown to be part of microbial biofilms). Ten soil bacterial and ten soil fungal species were cultured with glycerol or starch and with or without a quartz matrix. After a 4-day cultivation, EPS were extracted, and seven constituents were determined: carbohydrates, DNA, proteins, muramic acid, mannosamine, galactosamine, and glucosamine. We found EPS composition was strongly modified by microbial type, whereas differences in EPS production were driven mostly by environmental conditions. The EPS-carbohydrate/protein ratio was higher for cultures grown in starch media than in glycerol and increased in the presence of quartz. EPS-carbohydrate concentration reflected environmental changes of substrate quality and surface presence. Contrastingly, changes in the other EPS constituent composition are likely due to intrinsic microbial characteristics. Our findings open the pathway to study microbial biofilms in more complex environments (such as soils) and shed light to the importance of extracellular structures to microbial processes.
Collapse
Affiliation(s)
- Rebeca Leme Oliva
- Soil Biology and Plant Nutrition, University of Kassel, Nordbahnhofstr. 1a, Witzenhausen, 37213, Germany.
| | - Umesh B Khadka
- Soil Biology and Plant Nutrition, University of Kassel, Nordbahnhofstr. 1a, Witzenhausen, 37213, Germany
| | - Tessa Camenzind
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
| | - Jens Dyckmans
- Centre for Stable Isotope Research and Analysis, University of Göttingen, Büsgenweg 2, Göttingen, 37077, Germany
| | - Rainer Georg Joergensen
- Soil Biology and Plant Nutrition, University of Kassel, Nordbahnhofstr. 1a, Witzenhausen, 37213, Germany
| |
Collapse
|
3
|
Geng F, Liu J, Liu J, Lu Z, Pan Y. Recent progress in understanding the role of bacterial extracellular DNA: focus on dental biofilm. Crit Rev Microbiol 2024:1-19. [PMID: 39648406 DOI: 10.1080/1040841x.2024.2438117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/11/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
Dental biofilm is a highly complicated and dynamic structure comprising not only microbial communities but also the surrounding matrix of extracellular polymeric substances (EPS), including polysaccharides, proteins, extracellular DNA (eDNA) and other biopolymers. In recent years, the important role of bacterial eDNA in dental biofilms has gradually attracted attention. In this review, we present recent studies on the presence, dynamic conformation and release of oral bacterial eDNA. Moreover, updated information on functions associated with oral bacterial eDNA in biofilm formation, antibiotic resistance, activation of the immune system and immune evasion is highlighted. Finally, we summarize the role of oral bacterial eDNA as a promising target for the treatment of oral diseases. Increasing insight into the versatile roles of bacterial eDNA in dental biofilms will facilitate the prevention and treatment of biofilm-induced oral infections.
Collapse
Affiliation(s)
- Fengxue Geng
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Junchao Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Jinwen Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ze Lu
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Belay WY, Getachew M, Tegegne BA, Teffera ZH, Dagne A, Zeleke TK, Abebe RB, Gedif AA, Fenta A, Yirdaw G, Tilahun A, Aschale Y. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: a review. Front Pharmacol 2024; 15:1444781. [PMID: 39221153 PMCID: PMC11362070 DOI: 10.3389/fphar.2024.1444781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Antibacterial drug resistance poses a significant challenge to modern healthcare systems, threatening our ability to effectively treat bacterial infections. This review aims to provide a comprehensive overview of the types and mechanisms of antibacterial drug resistance. To achieve this aim, a thorough literature search was conducted to identify key studies and reviews on antibacterial resistance mechanisms, strategies and next-generation antimicrobials to contain antimicrobial resistance. In this review, types of resistance and major mechanisms of antibacterial resistance with examples including target site modifications, decreased influx, increased efflux pumps, and enzymatic inactivation of antibacterials has been discussed. Moreover, biofilm formation, and horizontal gene transfer methods has also been included. Furthermore, measures (interventions) taken to control antimicrobial resistance and next-generation antimicrobials have been discussed in detail. Overall, this review provides valuable insights into the diverse mechanisms employed by bacteria to resist the effects of antibacterial drugs, with the aim of informing future research and guiding antimicrobial stewardship efforts.
Collapse
Affiliation(s)
- Wubetu Yihunie Belay
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of clinical pharmacy, College of medicine and health sciences, University of Gondar, Gondar, Ethiopia
| | - Abebaw Abie Gedif
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Fenta
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Getasew Yirdaw
- Department of environmental health science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Tilahun
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Aschale
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
5
|
Cj0683 Is a Competence Protein Essential for Efficient Initialization of DNA Uptake in Campylobacter jejuni. Biomolecules 2023; 13:biom13030514. [PMID: 36979449 PMCID: PMC10046745 DOI: 10.3390/biom13030514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
C. jejuni is an important food-borne pathogen displaying high genetic diversity, substantially based on natural transformation. The mechanism of DNA uptake from the environment depends on a type II secretion/type IV pilus system, whose components are partially known. Here, we quantified DNA uptake in C. jejuni at the single cell level and observed median transport capacities of approximately 30 kb per uptake location. The process appeared to be limited by the initialization of DNA uptake, was finite, and, finalized within 30 min of contact to DNA. Mutants lacking either the outer membrane pore PilQ or the inner membrane channel ComEC were deficient in natural transformation. The periplasmic DNA binding protein ComE was negligible for DNA uptake, which is in contrast to its proposed function. Intriguingly, a mutant lacking the unique periplasmic protein Cj0683 displayed rare but fully functional DNA uptake events. We conclude that Cj0683 was essential for the efficient initialization of DNA uptake, consistent with the putative function as a competence pilus protein. Unravelling features important in natural transformation might lead to target identification, reducing the adaptive potential of pathogens.
Collapse
|
6
|
Nagasawa R, Nomura N, Obana N. Identification of a Novel Gene Involved in Cell-to-cell Communication-induced Cell Death and eDNA Production in Streptococcus mutans. Microbes Environ 2023; 38:n/a. [PMID: 37302844 DOI: 10.1264/jsme2.me22085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Streptococcus mutans is a major caries-causing bacterium that forms firmly attached biofilms on tooth surfaces. Biofilm formation by S. mutans consists of polysaccharide-dependent and polysaccharide-independent processes. Among polysaccharide-independent processes, extracellular DNA (eDNA) mediates the initial attachment of cells to surfaces. We previously reported that the secreted peptide signal, competence-stimulating peptide (CSP) induced cell death in a subpopulation of cells, leading to autolysis-mediated eDNA release. The autolysin gene lytF, the expression of which is stimulated by CSP, has been shown to mediate CSP-dependent cell death, while cell death was not entirely abolished in the lytF deletion mutant, indicating the involvement of other factors. To identify novel genes involved in CSP-dependent cell death, we herein compared transcriptomes between live and dead cells derived from an isogenic population. The results obtained revealed the accumulation of several mRNAs in dead cells. The deletion of SMU_1553c, a putative bacteriocin gene, resulted in significant reductions in CSP-induced cell death and eDNA production levels from those in the parental strain. Moreover, in the double mutant strain of lytF and SMU_1553c, cell death and eDNA production in response to synthetic CSP were completely abolished under both planktonic and biofilm conditions. These results indicate that SMU_1553c is a novel cell death-related factor that contributes to CSP-dependent cell death and eDNA production.
Collapse
Affiliation(s)
- Ryo Nagasawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba
- Microbiology Research Center for Sustainability, University of Tsukuba
| | - Nozomu Obana
- Microbiology Research Center for Sustainability, University of Tsukuba
- Faculty of Medicine, Transborder Medical Research Center, University of Tsukuba
| |
Collapse
|
7
|
Rostami N, Shields RC, Serrage HJ, Lawler C, Brittan JL, Yassin S, Ahmed H, Treumann A, Thompson P, Waldron KJ, Nobbs AH, Jakubovics NS. Interspecies competition in oral biofilms mediated by Streptococcus gordonii extracellular deoxyribonuclease SsnA. NPJ Biofilms Microbiomes 2022; 8:96. [PMID: 36509765 PMCID: PMC9744736 DOI: 10.1038/s41522-022-00359-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Extracellular DNA (eDNA) is a key component of many microbial biofilms including dental plaque. However, the roles of extracellular deoxyribonuclease (DNase) enzymes within biofilms are poorly understood. Streptococcus gordonii is a pioneer colonizer of dental plaque. Here, we identified and characterised SsnA, a cell wall-associated protein responsible for extracellular DNase activity of S. gordonii. The SsnA-mediated extracellular DNase activity of S. gordonii was suppressed following growth in sugars. SsnA was purified as a recombinant protein and shown to be inactive below pH 6.5. SsnA inhibited biofilm formation by Streptococcus mutans in a pH-dependent manner. Further, SsnA inhibited the growth of oral microcosm biofilms in human saliva. However, inhibition was ameliorated by the addition of sucrose. Together, these data indicate that S. gordonii SsnA plays a key role in interspecies competition within oral biofilms. Acidification of the medium through sugar catabolism could be a strategy for cariogenic species such as S. mutans to prevent SsnA-mediated exclusion from biofilms.
Collapse
Affiliation(s)
- Nadia Rostami
- grid.1006.70000 0001 0462 7212School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Robert C. Shields
- grid.1006.70000 0001 0462 7212School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle, UK ,grid.252381.f0000 0001 2169 5989Department of Biological Sciences, Arkansas State University, Jonesboro, AR USA
| | - Hannah J. Serrage
- grid.5337.20000 0004 1936 7603Bristol Dental School, University of Bristol, Bristol, UK
| | - Catherine Lawler
- grid.5337.20000 0004 1936 7603Bristol Dental School, University of Bristol, Bristol, UK
| | - Jane L. Brittan
- grid.5337.20000 0004 1936 7603Bristol Dental School, University of Bristol, Bristol, UK
| | - Sufian Yassin
- grid.1006.70000 0001 0462 7212School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle, UK ,grid.265892.20000000106344187Department of Restorative Sciences, University of Alabama at Birmingham, Birmingham, AL USA
| | - Halah Ahmed
- grid.1006.70000 0001 0462 7212School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Achim Treumann
- grid.1006.70000 0001 0462 7212Protein and Proteome Analysis Facility, Faculty of Medical Sciences, Newcastle University, Newcastle, UK ,KBI Biopharma BV, Leuven, Belgium
| | - Paul Thompson
- grid.1006.70000 0001 0462 7212Protein and Proteome Analysis Facility, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Kevin J. Waldron
- grid.1006.70000 0001 0462 7212Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Angela H. Nobbs
- grid.5337.20000 0004 1936 7603Bristol Dental School, University of Bristol, Bristol, UK
| | - Nicholas S. Jakubovics
- grid.1006.70000 0001 0462 7212School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| |
Collapse
|
8
|
Uruén C, García C, Fraile L, Tommassen J, Arenas J. How Streptococcus suis escapes antibiotic treatments. Vet Res 2022; 53:91. [DOI: 10.1186/s13567-022-01111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractStreptococcus suis is a zoonotic agent that causes sepsis and meningitis in pigs and humans. S. suis infections are responsible for large economic losses in pig production. The lack of effective vaccines to prevent the disease has promoted the extensive use of antibiotics worldwide. This has been followed by the emergence of resistance against different classes of antibiotics. The rates of resistance to tetracyclines, lincosamides, and macrolides are extremely high, and resistance has spread worldwide. The genetic origin of S. suis resistance is multiple and includes the production of target-modifying and antibiotic-inactivating enzymes and mutations in antibiotic targets. S. suis genomes contain traits of horizontal gene transfer. Many mobile genetic elements carry a variety of genes that confer resistance to antibiotics as well as genes for autonomous DNA transfer and, thus, S. suis can rapidly acquire multiresistance. In addition, S. suis forms microcolonies on host tissues, which are associations of microorganisms that generate tolerance to antibiotics through a variety of mechanisms and favor the exchange of genetic material. Thus, alternatives to currently used antibiotics are highly demanded. A deep understanding of the mechanisms by which S. suis becomes resistant or tolerant to antibiotics may help to develop novel molecules or combinations of antimicrobials to fight these infections. Meanwhile, phage therapy and vaccination are promising alternative strategies, which could alleviate disease pressure and, thereby, antibiotic use.
Collapse
|
9
|
Ren CY, Xu QJ, Mathieu J, Alvarez PJJ, Zhu L, Zhao HP. A Carotenoid- and Nuclease-Producing Bacterium Can Mitigate Enterococcus faecalis Transformation by Antibiotic Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15167-15178. [PMID: 35862635 DOI: 10.1021/acs.est.2c03919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dissemination of antibiotic resistance genes (ARGs) through natural transformation is facilitated by factors that stabilize extracellular DNA (eDNA) and that induce reactive oxygen species (ROS) that permeabilize receptor cells and upregulate transformation competence genes. In this study, we demonstrate that Deinococcus radiodurans can mitigate this ARG dissemination pathway by removing both eDNA and ROS that make recipient cells more vulnerable to transformation. We used plasmid RP4 as source of extracellular ARGs (tetA, aphA, and blaTEM-2) and the opportunistic pathogen Enterococcus faecalis as receptor. The presence of D. radiodurans significantly reduced the transformation frequency from 2.5 ± 0.7 × 10-6 to 7.4 ± 1.4 × 10-7 (p < 0.05). Based on quantification of intracellular ROS accumulation and superoxide dismutase (SOD) activity, and quantitative polymerase chain reaction (qPCR) and transcriptomic analyses, we propose two mechanisms by which D. radiodurans mitigates E. faecalis transformation by ARGs: (a) residual antibiotics induce D. radiodurans to synthesize liposoluble carotenoids that scavenge ROS and thus mitigate the susceptibility of E. faecalis for eDNA uptake, and (b) eDNA induces D. radiodurans to synthesize extracellular nucleases that degrade eARGs. This mechanistic insight informs biological strategies (including bioaugmentation) to curtail the spread of ARGs through transformation.
Collapse
Affiliation(s)
- Chong-Yang Ren
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China, 310058
| | - Qiu-Jin Xu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China, 310058
| | - Jacques Mathieu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Lizhong Zhu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China, 310058
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China, 310058
| |
Collapse
|
10
|
Ronish LA, Sidner B, Yu Y, Piepenbrink KH. Recognition of extracellular DNA by type IV pili promotes biofilm formation by Clostridioides difficile. J Biol Chem 2022; 298:102449. [PMID: 36064001 PMCID: PMC9556784 DOI: 10.1016/j.jbc.2022.102449] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
Clostridioides difficile is a Gram-positive bacillus, which is a frequent cause of gastrointestinal infections triggered by the depletion of the gut microbiome. Because of the frequent recurrence of these infections after antibiotic treatment, mechanisms of C. difficile persistence and recurrence, including biofilm formation, are of increasing interest. Previously, our group and others found that type IV pili, filamentous helical appendages polymerized from protein subunits, promoted microcolony and biofilm formation in C. difficile. In Gram-negative bacteria, the ability of type IV pili to mediate bacterial self-association has been explained through interactions between the pili of adjacent cells, but type IV pili from several Gram-negative species are also required for natural competence through DNA uptake. Here, we report the ability of two C. difficile pilin subunits, PilJ and PilW, to bind to DNA in vitro, as well as the defects in biofilm formation in the pilJ and pilW gene-interruption mutants. Additionally, we have resolved the X-ray crystal structure of PilW, which we use to model possible structural mechanisms for the formation of C. difficile biofilm through interactions between type IV pili and the DNA of the extracellular matrix. Taken together, our results provide further insight into the relationship between type IV pilus function and biofilm formation in C. difficile and, more broadly, suggest that DNA recognition by type IV pili and related structures may have functional importance beyond DNA uptake for natural competence.
Collapse
Affiliation(s)
- Leslie A Ronish
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Ben Sidner
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Yafan Yu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Kurt H Piepenbrink
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
11
|
Chen R, Du M, Liu C. Strategies for dispersion of cariogenic biofilms: applications and mechanisms. Front Microbiol 2022; 13:981203. [PMID: 36134140 PMCID: PMC9484479 DOI: 10.3389/fmicb.2022.981203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/11/2022] [Indexed: 11/05/2022] Open
Abstract
Bacteria residing within biofilms are more resistant to drugs than planktonic bacteria. They can thus play a significant role in the onset of chronic infections. Dispersion of biofilms is a promising avenue for the treatment of biofilm-associated diseases, such as dental caries. In this review, we summarize strategies for dispersion of cariogenic biofilms, including biofilm environment, signaling pathways, biological therapies, and nanovehicle-based adjuvant strategies. The mechanisms behind these strategies have been discussed from the components of oral biofilm. In the future, these strategies may provide great opportunities for the clinical treatment of dental diseases. Graphical Abstract.
Collapse
|
12
|
Mirzaei R, Ranjbar R. Hijacking host components for bacterial biofilm formation: An advanced mechanism. Int Immunopharmacol 2022; 103:108471. [PMID: 34952466 DOI: 10.1016/j.intimp.2021.108471] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
Biofilm is a community of bacteria embedded in the extracellular matrix that accounts for 80% of bacterial infections. Biofilm enables bacterial cells to provide particular conditions and produce virulence determinants in response to the unavailability of micronutrients and local oxygen, resulting in their resistance to various antibacterial agents. Besides, the human immune reactions are not completely competent in the elimination of biofilm. Most importantly, the growing body of evidence shows that some bacterial spp. use a variety of mechanisms by which hijack the host components to form biofilm. In this regard, host components, such as DNA, hyaluronan, collagen, fibronectin, mucin, oligosaccharide moieties, filamentous polymers (F-actin), plasma, platelets, keratin, sialic acid, laminin, vitronectin, C3- and C4- binding proteins, antibody, proteases, factor I, factor H, and acidic proline-rich proteins have been reviewed. Hence, the characterization of interactions between bacterial biofilm and the host would be critical to effectively address biofilm-associated infections. In this paper, we review the latest information on the hijacking of host factors by bacteria to form biofilm.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Effects of pH on the Properties of Membrane Vesicles Including Glucosyltransferase in Streptococcus mutans. Microorganisms 2021; 9:microorganisms9112308. [PMID: 34835434 PMCID: PMC8618110 DOI: 10.3390/microorganisms9112308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022] Open
Abstract
Streptococcus mutans releases membrane vesicles (MVs) and induces MV-dependent biofilm formation. Glucosyltransferases (Gtfs) are bound to MVs and contribute to the adhesion and glucans-dependent biofilm formation of early adherent bacteria on the tooth surface. The biofilm formation of S. mutans may be controlled depending on whether the initial pH tends to be acidic or alkaline. In this study, the characteristics and effects of MVs extracted from various conditions {(initial pH 6.0 and 8.0 media prepared with lactic acid (LA) and acetic acid (AA), and with NaOH (NO), respectively)} on the biofilm formation of S. mutans and early adherent bacteria were investigated. The quantitative changes in glucans between primary pH 6.0 and 8.0 conditions were observed, associated with different activities affecting MV-dependent biofilm formation. The decreased amount of Gtfs on MVs under the initial pH 6.0 conditions strongly guided low levels of MV-dependent biofilm formation. However, in the initial pH 6.0 and 8.0 solutions prepared with AA and NO, the MVs in the biofilm appeared to be formed by the expression of glucans and/or extracellular DNA. These results suggest that the environmental pH conditions established by acid and alkaline factors determine the differences in the local pathogenic activities of biofilm development in the oral cavity.
Collapse
|
14
|
Morales-García AL, Walton R, Blakeman JT, Banwart SA, Harding JH, Geoghegan M, Freeman CL, Rolfe SA. The Role of Extracellular DNA in Microbial Attachment to Oxidized Silicon Surfaces in the Presence of Ca 2+ and Na . LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9838-9850. [PMID: 34347486 PMCID: PMC8397393 DOI: 10.1021/acs.langmuir.1c01410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Attachment assays of a Pseudomonas isolate to fused silica slides showed that treatment with DNaseI significantly inhibited cellular adsorption, which was restored upon DNA treatment. These assays confirmed the important role of extracellular DNA (eDNA) adsorption to a surface. To investigate the eDNA adsorption mechanism, single-molecule force spectroscopy (SMFS) was used to measure the adsorption of eDNA to silicon surfaces in the presence of different concentrations of sodium and calcium ions. SMFS reveals that the work of adhesion required to remove calcium-bound eDNA from the silicon oxide surface is substantially greater than that for sodium. Molecular dynamics simulations were also performed, and here, it was shown that the energy gain in eDNA adsorption to a silicon oxide surface in the presence of calcium ions is small and much less than that in the presence of sodium. The simulations show that the length scales involved in eDNA adsorption are less in the presence of sodium ions than those in the presence of calcium. In the presence of calcium, eDNA is pushed above the surface cations, whereas in the presence of sodium ions, short-range interactions with the surface dominate. Moreover, SMFS data show that increasing [Ca2+] from 1 to 10 mM increases the adsorption of the cations to the silicon oxide surface and consequently enhances the Stern layer, which in turn increases the length scale associated with eDNA adsorption.
Collapse
Affiliation(s)
- Ana L. Morales-García
- Department
of Physics and Astronomy, The University
of Sheffield, Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Rachel Walton
- Department
of Physics and Astronomy, The University
of Sheffield, Hounsfield Road, Sheffield S3 7RH, U.K.
- Department
of Animal and Plant Sciences, The University
of Sheffield, Western Bank, Sheffield S10 2TN, U.K.
| | - Jamie T. Blakeman
- Department
of Physics and Astronomy, The University
of Sheffield, Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Steven A. Banwart
- Department
of Civil and Structural Engineering, The
University of Sheffield, Sheffield S3 7HQ, U.K.
| | - John H. Harding
- Department
of Materials Science and Engineering, The
University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.
| | - Mark Geoghegan
- Department
of Physics and Astronomy, The University
of Sheffield, Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Colin L. Freeman
- Department
of Materials Science and Engineering, The
University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.
| | - Stephen A. Rolfe
- Department
of Animal and Plant Sciences, The University
of Sheffield, Western Bank, Sheffield S10 2TN, U.K.
| |
Collapse
|
15
|
Single DNase or Proteinase Treatment Induces Change in Composition and Structural Integrity of Multispecies Oral Biofilms. Antibiotics (Basel) 2021; 10:antibiotics10040400. [PMID: 33917114 PMCID: PMC8067860 DOI: 10.3390/antibiotics10040400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/10/2021] [Accepted: 04/03/2021] [Indexed: 01/23/2023] Open
Abstract
Biofilm virulence is mainly based on its bacterial cell surrounding biofilm matrix, which contains a scaffold of exopolysaccharides, carbohydrates, proteins, lipids, and nucleic acids. Targeting these nucleid acids or proteins could enable an efficient biofilm control. Therefore, the study aimed to test the effect of deoxyribonuclease I (DNase I) and proteinase K on oral biofilms. Six-species biofilms (Streptococcus mutans, Streptococcus oralis, Actinomyces oris, Fusobacterium nucleatum, Veillonella dispar, and Candida albicans) were exposed to DNase I (0.001 mg/mL, 0.002 mg/mL) or proteinase K (0.05 mg/mL, 0.1 mg/mL) for 1 h during biofilm formation. After 64 h, biofilms were harvested, quantified by culture analysis and visualized by image analysis using CLSM (confocal laser scanning microscopy). Statistical analysis was performed by ANOVA, followed by the Tukey test at a 5% significance level. The biofilm treatment with proteinase K induced a significant increase of Logs10 counts in S. mutans and a decrease in C. albicans, while biofilm thickness was reduced from 28.5 μm (control) to 9.07 μm (0.05 mg/mL) and 7.4 μm (0.1 mg/mL). Treatment with DNase I had no effect on the total bacterial growth within the biofilm. Targeting proteins of biofilms by proteinase K are promising adjunctive tool for biofilm control.
Collapse
|
16
|
Panlilio H, Rice CV. The role of extracellular DNA in the formation, architecture, stability, and treatment of bacterial biofilms. Biotechnol Bioeng 2021; 118:2129-2141. [PMID: 33748946 DOI: 10.1002/bit.27760] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/01/2020] [Accepted: 03/04/2021] [Indexed: 12/16/2022]
Abstract
Advances in biotechnology to treat and cure human disease have markedly improved human health and the development of modern societies. However, substantial challenges remain to overcome innate biological factors that thwart the activity and efficacy of pharmaceutical therapeutics. Until recently, the importance of extracellular DNA (eDNA) in biofilms was overlooked. New data reveal its extensive role in biofilm formation, adhesion, and structural integrity. Different approaches to target eDNA as anti-biofilm therapies have been proposed, but eDNA and the corresponding biofilm barriers are still difficult to disrupt. Therefore, more creative approaches to eradicate biofilms are needed. The production of eDNA often originates with the genetic material of bacterial cells through cell lysis. However, genomic DNA and eDNA are not necessarily structurally or compositionally identical. Variations are noteworthy because they dictate important interactions within the biofilm. Interactions between eDNA and biofilm components may as well be exploited as alternative anti-biofilm strategies. In this review, we discuss recent developments in eDNA research, emphasizing potential ways to disrupt biofilms. This review also highlights proteins, exopolysaccharides, and other molecules interacting with eDNA that can serve as anti-biofilm therapeutic targets. Overall, the array of diverse interactions with eDNA is important in biofilm structure, architecture, and stability.
Collapse
Affiliation(s)
- Hannah Panlilio
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Charles V Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
17
|
Usman M, Husain FM, Khan RA, Alharbi W, Alsalme A, Al-Lohedan HA, Tabassum S. Organometallic ruthenium (η 6- p-cymene) complexes interfering with quorum sensing and biofilm formation: an anti-infective approach to combat multidrug-resistance in bacteria. NEW J CHEM 2021; 45:2184-2199. [DOI: 10.1039/d0nj05068g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Organometallic ruthenium complexes of flavonoids as antiquorum sensing agents against pathogens likeChromobacterium violaceumATCC 12472,Pseudomonas aeruginosaPAO1 and methicillin-resistantS. aureus(MRSA).
Collapse
Affiliation(s)
- Mohammad Usman
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition
- College of Food and Agriculture Sciences
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Rais Ahmad Khan
- Department of Chemistry
- College of Sciences
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Walaa Alharbi
- Department of Chemistry, Faculty of Science
- King Khalid University
- Abha 62529
- Kingdom of Saudi Arabia
| | - Ali Alsalme
- Department of Chemistry
- College of Sciences
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Hamad A. Al-Lohedan
- Surfactant Research Chair
- Department of Chemistry
- College of Sciences
- King Saud University
- Riyadh 11451
| | - Sartaj Tabassum
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
- Surfactant Research Chair
| |
Collapse
|
18
|
Phenotypic and Transcriptomic Analyses of Seven Clinical Stenotrophomonas maltophilia Isolates Identify a Small Set of Shared and Commonly Regulated Genes Involved in the Biofilm Lifestyle. Appl Environ Microbiol 2020; 86:AEM.02038-20. [PMID: 33097507 DOI: 10.1128/aem.02038-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022] Open
Abstract
Stenotrophomonas maltophilia is one of the most frequently isolated multidrug-resistant nosocomial opportunistic pathogens. It contributes to disease progression in cystic fibrosis (CF) patients and is frequently isolated from wounds, infected tissues, and catheter surfaces. On these diverse surfaces S. maltophilia lives in single-species or multispecies biofilms. Since very little is known about common processes in biofilms of different S. maltophilia isolates, we analyzed the biofilm profiles of 300 clinical and environmental isolates from Europe of the recently identified main lineages Sgn3, Sgn4, and Sm2 to Sm18. The analysis of the biofilm architecture of 40 clinical isolates revealed the presence of multicellular structures and high phenotypic variability at a strain-specific level. Further, transcriptome analyses of biofilm cells of seven clinical isolates identified a set of 106 shared strongly expressed genes and 33 strain-specifically expressed genes. Surprisingly, the transcriptome profiles of biofilm versus planktonic cells revealed that just 9.43% ± 1.36% of all genes were differentially regulated. This implies that just a small set of shared and commonly regulated genes is involved in the biofilm lifestyle. Strikingly, iron uptake appears to be a key factor involved in this metabolic shift. Further, metabolic analyses implied that S. maltophilia employs a mostly fermentative growth mode under biofilm conditions. The transcriptome data of this study together with the phenotypic and metabolic analyses represent so far the largest data set on S. maltophilia biofilm versus planktonic cells. This study will lay the foundation for the identification of strategies for fighting S. maltophilia biofilms in clinical and industrial settings.IMPORTANCE Microorganisms living in a biofilm are much more tolerant to antibiotics and antimicrobial substances than planktonic cells are. Thus, the treatment of infections caused by microorganisms living in biofilms is extremely difficult. Nosocomial infections (among others) caused by S. maltophilia, particularly lung infection among CF patients, have increased in prevalence in recent years. The intrinsic multidrug resistance of S. maltophilia and the increased tolerance to antimicrobial agents of its biofilm cells make the treatment of S. maltophilia infection difficult. The significance of our research is based on understanding the common mechanisms involved in biofilm formation of different S. maltophilia isolates, understanding the diversity of biofilm architectures among strains of this species, and identifying the differently regulated processes in biofilm versus planktonic cells. These results will lay the foundation for the treatment of S. maltophilia biofilms.
Collapse
|
19
|
Competence-Stimulating-Peptide-Dependent Localized Cell Death and Extracellular DNA Production in Streptococcus mutans Biofilms. Appl Environ Microbiol 2020; 86:AEM.02080-20. [PMID: 32948520 DOI: 10.1128/aem.02080-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular DNA (eDNA) is a biofilm component that contributes to the formation and structural stability of biofilms. Streptococcus mutans, a major cariogenic bacterium, induces eDNA-dependent biofilm formation under specific conditions. Since cell death can result in the release and accumulation of DNA, the dead cells in biofilms are a source of eDNA. However, it remains unknown how eDNA is released from dead cells and is localized within S. mutans biofilms. We focused on cell death induced by the extracellular signaling peptide called competence-stimulating peptide (CSP). We demonstrate that nucleic acid release into the extracellular environment occurs in a subpopulation of dead cells. eDNA production induced by CSP was highly dependent on the lytF gene, which encodes an autolysin. Although lytF expression was induced bimodally by CSP, lytF-expressing cells further divided into surviving cells and eDNA-producing dead cells. Moreover, we found that lytF-expressing cells were abundant near the bottom of the biofilm, even when all cells in the biofilm received the CSP signal. Dead cells and eDNA were also abundantly present near the bottom of the biofilm. The number of lytF-expressing cells in biofilms was significantly higher than that in planktonic cultures, which suggests that adhesion to the substratum surface is important for the induction of lytF expression. The deletion of lytF resulted in reduced adherence to a polystyrene surface. These results suggest that lytF expression and eDNA production induced near the bottom of the biofilm contribute to a firmly attached and structurally stable biofilm.IMPORTANCE Bacterial communities encased by self-produced extracellular polymeric substances (EPSs), known as biofilms, have a wide influence on human health and environmental problems. The importance of biofilm research has increased, as biofilms are the preferred bacterial lifestyle in nature. Furthermore, in recent years it has been noted that the contribution of phenotypic heterogeneity within biofilms requires analysis at the single-cell or subpopulation level to understand bacterial life strategies. In Streptococcus mutans, a cariogenic bacterium, extracellular DNA (eDNA) contributes to biofilm formation. However, it remains unclear how and where the cells produce eDNA within the biofilm. We focused on LytF, an autolysin that is induced by extracellular peptide signals. We used single-cell level imaging techniques to analyze lytF expression in the biofilm population. Here, we show that S. mutans generates eDNA by inducing lytF expression near the bottom of the biofilm, thereby enhancing biofilm adhesion and structural stability.
Collapse
|
20
|
Golla RM, Mishra B, Dang X, Lakshmaiah Narayana J, Li A, Xu L, Wang G. Resistome of Staphylococcus aureus in Response to Human Cathelicidin LL-37 and Its Engineered Antimicrobial Peptides. ACS Infect Dis 2020; 6:1866-1881. [PMID: 32343547 DOI: 10.1021/acsinfecdis.0c00112] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Staphylococcus aureus is notoriously known for its rapid development of resistance to conventional antibiotics. S. aureus can alter its membrane composition to reduce the killing effect of antibiotics and antimicrobial peptides (AMPs). To obtain a more complete picture, this study identified the resistance genes of S. aureus in response to human cathelicidin LL-37 peptides by screening the Nebraska Transposon Mutant Library. In total, 24 resistant genes were identified. Among them, six mutants, including the one with the known membrane-modifying gene (mprF) disabled, became more membrane permeable to the LL-37 engineered peptide 17BIPHE2 than the wild type. Mass spectrometry analysis detected minimal lysyl-phosphatidylglycerol (lysylPG) from the mprF mutant of S. aureus JE2, confirming loss-of-function of this gene. Moreover, multiple mutants showed reduced surface adhesion and biofilm formation. In addition, four S. aureus mutants were unable to infect wax moth Galleria mellonella. There appears to be a connection between the ability of bacterial attachment/biofilm formation and infection. These results underscore the multiple functional roles of the identified peptide-response genes in bacterial growth, infection, and biofilm formation. Therefore, S. aureus utilizes a set of resistant genes to weave a complex molecular network to handle the danger posed by cationic LL-37. It appears that different genes are involved depending on the nature of antimicrobials. These resistant genes may offer a novel avenue to designing more potent antibiotics that target the Achilles heels of S. aureus USA300, a community-associated pathogen of great threat.
Collapse
Affiliation(s)
- Radha M. Golla
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Biswajit Mishra
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Xiangli Dang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Jayaram Lakshmaiah Narayana
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Amy Li
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| |
Collapse
|
21
|
Senpuku H, Tuna EB, Nagasawa R, Nakao R, Ohnishi M. The inhibitory effects of polypyrrole on the biofilm formation of Streptococcus mutans. PLoS One 2019; 14:e0225584. [PMID: 31774855 PMCID: PMC6881011 DOI: 10.1371/journal.pone.0225584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/07/2019] [Indexed: 01/18/2023] Open
Abstract
Streptococcus mutans primary thrives on the biofilm formation on the tooth surface in sticky biofilms and under certain conditions can lead to carious lesions on the tooth surface. To search for a new preventive material for oral biofilm-associated diseases, including dental caries, we investigated the effects of polypyrrole, which contains an electrochemical polymer and causes protonation and incorporation of anion under low pH condition, on the biofilm formation of S. mutans and other streptococci. In this study, polypyrrole was applied in biofilm formation assays with the S. mutans strains UA159 and its gtfB and gtfC double mutant (gtfBC mutant), S. sanguinis, S. mitis and S. gordonii on human saliva and bovine serum albumin-coated 96-well microtiter plates in tryptic soy broth supplemented with 0.25% sucrose. The effects of polypyrrole on biofilm formation were quantitatively and qualitatively observed. High concentrations of polypyrrole significantly inhibited the biofilm formation of S. mutans UA159 and S. sanguinis. As an inhibition mechanism, polypyrrole attached to the surface of bacterial cells, increased chains and aggregates, and incorporated proteins involving GTF-I and GTF-SI produced by S. mutans. In contrast, the biofilm formation of gtfBC mutant, S. sanguinis, S. mitis and S. gordonii was temporarily induced by the addition of low polypyrrole concentrations on human saliva-coated plate but not on the uncoated and bovine serum albumin-coated plates. Moreover, biofilm formation depended on live cells and, likewise, specific interaction between cells and binding components in saliva. However, these biofilms were easily removed by increased frequency of water washing. In this regard, the physical and electrochemical properties in polypyrrole worked effectively in the removal of streptococci biofilms. Polypyrrole may have the potential to alter the development of biofilms associated with dental diseases.
Collapse
Affiliation(s)
- Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- * E-mail:
| | - Elif Bahar Tuna
- Department of Pediatric Dentistry, Faculty of Dentistry, Istanbul University, Istanbul, Turky
| | - Ryo Nagasawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryoma Nakao
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
22
|
Ricomini Filho AP, Khan R, Åmdal HA, Petersen FC. Conserved Pheromone Production, Response and Degradation by Streptococcus mutans. Front Microbiol 2019; 10:2140. [PMID: 31572344 PMCID: PMC6753979 DOI: 10.3389/fmicb.2019.02140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/30/2019] [Indexed: 01/27/2023] Open
Abstract
Streptococcus mutans, a bacterium with high cariogenic potential, coordinates competence for natural transformation and bacteriocin production via the XIP and CSP pheromones. CSP is effective in inducing bacteriocin responses but not competence in chemically defined media (CDM). This is in contrast to XIP, which is a strong inducer of competence in CDM but can also stimulate bacteriocin genes as a late response. Interconnections between the pathways activated by the two pheromones have been characterized in certain detail in S. mutans UA159, but it is mostly unknown whether such findings are representative for the species. In this study, we used bioassays based on luciferase reporters for the bacteriocin gene cipB and the alternative sigma factor sigX to investigate various S. mutans isolates for production and response to CSP and XIP pheromones in CDM. Similar to S. mutans UA159, endogenous CSP was undetectable in the culture supernatants of all tested strains. During optimization of the bioassay using the cipB reporter, we discovered that the activity of exogenous CSP used as a standard was reduced over time during S. mutans growth. Using a FRET-CSP reporter peptide, we found that S. mutans UA159 was able to degrade CSP, and that such activity was not significantly different in isogenic mutants with deletion of the protease gene htrA or the competence genes sigX, oppD, and comR. CSP cleavage was also detected in all the wild type strains, indicating that this is a conserved feature in S. mutans. For the XIP pheromone, endogenous production was observed in the supernatants of all 34 tested strains at peak concentrations in culture supernatants that varied between 200 and 26000 nM. Transformation in the presence of exogenous XIP was detected in all but one of the isolates. The efficiency of transformation varied, however, among the different strains, and for those with the highest transformation rates, endogenous XIP peak concentrations in the supernatants were above 2000 nM XIP. We conclude that XIP production and inducing effect on transformation, as well as the ability to degrade CSP, are conserved functions among different S. mutans isolates. Understanding the functionality and conservation of pheromone systems in S. mutans may lead to novel strategies to prevent or treat unbalances in oral microbiomes that may favor diseases.
Collapse
Affiliation(s)
| | - Rabia Khan
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Heidi Aarø Åmdal
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Fernanda C. Petersen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Effects of Complex DNA and MVs with GTF Extracted from Streptococcus mutans on the Oral Biofilm. Molecules 2019; 24:molecules24173131. [PMID: 31466323 PMCID: PMC6749223 DOI: 10.3390/molecules24173131] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/07/2019] [Accepted: 08/27/2019] [Indexed: 01/06/2023] Open
Abstract
Streptococcus mutans is one of the principal pathogens for the development of dental caries. Oral biofilms formed by S. mutans are constructed of insoluble glucan formation induced by the principal enzymes, GTF-I and GTF-SI, in sucrose-containing conditions. However, as another means of biofilm formation, extracellular DNA (eDNA) and membrane vesicles (MVs) are also contributors. To explore the roles of eDNA and MVs for biofilm formation, short and whole size pure DNAs, two types of sub-purified DNAs and MVs were extracted from S. mutans by beads destruction, treatment of proteinase K, and ultracentrifugation of culture supernatant, and applied into the biofilm formation assay using the S. mutans UA159 gtfBC mutant, which lost GTF-I and GTF-SI, on a human saliva-coated 96 well microtiter plate in sucrose-containing conditions. Sub-purified DNAs after cell lysis by beads destruction for total 90 and 180 s showed a complex form of short-size DNA with various proteins and MVs associated with GTF-I and GTF-SI, and induced significantly higher biofilm formation of the S. mutans UA159.gtfBC mutant than no sample (p < 0.05). Short-size pure DNA without proteins induced biofilm formation but whole-size pure DNA did not. Moreover, the complex form of MV associated with GTFs and short-size DNA showed significantly higher biofilm formation of initial colonizers on the human tooth surface such as Streptococcus mitis than no sample (p < 0.05). The short-size DNAs associated with MVs and GTFs are important contributors to the biofilm formation and may be one of additional targets for the prevention of oral biofilm-associated diseases.
Collapse
|
24
|
Big Impact of the Tiny: Bacteriophage-Bacteria Interactions in Biofilms. Trends Microbiol 2019; 27:739-752. [PMID: 31128928 DOI: 10.1016/j.tim.2019.04.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/10/2019] [Accepted: 04/19/2019] [Indexed: 01/17/2023]
Abstract
Bacteriophages (phages) have been shaping bacterial ecology and evolution for millions of years, for example, by selecting for defence strategies. Evidence supports that bacterial biofilm formation is one such strategy and that biofilm-mediated protection against phage infection depends on maturation and composition of the extracellular matrix. Interestingly, studies have revealed that phages can induce and strengthen biofilms. Here we review interactions between bacteria and phages in biofilms, discuss the underlying mechanisms, the potential of phage therapy for biofilm control, and emphasize the importance of considering biofilms in future phage research. This is especially relevant as biofilms are associated with increased tolerance towards antibiotics and are implicated in the majority of chronic infections.
Collapse
|
25
|
Senpuku H, Mohri S, Mihara M, Arai T, Suzuki Y, Saeki Y. Effects of 7S globulin 3 derived from the adzuki bean [Vigna angularis] on the CSP- and eDNA- dependent biofilm formation of Streptococcus mutans. Arch Oral Biol 2019; 102:256-265. [PMID: 31100490 DOI: 10.1016/j.archoralbio.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Streptococcus mutans is a principal bacterium that forms pathogenic biofilm involved in the development of dental caries. S. mutans possesses a quorum sensing system (QS) stimulated by competence stimulating peptide (CSP), which is associated with bacteriocin production, genetic competency and biofilm formation. Inhibiting CSP-dependent QS is one of the aims leading to the inhibition of biofilm formation and is useful for establishing new prevention systems for dental caries. DESIGN In this study, we selected adzuki bean [Vigna angularis] extract as a candidate component to inhibit CSP-dependent biofilm formation among various foods. To purify an inhibitory component from the adzuki extracts, we performed the salting-out method, two rounds of ion-exchange chromatography, and SDS and native PAGE. RESULTS A primary protein band that inhibits CSP-dependent biofilm formation appeared at approximately 50 kDa and was identified as 7S globulin 3 (7S3), a major seed storage protein in adzuki bean. To determine the characteristics of 7S3 as an inhibitory component, aggregated proteins were extracted from the adzuki crude extracts at pH values lower than 6. The aggregated proteins inhibited CSP- and eDNA-dependent biofilm formation and showed 50 kDa band, which is identical with 7S3 in the purified sample. Moreover, 7S globulin 3 in the adzuki bean extract directly interacted with CSP at low pH conditions but not at neutral conditions, and inhibited CSP-dependent bacteriocin production. CONCLUSION It was suggested that 7S3 might be a safe and useful material to prevent pathogenic activities in the biofilm formation of S. mutans.
Collapse
Affiliation(s)
- Hidenobu Senpuku
- Department of Bacteriology I, National Institute of infectious Diseases, Shinjuku-ku, Tokyo, Japan.
| | - Shota Mohri
- Department of Bacteriology I, National Institute of infectious Diseases, Shinjuku-ku, Tokyo, Japan; Health Science Section, Central Laboratory, Lotte Co., Ltd, Saitama-Shi, Saitama, Japan
| | - Mamiko Mihara
- Department of Bacteriology I, National Institute of infectious Diseases, Shinjuku-ku, Tokyo, Japan; Health Science Section, Central Laboratory, Lotte Co., Ltd, Saitama-Shi, Saitama, Japan
| | - Toshiaki Arai
- Department of Bacteriology I, National Institute of infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yusuke Suzuki
- Department of Bacteriology I, National Institute of infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yoji Saeki
- Department of Bacteriology I, National Institute of infectious Diseases, Shinjuku-ku, Tokyo, Japan; Health Science Section, Central Laboratory, Lotte Co., Ltd, Saitama-Shi, Saitama, Japan
| |
Collapse
|
26
|
Zheng J, Xia Y, Liu Q, He X, Yu J, Feng Y. Extracellular DNA enhances the formation and stability of symplasmata in Pantoea agglomerans YS19. J GEN APPL MICROBIOL 2019; 65:11-17. [PMID: 30185735 DOI: 10.2323/jgam.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Extracellular DNA (eDNA) is an important polymeric substance that plays essential roles in cell aggregation and nutrient provision for the sessile bacteria. eDNA in bacterial biofilms was extensively studied. Here we found that eDNA also exists in symplasmata, a bacterial cell aggregate, which is different to a biofilm, in the rice enophyte Pantoea agglomerans YS19. We found that exogenous eDNA enhanced the formation and stability of symplasmata significantly, and that, exogenous eDNA also improved the stress resistance and colonization ability of the bacterium on host rice. These results strongly indicate novel roles of the eDNA in Pantoea agglomerans YS19, showing its special relation to the stress-resistance and endophyte-host association of the strain.
Collapse
Affiliation(s)
- Jing Zheng
- School of Life Science, Beijing Institute of Technology
| | - Yifan Xia
- School of Life Science, Beijing Institute of Technology
| | - Qi Liu
- School of Life Science, Beijing Institute of Technology
| | - Xinyu He
- School of Life Science, Beijing Institute of Technology
| | - Jiajia Yu
- School of Life Science, Beijing Institute of Technology
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology
| |
Collapse
|
27
|
Glycosyltransferase-Mediated Biofilm Matrix Dynamics and Virulence of Streptococcus mutans. Appl Environ Microbiol 2019; 85:AEM.02247-18. [PMID: 30578260 DOI: 10.1128/aem.02247-18] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
Streptococcus mutans is a key cariogenic bacterium responsible for the initiation of tooth decay. Biofilm formation is a crucial virulence property. We discovered a putative glycosyltransferase, SMU_833, in S. mutans capable of modulating dynamic interactions between two key biofilm matrix components, glucan and extracellular DNA (eDNA). The deletion of smu_833 decreases glucan and increases eDNA but maintains the overall biofilm biomass. The decrease in glucan is caused by a reduction in GtfB and GtfC, two key enzymes responsible for the synthesis of glucan. The increase in eDNA was accompanied by an elevated production of membrane vesicles, suggesting that SMU_833 modulates the release of eDNA via the membrane vesicles, thereby altering biofilm matrix constituents. Furthermore, glucan and eDNA were colocalized. The complete deletion of gtfBC from the smu_833 mutant significantly reduced the biofilm biomass despite the elevated eDNA, suggesting the requirement of minimal glucans as a binding substrate for eDNA within the biofilm. Despite no changes in overall biofilm biomass, the mutant biofilm was altered in biofilm architecture and was less acidic in vitro Concurrently, the mutant was less virulent in an in vivo rat model of dental caries, demonstrating that SMU_833 is a new virulence factor. Taken together, we conclude that SMU_833 is required for optimal biofilm development and virulence of S. mutans by modulating extracellular matrix components. Our study of SMU_833-modulated biofilm matrix dynamics uncovered a new target that can be used to develop potential therapeutics that prevent and treat dental caries.IMPORTANCE Tooth decay, a costly and painful disease affecting the vast majority of people worldwide, is caused by the bacterium Streptococcus mutans The bacteria utilize dietary sugars to build and strengthen biofilms, trapping acids onto the tooth's surface and causing demineralization and decay of teeth. As knowledge of our body's microbiomes increases, the need for developing therapeutics targeted to disease-causing bacteria has arisen. The significance of our research is in studying and identifying a novel therapeutic target, a dynamic biofilm matrix that is mediated by a new virulence factor and membrane vesicles. The study increases our understanding of S. mutans virulence and also offers a new opportunity to develop effective therapeutics targeting S. mutans In addition, the mechanisms of membrane vesicle-mediated biofilm matrix dynamics are also applicable to other biofilm-driven infectious diseases.
Collapse
|
28
|
Abstract
Bacterial uptake of DNA through type IV filaments is an essential component of natural competence in numerous gram-positive and gram-negative species. Recent advances in the field have broadened our understanding of the structures used to take up extracellular DNA. Here, we review seminal experiments in the literature describing DNA binding by type IV pili, competence pili and the flp pili of Micrococcus luteus; collectively referred to here as type IV filaments. We compare the current state of the field on mechanisms of DNA uptake for these three appendage systems and describe the current mechanistic understanding of both DNA-binding and DNA-uptake by these versatile molecular machines.
Collapse
Affiliation(s)
- Kurt H Piepenbrink
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States.,Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States.,Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States.,Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
29
|
Marsh PD, Zaura E. Dental biofilm: ecological interactions in health and disease. J Clin Periodontol 2018; 44 Suppl 18:S12-S22. [PMID: 28266111 DOI: 10.1111/jcpe.12679] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND The oral microbiome is diverse and exists as multispecies microbial communities on oral surfaces in structurally and functionally organized biofilms. AIM To describe the network of microbial interactions (both synergistic and antagonistic) occurring within these biofilms and assess their role in oral health and dental disease. METHODS PubMed database was searched for studies on microbial ecological interactions in dental biofilms. The search results did not lend themselves to systematic review and have been summarized in a narrative review instead. RESULTS Five hundred and forty-seven original research articles and 212 reviews were identified. The majority (86%) of research articles addressed bacterial-bacterial interactions, while inter-kingdom microbial interactions were the least studied. The interactions included physical and nutritional synergistic associations, antagonism, cell-to-cell communication and gene transfer. CONCLUSIONS Oral microbial communities display emergent properties that cannot be inferred from studies of single species. Individual organisms grow in environments they would not tolerate in pure culture. The networks of multiple synergistic and antagonistic interactions generate microbial inter-dependencies and give biofilms a resilience to minor environmental perturbations, and this contributes to oral health. If key environmental pressures exceed thresholds associated with health, then the competitiveness among oral microorganisms is altered and dysbiosis can occur, increasing the risk of dental disease.
Collapse
Affiliation(s)
- P D Marsh
- Department of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Abstract
Surface-attached colonies of bacteria known as biofilms play a major role in the pathogenesis of medical device infections. Biofilm colonies are notorious for their resistance to antibiotics and host defenses, which makes most device infections difficult or impossible to eradicate. Bacterial cells in a biofilm are held together by an extracellular polymeric matrix that is synthesized by the bacteria themselves. Enzymes that degrade biofilm matrix polymers have been shown to inhibit bio film formation, detach established bio film colonies, and render biofilm cells sensitive to killing by antimicrobial agents. This review discusses the potential use of biofilm matrix-degrading enzymes as anti-biofilm agents for the treatment and prevention of device infections. Two enzymes, deoxyribonuclease I and the glycoside hydrolase dispersin B, will be reviewed in detail. In vitro and in vivo studies demonstrating the anti-biofilm activities of these two enzymes will be summarized, and the therapeutic potential and possible drawbacks of using these enzymes as clinical agents will be discussed.
Collapse
Affiliation(s)
- Jeffrey B. Kaplan
- Department of Oral Biology, New Jersey Dental School, Newark, NJ - USA
| |
Collapse
|
31
|
Iwamoto A, Nakamura T, Narisawa N, Kawasaki Y, Abe S, Torii Y, Senpuku H, Takenaga F. The Japanese Fermented Food Natto Inhibits Sucrose-dependent Biofilm Formation by Cariogenic Streptococci. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Aya Iwamoto
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University
| | - Tomoyo Nakamura
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University
| | - Naoki Narisawa
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University
| | - Yukimasa Kawasaki
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University
| | - Shin Abe
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University
| | - Yasuyoshi Torii
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University
| | - Hidenobu Senpuku
- Department of Bacteriology, National Institute of Infectious Diseases
| | - Fumio Takenaga
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University
| |
Collapse
|
32
|
Das T, Simone M, Ibugo AI, Witting PK, Manefield M, Manos J. Glutathione Enhances Antibiotic Efficiency and Effectiveness of DNase I in Disrupting Pseudomonas aeruginosa Biofilms While Also Inhibiting Pyocyanin Activity, Thus Facilitating Restoration of Cell Enzymatic Activity, Confluence and Viability. Front Microbiol 2017; 8:2429. [PMID: 29312161 PMCID: PMC5729223 DOI: 10.3389/fmicb.2017.02429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/23/2017] [Indexed: 01/14/2023] Open
Abstract
Pyocyanin secreted by Pseudomonas aeruginosa is a virulence factor that damages epithelial cells during infection through the action of reactive oxygen species, however, little is known about its direct effect on biofilms. We demonstrated that pyocyanin-producing P. aeruginosa strains (PA14WT, DKN370, AES-1R, and AES-2) formed robust biofilms in contrast to the poorly formed biofilms of the pyocyanin mutant PA14ΔphzA-G and the low pyocyanin producer AES-1M. Addition of DNase I and reduced glutathione (GSH) significantly reduced biofilm biomass of pyocyanin-producing strains (P < 0.05) compared to non-pyocyanin producers. Subsequently we showed that a combined treatment comprising: GSH + DNase I + antibiotic, disrupted and reduced biofilm biomass up to 90% in cystic fibrosis isolates AES-1R, AES-2, LESB58, and LES431 and promoted lung epithelial cell (A549) recovery and growth. We also showed that exogenously added GSH restored A549 epithelial cell glutathione reductase activity in the presence of pyocyanin through recycling of GSSG to GSH and consequently increased total intracellular GSH levels, inhibiting oxidative stress, and facilitating cell growth and confluence. These outcomes indicate that GSH has multiple roles in facilitating a return to normal epithelial cell growth after insult by pyocyanin. With increased antibiotic resistance in many bacterial species, there is an urgency to establish novel antimicrobial agents. GSH is able to rapidly and comprehensively destroy P. aeruginosa associated biofilms while at a same time assisting in the recovery of host cells and re-growth of damaged tissue.
Collapse
Affiliation(s)
- Theerthankar Das
- Department of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Martin Simone
- Discipline of Pathology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Amaye I. Ibugo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Paul K. Witting
- Discipline of Pathology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Mike Manefield
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jim Manos
- Department of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
33
|
AtlA Mediates Extracellular DNA Release, Which Contributes to Streptococcus mutans Biofilm Formation in an Experimental Rat Model of Infective Endocarditis. Infect Immun 2017; 85:IAI.00252-17. [PMID: 28674029 DOI: 10.1128/iai.00252-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/23/2017] [Indexed: 12/23/2022] Open
Abstract
Host factors, such as platelets, have been shown to enhance biofilm formation by oral commensal streptococci, inducing infective endocarditis (IE), but how bacterial components contribute to biofilm formation in vivo is still not clear. We demonstrated previously that an isogenic mutant strain of Streptococcus mutans deficient in autolysin AtlA (ΔatlA) showed a reduced ability to cause vegetation in a rat model of bacterial endocarditis. However, the role of AtlA in bacterial biofilm formation is unclear. In this study, confocal laser scanning microscopy analysis showed that extracellular DNA (eDNA) was embedded in S. mutans GS5 floes during biofilm formation on damaged heart valves, but an ΔatlA strain could not form bacterial aggregates. Semiquantification of eDNA by PCR with bacterial 16S rRNA primers demonstrated that the ΔatlA mutant strain produced dramatically less eDNA than the wild type. Similar results were observed with in vitro biofilm models. The addition of polyanethol sulfonate, a chemical lysis inhibitor, revealed that eDNA release mediated by bacterial cell lysis is required for biofilm initiation and maturation in the wild-type strain. Supplementation of cultures with calcium ions reduced wild-type growth but increased eDNA release and biofilm mass. The effect of calcium ions on biofilm formation was abolished in ΔatlA cultures and by the addition of polyanethol sulfonate. The VicK sensor, but not CiaH, was found to be required for the induction of eDNA release or the stimulation of biofilm formation by calcium ions. These data suggest that calcium ion-regulated AtlA maturation mediates the release of eDNA by S. mutans, which contributes to biofilm formation in infective endocarditis.
Collapse
|
34
|
Shi Y, Huang J, Zeng G, Gu Y, Chen Y, Hu Y, Tang B, Zhou J, Yang Y, Shi L. Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: An overview. CHEMOSPHERE 2017; 180:396-411. [PMID: 28419953 DOI: 10.1016/j.chemosphere.2017.04.042] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
Extracellular polymeric substances (EPS) are present both outside of the cells and in the interior of microbial aggregates, and account for a main component in microbial aggregates. EPS can influence the properties and functions of microbial aggregates in biological wastewater treatment systems, and specifically EPS are involved in biofilm formation and stability, sludge behaviors as well as sequencing batch reactors (SBRs) granulation whereas they are also responsible for membrane fouling in membrane bioreactors (MBRs). EPS exhibit dual roles in biological wastewater treatments, and hence the control of available EPS can be expected to lead to changes in microbial aggregate properties, thereby improving system performance. In this review, current updated knowledge with regard to EPS basics including their formation mechanisms, important properties, key component functions as well as sub-fraction differentiation is given. EPS roles in biological wastewater treatments are also briefly summarized. Special emphasis is laid on EPS controlling strategies which would have the great potential in promoting microbial aggregates performance and in alleviating membrane fouling, including limitation strategies (inhibition of quorum sensing (QS) systems, regulation of environmental conditions, enzymatic degradation of key components, energy uncoupling etc.) and elevation strategies (enhancement of QS systems, addition of exogenous agents etc.). Those strategies have been confirmed to be feasible and promising to enhance system performance, and they would be a research niche that deserves further study.
Collapse
Affiliation(s)
- Yahui Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Yanling Gu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yi Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Bi Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jianxin Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Ying Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Lixiu Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
35
|
Schlafer S, Meyer RL, Dige I, Regina VR. Extracellular DNA Contributes to Dental Biofilm Stability. Caries Res 2017; 51:436-442. [PMID: 28728145 DOI: 10.1159/000477447] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 05/08/2017] [Indexed: 02/05/2023] Open
Abstract
Extracellular DNA (eDNA) is a major matrix component of many bacterial biofilms. While the presence of eDNA and its role in biofilm stability have been demonstrated for several laboratory biofilms of oral bacteria, there is no data available on the presence and function of eDNA in in vivo grown dental biofilms. This study aimed to determine whether eDNA was part of the matrix in biofilms grown in situ in the absence of sucrose and whether treatment with DNase dispersed biofilms grown for 2.5, 5, 7.5, 16.5, or 24 h. Three hundred biofilms from 10 study participants were collected and treated with either DNase or heat-inactivated DNase for 1 h. The bacterial biovolume was determined with digital image analysis. Staining with TOTO®-1 allowed visualization of eDNA both on bacterial cell surfaces and, with a cloud-like appearance, in the intercellular space. DNase treatment strongly reduced the amount of biofilm in very early stages of growth (up to 7.5 h), but the treatment effect decreased with increasing biofilm age. This study proves the involvement of eDNA in dental biofilm formation and its importance for biofilm stability in the earliest stages. Further research is required to uncover the interplay of eDNA and other matrix components and to explore the therapeutic potential of DNase treatment for biofilm control.
Collapse
Affiliation(s)
- Sebastian Schlafer
- Department of Dentistry and Oral Health,y, Aarhus University, Aarhus, Denmark
| | | | | | | |
Collapse
|
36
|
Suzuki Y, Nagasawa R, Senpuku H. Inhibiting effects of fructanase on competence-stimulating peptide-dependent quorum sensing system in Streptococcus mutans. J Infect Chemother 2017; 23:634-641. [PMID: 28729051 DOI: 10.1016/j.jiac.2017.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 05/22/2017] [Accepted: 06/16/2017] [Indexed: 11/28/2022]
Abstract
Streptococcus mutans produces glucosyltransferases encoded by the gtfB and gtfC genes, which synthesize insoluble glucan, and both insoluble and soluble glucans by conversion of sucrose, and are known as principal agents to provide strong biofilm formation and demineralization on tooth surfaces. S. mutans possess a Com-dependent quorum sensing (QS) system, which is important for survival in severe conditions. The QS system is stimulated by the interaction between ComD {Receptor to competence-stimulating peptide (CSP)} encoded by the comD and CSP encoded by the comC, and importantly associated with bacteriocin production and genetic competence. Previously, we found enzyme fructanase (FruA) as a new inhibitor for the glucan-dependent biofilm formation. In the present study, inhibiting effects by FruA on glucan-independent biofilm formation of S. mutans UA159, UA159.gtfB-, UA159.gtfC-, and UA159.gtfBC- were observed in sucrose and no sucrose sugars-supplemented conditions using the plate assay. The reduction of UA159.comC- and UA159.comD- biofilm formation were also observed as compared with UA159 in same conditions. These results suggested that inhibitions of glucan-independent and Com-dependent biofilm formation were involved in the inhibiting mechanism by FruA. To more thoroughly investigate effects by FruA on the QS system, we examined on CSP-stimulated and Com-dependent bacteriocin production and genetic transformation. FruA inhibited bacteriocin production in collaboration with CSP and genetic transformation in bacterial cell conditions treated with FruA. Our findings show that FruA has multiple effects that inhibit survival functions of S. mutans, including biofilm formation and CSP-dependent QS responses, indicating its potential use as an agent for prevention of dental caries.
Collapse
Affiliation(s)
- Yusuke Suzuki
- Department of Maxillofacial Surgery, Nihon University Graduate School of Dentistry at Matsudo, Chiba, Japan; Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryo Nagasawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
37
|
Raffinose Induces Biofilm Formation by Streptococcus mutans in Low Concentrations of Sucrose by Increasing Production of Extracellular DNA and Fructan. Appl Environ Microbiol 2017; 83:AEM.00869-17. [PMID: 28526794 DOI: 10.1128/aem.00869-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 05/13/2017] [Indexed: 02/06/2023] Open
Abstract
Streptococcus mutans is the primary etiological agent of dental caries and causes tooth decay by forming a firmly attached biofilm on tooth surfaces. Biofilm formation is induced by the presence of sucrose, which is a substrate for the synthesis of extracellular polysaccharides but not in the presence of oligosaccharides. Nonetheless, in this study, we found that raffinose, which is an oligosaccharide with an intestinal regulatory function and antiallergic effect, induced biofilm formation by S. mutans in a mixed culture with sucrose, which was at concentrations less than those required to induce biofilm formation directly. We analyzed the possible mechanism behind the small requirement for sucrose for biofilm formation in the presence of raffinose. Our results suggested that sucrose contributed to an increase in bacterial cell surface hydrophobicity and biofilm formation. Next, we examined how the effects of raffinose interacted with the effects of sucrose for biofilm formation. We showed that the presence of raffinose induced fructan synthesis by fructosyltransferase and aggregated extracellular DNA (eDNA, which is probably genomic DNA released from dead cells) into the biofilm. eDNA seemed to be important for biofilm formation, because the degradation of DNA by DNase I resulted in a significant reduction in biofilm formation. When assessing the role of fructan in biofilm formation, we found that fructan enhanced eDNA-dependent cell aggregation. Therefore, our results show that raffinose and sucrose have cooperative effects and that this induction of biofilm formation depends on supportive elements that mainly consist of eDNA and fructan.IMPORTANCE The sucrose-dependent mechanism of biofilm formation in Streptococcus mutans has been studied extensively. Nonetheless, the effects of carbohydrates other than sucrose are inadequately understood. Our findings concerning raffinose advance the understanding of the mechanism underlying the joint effects of sucrose and other carbohydrates on biofilm formation. Since raffinose has been reported to have positive effects on enterobacterial flora, research on the effects of raffinose on the oral flora are required prior to its use as a beneficial sugar for human health. Here, we showed that raffinose induced biofilm formation by S. mutans in low concentrations of sucrose. The induction of biofilm formation generally generates negative effects on the oral flora. Therefore, we believe that this finding will aid in the development of more effective oral care techniques to maintain oral flora health.
Collapse
|
38
|
Moliva MV, Cerioli F, Reinoso EB. Evaluation of environmental and nutritional factors and sua gene on in vitro biofilm formation of Streptococcus uberis isolates. Microb Pathog 2017; 107:144-148. [PMID: 28351714 DOI: 10.1016/j.micpath.2017.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 11/25/2022]
Abstract
The pathogenesis of Streptococcus uberis is attributed to a combination of extracellular factors and properties such as adherence and biofilm formation. The aim of this work was to evaluate the influence of different factors, additives and bovine milk compounds on S. uberis biofilm formation, as the presence of the sua gene by PCR. Additionally, extracellular DNA and the effect of DNaseI were evaluated in the biofilms yielded. Optimal biofilm development was observed when the pH was adjusted to 7.0 and 37 °C. Additives as glucose and lactose reduced biofilm formation as bovine milk compounds tested. PCR assay showed that not all the isolates yielded sua gene. Extrachromosomal ADN was found in cell-free supernatants, suggesting that DNA released spontaneously to the medium. The results contribute to a better understanding of the factors involved in biofilm production of this important pathogen associated with mastitis in order to promote the design of new therapeutic approaches.
Collapse
Affiliation(s)
- Melina Vanesa Moliva
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| | - Florencia Cerioli
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| | - Elina Beatriz Reinoso
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
39
|
Zaccaria E, Wels M, van Baarlen P, Wells JM. Temporal Regulation of the Transformasome and Competence Development in Streptococcus suis. Front Microbiol 2016; 7:1922. [PMID: 28066332 PMCID: PMC5167698 DOI: 10.3389/fmicb.2016.01922] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 11/16/2016] [Indexed: 11/19/2022] Open
Abstract
In S. suis the ComX-inducing peptide (XIP) pheromone regulates ComR-dependent transcriptional activation of comX (or sigX) the regulator of the late competence regulon. The aims of this study were to identify the ComR-regulated genes and in S. suis using genome-wide transcriptomics and identify their function based on orthology and the construction of specific knockout mutants. The ComX regulon we identified, includes all homologs of the “transformasome” a type 4-like pilus DNA binding and transport apparatus identified in Streptococcus pneumoniae, Streptococcus mutans, and Streptococcus thermophilus. A conserved CIN-box (YTACGAAYW), predicted to be bound by ComX, was found in the promoters of operons encoding genes involved in expression of the transformasome. Mutants lacking the major pilin gene comYC were not transformable demonstrating that the DNA uptake pilus is indeed required for competence development in S. suis. Competence was a transient state with the comX regulon shut down after ~15 min even when transcription of comX had not returned to basal levels, indicating other mechanisms control the exit from competence. The ComX regulon also included genes involved in DNA repair including cinA which we showed to be required for high efficiency transformation. In contrast to S. pneumoniae and S. mutans the ComX regulon of S. suis did not include endA which converts the transforming DNA into ssDNA, or ssbA, which protects the transforming ssDNA from degradation. EndA appeared to be essential in S. suis so we could not generate mutants and confirm its role in DNA transformation. Finally, we identified a putative homolog of fratricin, and a putative bacteriocin gene cluster, that were also part of the CIN-box regulon and thus may play a role in DNA release from non-competent cells, enabling gene transfer between S. suis pherotypes or S. suis and other species. S. suis mutants of oppA, the binding subunit of the general oligopeptide transporter were not transformable, suggesting that it is required for the import of XIP.
Collapse
Affiliation(s)
- Edoardo Zaccaria
- Host-Microbe Interactomics, Animal Sciences, Wageningen University Wageningen, Netherlands
| | | | - Peter van Baarlen
- Host-Microbe Interactomics, Animal Sciences, Wageningen University Wageningen, Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics, Animal Sciences, Wageningen University Wageningen, Netherlands
| |
Collapse
|
40
|
Lectin I from Bauhinia variegata (BVL-I) expressed by Pichia pastoris inhibits initial adhesion of oral bacteria in vitro. Int J Biol Macromol 2016; 93:913-918. [DOI: 10.1016/j.ijbiomac.2016.09.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/16/2016] [Indexed: 12/19/2022]
|
41
|
Davey L, Halperin SA, Lee SF. Mutation of the Streptococcus gordonii Thiol-Disulfide Oxidoreductase SdbA Leads to Enhanced Biofilm Formation Mediated by the CiaRH Two-Component Signaling System. PLoS One 2016; 11:e0166656. [PMID: 27846284 PMCID: PMC5112981 DOI: 10.1371/journal.pone.0166656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/01/2016] [Indexed: 01/11/2023] Open
Abstract
Streptococcus gordonii is a commensal inhabitant of human oral biofilms. Previously, we identified an enzyme called SdbA that played an important role in biofilm formation by S. gordonii. SdbA is thiol-disulfide oxidoreductase that catalyzes disulfide bonds in secreted proteins. Surprisingly, inactivation of SdbA results in enhanced biofilm formation. In this study we investigated the basis for biofilm formation by the ΔsdbA mutant. The results revealed that biofilm formation was mediated by the interaction between the CiaRH and ComDE two-component signalling systems. Although it did not affect biofilm formation by the S. gordonii parent strain, CiaRH was upregulated in the ΔsdbA mutant and it was essential for the enhanced biofilm phenotype. The biofilm phenotype was reversed by inactivation of CiaRH or by the addition of competence stimulating peptide, the production of which is blocked by CiaRH activity. Competition assays showed that the enhanced biofilm phenotype also corresponded to increased oral colonization in mice. Thus, the interaction between SdbA, CiaRH and ComDE affects biofilm formation both in vitro and in vivo.
Collapse
Affiliation(s)
- Lauren Davey
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5, Canada
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8, Canada
| | - Scott A. Halperin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5, Canada
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8, Canada
- Department of Pediatrics, Faculty of Medicine, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8, Canada
| | - Song F. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5, Canada
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8, Canada
- Department of Pediatrics, Faculty of Medicine, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8, Canada
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- * E-mail:
| |
Collapse
|
42
|
Kawarai T, Narisawa N, Suzuki Y, Nagasawa R, Senpuku H. Streptococcus mutans biofilm formation is dependent on extracellular DNA in primary low pH conditions. J Oral Biosci 2016. [DOI: 10.1016/j.job.2015.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Comprehensive Transcriptome Profiles of Streptococcus mutans UA159 Map Core Streptococcal Competence Genes. mSystems 2016; 1:mSystems00038-15. [PMID: 27822519 PMCID: PMC5069739 DOI: 10.1128/msystems.00038-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/10/2016] [Indexed: 12/15/2022] Open
Abstract
In Streptococcus mutans, an oral colonizer associated with dental caries, development of competence for natural genetic transformation is triggered by either of two types of peptide pheromones, competence-stimulating peptides (CSPs) (18 amino acids [aa]) or SigX-inducing peptides (XIPs) (7 aa). Competence induced by CSP is a late response to the pheromone that requires the response regulator ComE and the XIP-encoding gene comS. XIP binds to ComR to allow expression of the alternative sigma factor SigX and the effector genes it controls. While these regulatory links are established, the precise set of effectors controlled by each regulator is poorly defined. To improve the definition of all three regulons, we used a high-resolution tiling array to map global changes in gene expression in the early and late phases of the CSP response. The early phase of the CSP response was limited to increased gene expression at four loci associated with bacteriocin production and immunity. In the late phase, upregulated regions expanded to a total of 29 loci, including comS and genes required for DNA uptake and recombination. The results indicate that the entire late response to CSP depends on the expression of comS and that the immediate transcriptional response to CSP, mediated by ComE, is restricted to just four bacteriocin-related loci. Comparison of the new data with published transcriptome data permitted the identification of all of the operons in each regulon: 4 for ComE, 2 for ComR, and 21 for SigX. Finally, a core set of 27 panstreptococcal competence genes was identified within the SigX regulon by comparison of transcriptome data from diverse streptococcal species. IMPORTANCES. mutans has the hard surfaces of the oral cavity as its natural habitat, where it depends on its ability to form biofilms in order to survive. The comprehensive identification of S. mutans regulons activated in response to peptide pheromones provides an important basis for understanding how S. mutans can transition from individual to social behavior. Our study placed 27 of the 29 transcripts activated during competence within three major regulons and revealed a core set of 27 panstreptococcal competence-activated genes within the SigX regulon.
Collapse
|
44
|
Distinct SagA from Hospital-Associated Clade A1 Enterococcus faecium Strains Contributes to Biofilm Formation. Appl Environ Microbiol 2015. [PMID: 26209668 DOI: 10.1128/aem.01716-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Enterococcus faecium is an important nosocomial pathogen causing biofilm-mediated infections. Elucidation of E. faecium biofilm pathogenesis is pivotal for the development of new strategies to treat these infections. In several bacteria, extracellular DNA (eDNA) and proteins act as matrix components contributing to biofilm development. In this study, we investigated biofilm formation capacity and the roles of eDNA and secreted proteins for 83 E. faecium strains with different phylogenetic origins that clustered in clade A1 and clade B. Although there was no significant difference in biofilm formation between E. faecium strains from these two clades, the addition of DNase I or proteinase K to biofilms demonstrated that eDNA is essential for biofilm formation in most E. faecium strains, whereas proteolysis impacted primarily biofilms of E. faecium clade A1 strains. Secreted antigen A (SagA) was the most abundant protein in biofilms from E. faecium clade A1 and B strains, although its localization differed between the two groups. sagA was present in all sequenced E. faecium strains, with a consistent difference in the repeat region between the clades, which correlated with the susceptibility of biofilms to proteinase K. This indicates an association between the SagA variable repeat profile and the localization and contribution of SagA in E. faecium biofilms.
Collapse
|
45
|
Bucki R, Niemirowicz K, Wnorowska U, Wątek M, Byfield FJ, Cruz K, Wróblewska M, Janmey PA. Polyelectrolyte-mediated increase of biofilm mass formation. BMC Microbiol 2015; 15:117. [PMID: 26048182 PMCID: PMC4458031 DOI: 10.1186/s12866-015-0457-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 05/29/2015] [Indexed: 01/08/2023] Open
Abstract
Background Biofilm formation is associated with various aspects of bacterial and fungal infection. This study was designed to assess the impact of diverse natural polyelectrolytes, such as DNA, F-actin, neurofilaments (NFs), vimentin and purified Pf1 bacteriophage on biofilm formation and swarming motility of select pathogens including Pseudomonas aeruginosa associated with lung infections in CF patients. Results The bacteriophage Pf1 (1 mg/ml) significantly increased biofilm mass produced by Pseudomonas aeruginosa P14, Escherichia coli RS218 and Bacillus subtilis ATCC6051. DNA, F-actin, NFs and Pf1 also increased biofilm mass of the fungal C. albicans 1409 strain. Addition of F-actin, DNA or Pf1 bacteriophage to 0.5% agar plates increased swarming motility of Pseudomonas aeruginosa Xen5. Conclusions The presence of polyelectrolytes at infection sites is likely to promote biofilm growth and bacterial swarming.
Collapse
Affiliation(s)
- Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, ul. Mickiewicza 2C, Bialystok, 15-222, Poland. .,Department of Physiology, Pathophysiology and Microbiology of Infections, The Faculty of Health Sciences of the Jan Kochanowski University in Kielce, Kielce, Poland.
| | - Katarzyna Niemirowicz
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, ul. Mickiewicza 2C, Bialystok, 15-222, Poland.
| | - Urszula Wnorowska
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, ul. Mickiewicza 2C, Bialystok, 15-222, Poland.
| | - Marzena Wątek
- Department of Hematology, Holy Cross Oncology Center of Kielce, Kielce, Poland.
| | - Fitzroy J Byfield
- Department of Physiology and the Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| | - Katrina Cruz
- Department of Physiology and the Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| | - Marta Wróblewska
- Department of Dental Microbiology, Medical University of Warsaw, Warsaw, Poland.
| | - Paul A Janmey
- Department of Physiology and the Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Sadekuzzaman M, Yang S, Mizan M, Ha S. Current and Recent Advanced Strategies for Combating Biofilms. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12144] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- M. Sadekuzzaman
- School of Food Science and Technology; Chung-Ang Univ; 72-1 Nae-Ri Daedeok-Myun, Anseong Gyunggido 456-756 South Korea Dept. of Livestock Services, People's Republic of Bangladesh
| | - S. Yang
- Chung-Ang Univ; 72-1 Nae-Ri Daedeok-Myun, Anseong Gyunggido 456-756 South Korea
| | - M.F.R. Mizan
- Chung-Ang Univ; 72-1 Nae-Ri Daedeok-Myun, Anseong Gyunggido 456-756 South Korea
| | - S.D. Ha
- Chung-Ang Univ; 72-1 Nae-Ri Daedeok-Myun, Anseong Gyunggido 456-756 South Korea
| |
Collapse
|
47
|
Okshevsky M, Regina VR, Meyer RL. Extracellular DNA as a target for biofilm control. Curr Opin Biotechnol 2015; 33:73-80. [DOI: 10.1016/j.copbio.2014.12.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/28/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
|
48
|
The copYAZ Operon Functions in Copper Efflux, Biofilm Formation, Genetic Transformation, and Stress Tolerance in Streptococcus mutans. J Bacteriol 2015; 197:2545-57. [PMID: 26013484 DOI: 10.1128/jb.02433-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 05/12/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED In bacteria, copper homeostasis is closely monitored to ensure proper cellular functions while avoiding cell damage. Most Gram-positive bacteria utilize the copYABZ operon for copper homeostasis, where copA and copB encode copper-transporting P-type ATPases, whereas copY and copZ regulate the expression of the cop operon. Streptococcus mutans is a biofilm-forming oral pathogen that harbors a putative copper-transporting copYAZ operon. Here, we characterized the role of copYAZ operon in the physiology of S. mutans and delineated the mechanisms of copper-induced toxicity in this bacterium. We observed that copper induced toxicity in S. mutans cells by generating oxidative stress and disrupting their membrane potential. Deletion of the copYAZ operon in S. mutans strain UA159 resulted in reduced cell viability under copper, acid, and oxidative stress relative to the viability of the wild type under these conditions. Furthermore, the ability of S. mutans to form biofilms and develop genetic competence was impaired under copper stress. Briefly, copper stress significantly reduced cell adherence and total biofilm biomass, concomitantly repressing the transcription of the gtfB, gtfC, gtfD, gbpB, and gbpC genes, whose products have roles in maintaining the structural and/or functional integrity of the S. mutans biofilm. Furthermore, supplementation with copper or loss of copYAZ resulted in significant reductions in transformability and in the transcription of competence-associated genes. Copper transport assays revealed that the ΔcopYAZ strain accrued significantly large amounts of intracellular copper compared with the amount of copper accumulation in the wild-type strain, thereby demonstrating a role for CopYAZ in the copper efflux of S. mutans. The complementation of the CopYAZ system restored copper expulsion, membrane potential, and stress tolerance in the copYAZ-null mutant. Taking these results collectively, we have established the function of the S. mutans CopYAZ system in copper export and have further expanded knowledge on the importance of copper homeostasis and the CopYAZ system in modulating streptococcal physiology, including stress tolerance, membrane potential, genetic competence, and biofilm formation. IMPORTANCE S. mutans is best known for its role in the initiation and progression of human dental caries, one of the most common chronic diseases worldwide. S. mutans is also implicated in bacterial endocarditis, a life-threatening inflammation of the heart valve. The core virulence factors of S. mutans include its ability to produce and sustain acidic conditions and to form a polysaccharide-encased biofilm that provides protection against environmental insults. Here, we demonstrate that the addition of copper and/or deletion of copYAZ (the copper homeostasis system) have serious implications in modulating biofilm formation, stress tolerance, and genetic transformation in S. mutans. Manipulating the pathways affected by copper and the copYAZ system may help to develop potential therapeutics to prevent S. mutans infection in and beyond the oral cavity.
Collapse
|
49
|
Das T, Kutty SK, Tavallaie R, Ibugo AI, Panchompoo J, Sehar S, Aldous L, Yeung AWS, Thomas SR, Kumar N, Gooding JJ, Manefield M. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation. Sci Rep 2015; 5:8398. [PMID: 25669133 PMCID: PMC4323658 DOI: 10.1038/srep08398] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/12/2015] [Indexed: 01/22/2023] Open
Abstract
Bacterial resistance to conventional antibiotics necessitates the identification of novel leads for infection control. Interference with extracellular phenomena, such as quorum sensing, extracellular DNA integrity and redox active metabolite release, represents a new frontier to control human pathogens such as Pseudomonas aeruginosa and hence reduce mortality. Here we reveal that the extracellular redox active virulence factor pyocyanin produced by P. aeruginosa binds directly to the deoxyribose-phosphate backbone of DNA and intercalates with DNA nitrogenous base pair regions. Binding results in local perturbations of the DNA double helix structure and enhanced electron transfer along the nucleic acid polymer. Pyocyanin binding to DNA also increases DNA solution viscosity. In contrast, antioxidants interacting with DNA and pyocyanin decrease DNA solution viscosity. Biofilms deficient in pyocyanin production and biofilms lacking extracellular DNA show similar architecture indicating the interaction is important in P. aeruginosa biofilm formation.
Collapse
Affiliation(s)
- Theerthankar Das
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW), Sydney 2052, Australia
| | - Samuel K Kutty
- School of Chemistry, University of New South Wales (UNSW), Sydney 2052, Australia
| | - Roya Tavallaie
- School of Chemistry, University of New South Wales (UNSW), Sydney 2052, Australia
| | - Amaye I Ibugo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW), Sydney 2052, Australia
| | - Janjira Panchompoo
- School of Chemistry, University of New South Wales (UNSW), Sydney 2052, Australia
| | - Shama Sehar
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW), Sydney 2052, Australia
| | - Leigh Aldous
- School of Chemistry, University of New South Wales (UNSW), Sydney 2052, Australia
| | - Amanda W S Yeung
- Centre for Vascular Research and School of Medical Sciences, University of New South Wales (UNSW), Sydney 2052, Australia
| | - Shane R Thomas
- Centre for Vascular Research and School of Medical Sciences, University of New South Wales (UNSW), Sydney 2052, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales (UNSW), Sydney 2052, Australia
| | - J Justin Gooding
- School of Chemistry, University of New South Wales (UNSW), Sydney 2052, Australia
| | - Mike Manefield
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW), Sydney 2052, Australia
| |
Collapse
|
50
|
Piasecka A, Bernstein R, Ollevier F, Meersman F, Souffreau C, Bilad RM, Cottenie K, Vanysacker L, Denis C, Vankelecom I. Study of biofilms on PVDF membranes after chemical cleaning by sodium hypochlorite. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2014.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|