1
|
Dubois L, Vettiger A, Buss JA, Bernhardt TG. Using fluorescently labeled wheat germ agglutinin to track lipopolysaccharide transport to the outer membrane in Escherichia coli. mBio 2025; 16:e0395024. [PMID: 39992125 PMCID: PMC11898776 DOI: 10.1128/mbio.03950-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/24/2025] [Indexed: 02/25/2025] Open
Abstract
The cell envelope of gram-negative bacteria consists of two membranes sandwiching the peptidoglycan (PG) cell wall. The outer membrane (OM) contains integrated beta-barrel proteins and has an outer leaflet composed of lipopolysaccharide (LPS). LPS is transported from the inner membrane where it is made to the OM surface by the Lpt system. In the polarly elongating alpha-proteobacterium Brucella abortus, LPS transport has been localized to the polar growth zone and division site. However, LPS transport has not been tracked in live proteobacteria like Escherichia coli that elongate by dispersed incorporation of envelope material along their cell body. Here, we report an investigation into the binding target of fluorescently labeled wheat germ agglutinin (FL-WGA) on E. coli cells that led to the development of a method for visualizing LPS transport. We show that instead of PG or enterobacterial common antigen for which FL-WGA labeling has been used to detect in the past, this probe recognizes LPS modified with a terminal N-acetylglucosamine formed by the defective O-antigen synthesis pathway of laboratory strains of E. coli. This finding enabled the construction of mutants inducible for LPS modification that were used together with FL-WGA labeling to track LPS transport to the cell surface. We show that new LPS is inserted throughout the cell cylinder and at the division site, but not at the cell poles. A similar pattern was observed previously for PG synthesis and OM protein insertion in E. coli, suggesting that LPS transport to the OM is coordinated with these processes.IMPORTANCEGram-negative bacteria like Escherichia coli are surrounded by a multilayered cell envelope that includes an outer membrane (OM) responsible for their high intrinsic resistance to antibiotics. The outer leaflet of this membrane is composed of a glycolipid called lipopolysaccharide (LPS). Here, we report the development of an imaging method to track the transport of LPS to the E. coli outer membrane. The results indicate that transport occurs throughout the cell cylinder and at the division site, but not at the cell poles. A similar pattern was observed previously when cell wall synthesis and the insertion of proteins into the OM were tracked. Our results therefore suggest that LPS transport to the OM is coordinated with other essential processes that underly gram-negative cell envelope biogenesis.
Collapse
Affiliation(s)
- Laurent Dubois
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea Vettiger
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jackson A. Buss
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas G. Bernhardt
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
2
|
Bint-E-Naser SF, Mohamed ZJ, Chao Z, Bali K, Owens RM, Daniel S. Gram-Positive Bacterial Membrane-Based Biosensor for Multimodal Investigation of Membrane-Antibiotic Interactions. BIOSENSORS 2024; 14:45. [PMID: 38248423 PMCID: PMC10813107 DOI: 10.3390/bios14010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
As membrane-mediated antibiotic resistance continues to evolve in Gram-positive bacteria, the development of new approaches to elucidate the membrane properties involved in antibiotic resistance has become critical. Membrane vesicles (MVs) secreted by the cytoplasmic membrane of Gram-positive bacteria contain native components, preserving lipid and protein diversity, nucleic acids, and sometimes virulence factors. Thus, MV-derived membrane platforms present a great model for Gram-positive bacterial membranes. In this work, we report the development of a planar bacterial cytoplasmic membrane-based biosensor using MVs isolated from the Bacillus subtilis WT strain that can be coated on multiple surface types such as glass, quartz crystals, and polymeric electrodes, fostering the multimodal assessment of drug-membrane interactions. Retention of native membrane components such as lipoteichoic acids, lipids, and proteins is verified. This biosensor replicates known interaction patterns of the antimicrobial compound, daptomycin, with the Gram-positive bacterial membrane, establishing the applicability of this platform for carrying out biophysical characterization of the interactions of membrane-acting antibiotic compounds with the bacterial cytoplasmic membrane. We report changes in membrane viscoelasticity and permeability that correspond to partial membrane disruption when calcium ions are present with daptomycin but not when these ions are chelated. This biomembrane biosensing platform enables an assessment of membrane biophysical characteristics during exposure to antibiotic drug candidates to aid in identifying compounds that target membrane disruption as a mechanism of action.
Collapse
Affiliation(s)
- Samavi Farnush Bint-E-Naser
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; (S.F.B.-E.-N.); (Z.C.)
| | | | - Zhongmou Chao
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; (S.F.B.-E.-N.); (Z.C.)
| | - Karan Bali
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; (K.B.); (R.M.O.)
| | - Róisín M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; (K.B.); (R.M.O.)
| | - Susan Daniel
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; (S.F.B.-E.-N.); (Z.C.)
| |
Collapse
|
3
|
Mallik S, Dodia H, Ghosh A, Srinivasan R, Good L, Raghav SK, Beuria TK. FtsE, the Nucleotide Binding Domain of the ABC Transporter Homolog FtsEX, Regulates Septal PG Synthesis in E. coli. Microbiol Spectr 2023; 11:e0286322. [PMID: 37014250 PMCID: PMC10269673 DOI: 10.1128/spectrum.02863-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/11/2023] [Indexed: 04/05/2023] Open
Abstract
The peptidoglycan (PG) layer, a crucial component of the tripartite E.coli envelope, is required to maintain cellular integrity, protecting the cells from mechanical stress resulting from intracellular turgor pressure. Thus, coordinating synthesis and hydrolysis of PG during cell division (septal PG) is crucial for bacteria. The FtsEX complex directs septal PG hydrolysis through the activation of amidases; however, the mechanism and regulation of septal PG synthesis are unclear. In addition, how septal PG synthesis and hydrolysis are coordinated has remained unclear. Here, we have shown that overexpression of FtsE leads to a mid-cell bulging phenotype in E.coli, which is different from the filamentous phenotype observed during overexpression of other cell division proteins. Silencing of the common PG synthesis genes murA and murB reduced bulging, confirming that this phenotype is due to excess PG synthesis. We further demonstrated that septal PG synthesis is independent of FtsE ATPase activity and FtsX. These observations and previous results suggest that FtsEX plays a role during septal PG hydrolysis, whereas FtsE alone coordinates septal PG synthesis. Overall, our study findings support a model in which FtsE plays a role in coordinating septal PG synthesis with bacterial cell division. IMPORTANCE The peptidoglycan (PG) layer is an essential component of the E.coli envelope that is required to maintain cellular shape and integrity. Thus, coordinating PG synthesis and hydrolysis at the mid-cell (septal PG) is crucial during bacterial division. The FtsEX complex directs septal PG hydrolysis through the activation of amidases; however, its role in regulation of septal PG synthesis is unclear. Here, we demonstrate that overexpression of FtsE in E.coli leads to a mid-cell bulging phenotype due to excess PG synthesis. This phenotype was reduced upon silencing of common PG synthesis genes murA and murB. We further demonstrated that septal PG synthesis is independent of FtsE ATPase activity and FtsX. These observations suggest that the FtsEX complex plays a role during septal PG hydrolysis, whereas FtsE alone coordinates septal PG synthesis. Our study indicates that FtsE plays a role in coordinating septal PG synthesis with bacterial cell division.
Collapse
Affiliation(s)
- Sunanda Mallik
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Hiren Dodia
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Arup Ghosh
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| | - Ramanujam Srinivasan
- National Institute of Science Education and Research, Bhubaneswar, Odisha, India
| | - Liam Good
- The Royal Veterinary College, University of London, London, United Kingdom
| | | | | |
Collapse
|
4
|
Antimicrobial Peptides Designed against the Ω-Loop of Class A β-Lactamases to Potentiate the Efficacy of β-Lactam Antibiotics. Antibiotics (Basel) 2023; 12:antibiotics12030553. [PMID: 36978420 PMCID: PMC10044640 DOI: 10.3390/antibiotics12030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Class A serine β-lactamases (SBLs) have a conserved non-active site structural domain called the omega loop (Ω-loop), in which a glutamic acid residue is believed to be directly involved in the hydrolysis of β-lactam antibiotics by providing a water molecule during catalysis. We aimed to design and characterise potential pentapeptides to mask the function of the Ω-loop of β-lactamases and reduce their efficacy, along with potentiating the β-lactam antibiotics and eventually decreasing β-lactam resistance. Considering the Ω-loop sequence as a template, a group of pentapeptide models were designed, validated through docking, and synthesised using solid-phase peptide synthesis (SPPS). To check whether the β-lactamases (BLAs) were inhibited, we expressed specific BLAs (TEM-1 and SHV-14) and evaluated the trans-expression through a broth dilution method and an agar dilution method (HT-SPOTi). To further support our claim, we conducted a kinetic analysis of BLAs with the peptides and employed molecular dynamics (MD) simulations of peptides. The individual presence of six histidine-based peptides (TSHLH, ETHIH, ESRLH, ESHIH, ESRIH, and TYHLH) reduced β-lactam resistance in the strains harbouring BLAs. Subsequently, we found that the combinational effect of these peptides and β-lactams sensitised the bacteria towards the β-lactam drugs. We hypothesize that the antimicrobial peptides obtained might be considered among the novel inhibitors that can be used specifically against the Ω-loop of the β-lactamases.
Collapse
|
5
|
Surveying membrane landscapes: a new look at the bacterial cell surface. Nat Rev Microbiol 2023:10.1038/s41579-023-00862-w. [PMID: 36828896 DOI: 10.1038/s41579-023-00862-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/26/2023]
Abstract
Recent studies applying advanced imaging techniques are changing the way we understand bacterial cell surfaces, bringing new knowledge on everything from single-cell heterogeneity in bacterial populations to their drug sensitivity and mechanisms of antimicrobial resistance. In both Gram-positive and Gram-negative bacteria, the outermost surface of the bacterial cell is being imaged at nanoscale; as a result, topographical maps of bacterial cell surfaces can be constructed, revealing distinct zones and specific features that might uniquely identify each cell in a population. Functionally defined assembly precincts for protein insertion into the membrane have been mapped at nanoscale, and equivalent lipid-assembly precincts are suggested from discrete lipopolysaccharide patches. As we review here, particularly for Gram-negative bacteria, the applications of various modalities of nanoscale imaging are reawakening our curiosity about what is conceptually a 3D cell surface landscape: what it looks like, how it is made and how it provides resilience to respond to environmental impacts.
Collapse
|
6
|
Ma LZ, Wang D, Liu Y, Zhang Z, Wozniak DJ. Regulation of Biofilm Exopolysaccharide Biosynthesis and Degradation in Pseudomonas aeruginosa. Annu Rev Microbiol 2022; 76:413-433. [DOI: 10.1146/annurev-micro-041320-111355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbial communities enmeshed in a matrix of macromolecules, termed as biofilms, are the natural setting of bacteria. Exopolysaccharide is a critical matrix component of biofilms. Here, we focus on biofilm matrix exopolysaccharides in Pseudomonas aeruginosa. This opportunistic pathogen can adapt to a wide range of environments and can form biofilms or aggregates in a variety of surfaces or environments, such as the lungs of people with cystic fibrosis, catheters, wounds, and contact lenses. The ability to synthesize multiple exopolysaccharides is one of the advantages that facilitate bacterial survival in different environments. P. aeruginosa can produce several exopolysaccharides, including alginate, Psl, Pel, and lipopolysaccharide. In this review, we highlight the roles of each exopolysaccharide in P. aeruginosa biofilm development and how bacteria coordinate the biosynthesis of multiple exopolysaccharides and bacterial motility. In addition, we present advances in antibiofilm strategies targeting matrix exopolysaccharides, with a focus on glycoside hydrolases. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Luyan Z. Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Di Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yiwei Liu
- Department of Microbial Infection and Immunity and Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| | - Zhenyu Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity and Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
7
|
Ginez LD, Osorio A, Vázquez-Ramírez R, Arenas T, Mendoza L, Camarena L, Poggio S. Changes in fluidity of the E. coli outer membrane in response to temperature, divalent cations and polymyxin-B show two different mechanisms of membrane fluidity adaptation. FEBS J 2022; 289:3550-3567. [PMID: 35038363 DOI: 10.1111/febs.16358] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/23/2021] [Accepted: 01/13/2022] [Indexed: 12/28/2022]
Abstract
The outer membrane (OM) is an essential component of the Gram-negative bacterial cell envelope. Restricted diffusion of integral OM proteins and lipopolysaccharide (LPS) that constitute the outer leaflet of the OM support a model in which the OM is in a semi-crystalline state. The low fluidity of the OM has been suggested to be an important property of this membrane that even contributes to cell rigidity. The LPS characteristics strongly determine the properties of the OM and the LPS layer fluidity has been measured using different techniques that require specific conditions or are technically challenging. Here, we characterize the Escherichia coli LPS fluidity by evaluating the lateral diffusion of the styryl dye FM4-64FX in fluorescence recovery after photobleaching experiments. This technique allowed us to determine the effect of different conditions and genetic backgrounds on the LPS fluidity. Our results show that a fraction of the LPS can slowly diffuse and that the fluidity of the LPS layer adapts by modifying the diffusion of the LPS and the fraction of mobile LPS molecules.
Collapse
Affiliation(s)
- Luis David Ginez
- Departamento Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Aurora Osorio
- Departamento Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Ricardo Vázquez-Ramírez
- Departamento Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Thelma Arenas
- Departamento Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Luis Mendoza
- Departamento Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Laura Camarena
- Departamento Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Sebastian Poggio
- Departamento Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| |
Collapse
|
8
|
Ilangumaran Ponmalar I, Swain J, Basu JK. Escherichia coli response to subinhibitory concentrations of colistin: insights from a study of membrane dynamics and morphology. Biomater Sci 2022; 10:2609-2617. [PMID: 35411890 DOI: 10.1039/d2bm00037g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prevalence of widespread bacterial infections brings forth a critical need to understand the molecular mechanisms of the antibiotics as well as the bacterial response to those antibiotics. Improper use of antibiotics, which can be in sub-lethal concentrations is one among the multiple reasons for acquiring antibiotic resistance which makes it vital to understand the bacterial response towards sub-lethal concentrations of antibiotics. In this work, we have used colistin, a well-known membrane active antibiotic used to treat severe bacterial infections and explored the impact of its sub-minimum inhibitory concentration (MIC) on the lipid membrane dynamics and morphological changes of E. coli. Upon investigation of live cell membrane properties such as lipid dynamics using fluorescence correlation spectroscopy, we observed that colistin disrupts the lipid membrane at sub-MIC by altering the lipid diffusivity. Interestingly, filamentation-like cell elongation was observed upon colistin treatment which led to further exploration of surface morphology with the help of atomic force spectroscopy. The changes in the surface roughness upon colistin treatment provides additional insight on the colistin-membrane interaction corroborating with the altered lipid diffusion. Although altered lipid dynamics could be attributed to an outcome of lipid rearrangement due to direct disruption by antibiotic molecules on the membrane or an indirect consequence of disruptions in lipid biosynthetic pathways, we were able to ascertain that altered bacterial membrane dynamics is due to direct disruptions. Our results provide a broad overview on the consequence of the cyclic polypeptide colistin on membrane-specific lipid dynamics and morphology of a live Gram-negative bacterial cell.
Collapse
Affiliation(s)
| | - Jitendriya Swain
- Department of Physics, Indian Institute of Science, Bengaluru 560012, India.
| | - Jaydeep K Basu
- Department of Physics, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
9
|
Inhibitors of Heptosyltransferase I to prevent heptose transfer against antibiotic resistance of E. coli: Energetics and stability analysis by DFT and molecular dynamics. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Sun J, Rutherford ST, Silhavy TJ, Huang KC. Physical properties of the bacterial outer membrane. Nat Rev Microbiol 2022; 20:236-248. [PMID: 34732874 PMCID: PMC8934262 DOI: 10.1038/s41579-021-00638-0] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 11/09/2022]
Abstract
It has long been appreciated that the Gram-negative outer membrane acts as a permeability barrier, but recent studies have uncovered a more expansive and versatile role for the outer membrane in cellular physiology and viability. Owing to recent developments in microfluidics and microscopy, the structural, rheological and mechanical properties of the outer membrane are becoming apparent across multiple scales. In this Review, we discuss experimental and computational studies that have revealed key molecular factors and interactions that give rise to the spatial organization, limited diffusivity and stress-bearing capacity of the outer membrane. These physical properties suggest broad connections between cellular structure and physiology, and we explore future prospects for further elucidation of the implications of outer membrane construction for cellular fitness and survival.
Collapse
Affiliation(s)
- Jiawei Sun
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Steven T. Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA,To whom correspondence should be addressed: , ,
| | - Thomas J. Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,To whom correspondence should be addressed: , ,
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
11
|
The Escherichia coli Outer Membrane β-Barrel Assembly Machinery (BAM) Crosstalks with the Divisome. Int J Mol Sci 2021; 22:ijms222212101. [PMID: 34829983 PMCID: PMC8620860 DOI: 10.3390/ijms222212101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 01/25/2023] Open
Abstract
The BAM is a macromolecular machine responsible for the folding and the insertion of integral proteins into the outer membrane of diderm Gram-negative bacteria. In Escherichia coli, it consists of a transmembrane β-barrel subunit, BamA, and four outer membrane lipoproteins (BamB-E). Using BAM-specific antibodies, in E. coli cells, the complex is shown to localize in the lateral wall in foci. The machinery was shown to be enriched at midcell with specific cell cycle timing. The inhibition of septation by aztreonam did not alter the BAM midcell localization substantially. Furthermore, the absence of late cell division proteins at midcell did not impact BAM timing or localization. These results imply that the BAM enrichment at the site of constriction does not require an active cell division machinery. Expression of the Tre1 toxin, which impairs the FtsZ filamentation and therefore midcell localization, resulted in the complete loss of BAM midcell enrichment. A similar effect was observed for YidC, which is involved in the membrane insertion of cell division proteins in the inner membrane. The presence of the Z-ring is needed for preseptal peptidoglycan (PG) synthesis. As BAM was shown to be embedded in the PG layer, it is possible that BAM is inserted preferentially simultaneously with de novo PG synthesis to facilitate the insertion of OMPs in the newly synthesized outer membrane.
Collapse
|
12
|
Benn G, Mikheyeva IV, Inns PG, Forster JC, Ojkic N, Bortolini C, Ryadnov MG, Kleanthous C, Silhavy TJ, Hoogenboom BW. Phase separation in the outer membrane of Escherichia coli. Proc Natl Acad Sci U S A 2021; 118:e2112237118. [PMID: 34716276 PMCID: PMC8612244 DOI: 10.1073/pnas.2112237118] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022] Open
Abstract
Gram-negative bacteria are surrounded by a protective outer membrane (OM) with phospholipids in its inner leaflet and lipopolysaccharides (LPS) in its outer leaflet. The OM is also populated with many β-barrel outer-membrane proteins (OMPs), some of which have been shown to cluster into supramolecular assemblies. However, it remains unknown how abundant OMPs are organized across the entire bacterial surface and how this relates to the lipids in the membrane. Here, we reveal how the OM is organized from molecular to cellular length scales, using atomic force microscopy to visualize the OM of live bacteria, including engineered Escherichia coli strains and complemented by specific labeling of abundant OMPs. We find that a predominant OMP in the E. coli OM, the porin OmpF, forms a near-static network across the surface, which is interspersed with barren patches of LPS that grow and merge with other patches during cell elongation. Embedded within the porin network is OmpA, which forms noncovalent interactions to the underlying cell wall. When the OM is destabilized by mislocalization of phospholipids to the outer leaflet, a new phase appears, correlating with bacterial sensitivity to harsh environments. We conclude that the OM is a mosaic of phase-separated LPS-rich and OMP-rich regions, the maintenance of which is essential to the integrity of the membrane and hence to the lifestyle of a gram-negative bacterium.
Collapse
Affiliation(s)
- Georgina Benn
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
- National Physical Laboratory, Teddington TW11 0LW, United Kingdom
| | - Irina V Mikheyeva
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Patrick George Inns
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Joel C Forster
- Department of Physics and Astronomy, University College London WC1E 6BT London, United Kingdom
- Institute for the Physics of Living Systems, University College London WC1E 6BT London, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Nikola Ojkic
- Department of Physics and Astronomy, University College London WC1E 6BT London, United Kingdom
| | - Christian Bortolini
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
| | - Maxim G Ryadnov
- National Physical Laboratory, Teddington TW11 0LW, United Kingdom
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom;
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544;
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom;
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
- Department of Physics and Astronomy, University College London WC1E 6BT London, United Kingdom
- Institute for the Physics of Living Systems, University College London WC1E 6BT London, United Kingdom
| |
Collapse
|
13
|
Mohamed Z, Shin JH, Ghosh S, Sharma AK, Pinnock F, Bint E Naser Farnush S, Dörr T, Daniel S. Clinically Relevant Bacterial Outer Membrane Models for Antibiotic Screening Applications. ACS Infect Dis 2021; 7:2707-2722. [PMID: 34227387 DOI: 10.1021/acsinfecdis.1c00217] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antibiotic resistance is a growing global health concern that has been increasing in prevalence over the past few decades. In Gram-negative bacteria, the outer membrane is an additional barrier through which antibiotics must traverse to kill the bacterium. In addition, outer membrane features and properties, like membrane surface charge, lipopolysaccharide (LPS) length, and membrane porins, can be altered in response to antibiotics and therefore, further mediate resistance. Model membranes have been used to mimic bacterial membranes to study antibiotic-induced membrane changes but often lack the compositional complexity of the actual outer membrane. Here, we developed a surface-supported membrane platform using outer membrane vesicles (OMVs) from clinically relevant Gram-negative bacteria and use it to characterize membrane biophysical properties and investigate its interaction with antibacterial compounds. We demonstrate that this platform maintains critical features of outer membranes, like fluidity, while retaining complex membrane components, like OMPs and LPS, which are central to membrane-mediated antibiotic resistance. This platform offers a non-pathogenic, cell-free surface to study such phenomena that is compatible with advanced microscopy and surface characterization tools like quartz crystal microbalance. We confirm these OMV bilayers recapitulate membrane interactions (or lack thereof) with the antibiotic compounds polymyxin B, bacitracin, and vancomycin, validating their use as representative models for the bacterial surface. By forming OMV bilayers from different strains, we envision that this platform could be used to investigate underlying biophysical differences in outer membranes leading to resistance, to screen and identify membrane-active antibiotics, or for the development of phage technologies targeting a particular membrane surface component.
Collapse
Affiliation(s)
- Zeinab Mohamed
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York United States
| | - Jung-Ho Shin
- Weill Institute for Cell and Molecular Biology and Department of Microbiology, Cornell University, Ithaca, New York United States
| | - Surajit Ghosh
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York United States
| | - Abhishek K Sharma
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York United States
| | - Ferra Pinnock
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York United States
| | - Samavi Bint E Naser Farnush
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York United States
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology and Department of Microbiology, Cornell University, Ithaca, New York United States
| | - Susan Daniel
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York United States
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York United States
| |
Collapse
|
14
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
15
|
Cao P, Wall D. The Fluidity of the Bacterial Outer Membrane Is Species Specific: Bacterial Lifestyles and the Emergence of a Fluid Outer Membrane. Bioessays 2020; 42:e1900246. [PMID: 32363627 PMCID: PMC7392792 DOI: 10.1002/bies.201900246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/23/2020] [Indexed: 01/17/2023]
Abstract
The outer membrane (OM) is an essential barrier that guards Gram-negative bacteria from diverse environmental insults. Besides functioning as a chemical gatekeeper, the OM also contributes towards the strength and stiffness of cells and allows them to sustain mechanical stress. Largely influenced by studies of Escherichia coli, the OM is viewed as a rigid barrier where OM proteins and lipopolysaccharides display restricted mobility. Here the discussion is extended to other bacterial species, with a focus on Myxococcus xanthus. In contrast to the rigid OM paradigm, myxobacteria possess a relatively fluid OM. It is concluded that the fluidity of the OM varies across environmental species, which is likely linked to their evolution and adaptation to specific ecological niches. Importantly, a fluid OM can endow bacteria with distinct functions for cell-cell and cell-environment interactions.
Collapse
Affiliation(s)
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA
| |
Collapse
|
16
|
Eddenden A, Kitova EN, Klassen JS, Nitz M. An Inactive Dispersin B Probe for Monitoring PNAG Production in Biofilm Formation. ACS Chem Biol 2020; 15:1204-1211. [PMID: 31917539 DOI: 10.1021/acschembio.9b00907] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacterial exopolysaccharide poly-β-1,6-N-acetylglucosamine is a major extracellular matrix component in biofilms of both Gram-positive and Gram-negative organisms. We have leveraged the specificity of the biofilm-dispersing glycoside hydrolase Dispersin B (DspB) to generate a probe (Dispersin B PNAG probe, DiPP) for monitoring PNAG production and localization during biofilm formation. Mutation of the active site of Dispersin B gave DiPP, which was an effective probe despite its low affinity for PNAG oligosaccharides (KD ∼ 1-10 mM). Imaging of PNAG-dependent and -independent biofilms stained with a fluorescent-protein fusion of DiPP (GFP-DiPP) demonstrated the specificity of the probe for the structure of PNAG on both single-cell and biofilm levels, indicating a high local concentration of PNAG at the bacterial cell surface. Through quantitative bacterial cell binding assays and confocal microscopy analysis using GFP-DiPP, discrete areas of local high concentrations of PNAG were detected on the surface of early log phase cells. These distinct areas were seen to grow, slough from cells, and accumulate in interbacterial regions over the course of several cell divisions, showing the development of a PNAG-dependent biofilm. A potential helical distribution of staining was also noted, suggesting some degree of organization of PNAG production at the cell surface prior to cell aggregation. Together, these experiments shed light on the early stages of PNAG-dependent biofilm formation and demonstrate the value of a low-affinity-high-specificity probe for monitoring the production of bacterial exopolysaccharides.
Collapse
Affiliation(s)
- Alexander Eddenden
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario, Canada M5S 3H6
| | - Elena N. Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr. Edmonton, Alberta, Canada T6G 2G2
| | - John S. Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr. Edmonton, Alberta, Canada T6G 2G2
| | - Mark Nitz
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario, Canada M5S 3H6
| |
Collapse
|
17
|
Zhang K, Young R, Zeng L. Bacteriophage P1 does not show spatial preference when infecting Escherichia coli. Virology 2020; 542:1-7. [PMID: 31957661 PMCID: PMC7024032 DOI: 10.1016/j.virol.2019.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/02/2019] [Accepted: 12/30/2019] [Indexed: 11/16/2022]
Abstract
To begin its infection, a bacteriophage first needs to adsorb to cells. The adsorption site on the cell surface may influence viral DNA injection, gene expression and cell-fate development. Here, we study the early steps of the infection cycle of coliphage P1, focusing on their correlation with spatial locations at the single-cell level. By fluorescently labeling P1 virions, we found that P1 shows no spatial preference on cell surface adsorption. In addition, live-cell phage DNA imaging revealed that adsorption sites do not affect the success rate for P1 in injecting its DNA into the cell. Furthermore, the lysis-lysogeny decision of P1 does not depend on the adsorption site, based on fluorescence reporters for the lytic and lysogenic pathways. These findings highlight the different infection strategies used by the two paradigmatic coliphages differ from those found in the paradigmatic phage lambda, highlighting that different infection strategies are used by phages.
Collapse
Affiliation(s)
- Kailun Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX, 77843, USA
| | - Ry Young
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX, 77843, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
18
|
Establishment of a Protein Concentration Gradient in the Outer Membrane Requires Two Diffusion-Limiting Mechanisms. J Bacteriol 2019; 201:JB.00177-19. [PMID: 31209077 DOI: 10.1128/jb.00177-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/12/2019] [Indexed: 11/20/2022] Open
Abstract
OmpA-like proteins are involved in the stabilization of the outer membrane, resistance to osmotic stress, and pathogenesis. In Caulobacter crescentus, OmpA2 forms a physiologically relevant concentration gradient that forms by an uncharacterized mechanism, in which the gradient orientation depends on the position of the gene locus. This suggests that OmpA2 is synthesized and translocated to the periplasm close to the position of the gene and that the gradient forms by diffusion of the protein from this point. To further understand how the OmpA2 gradient is established, we determined the localization and mobility of the full protein and of its two structural domains. We show that OmpA2 does not diffuse and that both domains are required for gradient formation. The C-terminal domain binds tightly to the cell wall and the immobility of the full protein depends on the binding of this domain to the peptidoglycan; in contrast, the N-terminal membrane β-barrel diffuses slowly. Our results support a model in which once OmpA2 is translocated to the periplasm, the N-terminal membrane β-barrel is required for an initial fast restriction of diffusion until the position of the protein is stabilized by the binding of the C-terminal domain to the cell wall. The implications of these results on outer membrane protein diffusion and organization are discussed.IMPORTANCE Protein concentration gradients play a relevant role in the organization of the bacterial cell. The Caulobacter crescentus protein OmpA2 forms an outer membrane polar concentration gradient. To understand the molecular mechanism that determines the formation of this gradient, we characterized the mobility and localization of the full protein and of its two structural domains an integral outer membrane β-barrel and a periplasmic peptidoglycan binding domain. Each domain has a different role in the formation of the OmpA2 gradient, which occurs in two steps. We also show that the OmpA2 outer membrane β-barrel can diffuse, which is in contrast to what has been reported previously for several integral outer membrane proteins in Escherichia coli, suggesting a different organization of the outer membrane proteins.
Collapse
|
19
|
Topologically-guided continuous protein crystallization controls bacterial surface layer self-assembly. Nat Commun 2019; 10:2731. [PMID: 31227690 PMCID: PMC6588578 DOI: 10.1038/s41467-019-10650-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/16/2019] [Indexed: 12/22/2022] Open
Abstract
Many bacteria and most archaea possess a crystalline protein surface layer (S-layer), which surrounds their growing and topologically complicated outer surface. Constructing a macromolecular structure of this scale generally requires localized enzymatic machinery, but a regulatory framework for S-layer assembly has not been identified. By labeling, superresolution imaging, and tracking the S-layer protein (SLP) from C. crescentus, we show that 2D protein self-assembly is sufficient to build and maintain the S-layer in living cells by efficient protein crystal nucleation and growth. We propose a model supported by single-molecule tracking whereby randomly secreted SLP monomers diffuse on the lipopolysaccharide (LPS) outer membrane until incorporated at the edges of growing 2D S-layer crystals. Surface topology creates crystal defects and boundaries, thereby guiding S-layer assembly. Unsupervised assembly poses challenges for therapeutics targeting S-layers. However, protein crystallization as an evolutionary driver rationalizes S-layer diversity and raises the potential for biologically inspired self-assembling macromolecular nanomaterials. Bacteria assemble the surface layer (S-layer), a crystalline protein coat surrounding the curved surface, using protein self-assembly. Here authors image native and purified RsaA, the S-layer protein from C. crescentus, and show that protein crystallization alone is sufficient to assemble and maintain the S-layer in vivo.
Collapse
|
20
|
Gunasinghe SD, Webb CT, Elgass KD, Hay ID, Lithgow T. Super-Resolution Imaging of Protein Secretion Systems and the Cell Surface of Gram-Negative Bacteria. Front Cell Infect Microbiol 2017; 7:220. [PMID: 28611954 PMCID: PMC5447050 DOI: 10.3389/fcimb.2017.00220] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/12/2017] [Indexed: 12/28/2022] Open
Abstract
Gram-negative bacteria have a highly evolved cell wall with two membranes composed of complex arrays of integral and peripheral proteins, as well as phospholipids and glycolipids. In order to sense changes in, respond to, and exploit their environmental niches, bacteria rely on structures assembled into or onto the outer membrane. Protein secretion across the cell wall is a key process in virulence and other fundamental aspects of bacterial cell biology. The final stage of protein secretion in Gram-negative bacteria, translocation across the outer membrane, is energetically challenging so sophisticated nanomachines have evolved to meet this challenge. Advances in fluorescence microscopy now allow for the direct visualization of the protein secretion process, detailing the dynamics of (i) outer membrane biogenesis and the assembly of protein secretion systems into the outer membrane, (ii) the spatial distribution of these and other membrane proteins on the bacterial cell surface, and (iii) translocation of effector proteins, toxins and enzymes by these protein secretion systems. Here we review the frontier research imaging the process of secretion, particularly new studies that are applying various modes of super-resolution microscopy.
Collapse
Affiliation(s)
- Sachith D Gunasinghe
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash UniversityClayton, VIC, Australia
| | - Chaille T Webb
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash UniversityClayton, VIC, Australia
| | | | - Iain D Hay
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash UniversityClayton, VIC, Australia
| | - Trevor Lithgow
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash UniversityClayton, VIC, Australia
| |
Collapse
|
21
|
Rodriguez-Rivera FP, Zhou X, Theriot JA, Bertozzi CR. Visualization of mycobacterial membrane dynamics in live cells. J Am Chem Soc 2017; 139:3488-3495. [PMID: 28075574 PMCID: PMC5345120 DOI: 10.1021/jacs.6b12541] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mycobacteria are endowed with a highly impermeable mycomembrane that confers intrinsic resistance to many antibiotics. Several unique mycomembrane glycolipids have been isolated and structurally characterized, but the underlying organization and dynamics of glycolipids within the cell envelope remain poorly understood. We report here a study of mycomembrane dynamics that was enabled by trehalose-fluorophore conjugates capable of labeling trehalose glycolipids in live actinomycetes. We identified fluorescein-trehalose analogues that are metabolically incorporated into the trehalose mycolates of representative Mycobacterium, Corynebacterium, Nocardia, and Rhodococcus species. Using these probes, we studied the mobilities of labeled glycolipids by time-lapse microscopy and fluorescence recovery after photobleaching experiments and found that mycomembrane fluidity varies widely across species and correlates with mycolic acid structure. Finally, we discovered that treatment of mycobacteria with ethambutol, a front-line tuberculosis (TB) drug, significantly increases mycomembrane fluidity. These findings enhance our understanding of mycobacterial cell envelope structure and dynamics and have implications for development of TB drug cocktails.
Collapse
Affiliation(s)
- Frances P Rodriguez-Rivera
- Department of Chemistry, University of California , Berkeley, California 94720, United States.,Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | | | - Julie A Theriot
- Howard Hughes Medical Institute , Chevy Chase, Maryland 20815, United States
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University , Stanford, California 94305, United States.,Howard Hughes Medical Institute , Chevy Chase, Maryland 20815, United States
| |
Collapse
|
22
|
Xia J, Chen LT, Mei Q, Ma CH, Halliday JA, Lin HY, Magnan D, Pribis JP, Fitzgerald DM, Hamilton HM, Richters M, Nehring RB, Shen X, Li L, Bates D, Hastings PJ, Herman C, Jayaram M, Rosenberg SM. Holliday junction trap shows how cells use recombination and a junction-guardian role of RecQ helicase. SCIENCE ADVANCES 2016; 2:e1601605. [PMID: 28090586 PMCID: PMC5222578 DOI: 10.1126/sciadv.1601605] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/05/2016] [Indexed: 05/05/2023]
Abstract
DNA repair by homologous recombination (HR) underpins cell survival and fuels genome instability, cancer, and evolution. However, the main kinds and sources of DNA damage repaired by HR in somatic cells and the roles of important HR proteins remain elusive. We present engineered proteins that trap, map, and quantify Holliday junctions (HJs), a central DNA intermediate in HR, based on catalytically deficient mutant RuvC protein of Escherichia coli. We use RuvCDefGFP (RDG) to map genomic footprints of HR at defined DNA breaks in E. coli and demonstrate genome-scale directionality of double-strand break (DSB) repair along the chromosome. Unexpectedly, most spontaneous HR-HJ foci are instigated, not by DSBs, but rather by single-stranded DNA damage generated by replication. We show that RecQ, the E. coli ortholog of five human cancer proteins, nonredundantly promotes HR-HJ formation in single cells and, in a novel junction-guardian role, also prevents apparent non-HR-HJs promoted by RecA overproduction. We propose that one or more human RecQ orthologs may act similarly in human cancers overexpressing the RecA ortholog RAD51 and find that cancer genome expression data implicate the orthologs BLM and RECQL4 in conjunction with EME1 and GEN1 as probable HJ reducers in such cancers. Our results support RecA-overproducing E. coli as a model of the many human tumors with up-regulated RAD51 and provide the first glimpses of important, previously elusive reaction intermediates in DNA replication and repair in single living cells.
Collapse
Affiliation(s)
- Jun Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li-Tzu Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qian Mei
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77030, USA
| | - Chien-Hui Ma
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
- Institute of Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | - Jennifer A. Halliday
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hsin-Yu Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Magnan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - John P. Pribis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Devon M. Fitzgerald
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Holly M. Hamilton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Megan Richters
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ralf B. Nehring
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi Shen
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Li
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Bates
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - P. J. Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
- Institute of Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | - Susan M. Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77030, USA
- Corresponding author.
| |
Collapse
|
23
|
Jorgenson MA, Kannan S, Laubacher ME, Young KD. Dead-end intermediates in the enterobacterial common antigen pathway induce morphological defects in Escherichia coli by competing for undecaprenyl phosphate. Mol Microbiol 2015; 100:1-14. [PMID: 26593043 DOI: 10.1111/mmi.13284] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2015] [Indexed: 01/31/2023]
Abstract
Bacterial morphology is determined primarily by the architecture of the peptidoglycan (PG) cell wall, a mesh-like layer that encases the cell. To identify novel mechanisms that create or maintain cell shape in Escherichia coli, we used flow cytometry to screen a transposon insertion library and identified a wecE mutant that altered cell shape, causing cells to filament and swell. WecE is a sugar aminotransferase involved in the biosynthesis of enterobacterial common antigen (ECA), a non-essential outer membrane glycolipid of the Enterobacteriaceae. Loss of wecE interrupts biosynthesis of ECA and causes the accumulation of the undecaprenyl pyrophosphate-linked intermediate ECA-lipid II. The wecE shape defects were reversed by: (i) preventing initiation of ECA biosynthesis, (ii) increasing the synthesis of the lipid carrier undecaprenyl phosphate (Und-P), (iii) diverting Und-P to PG synthesis or (iv) promoting Und-P recycling. The results argue that the buildup of ECA-lipid II sequesters part of the pool of Und-P, which, in turn, adversely affects PG synthesis. The data strongly suggest there is competition for a common pool of Und-P, whose proper distribution to alternate metabolic pathways is required to maintain normal cell shape in E. coli.
Collapse
Affiliation(s)
- Matthew A Jorgenson
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Suresh Kannan
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Mary E Laubacher
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Kevin D Young
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| |
Collapse
|
24
|
Kleanthous C, Rassam P, Baumann CG. Protein-protein interactions and the spatiotemporal dynamics of bacterial outer membrane proteins. Curr Opin Struct Biol 2015; 35:109-15. [PMID: 26629934 PMCID: PMC4684144 DOI: 10.1016/j.sbi.2015.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/26/2015] [Accepted: 10/30/2015] [Indexed: 01/14/2023]
Abstract
We discuss spatiotemporal patterning in the bacterial outer membrane. Promiscuous interactions between outer membrane proteins govern their behaviour. Turnover and biogenesis of outer membrane proteins linked to formation of clusters. Implications of spatiotemporal patterning for bacterial physiology discussed.
It has until recently been unclear whether outer membrane proteins (OMPs) of Gram-negative bacteria are organized or distributed randomly. Studies now suggest promiscuous protein–protein interactions (PPIs) between β-barrel OMPs in Escherichia coli govern their local and global dynamics, engender spatiotemporal patterning of the outer membrane into micro-domains and are the basis of β-barrel protein turnover. We contextualize these latest advances, speculate on areas of bacterial cell biology that might be influenced by the organization of OMPs into supramolecular assemblies, and highlight the new questions and controversies this revised view of the bacterial outer membrane raises.
Collapse
Affiliation(s)
- Colin Kleanthous
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Patrice Rassam
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|
25
|
Cota I, Sánchez-Romero MA, Hernández SB, Pucciarelli MG, García-del Portillo F, Casadesús J. Epigenetic Control of Salmonella enterica O-Antigen Chain Length: A Tradeoff between Virulence and Bacteriophage Resistance. PLoS Genet 2015; 11:e1005667. [PMID: 26583926 PMCID: PMC4652898 DOI: 10.1371/journal.pgen.1005667] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/25/2015] [Indexed: 12/21/2022] Open
Abstract
The Salmonella enterica opvAB operon is a horizontally-acquired locus that undergoes phase variation under Dam methylation control. The OpvA and OpvB proteins form intertwining ribbons in the inner membrane. Synthesis of OpvA and OpvB alters lipopolysaccharide O-antigen chain length and confers resistance to bacteriophages 9NA (Siphoviridae), Det7 (Myoviridae), and P22 (Podoviridae). These phages use the O-antigen as receptor. Because opvAB undergoes phase variation, S. enterica cultures contain subpopulations of opvABOFF and opvABON cells. In the presence of a bacteriophage that uses the O-antigen as receptor, the opvABOFF subpopulation is killed and the opvABON subpopulation is selected. Acquisition of phage resistance by phase variation of O-antigen chain length requires a payoff: opvAB expression reduces Salmonella virulence. However, phase variation permits resuscitation of the opvABOFF subpopulation as soon as phage challenge ceases. Phenotypic heterogeneity generated by opvAB phase variation thus preadapts Salmonella to survive phage challenge with a fitness cost that is transient only.
Collapse
Affiliation(s)
- Ignacio Cota
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | - Sara B. Hernández
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - M. Graciela Pucciarelli
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Biología Molecular Severo Ochoa (CBMSO-CSIC), Madrid, Spain
| | | | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
- * E-mail:
| |
Collapse
|
26
|
Misra R. Entry and exit of bacterial outer membrane proteins. Trends Microbiol 2015; 23:452-4. [PMID: 26169444 DOI: 10.1016/j.tim.2015.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 07/02/2015] [Indexed: 01/29/2023]
Abstract
The sites of new outer membrane protein (OMP) deposition and the fate of pre-existing OMPs are still enigmatic despite numerous concerted efforts. Rassam et al. identified mid-cell regions as the primary entry points for new OMP insertion in clusters, driving the pre-existing OMP clusters towards cell poles for long-term storage.
Collapse
Affiliation(s)
- Rajeev Misra
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
27
|
Siegrist MS, Swarts BM, Fox DM, Lim SA, Bertozzi CR. Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface. FEMS Microbiol Rev 2015; 39:184-202. [PMID: 25725012 DOI: 10.1093/femsre/fuu012] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The cell surface is the essential interface between a bacterium and its surroundings. Composed primarily of molecules that are not directly genetically encoded, this highly dynamic structure accommodates the basic cellular processes of growth and division as well as the transport of molecules between the cytoplasm and the extracellular milieu. In this review, we describe aspects of bacterial growth, division and secretion that have recently been uncovered by metabolic labeling of the cell envelope. Metabolite derivatives can be used to label a variety of macromolecules, from proteins to non-genetically-encoded glycans and lipids. The embedded metabolite enables precise tracking in time and space, and the versatility of newer chemoselective detection methods offers the ability to execute multiple experiments concurrently. In addition to reviewing the discoveries enabled by metabolic labeling of the bacterial cell envelope, we also discuss the potential of these techniques for translational applications. Finally, we offer some guidelines for implementing this emerging technology.
Collapse
Affiliation(s)
- M Sloan Siegrist
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Benjamin M Swarts
- Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Douglas M Fox
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Shion An Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, University of California, Berkeley, CA 94720, USA Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
28
|
Abstract
Lipopolysaccharide molecules represent a unique family of glycolipids based on a highly conserved lipid moiety known as lipid A. These molecules are produced by most gram-negative bacteria, in which they play important roles in the integrity of the outer-membrane permeability barrier and participate extensively in host-pathogen interplay. Few bacteria contain lipopolysaccharide molecules composed only of lipid A. In most forms, lipid A is glycosylated by addition of the core oligosaccharide that, in some bacteria, provides an attachment site for a long-chain O-antigenic polysaccharide. The complexity of lipopolysaccharide structures is reflected in the processes used for their biosynthesis and export. Rapid growth and cell division depend on the bacterial cell's capacity to synthesize and export lipopolysaccharide efficiently and in large amounts. We review recent advances in those processes, emphasizing the reactions that are essential for viability.
Collapse
Affiliation(s)
- Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| | | |
Collapse
|
29
|
Tran ENH, Doyle MT, Morona R. LPS unmasking of Shigella flexneri reveals preferential localisation of tagged outer membrane protease IcsP to septa and new poles. PLoS One 2013; 8:e70508. [PMID: 23936222 PMCID: PMC3723647 DOI: 10.1371/journal.pone.0070508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/18/2013] [Indexed: 11/29/2022] Open
Abstract
The Shigella flexneri outer membrane (OM) protease IcsP (SopA) is a member of the enterobacterial Omptin family of proteases which cleaves the polarly localised OM protein IcsA that is essential for Shigella virulence. Unlike IcsA however, the specific localisation of IcsP on the cell surface is unknown. To determine the distribution of IcsP, a haemagglutinin (HA) epitope was inserted into the non-essential IcsP OM loop 5 using Splicing by Overlap Extension (SOE) PCR, and IcsP(HA) was characterised. Quantum Dot (QD) immunofluorescence (IF) surface labelling of IcsP(HA) was then undertaken. Quantitative fluorescence analysis of S. flexneri 2a 2457T treated with and without tunicaymcin to deplete lipopolysaccharide (LPS) O antigen (Oag) showed that IcsP(HA) was asymmetrically distributed on the surface of septating and non-septating cells, and that this distribution was masked by LPS Oag in untreated cells. Double QD IF labelling of IcsP(HA) and IcsA showed that IcsP(HA) preferentially localised to the new pole of non-septating cells and to the septum of septating cells. The localisation of IcsP(HA) in a rough LPS S. flexneri 2457T strain (with no Oag) was also investigated and a similar distribution of IcsP(HA) was observed. Complementation of the rough LPS strain with rmlD resulted in restored LPS Oag chain expression and loss of IcsP(HA) detection, providing further support for LPS Oag masking of surface proteins. Our data presents for the first time the distribution for the Omptin OM protease IcsP, relative to IcsA, and the effect of LPS Oag masking on its detection.
Collapse
Affiliation(s)
- Elizabeth Ngoc Hoa Tran
- Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Matthew Thomas Doyle
- Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Renato Morona
- Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| |
Collapse
|
30
|
Verhoeven GS, Dogterom M, den Blaauwen T. Absence of long-range diffusion of OmpA in E. coli is not caused by its peptidoglycan binding domain. BMC Microbiol 2013; 13:66. [PMID: 23522061 PMCID: PMC3637615 DOI: 10.1186/1471-2180-13-66] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 03/18/2013] [Indexed: 11/15/2022] Open
Abstract
Background It is widely believed that integral outer membrane (OM) proteins in bacteria are able to diffuse laterally in the OM. However, stable, immobile proteins have been identified in the OM of Escherichia coli. In explaining the observations, a hypothesized interaction of the immobilized OM proteins with the underlying peptidoglycan (PG) cell wall played a prominent role. Results OmpA is an abundant outer membrane protein in E. coli containing a PG-binding domain. We use FRAP to investigate whether OmpA is able to diffuse laterally over long-range (> ~100 nm) distances in the OM. First, we show that OmpA, containing a PG binding domain, does not exhibit long-range lateral diffusion in the OM. Then, to test whether PG interaction was required for this immobilization, we genetically removed the PG binding domain and repeated the FRAP experiment. To our surprise, this did not increase the mobility of the protein in the OM. Conclusions OmpA exhibits an absence of long-range (> ~100 nm) diffusion in the OM that is not caused by its PG binding domain. Therefore, other mechanisms are needed to explain this observation, such as the presence of physical barriers in the OM, or strong interactions with other elements in the cell envelope.
Collapse
|
31
|
Ursell TS, Trepagnier EH, Huang KC, Theriot JA. Analysis of surface protein expression reveals the growth pattern of the gram-negative outer membrane. PLoS Comput Biol 2012; 8:e1002680. [PMID: 23028278 PMCID: PMC3459847 DOI: 10.1371/journal.pcbi.1002680] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 07/18/2012] [Indexed: 12/25/2022] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is a complex bilayer composed of proteins, phospholipids, lipoproteins, and lipopolysaccharides. Despite recent advances revealing the molecular pathways underlying protein and lipopolysaccharide incorporation into the OM, the spatial distribution and dynamic regulation of these processes remain poorly understood. Here, we used sequence-specific fluorescent labeling to map the incorporation patterns of an OM-porin protein, LamB, by labeling proteins only after epitope exposure on the cell surface. Newly synthesized LamB appeared in discrete puncta, rather than evenly distributed over the cell surface. Further growth of bacteria after labeling resulted in divergence of labeled LamB puncta, consistent with a spatial pattern of OM growth in which new, unlabeled material was also inserted in patches. At the poles, puncta remained relatively stationary through several rounds of division, a salient characteristic of the OM protein population as a whole. We propose a biophysical model of growth in which patches of new OM material are added in discrete bursts that evolve in time according to Stokes flow and are randomly distributed over the cell surface. Simulations based on this model demonstrate that our experimental observations are consistent with a bursty insertion pattern without spatial bias across the cylindrical cell surface, with approximately one burst of ∼10−2 µm2 of OM material per two minutes per µm2. Growth by insertion of discrete patches suggests that stochasticity plays a major role in patterning and material organization in the OM. All Gram-negative bacteria share common structural features, including an inner membrane, a stiff cell wall, and an outer membrane. Balancing growth in all three of these layers is critical for bacterial proliferation and survival, and malfunctions in growth often lead to cellular deformations and/or cell death. However, relatively little is known about how the incorporation of new material into the outer membrane is regulated in space and time. This work combines time-lapse microscopy with biophysical modeling and simulations to examine potential mechanisms by which new material is added to the outer membrane of the rod-shaped Gram-negative bacterium Escherichia coli. Our results indicate that the outer membrane grows in discrete bursts randomly distributed over the cylindrical cell surface. Each insertion event adds a random amount of new material, pushing old material into new locations and thus expanding the cell membrane. Using our biophysical model, we generated simulated fluorescence images and directly compared analyses of our experimental and computational results to constrain the rate and size of bursts of growth. Together, this indicates that growth of the outer membrane does not require spatial regulation, and the stochastic nature of insertion may contribute to the establishment of cellular patterning and asymmetry.
Collapse
Affiliation(s)
- Tristan S. Ursell
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Eliane H. Trepagnier
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (KCH); (JAT)
| | - Julie A. Theriot
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (KCH); (JAT)
| |
Collapse
|
32
|
Tomás JM. The main Aeromonas pathogenic factors. ISRN MICROBIOLOGY 2012; 2012:256261. [PMID: 23724321 PMCID: PMC3658858 DOI: 10.5402/2012/256261] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/19/2012] [Indexed: 12/27/2022]
Abstract
The members of the Aeromonas genus are ubiquitous, water-borne bacteria. They have been isolated from marine waters, rivers, lakes, swamps, sediments, chlorine water, water distribution systems, drinking water and residual waters; different types of food, such as meat, fish, seafood, vegetables, and processed foods. Aeromonas strains are predominantly pathogenic to poikilothermic animals, and the mesophilic strains are emerging as important pathogens in humans, causing a variety of extraintestinal and systemic infections as well as gastrointestinal infections. The most commonly described disease caused by Aeromonas is the gastroenteritis; however, no adequate animal model is available to reproduce this illness caused by Aeromonas. The main pathogenic factors associated with Aeromonas are: surface polysaccharides (capsule, lipopolysaccharide, and glucan), S-layers, iron-binding systems, exotoxins and extracellular enzymes, secretion systems, fimbriae and other nonfilamentous adhesins, motility and flagella.
Collapse
Affiliation(s)
- J M Tomás
- Departamento Microbiología, Universidad de Barcelona, Diagonal 643, 08071 Barcelona, Spain
| |
Collapse
|
33
|
Mir M, Babacan SD, Bednarz M, Do MN, Golding I, Popescu G. Visualizing Escherichia coli sub-cellular structure using sparse deconvolution Spatial Light Interference Tomography. PLoS One 2012; 7:e39816. [PMID: 22761910 PMCID: PMC3386179 DOI: 10.1371/journal.pone.0039816] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 05/27/2012] [Indexed: 01/27/2023] Open
Abstract
Studying the 3D sub-cellular structure of living cells is essential to our understanding of biological function. However, tomographic imaging of live cells is challenging mainly because they are transparent, i.e., weakly scattering structures. Therefore, this type of imaging has been implemented largely using fluorescence techniques. While confocal fluorescence imaging is a common approach to achieve sectioning, it requires fluorescence probes that are often harmful to the living specimen. On the other hand, by using the intrinsic contrast of the structures it is possible to study living cells in a non-invasive manner. One method that provides high-resolution quantitative information about nanoscale structures is a broadband interferometric technique known as Spatial Light Interference Microscopy (SLIM). In addition to rendering quantitative phase information, when combined with a high numerical aperture objective, SLIM also provides excellent depth sectioning capabilities. However, like in all linear optical systems, SLIM's resolution is limited by diffraction. Here we present a novel 3D field deconvolution algorithm that exploits the sparsity of phase images and renders images with resolution beyond the diffraction limit. We employ this label-free method, called deconvolution Spatial Light Interference Tomography (dSLIT), to visualize coiled sub-cellular structures in E. coli cells which are most likely the cytoskeletal MreB protein and the division site regulating MinCDE proteins. Previously these structures have only been observed using specialized strains and plasmids and fluorescence techniques. Our results indicate that dSLIT can be employed to study such structures in a practical and non-invasive manner.
Collapse
Affiliation(s)
- Mustafa Mir
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America.
| | | | | | | | | | | |
Collapse
|
34
|
Bulmer DM, Kharraz L, Grant AJ, Dean P, Morgan FJE, Karavolos MH, Doble AC, McGhie EJ, Koronakis V, Daniel RA, Mastroeni P, Anjam Khan CM. The bacterial cytoskeleton modulates motility, type 3 secretion, and colonization in Salmonella. PLoS Pathog 2012; 8:e1002500. [PMID: 22291596 PMCID: PMC3266929 DOI: 10.1371/journal.ppat.1002500] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 12/07/2011] [Indexed: 11/26/2022] Open
Abstract
Although there have been great advances in our understanding of the bacterial cytoskeleton, major gaps remain in our knowledge of its importance to virulence. In this study we have explored the contribution of the bacterial cytoskeleton to the ability of Salmonella to express and assemble virulence factors and cause disease. The bacterial actin-like protein MreB polymerises into helical filaments and interacts with other cytoskeletal elements including MreC to control cell-shape. As mreB appears to be an essential gene, we have constructed a viable ΔmreC depletion mutant in Salmonella. Using a broad range of independent biochemical, fluorescence and phenotypic screens we provide evidence that the Salmonella pathogenicity island-1 type three secretion system (SPI1-T3SS) and flagella systems are down-regulated in the absence of MreC. In contrast the SPI-2 T3SS appears to remain functional. The phenotypes have been further validated using a chemical genetic approach to disrupt the functionality of MreB. Although the fitness of ΔmreC is reduced in vivo, we observed that this defect does not completely abrogate the ability of Salmonella to cause disease systemically. By forcing on expression of flagella and SPI-1 T3SS in trans with the master regulators FlhDC and HilA, it is clear that the cytoskeleton is dispensable for the assembly of these structures but essential for their expression. As two-component systems are involved in sensing and adapting to environmental and cell surface signals, we have constructed and screened a panel of such mutants and identified the sensor kinase RcsC as a key phenotypic regulator in ΔmreC. Further genetic analysis revealed the importance of the Rcs two-component system in modulating the expression of these virulence factors. Collectively, these results suggest that expression of virulence genes might be directly coordinated with cytoskeletal integrity, and this regulation is mediated by the two-component system sensor kinase RcsC. Salmonella are major global pathogens responsible for causing food-borne disease. In recent years the existence of a cytoskeleton in prokaryotes has received much attention. In this study the Salmonella cytoskeleton has been genetically disrupted, causing changes in morphology, motility and expression of key virulence factors. We provide evidence that the sensory protein RcsC detects changes at the cell surface caused by the disintegration of the bacterial cytoskeleton and modulates expression of key virulence factors. This study provides insights into the importance of the integrity of the bacterial cytoskeleton in the ability of Salmonella to cause disease, and thus may provide a novel target for antimicrobial drugs or vaccines.
Collapse
Affiliation(s)
- David M. Bulmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle, United Kingdom
| | - Lubna Kharraz
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle, United Kingdom
| | - Andrew J. Grant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paul Dean
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle, United Kingdom
| | - Fiona J. E. Morgan
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Michail H. Karavolos
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle, United Kingdom
| | - Anne C. Doble
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle, United Kingdom
| | - Emma J. McGhie
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Vassilis Koronakis
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Richard A. Daniel
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle, United Kingdom
| | - Pietro Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - C. M. Anjam Khan
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Boeneman K, Fossum S, Yang Y, Fingland N, Skarstad K, Crooke E. Escherichia coli DnaA forms helical structures along the longitudinal cell axis distinct from MreB filaments. Mol Microbiol 2010; 72:645-57. [PMID: 19400775 DOI: 10.1111/j.1365-2958.2009.06674.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DnaA initiates chromosomal replication in Escherichia coli at a well-regulated time in the cell cycle. To determine how the spatial distribution of DnaA is related to the location of chromosomal replication and other cell cycle events, the localization of DnaA in living cells was visualized by confocal fluorescence microscopy. The gfp gene was randomly inserted into a dnaA-bearing plasmid via in vitro transposition to create a library that included internally GFP-tagged DnaA proteins. The library was screened for the ability to rescue dnaA(ts) mutants, and a candidate gfp-dnaA was used to replace the dnaA gene of wild-type cells. The resulting cells produce close to physiological levels of GFP-DnaA from the endogenous promoter as their only source of DnaA and somewhat under-initiate replication with moderate asynchrony. Visualization of GFP-tagged DnaA in living cells revealed that DnaA adopts a helical pattern that spirals along the long axis of the cell, a pattern also seen in wild-type cells by immunofluorescence with affinity purified anti-DnaA antibody. Although the DnaA helices closely resemble the helices of the actin analogue MreB, co-visualization of GFP-tagged DnaA and RFP-tagged MreB demonstrates that DnaA and MreB adopt discrete helical structures along the length of the longitudinal cell axis.
Collapse
Affiliation(s)
- Kelly Boeneman
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 200007, USA
| | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, USA
| | | |
Collapse
|
37
|
Abstract
Prokaryotes come in a wide variety of shapes, determined largely by natural selection, physical constraints, and patterns of cell growth and division. Because of their relative simplicity, bacterial cells are excellent models for how genes and proteins can directly determine morphology. Recent advances in cytological methods for bacteria have shown that distinct cytoskeletal filaments composed of actin and tubulin homologs are important for guiding growth patterns of the cell wall in bacteria, and that the glycan strands that constitute the wall are generally perpendicular to the direction of growth. This cytoskeleton-directed cell wall patterning is strikingly reminiscent of how plant cell wall growth is regulated by microtubules. In rod-shaped bacilli, helical cables of actin-like MreB protein stretch along the cell length and orchestrate elongation of the cell wall, whereas the tubulin-like FtsZ protein directs formation of the division septum and the resulting cell poles. The overlap and interplay between these two systems and the peptidoglycan-synthesizing enzymes they recruit are the major driving forces of cylindrical shapes. Round cocci, on the other hand, have lost their MreB cables and instead must grow mainly via their division septum, giving them their characteristic round or ovoid shapes. Other bacteria that lack MreB homologs or even cell walls use distinct cytoskeletal systems to maintain their distinct shapes. Here I review what is known about the mechanisms that determine the shape of prokaryotic cells.
Collapse
Affiliation(s)
- William Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Effect of energy metabolism on protein motility in the bacterial outer membrane. Biophys J 2009; 97:1305-12. [PMID: 19720018 DOI: 10.1016/j.bpj.2009.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/12/2009] [Accepted: 06/15/2009] [Indexed: 11/21/2022] Open
Abstract
We demonstrate the energy dependence of the motion of a porin, the lambda-receptor, in the outer membrane of living Escherichia coli by single molecule investigations. By poisoning the bacteria with arsenate and azide, the bacterial energy metabolism was stopped. The motility of individual lambda-receptors significantly and rapidly decreased upon energy depletion. We suggest two different causes for the ceased motility upon comprised energy metabolism: One possible cause is that the cell uses energy to actively wiggle its proteins, this energy being one order-of-magnitude larger than thermal energy. Another possible cause is an induced change in the connection between the lambda-receptor and the membrane structure, for instance by a stiffening of part of the membrane structure. Treatment of the cells with ampicillin, which directly targets the bacterial cell wall by inhibiting cross-linking of the peptidoglycan layer, had an effect similar to energy depletion and the motility of the lambda-receptor significantly decreased. Since the lambda-receptor is closely linked to the peptidoglycan layer, we propose that lambda-receptor motility is directly coupled to the constant and dynamic energy-consuming reconstruction of the peptidoglycan layer. The result of this motion could be to facilitate transport of maltose-dextrins through the porin.
Collapse
|
39
|
Spatiotemporal patterns and transcription kinetics of induced RNA in single bacterial cells. Proc Natl Acad Sci U S A 2009; 106:16399-404. [PMID: 19805311 DOI: 10.1073/pnas.0907495106] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria have a complex internal organization with specific localization of many proteins and DNA, which dynamically move during the cell cycle and in response to changing environmental stimuli. Much less is known, however, about the localization and movements of RNA molecules. By modifying our previous RNA labeling system, we monitor the expression and localization of a model RNA transcript in live Escherichia coli cells. Our results reveal that the target RNA is not evenly distributed within the cell and localizes laterally along the long cell axis, in a pattern suggesting the existence of ordered helical RNA structures reminiscent of known bacterial cytoskeletal cellular elements.
Collapse
|
40
|
Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 2009; 5:e1000354. [PMID: 19325879 PMCID: PMC2654510 DOI: 10.1371/journal.ppat.1000354] [Citation(s) in RCA: 417] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/27/2009] [Indexed: 02/03/2023] Open
Abstract
Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organism for the study of biofilms. The extracellular polymeric substance of P. aeruginosa biofilms is an ill-defined mix of polysaccharides, nucleic acids, and proteins. Here, we directly visualize the product of the polysaccharide synthesis locus (Psl exopolysaccharide) at different stages of biofilm development. During attachment, Psl is anchored on the cell surface in a helical pattern. This promotes cell–cell interactions and assembly of a matrix, which holds bacteria in the biofilm and on the surface. Chemical dissociation of Psl from the bacterial surface disrupted the Psl matrix as well as the biofilm structure. During biofilm maturation, Psl accumulates on the periphery of 3-D-structured microcolonies, resulting in a Psl matrix-free cavity in the microcolony center. At the dispersion stage, swimming cells appear in this matrix cavity. Dead cells and extracellular DNA (eDNA) are also concentrated in the Psl matrix-free area. Deletion of genes that control cell death and autolysis affects the formation of the matrix cavity and microcolony dispersion. These data provide a mechanism for how P. aeruginosa builds a matrix and subsequently a cavity to free a portion of cells for seeding dispersal. Direct visualization reveals that Psl is a key scaffolding matrix component and opens up avenues for therapeutics of biofilm-related complications. Pseudomonas aeruginosa causes life-threatening, persistent infections in cystic fibrosis patients, despite highly aggressive antimicrobial therapy. Persistence is due, in part, to the ability of these bacteria to form surface-associated communities (biofilms) enmeshed in an extracellular matrix. This matrix is a poorly defined mixture of protein, polysaccharide, and DNA. An understanding of the organization and composition of the biofilm matrix will assist in the development of therapeutics aimed at disrupting biofilms. Using reagents that specifically recognize the P. aeruginosa Psl exopolysaccharide, we visualized matrix formation in real time during a biofilm development cycle. This revealed a highly organized and coordinated assembly of both polysaccharide and DNA components of the matrix. At late stages of biofilm morphogenesis, a Psl-free matrix cavity, occupied with numerous motile cells, developed. Mutants with reduced cell lysis were unable to form the Psl matrix cavity, whereas those with elevated cell death and lysis formed a larger matrix cavity, leading to accelerated dispersion. We propose that programmed cell death and autolysis are critical for the proper timing of biofilm development and dispersion. The data indicate that Psl is a key scaffolding component of the biofilm matrix, a property that likely plays a critical role in P. aeruginosa persistence.
Collapse
|
41
|
Mileykovskaya E, Ryan AC, Mo X, Lin CC, Khalaf KI, Dowhan W, Garrett TA. Phosphatidic acid and N-acylphosphatidylethanolamine form membrane domains in Escherichia coli mutant lacking cardiolipin and phosphatidylglycerol. J Biol Chem 2009; 284:2990-3000. [PMID: 19049984 PMCID: PMC2631977 DOI: 10.1074/jbc.m805189200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 12/01/2008] [Indexed: 11/06/2022] Open
Abstract
The pgsA null Escherichia coli strain, UE54, lacks the major anionic phospholipids phosphatidylglycerol and cardiolipin. Despite these alterations the strain exhibits relatively normal cell division. Analysis of the UE54 phospholipids using negativeion electrospray ionization mass spectrometry resulted in identification of a new anionic phospholipid, N-acylphosphatidylethanolamine. Staining with the fluorescent dye 10-N-nonyl acridine orange revealed anionic phospholipid membrane domains at the septal and polar regions. Making UE54 null in minCDE resulted in budding off of minicells from polar domains. Analysis of lipid composition by mass spectrometry revealed that minicells relative to parent cells were significantly enriched in phosphatidic acid and N-acylphosphatidylethanolamine. Thus despite the absence of cardiolipin, which forms membrane domains at the cell pole and division sites in wild-type cells, the mutant cells still maintain polar/septal localization of anionic phospholipids. These three anionic phospholipids share common physical properties that favor polar/septal domain formation. The findings support the proposed role for anionic phospholipids in organizing amphitropic cell division proteins at specific sites on the membrane surface.
Collapse
Affiliation(s)
- Eugenia Mileykovskaya
- Department of Biochemistry and Molecular Biology, University of Texas, Medical School, Houston, Texas 77030.
| | - Andrea C Ryan
- Department of Biochemistry, Duke University, Medical Center, Durham, North Carolina 27710
| | - Xi Mo
- Department of Biochemistry and Molecular Biology, University of Texas, Medical School, Houston, Texas 77030
| | - Chun-Chieh Lin
- Department of Biochemistry and Molecular Biology, University of Texas, Medical School, Houston, Texas 77030
| | - Khaled I Khalaf
- Department of Biochemistry and Molecular Biology, University of Texas, Medical School, Houston, Texas 77030
| | - William Dowhan
- Department of Biochemistry and Molecular Biology, University of Texas, Medical School, Houston, Texas 77030.
| | - Teresa A Garrett
- Department of Chemistry, Vassar College, Poughkeepsie, New York 12604.
| |
Collapse
|
42
|
Type II secretion system secretin PulD localizes in clusters in the Escherichia coli outer membrane. J Bacteriol 2008; 191:161-8. [PMID: 18978053 DOI: 10.1128/jb.01138-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cellular localization of a chimera formed by fusing a monomeric red fluorescent protein to the C terminus of the Klebsiella oxytoca type II secretion system outer membrane secretin PulD (PulD-mCherry) in Escherichia coli was determined in vivo by fluorescence microscopy. Like PulD, PulD-mCherry formed sodium dodecyl sulfate- and heat-resistant multimers and was functional in pullulanase secretion. Chromosome-encoded PulD-mCherry formed fluorescent foci on the periphery of the cell in the presence of high (plasmid-encoded) levels of its cognate chaperone, the pilotin PulS. Subcellular fractionation demonstrated that the chimera was located exclusively in the outer membrane under these circumstances. A similar localization pattern was observed by fluorescence microscopy of fixed cells treated with green fluorescent protein-tagged affitin, which binds with high affinity to an epitope in the N-terminal region of PulD. At lower levels of (chromosome-encoded) PulS, PulD-mCherry was less stable, was located mainly in the inner membrane, from which it could not be solubilized with urea, and did not induce the phage shock response, unlike PulD in the absence of PulS. The fluorescence pattern of PulD-mCherry under these conditions was similar to that observed when PulS levels were high. The complete absence of PulS caused the appearance of bright and almost exclusively polar fluorescent foci.
Collapse
|
43
|
Kilár A, Péterfi Z, Csorba E, Kilár F, Kocsis B. Capillary electrophoresis chips for screening of endotoxin chemotypes from whole-cell lysates. J Chromatogr A 2008; 1206:21-5. [DOI: 10.1016/j.chroma.2008.07.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 06/25/2008] [Accepted: 07/07/2008] [Indexed: 01/24/2023]
|
44
|
Lewenza S, Mhlanga MM, Pugsley AP. Novel inner membrane retention signals in Pseudomonas aeruginosa lipoproteins. J Bacteriol 2008; 190:6119-25. [PMID: 18641140 PMCID: PMC2546801 DOI: 10.1128/jb.00603-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 07/07/2008] [Indexed: 11/20/2022] Open
Abstract
The ultimate membrane localization and function of most of the 185 predicted Pseudomonas aeruginosa PAO1 lipoproteins remain unknown. We constructed a fluorescent lipoprotein, CSFP(OmlA)-ChFP, by fusing the signal peptide and the first four amino acids of the P. aeruginosa outer membrane lipoprotein OmlA to the monomeric red fluorescent protein mCherry (ChFP). When cells were plasmolyzed with 0.5 M NaCl, the inner membrane separated from the outer membrane and formed plasmolysis bays. This permits the direct observation of fluorescence in either the outer or inner membrane. CSFP(OmlA)-ChFP was shown to localize in the outer membrane by fluorescence microscopy and immunoblotting analysis of inner and outer membrane fractions. The site-directed substitution of the amino acids at positions +2, +3, and +4 in CSFP(OmlA)-ChFP was performed to test the effects on lipoprotein localization of a series of amino acid sequences selected from a panel of predicted lipoproteins. We confirmed Asp(+2) and Lys(+3) Ser(+4) function as inner membrane retention signals and identified four novel inner membrane retention signals: CK(+2) V(+3) E(+4), CG(+2) G(+3) G(+4), CG(+2) D(+3) D(+4), and CQ(+2) G(+3) S(+4). These inner membrane retention signals are found in 5% of the 185 predicted P. aeruginosa lipoproteins. Full-length chimeras of predicted lipoproteins PA4370 and PA3262 fused to mCherry were shown to reside in the inner membrane and showed a nonuniform or patchy distribution in the membrane. The optical sectioning of cells producing PA4370(CGDD)-ChFP and PA3262(CDSQ)-ChFP by confocal microscopy improved the resolution and indicated a helix-like localization pattern in the inner membrane. The method described here permits the in situ visualization of lipoprotein localization and should work equally well for other membrane-associated proteins.
Collapse
Affiliation(s)
- Shawn Lewenza
- University of Calgary, Department of Microbiology & Infectious Diseases, 3330 Hospital Dr. NW, Calgary, Alberta, Canada.
| | | | | |
Collapse
|
45
|
Tran AX, Trent MS, Whitfield C. The LptA protein of Escherichia coli is a periplasmic lipid A-binding protein involved in the lipopolysaccharide export pathway. J Biol Chem 2008; 283:20342-9. [PMID: 18480051 PMCID: PMC2459282 DOI: 10.1074/jbc.m802503200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/12/2008] [Indexed: 01/06/2023] Open
Abstract
The LptA protein of Escherichia coli has been implicated in the transport of lipopolysaccharide (LPS) from the inner membrane to the outer membrane. Here we provide evidence that LptA binds structurally diverse LPS substrates in vitro and demonstrate that it interacts specifically with the lipid A domain of LPS. These results are consistent with LptA playing a chaperone role in the transport of LPS across the periplasm and have implications for possible assembly models.
Collapse
Affiliation(s)
- An X Tran
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|
46
|
Whitfield C, Naismith JH. Periplasmic export machines for outer membrane assembly. Curr Opin Struct Biol 2008; 18:466-74. [PMID: 18495473 DOI: 10.1016/j.sbi.2008.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 04/01/2008] [Accepted: 04/01/2008] [Indexed: 11/20/2022]
Abstract
The cell envelope of Gram-negative bacteria protects the organism from environmental stresses, components of the innate immune response, and the actions of other antagonistic molecules. However, the complexity of the cell envelope dictated by these protective roles creates a significant challenge for assembly of the outer membrane. Extensive research has focused on the export and assembly of outer membrane proteins and there is continuing progress in this area. By contrast, knowledge of the export and assembly of complex glycoconjugates in the outer membrane has been limited until recently. New structural and biochemical information identifies an envelope-spanning molecular scaffold for the export of group 1 capsular polysaccharides and provides insight into a complex molecular machine.
Collapse
Affiliation(s)
- Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| | | |
Collapse
|
47
|
The autodisplay story, from discovery to biotechnical and biomedical applications. Microbiol Mol Biol Rev 2008; 71:600-19. [PMID: 18063719 DOI: 10.1128/mmbr.00011-07] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among the pathways used by gram-negative bacteria for protein secretion, the autotransporter pathway represents a solution of impressive simplicity. Proteins are transported, independent of their nature as recombinant or native passengers, as long as the coding nucleotide sequence is inserted in frame between those of an N-terminal signal peptide and a C-terminal domain, referred to as the beta-barrel of the outer membrane translocation unit. The immunoglobulin A1 (IgA1) protease from Neisseria gonorrhoeae was the first identified member of the autotransporter family of secreted proteins. The IgA1 protease was employed in initial experiments investigating autotransporter-mediated surface display of recombinant proteins and to investigate structural and functional requirements. Various other autotransporter proteins have since been described, and the autodisplay system was developed on the basis of the natural Escherichia coli autotransporter protein AIDA-I (adhesin involved in diffuse adherence). Autodisplay has been used for the surface display of random peptide libraries to successfully screen for novel enzyme inhibitors. The autodisplay system was also used for the surface display of functional enzymes, including esterases, oxidoreductases, and electron transfer proteins. Whole E. coli cells displaying enzymes have been utilized to efficiently synthesize industrially important rare organic compounds with specific chirality. Autodisplay of epitopes on the surface of attenuated Salmonella carriers has also provided a novel way to induce immune protection after oral vaccination. This review summarizes the structural and functional features of the autodisplay system, illustrating its discovery and most recent applications. Autodisplay facilitates the export of more than 100,000 recombinant molecules per single cell and permits the oligomerization of subunits on the cell surface as well as the incorporation of inorganic prosthetic groups after transport of apoproteins onto the bacterial surface without disturbing bacterial integrity or viability. We discuss future biotechnical and biomedical applications in the light of these achievements.
Collapse
|
48
|
Geissler B, Shiomi D, Margolin W. The ftsA* gain-of-function allele of Escherichia coli and its effects on the stability and dynamics of the Z ring. MICROBIOLOGY-SGM 2007; 153:814-825. [PMID: 17322202 PMCID: PMC4757590 DOI: 10.1099/mic.0.2006/001834-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Formation of the FtsZ ring (Z ring) in Escherichia coli is the first step in the assembly of the divisome, a protein machine required for cell division. Although the biochemical functions of most divisome proteins are unknown, several, including ZipA, FtsA and FtsK, have overlapping roles in ensuring that the Z ring assembles at the cytoplasmic membrane, and that it is active. As shown previously, a single amino acid change in FtsA, R286W, also called FtsA*, bypasses the requirement for either ZipA or FtsK in cell division. In this study, the properties of FtsA* were investigated further, with the eventual goal of understanding the molecular mechanism behind the bypass. Compared to wild-type FtsA, the presence of FtsA* resulted in a modest but significant decrease in the mean length of cells in the population, accelerated the reassembly of Z rings, and suppressed the cell-division block caused by excessively high levels of FtsZ. These effects were not mediated by Z-ring remodelling, because FtsA* did not alter the kinetics of FtsZ turnover within the Z ring, as measured by fluorescence recovery after photobleaching. FtsA* was also unable to permit normal cell division at below normal levels of FtsZ, or after thermoinactivation of ftsZ84(ts). However, turnover of FtsA* in the ring was somewhat faster than that of wild-type FtsA, and overexpressed FtsA* did not inhibit cell division as efficiently as wild-type FtsA. Finally, FtsA* interacted more strongly with FtsZ compared with FtsA in a yeast two-hybrid system. These results suggest that FtsA* interacts with FtsZ in a markedly different way compared with FtsA.
Collapse
Affiliation(s)
- Brett Geissler
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | - Daisuke Shiomi
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
49
|
Varma A, de Pedro MA, Young KD. FtsZ directs a second mode of peptidoglycan synthesis in Escherichia coli. J Bacteriol 2007; 189:5692-704. [PMID: 17513471 PMCID: PMC1951832 DOI: 10.1128/jb.00455-07] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain penicillin binding protein mutants of Escherichia coli grow with spirillum-like morphologies when the FtsZ protein is inhibited, suggesting that FtsZ might govern aspects of cell wall growth other than those strictly associated with septation. While investigating the mechanism of spiral cell formation, we discovered conditions for visualizing this second function of FtsZ. Normally, inhibiting the cytoskeleton protein MreB forces E. coli cells to grow as smoothly enlarging spheres from which the poles disappear, yielding coccoid or lemon-shaped forms. However, when FtsZ and MreB were inhibited simultaneously in a strain lacking PBP 5 and PBP 7, the resulting cells ballooned outward but retained conspicuous rod-shaped extensions at sites representing the original poles. This visual phenotype was paralleled by the biochemistry of sacculus growth. Muropeptides are usually inserted homogeneously into the lateral cell walls, but when FtsZ polymerization was inhibited, the incorporation of new material occurred mainly in the central regions of cells and was significantly lower in those portions of side walls abutting a pole. Thus, reduced precursor incorporation into side walls near the poles explained why these regions retained their rod-like morphology while the rest of the cell grew spherically. Also, inhibiting FtsZ increased the amount of pentapeptides in sacculi by about one-third. Finally, the MreB protein directed the helical or diagonal incorporation of new peptidoglycan into the wall, but the location of that incorporation depended on whether FtsZ was active. In sum, the results indicate that in addition to nucleating cell septation in E. coli, FtsZ can direct the insertion of new peptidoglycan into portions of the lateral wall.
Collapse
Affiliation(s)
- Archana Varma
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | | | | |
Collapse
|
50
|
Priyadarshini R, de Pedro MA, Young KD. Role of peptidoglycan amidases in the development and morphology of the division septum in Escherichia coli. J Bacteriol 2007; 189:5334-47. [PMID: 17483214 PMCID: PMC1951850 DOI: 10.1128/jb.00415-07] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli contains multiple peptidoglycan-specific hydrolases, but their physiological purposes are poorly understood. Several mutants lacking combinations of hydrolases grow as chains of unseparated cells, indicating that these enzymes help cleave the septum to separate daughter cells after cell division. Here, we confirm previous observations that in the absence of two or more amidases, thickened and dark bands, which we term septal peptidoglycan (SP) rings, appear at division sites in isolated sacculi. The formation of SP rings depends on active cell division, and they apparently represent a cell division structure that accumulates because septal synthesis and hydrolysis are uncoupled. Even though septal constriction was incomplete, SP rings exhibited two properties of mature cell poles: they behaved as though composed of inert peptidoglycan, and they attracted the IcsA protein. Despite not being separated by a completed peptidoglycan wall, adjacent cells in these chains were often compartmentalized by the inner membrane, indicating that cytokinesis could occur in the absence of invagination of the entire cell envelope. Finally, deletion of penicillin-binding protein 5 from amidase mutants exacerbated the formation of twisted chains, producing numerous cells having septa with abnormal placements and geometries. The results suggest that the amidases are necessary for continued peptidoglycan synthesis during cell division, that their activities help create a septum having the appropriate geometry, and that they may contribute to the development of inert peptidoglycan.
Collapse
Affiliation(s)
- Richa Priyadarshini
- Department of Microbiology and Immunology, University of North Dakota School of Medicine, Grand Forks, ND 58202-9037, USA
| | | | | |
Collapse
|