1
|
Simner PJ, Pitout JDD, Dingle TC. Laboratory detection of carbapenemases among Gram-negative organisms. Clin Microbiol Rev 2024; 37:e0005422. [PMID: 39545731 PMCID: PMC11629623 DOI: 10.1128/cmr.00054-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
SUMMARYThe carbapenems remain some of the most effective options available for treating patients with serious infections due to Gram-negative bacteria. Carbapenemases are enzymes that hydrolyze carbapenems and are the primary method driving carbapenem resistance globally. Detection of carbapenemases is required for patient management, the rapid implementation of infection prevention and control (IP&C) protocols, and for epidemiologic purposes. Therefore, clinical and public health microbiology laboratories must be able to detect and report carbapenemases among predominant Gram-negative organisms from both cultured isolates and direct from clinical specimens for treatment and surveillance purposes. There is not a "one size fits all" laboratory approach for the detection of bacteria with carbapenemases, and institutions need to determine what fits best with the goals of their antimicrobial stewardship and IP&C programs. Luckily, there are several options and approaches available for clinical laboratories to choose methods that best suits their individual needs. A laboratory approach to detect carbapenemases among bacterial isolates consists of two steps, namely a screening process (e.g., not susceptible to ertapenem, meropenem, and/or imipenem), followed by a confirmation test (i.e., phenotypic, genotypic or proteomic methods) for the presence of a carbapenemase. Direct from specimen testing for the most common carbapenemases generally involves detection via rapid, molecular approaches. The aim of this article is to provide brief overviews on Gram-negative bacteria carbapenem-resistant definitions, types of carbapenemases, global epidemiology, and then describe in detail the laboratory methods for the detection of carbapenemases among Gram-negative bacteria. We will specifically focus on the Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii complex.
Collapse
Affiliation(s)
- Patricia J. Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Johann D. D. Pitout
- Cummings School of Medicine, University of Calgary, Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Diagnostic Laboratory, Calgary, Alberta, Canada
- University of Pretoria, Pretoria, Gauteng, South Africa
| | - Tanis C. Dingle
- Cummings School of Medicine, University of Calgary, Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Public Health Laboratory, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Aslan AT, Akova M. Recent updates in treating carbapenem-resistant infections in patients with hematological malignancies. Expert Rev Anti Infect Ther 2024; 22:1055-1071. [PMID: 39313753 DOI: 10.1080/14787210.2024.2408746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION Patients with hematological malignancies (PHMs) are at increased risk for infections caused by carbapenem-resistant organisms (CROs) due to frequent exposure to broad-spectrum antibiotics and prolonged hospital stays. These infections result in high mortality and morbidity rates along with delays in chemotherapy, longer hospitalizations, and increased health care costs. AREAS COVERED Treatment alternatives for CRO infections in PHMs. EXPERT OPINION The best available treatment option for KPC and OXA-48 producers is ceftazidime/avibactam. Imipenem/cilastatin/relebactam and meropenem/vaborbactam remain as the alternative options. They can also be used as salvage therapy in KPC-positive Enterobacterales infections resistant to ceftazidime/avibactam, if in vitro susceptibility is shown. Treatment of metallo-β-lactamase producers is an unmet need. Ceftazidime/avibactam plus aztreonam or aztreonam/avibactam seems to be the most reliable option for metallo-β-lactamase producers. As a first-line option for carbapenem-resistant Pseudomonas aeruginosa infections, ceftolozane/tazobactam is preferable and ceftazidime/avibactam and imipenem/cilastatin/relebactam constitute alternative regimens. Although sulbactam/durlobactam is the most reliable option against carbapenem-resistant Acinetobacter baumannii infections, its utility as monotherapy and in PHMs is not yet known. Cefiderocol can be selected as a 'last-resort' option for CRO infections. New risk score models supported by artificial intelligence algorithms can be used to predict the exact risk of infections in previously colonized patients.
Collapse
Affiliation(s)
- Abdullah Tarık Aslan
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Murat Akova
- Faculty of Medicine, Infectious Diseases and Clinical Microbiology, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
3
|
Sharma K, Tak V, Nag VL, Bhatia PK, Kothari N. An observational study on carbapenem-resistant Enterobacterales (CRE) colonisation and subsequent risk of infection in an adult intensive care unit (ICU) at a tertiary care hospital in India. Infect Prev Pract 2023; 5:100312. [PMID: 37868258 PMCID: PMC10585280 DOI: 10.1016/j.infpip.2023.100312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/26/2023] [Indexed: 10/24/2023] Open
Abstract
Background Carbapenem-resistant Enterobacterales (CRE) are a global health problem with a growing prevalence. India has a high prevalence of CRE. CRE infections are difficult to treat, and are associated with significant morbidity and mortality. Colonisation is generally a prerequisite for infection and the prevention of CRE colonisation is key to the prevention of CRE infection. Objectives To determine the prevalence of CRE colonisation and subsequent infections in an adult intensive care unit (ICU) in India. Methods We conducted a prospective observational study in which perirectal swabs were obtained along with relevant clinical details of consenting adult patients upon ICU admission between January 2019 and August 2020. Rectal screening was performed using MacConkey agar plates with ertapenem disks and further identification was performed using conventional microbiological techniques. Ertapenem minimum inhibitory concentration (MIC) was determined using an epsillometer (E) test. The modified carbapenem inactivation (mCIM) test and EDTA carbapenem inactivation test (eCIM) were performed to confirm carbapenem resistance using the Clinical Laboratory Standards Institute (CLSI) 2020 guidelines. Results 192 ICU patients were screened for CRE. 37 patients were found to be colonised with CRE. Klebsiella pneumoniae (N=25; 67.6%) was the most frequent CRE isolate, followed by Escherichia coli (N=11; 29.7%) and one Enterobacter species (N=1; 2.7%). 89.2% (33/37) patients developed CRE infection. Pneumonia was the most common CRE infection identified in 12/33 (36.4%) patients.during the hospital stay. The median duration of hospital stay was longer (17 days) for CRE colonised compared to CRE non-colonised patients (9 days) (P<0.001). Death occurred in 27 % (N=10/37) of CRE-colonised patients during the hospital admission. Conclusion CRE colonisation is associated with high risk of subsequent CRE infection and longer ICU and hospital admission.
Collapse
Affiliation(s)
- Kirtika Sharma
- All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Vibhor Tak
- All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Vijaya Lakshmi Nag
- All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | | | - Nikhil Kothari
- All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| |
Collapse
|
4
|
Usman M, Marcus A, Fatima A, Aslam B, Zaid M, Khattak M, Bashir S, Masood S, Rafaque Z, Dasti JI. Synergistic Effects of Gentamicin, Cefepime, and Ciprofloxacin on Biofilm of Pseudomonas aeruginosa. Infect Drug Resist 2023; 16:5887-5898. [PMID: 37692466 PMCID: PMC10485136 DOI: 10.2147/idr.s426111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/19/2023] [Indexed: 09/12/2023] Open
Abstract
Background Pseudomonas aeruginosa is an opportunistic pathogen involved in number of hospital-acquired infections such as catheter-associated urinary tract infections, bacteremia, septicemia, skin infections, and ventilator-associated pneumoniae. Biofilm formation is an important trait implicated in chronic infections, such as cystic fibrosis and chronic pulmonary obstruction. We evaluated effects of gentamicin, cefepime, and ciprofloxacin on biofilm of P. aeruginosa. Materials and Methods A total of 266 isolates were collected from the Armed Forces Institute of Pathology (AFIP). Antibiotic susceptibility was assessed by double disk synergy testing. ESBL and carbapenemase detection was performed by phenotypic testing. Molecular screening of the genes was done by PCR. Micro-dilution broth method was used to determine minimum inhibitory concentrations of antibiotics. Biofilm formation was done by micro-titer plate assay. Results Overall, 20% of the P. aeruginosa isolates were extensively drug-resistant (XDR-PA), and 25% were multi-drug-resistant (MDR-PA). Likewise, 43% of the isolates were ESBL producers, and carbapenemase production was detected in 40% of the isolates. Molecular analysis confirmed occurrence of different resistant factors in ESBL-positive isolates; 67% carried blaTEM, 62% blaCTXM-15, 41% blaSHV, 34% blaCTXM-14, and 33% blaOXA-1. In addition, 68% of the carbapenem-resistant isolates were positive for blaNDM-1, 25% for blaOXA-48, and 22% for blaKPC-2. Biofilm formation was assessed for 234 isolates, out of which 28% were strong biofilm formers. Moderate and weak biofilm formers constituted 46% and 23%, respectively. Overall, ciprofloxacin, levofloxacin, and cefepime showed inhibitory effects on P. aeruginosa biofilms. Antibiotics in combination showed strong synergistic effects (ciprofloxacin and cefepime), while gentamicin and cefepime resulted in complete eradication of P. aeruginosa biofilm. Conclusion We confirm strong synergistic effects of gentamicin and cefepime that completely eradicated P. aeruginosa biofilm. We further confirm inhibitory effects of ciprofloxacin, levofloxacin, and cefepime on P. aeruginosa biofilms. Hence, combination therapy can be more effective against biofilm-associated infections.
Collapse
Affiliation(s)
- Muhammad Usman
- Lab of Microbial Genomics and Epidemiology, Department of Microbiology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Arooj Marcus
- Lab of Microbial Genomics and Epidemiology, Department of Microbiology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Aimen Fatima
- Lab of Microbial Genomics and Epidemiology, Department of Microbiology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Bushra Aslam
- Lab of Microbial Genomics and Epidemiology, Department of Microbiology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Maryam Zaid
- Lab of Microbial Genomics and Epidemiology, Department of Microbiology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muska Khattak
- Lab of Microbial Genomics and Epidemiology, Department of Microbiology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Sidra Bashir
- Lab of Microbial Genomics and Epidemiology, Department of Microbiology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Safia Masood
- Lab of Microbial Genomics and Epidemiology, Department of Microbiology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Zara Rafaque
- Department of Microbiology Hazara University Mansehra, Mansehra21120, Pakistan
| | - Javid Iqbal Dasti
- Lab of Microbial Genomics and Epidemiology, Department of Microbiology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
5
|
Abo Kamer AM, Amer NM, Abdelmegeed AA, El Maghraby GM, Gamaleldin NM. Surfactant nanovesicles for augmented antibacterial activity against carbapenemase resistant enterobacteriaceae and extended spectrum beta-lactamases producing bacteria: in vitro and in vivo evaluation. BMC Microbiol 2023; 23:73. [PMID: 36927445 PMCID: PMC10018850 DOI: 10.1186/s12866-023-02812-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
The ubiquitous emergence of bacterial resistance is a challenging problem in infectious diseases treatment. Recently, new research lines employed nano-drug delivery systems to enhance antibacterial activity of the existing antibiotics. Accordingly, the objective of this study is to optimize surfactant nanovesicles to improve the antimicrobial effect of meropenem, ertapenem and tigecycline against Carbapenemase Resistant Enterobacteriaceae (CRE) and extended spectrum beta-lactamases producing bacteria (ESBL). Klebsiella pneumoniae and Escherichia coli were used as the test organisms. In vivo and in vitro evaluations were conducted to prove the efficacy of niosome-encapsulated drugs formulations. The results revealed that surfactant vesicles were able to reduce the MIC values of the tested drugs by nine-fold change compared to their free forms. Scanning Electron Microscope (SEM) showed possible adhesion/fusion of the vesicles encapsulated drugs on the bacterial cells compared to its solution. In vivo investigations using animal skin model confirmed the superiority of nanovesicles drug encapsulation regarding both wound size and histopathological examination. Wound surface area was reduced from 24.6mm2 in absence of drug to reach 13.9, and 6.2mm2 in presence of ertapenem solution or niosomes, respectively. Nanovesicular formulations can be considered as effective drug delivery systems that can diminish bacterial resistance against β-lactams antibiotics.
Collapse
Affiliation(s)
- Amal M. Abo Kamer
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Noha M. Amer
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Gamal M. El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Noha M. Gamaleldin
- Department of Microbiology, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk, Cairo 11837 Egypt
- The Center for Drug Research and Development (CDRD), The British University in Egypt (BUE), El-Sherouk, Cairo Egypt
| |
Collapse
|
6
|
Allander L, Vickberg K, Lagerbäck P, Sandegren L, Tängdén T. Evaluation of In Vitro Activity of Double-Carbapenem Combinations against KPC-2-, OXA-48- and NDM-Producing Escherichia coli and Klebsiella pneumoniae. Antibiotics (Basel) 2022; 11:1646. [PMID: 36421290 PMCID: PMC9686504 DOI: 10.3390/antibiotics11111646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 09/08/2023] Open
Abstract
Double-carbapenem combinations have shown synergistic potential against carbapenemase-producing Enterobacterales, but data remain inconclusive. This study evaluated the activity of double-carbapenem combinations against 51 clinical KPC-2-, OXA-48-, NDM-1, and NDM-5-producing Escherichia coli and Klebsiella pneumoniae and against constructed E. coli strains harboring genes encoding KPC-2, OXA-48, or NDM-1 in an otherwise isogenic background. Two-drug combinations of ertapenem, meropenem, and doripenem were evaluated in 24 h time-lapse microscopy experiments with a subsequent spot assay and in static time-kill experiments. An enhanced effect in time-lapse microscopy experiments at 24 h and synergy in the spot assay was detected with one or more combinations against 4/14 KPC-2-, 17/17 OXA-48-, 2/17 NDM-, and 1/3 NDM-1+OXA-48-producing clinical isolates. Synergy rates were higher against meropenem- and doripenem-susceptible isolates and against OXA-48 producers. NDM production was associated with significantly lower synergy rates in E. coli. In time-kill experiments with constructed KPC-2-, OXA-48- and NDM-1-producing E. coli, 24 h synergy was not observed; however, synergy at earlier time points was found against the KPC-2- and OXA-48-producing constructs. Our findings indicate that the benefit of double-carbapenem combinations against carbapenemase-producing E. coli and K. pneumoniae is limited, especially against isolates that are resistant to the constituent antibiotics and produce NDM.
Collapse
Affiliation(s)
- Lisa Allander
- Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Karin Vickberg
- Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Pernilla Lagerbäck
- Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Linus Sandegren
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Thomas Tängdén
- Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
7
|
Hammond RJH, Falconer K, Powell T, Bowness R, Gillespie SH. A simple label-free method reveals bacterial growth dynamics and antibiotic action in real-time. Sci Rep 2022; 12:19393. [PMID: 36371444 PMCID: PMC9653415 DOI: 10.1038/s41598-022-22671-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the response of bacteria to environmental stress is hampered by the relative insensitivity of methods to detect growth. This means studies of antibiotic resistance and other physiological methods often take 24 h or longer. We developed and tested a scattered light and detection system (SLIC) to address this challenge, establishing the limit of detection, and time to positive detection of the growth of small inocula. We compared the light-scattering of bacteria grown in varying high and low nutrient liquid medium and the growth dynamics of two closely related organisms. Scattering data was modelled using Gompertz and Broken Stick equations. Bacteria were also exposed meropenem, gentamicin and cefoxitin at a range of concentrations and light scattering of the liquid culture was captured in real-time. We established the limit of detection for SLIC to be between 10 and 100 cfu mL-1 in a volume of 1-2 mL. Quantitative measurement of the different nutrient effects on bacteria were obtained in less than four hours and it was possible to distinguish differences in the growth dynamics of Klebsiella pneumoniae 1705 possessing the BlaKPC betalactamase vs. strain 1706 very rapidly. There was a dose dependent difference in the speed of action of each antibiotic tested at supra-MIC concentrations. The lethal effect of gentamicin and lytic effect of meropenem, and slow bactericidal effect of cefoxitin were demonstrated in real time. Significantly, strains that were sensitive to antibiotics could be identified in seconds. This research demonstrates the critical importance of improving the sensitivity of bacterial detection. This results in more rapid assessment of susceptibility and the ability to capture a wealth of data on the growth dynamics of bacteria. The rapid rate at which killing occurs at supra-MIC concentrations, an important finding that needs to be incorporated into pharmacokinetic and pharmacodynamic models. Importantly, enhanced sensitivity of bacterial detection opens the possibility of susceptibility results being reportable clinically in a few minutes, as we have demonstrated.
Collapse
Affiliation(s)
- Robert J. H. Hammond
- grid.11914.3c0000 0001 0721 1626Division of Infection and Global Health, School of Medicine, University of St Andrews, Oxford, UK
| | - Kerry Falconer
- grid.11914.3c0000 0001 0721 1626Division of Infection and Global Health, School of Medicine, University of St Andrews, Oxford, UK
| | - Thomas Powell
- grid.11914.3c0000 0001 0721 1626Division of Infection and Global Health, School of Medicine, University of St Andrews, Oxford, UK
| | - Ruth Bowness
- grid.7340.00000 0001 2162 1699Department of Mathematical Sciences, Centre for Mathematical Biology, University of Bath, Bath, UK
| | - Stephen H. Gillespie
- grid.11914.3c0000 0001 0721 1626Division of Infection and Global Health, School of Medicine, University of St Andrews, Oxford, UK
| |
Collapse
|
8
|
Isler B, Aslan AT, Akova M, Harris P, Paterson DL. Treatment strategies for OXA-48-like and NDM producing Klebsiella pneumoniae infections. Expert Rev Anti Infect Ther 2022; 20:1389-1400. [PMID: 36150216 DOI: 10.1080/14787210.2022.2128764] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION OXA-48 and NDM are amongst the most prevalent carbapenemase types associated with Klebsiella pneumoniae worldwide, with an increase in their prevalence in recent years. Knowledge on the treatment of carbapenem-resistant Klebsiella pneumoniae (CRKP) comes from KPC-producing CRKP with limited data available for OXA-48-like and NDM producers. Our aim is to review the literature on the treatment of OXA-48-like and NDM-producing CRKP with the goal of providing an update on the available antibiotic treatment strategies, particularly in light of changing carbapenemase epidemiology and increasing antimicrobial resistance. AREAS COVERED We reviewed studies looking at the antibiotic treatment and outcome of OXA-48-like and/or NDM-producing CRKP. EXPERT OPINION The best available treatment option for OXA-48 producers is ceftazidime-avibactam, where available and when the price permits its use. Colistin remains as the second-line option if in vitro susceptibility is demonstrated with an appropriate method. There is not enough evidence to support the use of meropenem-containing combination therapies for meropenem-resistant OXA-48 producers. Treatment of NDM producers is an unmet need. Ceftazidime-avibactam and aztreonam combination or cefiderocol can be used for NDM producers, where available. Higher cefiderocol MICs against NDM producers is concerning. Aztreonam-avibactam provides hope for the treatment of NDM producers.
Collapse
Affiliation(s)
- Burcu Isler
- University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, Australia.,Infection Management Services, Princess Alexandra Hospital, Brisbane, Australia
| | - Abdullah Tarık Aslan
- Department of Internal Medicine, Golhisar State Hospital, 15100 Golhisar, Turkey
| | - Murat Akova
- Infectious Diseases and Clinical Microbiology, Hacettepe University School of Medicine, Ankara
| | - Patrick Harris
- University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, Australia
| | - David L Paterson
- University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, Australia.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
9
|
Mackay B, Parcell BJ, Shirran SL, Coote PJ. Carbapenem-Only Combination Therapy against Multi-Drug Resistant Pseudomonas aeruginosa: Assessment of In Vitro and In Vivo Efficacy and Mode of Action. Antibiotics (Basel) 2022; 11:1467. [PMID: 36358122 PMCID: PMC9686798 DOI: 10.3390/antibiotics11111467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 04/28/2024] Open
Abstract
The aim of the study was to determine the efficacy of carbapenem-only combination treatments derived from four approved drugs (meropenem, doripenem, ertapenem and imipenem) against a MDR strain of P. aeruginosa in a Galleria mellonella larvae infection model. G. mellonella larvae were infected with P. aeruginosa NCTC 13437 (carrying the VIM 10 carbapenamase) and the efficacy of the six possible dual, four triple, and one quadruple carbapenem combination(s) were compared to their constituent monotherapies. Four of these combinations showed significantly enhanced survival compared to monotherapies and reduced the bacterial burden inside infected larvae but without complete elimination. Bacteria that survived combination therapy were slower growing, less virulent but with unchanged carbapenem MICs-observations that are consistent with a persister phenotype. In vitro time-kill assays confirmed that the combinations were bactericidal and confirmed that a low number of bacteria survived exposure. Mass spectrometry was used to quantify changes in the concentration of carbapenems in the presence of carbapenemase-carrying P. aeruginosa. The rate of degradation of individual carbapenems was altered, and often significantly reduced, when the drugs were in combinations compared with the drugs alone. These differences may account for the enhanced inhibitory effects of the combinations against carbapenem-resistant P. aeruginosa and are consistent with a 'shielding' hypothesis. In conclusion, carbapenem combinations show promise in combating MDR P. aeruginosa and are worthy of additional study and development.
Collapse
Affiliation(s)
- Brendan Mackay
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, The North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Benjamin J. Parcell
- NHS Tayside, Medical Microbiology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Sally L. Shirran
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, The North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Peter J. Coote
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, The North Haugh, St Andrews, Fife KY16 9ST, UK
| |
Collapse
|
10
|
Yitayew B, Woldeamanuel Y, Asrat D, Rahman A, Mihret A, Aseffa A, Olsson PE, Jass J. Antimicrobial resistance genes in microbiota associated with sediments and water from the Akaki river in Ethiopia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70040-70055. [PMID: 35583762 PMCID: PMC9512891 DOI: 10.1007/s11356-022-20684-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
The spread of antimicrobial-resistant pathogens is a global health concern. Most studies report high levels of antimicrobial resistance genes (ARGs) in the aquatic environment; however, levels associated with sediments are limited. This study aimed to investigate the distribution of ARGs in the sediments and water of the Akaki river in Addis Ababa, Ethiopia. The diversity and abundance of 84 ARGs and 116 clinically important bacteria were evaluated from the sediments and water collected from five sites in the Akaki river. Most of the ARGs were found in the city close to anthropogenic activities. Water samples collected in the middle catchment of the river contained 71-75% of targeted ARGs, with genes encoding aminoglycoside acetyltransferase (aac(6)-Ib-cr), aminoglycoside adenylyl transferase (aadA1), β-lactamase (blaOXA-10), quinolone resistance S (qnrS), macrolide efflux protein A (mefA), and tetracycline resistance (tetA), were detected at all sampling sites. Much fewer ARGs were detected in all sediments, and those near the hospitals had the highest diversity and level. Despite the lower levels and diversity, there were no unique ARGs detected in the sediments that were also not detected in the waters. A wide range of clinically relevant pathogens were also detected in the Akaki river. The findings suggest that the water phase, rather than the sediments in the Akaki river, is a potential conduit for the spread of ARGs and antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Berhanu Yitayew
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
- School of Science and Technology, The Life Science Center - Biology, Örebro University, 701 82, Örebro, Sweden
| | | | - Daniel Asrat
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Aminur Rahman
- School of Science and Technology, The Life Science Center - Biology, Örebro University, 701 82, Örebro, Sweden
| | - Adane Mihret
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Per-Erik Olsson
- School of Science and Technology, The Life Science Center - Biology, Örebro University, 701 82, Örebro, Sweden
| | - Jana Jass
- School of Science and Technology, The Life Science Center - Biology, Örebro University, 701 82, Örebro, Sweden.
| |
Collapse
|
11
|
Validation of Three MicroScan® Antimicrobial Susceptibility Testing Plates Designed for Low-Resource Settings. Diagnostics (Basel) 2022; 12:diagnostics12092106. [PMID: 36140507 PMCID: PMC9497938 DOI: 10.3390/diagnostics12092106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
Easy and robust antimicrobial susceptibility testing (AST) methods are essential in clinical bacteriology laboratories (CBL) in low-resource settings (LRS). We evaluated the Beckman Coulter MicroScan lyophilized broth microdilution panel designed to support Médecins Sans Frontières (MSF) CBL activity in difficult settings, in particular with the Mini-Lab. We evaluated the custom-designed MSF MicroScan Gram-pos microplate (MICPOS1) for Staphylococcus and Enterococcus species, MSF MicroScan Gram-neg microplate (MICNEG1) for Gram-negative bacilli, and MSF MicroScan Fastidious microplate (MICFAST1) for Streptococci and Haemophilus species using 387 isolates from routine CBLs from LRS against the reference methods. Results showed that, for all selected antibiotics on the three panels, the proportion of the category agreement was above 90% and the proportion of major and very major errors was below 3%, as per ISO standards. The use of the Prompt inoculation system was found to increase the MIC and the major error rate for some antibiotics when testing Staphylococci. The readability of the manufacturer’s user manual was considered challenging for low-skilled staff. The inoculations and readings of the panels were estimated as easy to use. In conclusion, the three MSF MicroScan MIC panels performed well against clinical isolates from LRS and provided a convenient, robust, and standardized AST method for use in CBL in LRS.
Collapse
|
12
|
Liaqat Z, Khan I, Azam S, Anwar Y, Althubaiti EH, Maroof L. Isolation and molecular characterization of extended spectrum beta lactamase producing Escherichia coli from chicken meat in Pakistan. PLoS One 2022; 17:e0269194. [PMID: 35657920 PMCID: PMC9165818 DOI: 10.1371/journal.pone.0269194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/16/2022] [Indexed: 12/03/2022] Open
Abstract
The goal of this study was to find E. coli, a prevalent pathogen that causes food-borne illnesses, in chicken samples (n = 500) collected from three districts in KhyberPukhtunkhwa: Mardan, Swabi, and Swat. The E. coli isolates were identified by Gram staining, API strips and Universal Stress Protein. A total of 412 samples tested positive for E. coli and were sensitive to MEM, TZP, and FOS as evidenced by disc diffusion method. The isolates were resistant to TE, NOR, and NA with statistically significant results (P≤0.05). The isolates showed the presence of different antibiotic resistance genes; blaOXA-1, blaCTX-M15, blaTEM-1, QnrS, TetA, AAC, AAD, Sul1 and Sul2. The results revealed mutations in blaOXA-1 gene (H81Q), blaTEM-1 (C108Y, T214A, K284E and P301S), QnrS (H95R) and Sul2 (E66A). The findings of this study may be helpful in better management of E. coli infections by physicians.
Collapse
Affiliation(s)
- Zainab Liaqat
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Ibrar Khan
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Sadiq Azam
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia
| | | | - Lalina Maroof
- City University of Science and Information Technology, Peshawar, Pakistan
| |
Collapse
|
13
|
Zainab L, Ibrar K, Sadiq A, Hamid A, Ullah M, Noor R. Extended Spectrum Beta Lactamases-Producing Escherichia coli in Retail Chicken Meat from Khyber Pakhtunkhwa, Pakistan. Saudi J Biol Sci 2022; 29:103280. [PMID: 35521357 PMCID: PMC9065911 DOI: 10.1016/j.sjbs.2022.103280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/16/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
In human diet, poultry meat is an important component due to the presence of vitamins, proteins and minerals. But poultry meat can be contaminated by pathogenic bacteria which are responsible for food borne infections. The current study was therefore aimed at identification of Escherichia coli, a common pathogen causing food borne infections, in chicken samples (n = 400) collected from three districts of KhyberPukhtunkhwa; Peshawar, Kohat and Nowshera. The isolates were identified by Gram staining, API strips and through PCR (Universal Stress Protein). A total of 174 samples were positive for E. coli among the collected chicken samples. The isolates were resistant to TE, NOR and NA while were sensitive to MEM, TZP and FOS. The results were statistically significant having value P ≤ 0.05 in ANOVA. The isolates showed different antibiotic resistance genes; OXA-1, CTX-M15, blaTEM, QnrS, TetA, AAC, AAD, sul1 and sul2 which is the molecular explanations of their antibiotic resistance pattern. The PCR products were sequenced by Next Generation Sequencing (NGS) and the results revealed mutations in AAC gene (M120T and R197T) and CTX-M15 (A85V, N122D, A148S and G247D). To prevent and treat pathogenic diseases, the use of antimicrobial agents in animal husbandry are of utmost concern. The over-use and misuse of antimicrobial agents has made pathogenic E. coli multi drugs resistant making it a causative agent for many diseases in human beings. The results of the current study may be helpful for the physicians the better management of the diseases caused by E. coli.
Collapse
Affiliation(s)
- L. Zainab
- Centre of Biotechnology and Microbiology, University of Peshawar, Pakistan
| | - K. Ibrar
- Centre of Biotechnology and Microbiology, University of Peshawar, Pakistan
- Corresponding author.
| | - A. Sadiq
- Centre of Biotechnology and Microbiology, University of Peshawar, Pakistan
| | - A.K. Hamid
- Institute of Biological Sciences Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Midrar Ullah
- Department of Biotechnology Shaheed Benazir Bhutto University Sheringal, Dir Upper Khyber Pakhtunkhwa, Pakistan
| | - R. Noor
- Department of Pathology, Khyber Teaching Hospital, Peshawar, Pakistan
| |
Collapse
|
14
|
Celik M, Sunnetcioglu M, Guducuoglu H, Arslan Y, Akyuz S, Baran AI. Comparison of Carbapenem Resistance Detected by the BD Phoenix Automated System in Enterobacteriaceae Isolates with E-Test Method. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2022. [DOI: 10.29333/ejgm/11672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Rizvi M, Sami H, Azam M, Ben Khalid D, Al Jabri Z, Khan F, Sultan A, Singh A, Perween N, Al Quraini M, Al Muharrmi Z, Rizvi SG. Reliability of carbapenem inactivation method (CIM) and modified carbapenem inactivation method (mCIM) for detection of OXA-48-like and NDM-1. Indian J Med Microbiol 2021; 39:451-456. [PMID: 34330546 DOI: 10.1016/j.ijmmb.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Carbapenem inactivation method (CIM) and modified carbapenem inactivation method (mCIM) were recently developed for rapid detection of carbapenemase producing Gram negative bacilli (CP-GNB). In this study we compared the ability of modified Hodge test (MHT), CIM and mCIM to identify CP-GNB in Oman and India. METHODS Fifty fully characterized and genotyped CP-GNB (26 OXA-48-like, 2 NDM-1 from Oman and 22 NDM-1 from India) and 8 AmpC as controls in India were subjected to MHT, CIM, mCIM and mCIM with in-house modifications. Wilcoxon paired test and receiver operating characteristics (ROC) were utilised for statistical analysis. RESULTS Isolates were predominantly OXA-48-like genes producing Klebsiella pneumoniae from Oman and NDM-1 producing Escherichia coli from India. MHT was positive in all except one OXA-48-like producers and in 70.8 % of the NDM-1 isolates. The sensitivity of CIM in detecting 0XA-48 like and NDM-1 carbapenemases were 39.2% and 87.5% respectively. mCIM at 4 h detected 92.3 % and 79.1% of 0XA-48 and NDM-1 respectively. Using receiver operative characteristics (ROC), highest sensitivity and specificity for detection of OXA-48-like was obtained by mCIM at 4 h at cut off 17 mm while for NDM-1 CIM was the test of choice at 16 mm. CONCLUSION CIM and mCIM are simple, cheap and easy tests to perform. CIM gave excellent results with NDM1 strains while it was quite poor in predicting OXA-48-like. We recommend CIM and eCIM for rapid identification of NDM-1 producers and mCIM at 4 h and MHT for detection of OXA-48-like. No one method can correctly detect both genotypes. As determined by ROC curves a zone of inhibition of 17 mm was considered adequate for detection of OXA-48-like and 16 mm of NDM-1 by mCIM at 4 h and CIM respectively.
Collapse
Affiliation(s)
- Meher Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University Hospital, Muscat, Oman.
| | - Hiba Sami
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Mohammad Azam
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, Saudi Arabia
| | - Dhoha Ben Khalid
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University Hospital, Muscat, Oman
| | - Zaaima Al Jabri
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University Hospital, Muscat, Oman.
| | - Fatima Khan
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Asfia Sultan
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Anuradha Singh
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Nusrat Perween
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Munawer Al Quraini
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University Hospital, Muscat, Oman.
| | - Zakariya Al Muharrmi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University Hospital, Muscat, Oman.
| | - Syed G Rizvi
- Department of Family Medicine and Public Health, College of Medicine and Health Sciences, Sultan Qaboos University Hospital, Muscat, Oman.
| |
Collapse
|
16
|
Jonas D, Reuter S, Klassen S, Weber S, Buck M, Giani T, Rossolini GM, Grundmann H. Evaluation of the BD Phoenix CPO detect panel for prediction of Ambler class carbapenemases. Sci Rep 2021; 11:13150. [PMID: 34162904 PMCID: PMC8222379 DOI: 10.1038/s41598-021-92336-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/03/2021] [Indexed: 11/27/2022] Open
Abstract
Rapid detection of carbapenemases as a cause of resistance is beneficial for infection control and antimicrobial therapy. The BD Phoenix NMIC-502 panel and CPO detect test identifies presence of carbapenemases in Enterobacterales such as Klebsiella pneumoniae and assigns them to Ambler classes. To evaluate the performance of the CPO detect panel, we employed a European collection of 1222 K. pneumoniae including carbapenem non-susceptible and susceptible clinical isolates from 26 countries, for which draft genomes were available after Illumina sequencing and the presence of carbapenemase genes had been identified by ARIBA gene calling. The CPO panel detected 488 out of 494 carbapenemase-encoding isolates as positive and six as negative. One-hundred and two isolates were tested positive for carbapenemase in the absence of any carbapenemase gene. The CPO panel identified 229 out of 230 KPC-positive isolates as carbapenemase producing and classified 62 of these as class A enzyme. Similarly, the CPO panel correctly specified 167 of 182 as class D. Regarding metallo-beta-lactamases, the CPO panel assigned 78 of 90 MBL positive isolates to class B enzymes. The sensitivity of the CPO panel in detecting carbapenemase activity was 99.5%, 97.7% and 98.3% for class A, B and D enzymes, respectively. The sensitivity in assignation to Ambler class A, B and D was 27%, 86% and 91%, respectively. An overall sensitivity of 98.8% and specificity of 86% in unclassified detection of carbapenemases was observed, with frequent false positive detection of carbapenemase producing organisms, thus rendering further confirmatory tests necessary.
Collapse
Affiliation(s)
- Daniel Jonas
- Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Sandra Reuter
- Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sarah Klassen
- Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Weber
- Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marion Buck
- Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tommaso Giani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Hajo Grundmann
- Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Tapalski DV, Timoshkova EV, Petrovskaya TA, Osipkina OV, Karpov IA. Microbiological efficiency of the combinations of two carbapenems against antibiotic resistant Klebsiella pneumoniae strains. Klin Lab Diagn 2021; 66:304-309. [PMID: 34047517 DOI: 10.51620/0869-2084-2021-66-5-304-309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Combined antibiotic therapy is widely used for infections caused by carbapenem-resistant K. pneumoniae. The objective of this work was to identify the synergistic activity of combinations of two carbapenems against multidrug- and extensively drug-resistant K. pneumoniae strains producing various types of carbapenemases. For 60 antibiotic-resistant K. pneumoniae strains isolated in 8 cities of Belarus, the minimum inhibitory concentrations (MIC) of colistin and carbapenems were determined by subsequent broth microdilution method, and the genes of carbapenemases and phosphoethanolamine transferases were detected. The checkerboard method was used to determine the sensitivity to the combination of ertapenem and doripenem. High MIC values of carbapenems were revealed for NDM carbapenemase-producing strains (MIC50 of meropenem 64 mg/L, MIC50 of doripenem 64 mg/L). Doripenem was more active; MIC of doripenem ≤ 16 mg/L (low level of resistance) was determined in 28 (46.7%) strains, MIC of meropenem ≤ 16 mg/L - in 8 (13.3% of strains). The effect of potentiating the activity of doripenem with ertapenem at a fixed pharmacokinetic / pharmacodynamic concentration was observed for 20.0% of the strains producing KPC carbapenemase and 29.0% of the strains producing OXA-48 carbapenemase. The potentiating effect was independent of the presence of colistin resistance. Thus, the ability of ertapenem to potentiate the antimicrobial activity of doripenem and meropenem against some of the strains producing serine carbapenemases (KPC and OXA-48) was confirmed. The necessity of routine determination of the true MIC values of carbapenems was shown to optimize their dosage regimens and select the combination antibiotic therapy regimens.
Collapse
|
18
|
Patidar N, Vyas N, Sharma S, Sharma B. Phenotypic Detection of Carbapenemase Production in Carbapenem-Resistant Enterobacteriaceae by Modified Hodge Test and Modified Strip Carba NP Test. J Lab Physicians 2021; 13:14-21. [PMID: 34054236 PMCID: PMC8154340 DOI: 10.1055/s-0041-1723859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objective
Carbapenems are last resort antibiotics for multidrug-resistant
Enterobacteriaceae
. However, resistance to carbapenem is increasing at an alarming rate worldwide leading to major therapeutic failures and increased mortality rate. Early and effective detection of carbapenemase producing carbapenem-resistant
Enterobacteriaceae
(CRE) is therefore key to control dissemination of carbapenem resistance in nosocomial as well as community-acquired infection. The aim of present study was to evaluate efficacy of Modified strip Carba NP (CNP) test against Modified Hodge test (MHT) for early detection of carbapenemase producing
Enterobacteriaceae
(CPE).
Material and MethodsEnterobacteriaceae
isolated from various clinical samples were screened for carbapenem resistance. A total of 107 CRE were subjected to MHT and Modified strip CNP test for the detection of CPE.
Statistical Analysis
It was done on Statistical Package for the Social Sciences (SPSS) software, IBM India; version V26. Nonparametric test chi-square and
Z
-test were used to analyze the results within a 95% level of confidence.
Results
Out of 107 CRE, 94 (88%) were phenotypically confirmed as carbapenemase producer by Modified strip CNP test and 46 (43%) were confirmed by Modified Hodge Test (MHT). Thirty-eight (36%) isolates showed carbapenemase production by both MHT and CNP test, 56 isolates (52%) were CNP test positive but MHT negative, eight (7%) isolates were MHT positive but CNP test negative and five (5%) isolates were both MHT and CNP test negative. There is statistically significant difference in efficiency of Modified CNP test and MHT (
p
< 0.05).
Conclusion
Modified strip CNP test is simple and inexpensive test which is easy to perform and interpret and gives rapid results in less than 5 minutes. It has high degree of sensitivity and specificity. Modified strip CNP test shows significantly higher detection capacity for carbapenemase producers as compared with MHT.
Collapse
Affiliation(s)
- Nisha Patidar
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India
| | - Nitya Vyas
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India
| | - Shanoo Sharma
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India
| | - Babita Sharma
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India
| |
Collapse
|
19
|
Evaluation of Xpert Carba-R Assay for the Detection of Carbapenemase Genes in Gram-Negative Bacteria. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6614812. [PMID: 33928150 PMCID: PMC8049809 DOI: 10.1155/2021/6614812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/23/2021] [Accepted: 03/19/2021] [Indexed: 11/18/2022]
Abstract
Introduction High mortality associated with carbapenemase-producing Gram-negative bacteria (CP-GNB) has evolved into a global health threat. Rapid and accurate detection as well as prompt treatment are of great significance in this case. Xpert Carba-R, a multiple qualitative analysis designed to detect five clinically relevant carbapenem-resistant gene families within one hour, is regarded as reliable, accurate, and easy-to-operate. This study is to present a systematic evaluation of the performance of Xpert Carba-R in detecting carbapenemase genes in GNB suspected for carbapenemase production. Methods We searched and screened the literature on “Xpert Carba-R” in the database of PubMed, Web of Science, Embase, and Cochrane Library, employing two independent evaluators to collect data, respectively. Then, statistical analysis of the data obtained was performed by the Stata 12.0 software to measure the accuracy of Xpert Carba-R assay in detecting the carbapenemase genes in GNB. Results We screened a total of 1767 Gram-negative bacillus isolates documented in 9 articles. The precision of the detection of OXA-48 carbapenemase genes was 100%; that of NDM = 100%; that of VIM = 100%. When it came to KPC, the precision rate was 100%; that of IMP = 99%. The overall accuracy of the detection of carbapenemase genes was 100%. Conclusions Xpert Carba-R assay demonstrates a 100% precision in identifying carbapenemase genes in GNB. It can be seen that Xpert Carba-R method is an effective tool for early clinical detection, which is suitable for the detection of carbapenase gene in GNB.
Collapse
|
20
|
Lee YT, Huang TW, Liu IF, Kuo SC, Yang YS, Lin PY, Liu CP, Liu YM, Chen TL, Wang FD, Wang YC. The prediction values of carbapenemase detection methods and carbapenem susceptibility testing for clinical outcomes of patients with Acinetobacter bacteremia under carbapenem treatment. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:257-265. [PMID: 33875365 DOI: 10.1016/j.jmii.2021.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/27/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Carbapenem-resistant Acinetobacter species have emerged as notorious pathogens causing nosocomial infections. Several phenotypic methods have been developed for detecting carbapenemase production in Enterobacteriaceae. The accuracy of these methods in the prediction of carbapenemase production in Acinetobacter species has not been studied well. METHODS This retrospective study enrolled adult patients with Acinetobacter bacteremia from four medical centers in Taiwan between 2012 and 2016. Their demographics and clinical outcomes were recorded. The carbapenem susceptibility of the Acinetobacter species was determined using the agar diffusion method. The carbapenemase genes were detected by PCR. Four phenotypic methods, including the modified Hodge test (MHT), modified carbapenem inactivation method (mCIM), Carba NP test, and CarbAcineto NP test were carried out to determine the production of carbapenemase. RESULTS We analyzed 257 adults who received initial carbapenem monotherapy for the treatment of Acinetobacter bacteremia. Shock within three days of bacteremia and acquisition of carbapenem non-susceptible isolates were independently associated with a higher 14-day and 30-day mortality in patients with Acinetobacter bacteremia. Among the four phenotypic tests for carbapenemase detection, MHT using the imipenem disc displayed the greatest sensitivity (94%; 95% confidence interval [CI], 89-97%) and specificity (81%; 95% CI, 73-88%) for predicting imipenem non-susceptibility. CONCLUSION Carbapenem non-susceptibility and shock were independent risk factors for mortality in patients with Acinetobacter bacteremia. The MHT could predict the carbapenem susceptibility of Acinetobacter isolates. It is a cheap and quick assay, which could be applied in clinical practice.
Collapse
Affiliation(s)
- Yi-Tzu Lee
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tzu-Wen Huang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - I-Fan Liu
- Division of Cardiology, Department of Medicine, Cheng Hsin General Hospital, Taipei City, Taiwan
| | - Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institute, Maoli County, Taiwan
| | - Ya-Sung Yang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Ying Lin
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chang-Pan Liu
- Division of Infectious Diseases, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yuag-Meng Liu
- Division of Infectious Diseases, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Te-Li Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Fu-Der Wang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Chih Wang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
21
|
Wei DW, Wong NK, Song Y, Zhang G, Wang C, Li J, Feng J. IS 26 Veers Genomic Plasticity and Genetic Rearrangement toward Carbapenem Hyperresistance under Sublethal Antibiotics. mBio 2021; 13:e0334021. [PMID: 35130728 PMCID: PMC8822349 DOI: 10.1128/mbio.03340-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/18/2022] [Indexed: 02/08/2023] Open
Abstract
Multidrug-resistant Gram-negative carriers of Klebsiella pneumoniae carbapenemases (KPCs) often subvert antibiotic therapy due to inadequate sensitivity in laboratory detection. Although unstable gene amplification has been recognized to crucially contribute to underestimation or misestimation of antimicrobial resistance in clinical isolates, the precise mechanisms underlying carbapenem resistance driven by amplification of blaKPC-2 remain obscure. Here, we reported that IS26-mediated amplification of blaKPC-2 rapidly and robustly gave rise to carbapenem hyperresistant phenotypes in an Escherichia coli clinical strain following sublethal meropenem or tobramycin preexposure. Intriguingly, IS26 also underpinned amplification of a 47 kb multiple drug resistance (MDR) region encompassing nine antibiotic resistance genes and six IS26 insertion sequences. Tandem-repeat analysis and experimental validation demonstrated that blaKPC-2 amplification was indeed mediated by IS26, which was further experimentally shown to involve intricate genetic rearrangement. Such gene amplification arose dynamically under antibiotic stress and subsided upon antibiotic withdrawal. Instead of reducing the amplification of the IS26-flanked MDR region, drug combinations in vitro exacerbated it. Our study, thus, provides valuable insights into how dynamic gene amplification processes can precipitously transform resistance status and complicate diagnosis. IMPORTANCE Klebsiella pneumoniae carbapenemases (KPCs) are powerful β-lactamases that enable Gram-negative pathogens to destroy clinically important carbapenems in antibiotic therapies. In particular, KPC-2 is difficult to detect due to a lack of instrument sensitivity in regular laboratory screens, which leads to misdiagnosis and poor treatment outcomes. It remains unclear how blaKPC-2 rapidly induces exceedingly high-level resistance against carbapenems following the challenges of sublethal antibiotics. Here, we demonstrated that, under sublethal doses of antibiotics, insertion sequence IS26 mediated rapid amplification of multiple resistance determinants, including blaKPC-2 and a multiple drug resistance (MDR) region, which was accompanied by intricate genetic rearrangement.
Collapse
Affiliation(s)
- Da-Wei Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yuqin Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Gang Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Juan Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Centers for Disease Control and Prevention, Changping, Beijing, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Oueslati S, Iorga BI, Tlili L, Exilie C, Zavala A, Dortet L, Jousset AB, Bernabeu S, Bonnin RA, Naas T. Unravelling ceftazidime/avibactam resistance of KPC-28, a KPC-2 variant lacking carbapenemase activity. J Antimicrob Chemother 2020; 74:2239-2246. [PMID: 31127297 DOI: 10.1093/jac/dkz209] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/09/2019] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND KPC-like carbapenemases have spread worldwide with more than 30 variants identified that differ by single or double amino-acid substitutions. OBJECTIVES To describe the steady-state kinetic parameters of KPC-28, which differs from KPC-2 by a H274Y substitution and the deletion of two amino acids (Δ242-GT-243). METHODS The blaKPC-2, blaKPC-3, blaKPC-14 and blaKPC-28 genes were cloned into a pTOPO vector for susceptibility testing or into pET41b for overexpression, purification and subsequent kinetic parameter (Km, kcat) determination. Molecular docking experiments were performed to explore the role of the amino-acid changes in the carbapenemase activity. RESULTS Susceptibility testing revealed that Escherichia coli producing KPC-28 displayed MICs that were lower for carbapenems and higher for ceftazidime and ceftazidime/avibactam as compared with KPC-2. The catalytic efficiencies of KPC-28 and KPC-14 for imipenem were 700-fold and 200-fold lower, respectively, than those of KPC-2, suggesting that Δ242-GT-243 in KPC-28 and KPC-14 is responsible for reduced carbapenem hydrolysis. Similarly, the H274Y substitution resulted in KPC-28 in a 50-fold increase in ceftazidime hydrolysis that was strongly reversed by clavulanate. CONCLUSIONS We have shown that KPC-28 lacks carbapenemase activity, has increased ceftazidime hydrolytic activity and is strongly inhibited by clavulanate. KPC-28-producing E. coli isolates display an avibactam-resistant ESBL profile, which may be wrongly identified by molecular and immunochromatographic assays as the presence of a carbapenemase. Accordingly, confirmation of carbapenem hydrolysis will be mandatory with assays based solely on blaKPC gene or gene product detection.
Collapse
Affiliation(s)
- Saoussen Oueslati
- EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', Faculty of Medicine, Université Paris-Sud, LabEx Lermit, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Bogdan I Iorga
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, Gif-sur-Yvette, France
| | - Linda Tlili
- EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', Faculty of Medicine, Université Paris-Sud, LabEx Lermit, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Cynthia Exilie
- EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', Faculty of Medicine, Université Paris-Sud, LabEx Lermit, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Agustin Zavala
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, Gif-sur-Yvette, France
| | - Laurent Dortet
- EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', Faculty of Medicine, Université Paris-Sud, LabEx Lermit, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France.,Associated French National Reference Centre for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Agnès B Jousset
- EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', Faculty of Medicine, Université Paris-Sud, LabEx Lermit, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France.,Associated French National Reference Centre for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Sandrine Bernabeu
- EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', Faculty of Medicine, Université Paris-Sud, LabEx Lermit, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Rémy A Bonnin
- EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', Faculty of Medicine, Université Paris-Sud, LabEx Lermit, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Associated French National Reference Centre for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', Faculty of Medicine, Université Paris-Sud, LabEx Lermit, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France.,Associated French National Reference Centre for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| |
Collapse
|
23
|
Cai Z, Tao J, Jia T, Fu H, Zhang X, Zhao M, Du H, Yu H, Shan B, Huang B, Chen L, Tang YW, Jia W, Qu F. Multicenter Evaluation of the Xpert Carba-R Assay for Detection and Identification of Carbapenemase Genes in Sputum Specimens. J Clin Microbiol 2020; 58:e00644-20. [PMID: 32522829 PMCID: PMC7448655 DOI: 10.1128/jcm.00644-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Rapid diagnosis of infections caused by carbapenem-resistant Enterobacteriaceae (CRE) is crucial for proper treatment and infection control. The Xpert Carba-R assay is a qualitative multiplex real-time PCR method that qualitatively detects and differentiates five common carbapenemase genes (blaKPC, blaNDM, blaVIM, blaOXA-48, and blaIMP) directly from rectal swabs or purified colonies within approximately 1 h. We performed a multicenter evaluation of the investigational use of the Carba-R assay for detection and differentiation of carbapenemase genes from sputum specimens in patients with a clinical diagnosis of pneumonia. The intra- and interassay coefficients of variation values for the Carba-R assay were 0.2% to 2.0% and 1.4% to 2.3%, respectively. A total of 301 sputum specimens were collected and tested. Compared to bacterial culture followed by PCR identification of resistance genes from colonies, the Carba-R assay reduced turnaround time from 56 to 84 h to less than 2 h. Carbapenemase genes were detected by the Carba-R assay in Klebsiella pneumoniae (n = 236), Escherichia coli (n = 22), Enterobacter cloacae (n = 23), Klebsiella oxytoca (n = 8), Serratia marcescens (n = 6), Citrobacter freundii (n = 4), and Klebsiella aerogenes (n = 2). The Carba-R assay detected 112 blaKPC (33.5%), 70 blaNDM (21.0%), 8 blaIMP (2.4%), and 2 blaVIM (0.6%) genes, with positive percent agreement, negative percent agreement, and concordance rates of 92.9%, 86.7%, and 88.3%, respectively, for the dominant blaKPC and 85.0%, 87.8%, and 87.4%, respectively, for the blaNDM genes. Neither method detected the blaOXA-48 carbapenemase gene. The convenient, rapid, and simple characteristics of the Xpert Carba-R assay make it a potential tool for CRE detection and identification directly in sputum specimens.
Collapse
Affiliation(s)
- Zhen Cai
- China Aviation General Hospital of China Medical University, Beijing, China
| | - Jia Tao
- Center of Medical Laboratory, the General Hospital of Ningxia Medical University, Yinchuan, China
| | - Tianye Jia
- The Center of Clinical Diagnosis Laboratory, 302 Hospital of PLA, Beijing, China
| | - Hongyu Fu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xin Zhang
- Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mei Zhao
- Center of Medical Laboratory, the General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hua Yu
- Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Bin Shan
- Department of Laboratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Chen
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, USA
- Hackensack Meridian School of Medicine, Seton Hall University, Nutley, New Jersey, USA
| | - Yi-Wei Tang
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
- Cepheid, Shanghai, China
| | - Wei Jia
- Center of Medical Laboratory, the General Hospital of Ningxia Medical University, Yinchuan, China
| | - Fen Qu
- China Aviation General Hospital of China Medical University, Beijing, China
- The Center of Clinical Diagnosis Laboratory, 302 Hospital of PLA, Beijing, China
| |
Collapse
|
24
|
Li YY, Wang J, Wang R, Cai Y. Double-carbapenem therapy in the treatment of multidrug resistant Gram-negative bacterial infections: a systematic review and meta-analysis. BMC Infect Dis 2020; 20:408. [PMID: 32527246 PMCID: PMC7291551 DOI: 10.1186/s12879-020-05133-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To compare the efficacy and safety of double-carbapenem therapy (DCT) with other antibiotics for the treatment of multidrug resistant (MDR) Gram-negative bacterial infections. METHODS Cochrane Library, PubMed, Embase and Web of Science as well as Chinese databases were searched from database establishment to February 2019. All types of studies were included if they had evaluated efficacy and safety of DCT regimens in patients with MDR Gram-negative bacterial infections. Clinical response, microbiological response, adverse events and mortality were the main outcomes. The protocol was registered with PROSPERO No. CRD42019129979. RESULTS Three cohort or case-control studies consisting of 235 patients and 18 case series or case reports consisting of 90 patients were included. The clinical and microbiological responses were similar between DCT and other regimens in patients with carbapenem-resistant Enterobacteriaceae (CRE) infection. DCT achieved a lower mortality than comparators in patients with CRE infection (OR = 0.44, 95% CI = 0.24-0.82, P = 0.009). Ertapenem was the most reported antibiotic in DCT regimens in case series or case reports. Moreover, clinical and microbiological improvements were found in 59 (65.6%) and 63 (70%) in total 90 cases, respectively. CONCLUSIONS DCT was as effective as other antibiotics in treating MDR Gram-negative bacterial infections, with similar efficacy response and lower mortality. DCT could be an alternative therapeutic option in the treatment of MDR Gram-negative bacterial infections. High-quality randomized controlled trials were required to confirm the beneficial effects of DCT.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
- PLA Medical School, Beijing, China
| | - Jin Wang
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
| | - Rui Wang
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China.
| |
Collapse
|
25
|
Differences between meropenem and imipenem disk to detect carbapenemase in gram-negative bacilli using simplified carbapenem inactivation method. J Infect Chemother 2020; 26:636-639. [DOI: 10.1016/j.jiac.2020.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
|
26
|
Ferreira RL, Rezende GS, Damas MSF, Oliveira-Silva M, Pitondo-Silva A, Brito MCA, Leonardecz E, de Góes FR, Campanini EB, Malavazi I, da Cunha AF, Pranchevicius MCDS. Characterization of KPC-Producing Serratia marcescens in an Intensive Care Unit of a Brazilian Tertiary Hospital. Front Microbiol 2020; 11:956. [PMID: 32670210 PMCID: PMC7326048 DOI: 10.3389/fmicb.2020.00956] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Serratia marcescens has emerged as an important opportunistic pathogen responsible for nosocomial and severe infections. Here, we determined phenotypic and molecular characteristics of 54 S. marcescens isolates obtained from patient samples from intensive-care-unit (ICU) and neonatal intensive-care-unit (NIUC) of a Brazilian tertiary hospital. All isolates were resistant to beta-lactam group antibiotics, and 92.6% (50/54) were not susceptible to tigecycline. Furthermore, 96.3% showed intrinsic resistance to polymyxin E (colistin), a last-resort antibiotic for the treatment of infections caused by MDR (multidrug-resistant) Gram-negative bacteria. In contrast, high susceptibility to other antibiotics such as fluoroquinolones (81.5%), and to aminoglycosides (as gentamicin 81.5%, and amikacin 85.2%) was found. Of all isolates, 24.1% were classified as MDR. The presence of resistance and virulence genes were examined by PCR and sequencing. All isolates carried KPC-carbapenemase (blaKPC) and extended spectrum beta-lactamase blaTEM genes, 14.8% carried blaOXA–1, and 16.7% carried blaCTX–M–1group genes, suggesting that bacterial resistance to β-lactam antibiotics found may be associated with these genes. The genes SdeB/HasF and SdeY/HasF that are associated with efflux pump mediated drug extrusion to fluoroquinolones and tigecycline, respectively, were found in 88.9%. The aac(6′)-Ib-cr variant gene that can simultaneously induce resistance to aminoglycoside and fluoroquinolone was present in 24.1% of the isolates. Notably, the virulence genes to (i) pore-forming toxin (ShlA); (ii) phospholipase with hemolytic and cytolytic activities (PhlA); (iii) flagellar transcriptional regulator (FlhD); and (iv) positive regulator of prodigiosin and serratamolide production (PigP) were present in 98.2%. The genetic relationship among the isolates determined by ERIC-PCR demonstrated that the vast majority of isolates were grouped in a single cluster with 86.4% genetic similarity. In addition, many isolates showed 100% genetic similarity to each other, suggesting that the S. marcescens that circulate in this ICU are closely related. Our results suggest that the antimicrobial resistance to many drugs currently used to treat ICU and NIUC patients, associated with the high frequency of resistance and virulence genes is a worrisome phenomenon. Our findings emphasize the importance of active surveillance plans for infection control and to prevent dissemination of these strains.
Collapse
Affiliation(s)
- Roumayne L Ferreira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Graziela S Rezende
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | | | - Mariana Oliveira-Silva
- Programas de Pós-graduação em Odontologia e Tecnologia Ambiental, Universidade de Ribeirão Preto, Ribeirão Preto, Brazil
| | - André Pitondo-Silva
- Programas de Pós-graduação em Odontologia e Tecnologia Ambiental, Universidade de Ribeirão Preto, Ribeirão Preto, Brazil
| | - Márcia C A Brito
- Laboratório Central de Saúde Pública do Tocantins, Palmas, Brazil
| | - Eduardo Leonardecz
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Fabiana R de Góes
- Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, Brazil
| | - Emeline Boni Campanini
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Anderson F da Cunha
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | | |
Collapse
|
27
|
Shinde S, Gupta R, Raut SS, Nataraj G, Mehta PR. Carba NP as a simpler, rapid, cost-effective, and a more sensitive alternative to other phenotypic tests for detection of carbapenem resistance in routine diagnostic laboratories. J Lab Physicians 2020; 9:100-103. [PMID: 28367024 PMCID: PMC5320871 DOI: 10.4103/0974-2727.199628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
PURPOSE: Resistance to carbapenems due to carbapenemases has been increasingly noticed in Enterobacteriaceae. Clinical and Laboratory Standards Institute (CLSI) has recommended the latest Carba NP (CNP) test as a confirmatory test for carbapenemase production in Enterobacteriaceae. Low sensitivity of disk diffusion (DD) and modified Hodge test (MHT) may result in missing out of resistant strains which can adversely affect clinical management. The present study compares three phenotypic tests - CNP test, DD, and MHT for detection of carbapenemase production. MATERIALS AND METHODS: Four hundred consecutive, nonduplicate Enterobacteriaceae isolates were tested for carbapenem resistance using ertapenem disc (10 μg) by Kirby–Bauer DD method, MHT, and CNP. These tests were performed and interpreted as per the CLSI standards. CNP was considered to be the reference test for comparison. Sensitivity, specificity, and accuracy rates for ertapenem DD and MHT were calculated. RESULTS: One hundred and six out of 400 strains were positive by CNP test. Of the 294 CNP-negative strains, 28 were resistant by DD and 18 were resistant by MHT. Of the 106 CNP-positive strains, 82 were resistant and 16 were intermediate by DD while 76 were positive by MHT ertapenem DD had a sensitivity and specificity of 66.04% and 90.48%, respectively. Sensitivity and specificity of MHT were 54.72% and 93.88%, respectively. There was considerable discordance between all the three tests. CONCLUSION: As a rapid, simple, and cost-effective test with a greater capability greater to detect carbapenemase producers, CNP can be implemented in routine diagnostic laboratories, thereby benefiting patient care and antimicrobial stewardship.
Collapse
Affiliation(s)
- Shivani Shinde
- Department of Microbiology, KEM Hospital, Parel, Mumbai, Maharashtra, India
| | - Rajarshi Gupta
- Department of Microbiology, KEM Hospital, Parel, Mumbai, Maharashtra, India
| | - Shweta S Raut
- Department of Microbiology, KEM Hospital, Parel, Mumbai, Maharashtra, India
| | - Gita Nataraj
- Department of Microbiology, KEM Hospital, Parel, Mumbai, Maharashtra, India
| | - Preeti R Mehta
- Department of Microbiology, KEM Hospital, Parel, Mumbai, Maharashtra, India
| |
Collapse
|
28
|
Liang W, Zhao C, Wang Y, Zhu W, Zhang Y, Hu J, Liu X, Yang L, Zhuang W, Shang Y, Huang G, Shi H. Anti‑restriction protein KlcAHS enhances carbapenem resistance. Mol Med Rep 2020; 21:903-908. [PMID: 31974618 DOI: 10.3892/mmr.2019.10884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/29/2019] [Indexed: 11/05/2022] Open
Abstract
The KlcAHS gene was previously identified as coexisting with the blaKPC‑2 gene in the backbone region of a series of blaKPC‑2‑harboring plasmids. The purpose of the present study was to determine the association between the KlcAHS and blaKPC‑2 genes. KlcAHS deletion and complementation experiments were used to evaluate the association between KlcAHS and carbapenem minimal inhibition concentrations (MICs). Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis was used to detect changes in the expression levels of blaKPC‑2 upon knocking out the KlcAHS gene in a blaKPC‑2‑harboring plasmid. The imipenem MIC of the transformants harboring ΔKlcAHSpHS10842 was lower (16 µg/ml) than that of the transformants harboring wild‑type pHS10842 (32 µg/ml), whereas the kanamycin MIC of the transformants harboring pET24a was lower (1,024 µg/ml) than that of the transformants harboring pET24a‑KlcAHS (2,048 µg/ml). The imipenem MICs of the two NM1049 Escherichia coli strains carrying plasmids pHS092839 or ΔKlcAHSpHS092839 exceeded 16 µg/ml, whereas the ertapenem MIC of the host strains harboring ΔKlcAHSpHS092839 was 4 µg/ml compared with ≥8 µg/ml observed in the host strains carrying pHS092839. The RT‑qPCR results demonstrated that the messenger RNA expression levels of blaKPC‑2 in the transformants carrying ΔKlcAHSpHS092839 were significantly downregulated (P=0.007) compared with those in the transformants carrying pHS092839. These findings revealed that KlcAHS elevated the MIC values of various antibiotics by upregulating the expression levels of blaKPC‑2. Therefore, KlcAHS can confer increased resistance to carbapenems in host strains. The survival probability of clinical pathogens may be enhanced by the presence of the KlcAHS gene in antibiotics used on a large scale.
Collapse
Affiliation(s)
- Wei Liang
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222023, P.R. China
| | - Cheng Zhao
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222023, P.R. China
| | - Yan Wang
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222023, P.R. China
| | - Wenjun Zhu
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222023, P.R. China
| | - Ying Zhang
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222023, P.R. China
| | - Juan Hu
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222023, P.R. China
| | - Xia Liu
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222023, P.R. China
| | - Lin Yang
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222023, P.R. China
| | - Wanchuan Zhuang
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222023, P.R. China
| | - Yuping Shang
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222023, P.R. China
| | - Guanhong Huang
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222023, P.R. China
| | - Hui Shi
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222023, P.R. China
| |
Collapse
|
29
|
KPC-producing Enterobacterales with uncommon carbapenem susceptibility profile in Vitek 2 system. Int J Infect Dis 2020; 93:118-120. [PMID: 31978576 DOI: 10.1016/j.ijid.2020.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 11/22/2022] Open
Abstract
KPC-producing K. pneumoniae is an endemic challenge. Seven KPC-producing Enterobacterales showed unusual carbapenems susceptibility profile. These strains were resistance at least one carbapenem and the ertapenem MIC was lower than imipenem and/or meropenem MICs using Vitek 2™ system (bioMerieux). When E-test™ and disk diffusion methods were performed the carbapenems showed susceptible results.
Collapse
|
30
|
Modification and evaluation of the Triton Hodge test for screening carbapenemase-producing Enterobacteriaceae. Diagn Microbiol Infect Dis 2019; 95:114872. [DOI: 10.1016/j.diagmicrobio.2019.114872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 11/17/2022]
|
31
|
Phenotypic and genotypic characterization of carbapenem-resistant Acinetobacter baumannii isolates from Egypt. Antimicrob Resist Infect Control 2019; 8:185. [PMID: 31832185 PMCID: PMC6868752 DOI: 10.1186/s13756-019-0611-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/21/2019] [Indexed: 01/27/2023] Open
Abstract
Background Antibiotic use is largely under-regulated in Egypt leading to the emergence of resistant isolates. Carbapenems are last resort agents to treat Acinetobacter baumannii infections resistant to other classes of antibiotics. However, carbapenem-resistant isolates are emerging at an alarming rate. This study aimed at phenotypically and molecularly characterizing seventy four carbapenem-unsusceptible A. baumannii isolates from Egypt to detect the different enzymes responsible for carbapenem resistance. Methods Carbapenemase production was assessed by a number of phenotypic methods: modified Hodge test (MHT), carbapenem inactivation method (CIM), combined disc test (CDT), CarbAcineto NP test and boronic acid disc test. Polymerase chain reaction (PCR) was used to screen the isolates for the presence of some genes responsible for resistance to carbapenems, as well as some insertion sequences. Results PCR amplification of class D carbapenemases revealed the prevalence of blaOXA-51 and blaOXA-23 in 100% of the isolates and of blaOXA-58 in only one isolate (1.4%). blaVIM and blaNDM-1 belonging to class B metallo-β-lactamases were present in 100 and 12.1% of the isolates, respectively. The prevalence of ISAba1, ISAba2 and ISAba3 was 100, 2.7 and 4.1%, respectively. None of the tested isolates carried blaOXA-40, blaIMP, blaSIM, blaSPM, blaGIM or the class A blaKPC. Taking PCR as the gold standard method for the detection of different carbapenemases, the sensitivities of the MHT, CIM, CDT, CarbAcineto NP test and boronic acid disc/imipenem or meropenem test for this particular collection of isolates were 78.4, 68.9, 79.7, 95.9, and 56.8% or 70.3%, respectively. Conclusions The widespread detection of carbapenem-resistant A. baumannii (CR-AB) has become a real threat to the efficacy of treatment regimens. Among the studied cohort of CR-AB clinical isolates, blaOXA-51, blaOXA-23 and blaVIM were the most prevalent, followed by blaNDM-1 and blaOXA-58. The genotypic detection of carbapenemases among CR-AB clinical isolates using PCR was most conclusive, followed closely by the phenotypic testing using CarbAcineto NP test.
Collapse
|
32
|
Croxatto A, Coste AT, Pillonel T, Bertelli C, Greub G, Prod'hom G. Evaluation of the BD Phoenix™ CPO Detect Test for the detection of carbapenemase producers. Clin Microbiol Infect 2019; 26:644.e9-644.e15. [PMID: 31634549 DOI: 10.1016/j.cmi.2019.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Becton-Dickinson recently developed the Phoenix™ CPO (carbapenemase-producing organism) Detect Test, a growth-based test embedded in Gram-negative (GN) panels for the detection and confirmation of bacteria producing class A, B and D carbapenemases. This study aimed to (a) determine the performance of the CPO test, and (b) assess its added value in routine diagnostic workflows. METHODS The performance of the BD Phoenix CPO test was analysed retrospectively on a collection of 185 molecularly characterized strains, including 92 CPOs, and prospectively on 135 and 160 routine isolates with and without CPO suspicion, respectively. RESULTS In the retrospective study the CPO test exhibited 92.4% accuracy (95%CI 87.6-95.8), 97.8% sensitivity (95%CI 92.4-99.7) and 87.1% specificity (95%CI 78.6-93.2) for carbapenemase detection. The CPO test provided a classification to class A, B, and D for 81.3% of detected carbapenemases with 94.6% accuracy (95%CI 86.7-98.5). In the prospective study the CPO test detection performance showed 77.8% accuracy (95%CI 68.8-84.5), 100% sensitivity (95%CI 91.2-100) and 67.8% specificity (95%CI 57.3-77.1) with 135 CPO-suspicious isolates and 98.8% accuracy and specificity (95%CI 95.6-99.9) with 160 non-CPO-suspicious isolates. Compared to routine testing, the implementation of the CPO test allowed a mean reduction of 21.3 h (95%CI 17.6-25) in turnaround time, 16.8 min (95%CI 13.4-20.2) in hands-on time, and 20.6 CHF (95%CI 16.5-24.8) in costs. CONCLUSIONS The CPO test is reliable for the detection of CPO with a high sensitivity. However, the relatively low detection specificity required the use of additional confirmatory methods. The carbapenemase classification accuracy is robust in providing preliminary results before molecular characterization. Finally, the implementation of the test in routine workflows allowed a significant reduction in turnaround time, hands-on time and cost compared to the conventional approach.
Collapse
Affiliation(s)
- A Croxatto
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - A T Coste
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - T Pillonel
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - C Bertelli
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - G Greub
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - G Prod'hom
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
33
|
Suay-García B, Pérez-Gracia MT. Present and Future of Carbapenem-resistant Enterobacteriaceae (CRE) Infections. Antibiotics (Basel) 2019; 8:E122. [PMID: 31430964 PMCID: PMC6784177 DOI: 10.3390/antibiotics8030122] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) have become a public health threat worldwide. There are three major mechanisms by which Enterobacteriaceae become resistant to carbapenems: enzyme production, efflux pumps and porin mutations. Of these, enzyme production is the main resistance mechanism. There are three main groups of enzymes responsible for most of the carbapenem resistance: KPC (Klebsiella pneumoniae carbapenemase) (Ambler class A), MBLs (Metallo-ß-Lactamases) (Ambler class B) and OXA-48-like (Ambler class D). KPC-producing Enterobacteriaceae are endemic in the United States, Colombia, Argentina, Greece and Italy. On the other hand, the MBL NDM-1 is the main carbapenemase-producing resistance in India, Pakistan and Sri Lanka, while OXA-48-like enzyme-producers are endemic in Turkey, Malta, the Middle-East and North Africa. All three groups of enzymes are plasmid-mediated, which implies an easier horizontal transfer and, thus, faster spread of carbapenem resistance worldwide. As a result, there is an urgent need to develop new therapeutic guidelines to treat CRE infections. Bearing in mind the different mechanisms by which Enterobacteriaceae can become resistant to carbapenems, there are different approaches to treat infections caused by these bacteria, which include the repurposing of already existing antibiotics, dual therapies with these antibiotics, and the development of new ß-lactamase inhibitors and antibiotics.
Collapse
Affiliation(s)
- Beatriz Suay-García
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, C/ Santiago Ramón y Cajal, 46115 Alfara del Patriarca, Valencia, Spain
| | - María Teresa Pérez-Gracia
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, C/ Santiago Ramón y Cajal, 46115 Alfara del Patriarca, Valencia, Spain.
| |
Collapse
|
34
|
Ghasemnejad A, Doudi M, Amirmozafari N. Evaluation of Modified Hodge Test as a Non-molecular Assay for Accurate Detection of KPC-producing Klebsiella pneumoniae. Pol J Microbiol 2019; 67:291-295. [PMID: 30451445 PMCID: PMC7255689 DOI: 10.21307/pjm-2018-034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2018] [Indexed: 11/11/2022] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC) have become a major therapeutic challenge because of its increasingly fast dissemination throughout the world. Accurate detection of KPC is essential for optimal treatment. The Clinical and Laboratory Standards Institutes (CLSI) for fast detection of KPC producers currently recommend Modified Hodge Test (MHT) and Carba NP test. MHT can directly detect carbapenemase production in Enterobacteriaceae isolates. The current study was conducted to evaluate the capacity of MHT with two carbapenem disks for accurate detection of KPC. MHT was performed according to guidelines of CLSI to identify isolates with carbapenem resistance. In doing so, two substrates of MHT were assigned into two groups for examination: meropenem and ertapenem groups. A total of 96 non-repetitive clinical isolates of Klebsiella pneumoniae were tested. The presence of the bla KPC gene in each MHT-positive isolate was examined by PCR. A total of 54 isolates exhibited reduced susceptibility or resistance to carbapenems. Sensitivity of MHT with two carbapenem disks was similar. Specificity of the MHT with meropenem disk was 64% and with ertapenem disk was 53%. Detection of KPC by MHT with meropenem disk was found to be more effective than with ertapenem disk. Based on our results, the presence of KPC does not in itself influence the categorization of resistance. Therefore, the use of MHT with ertapenem disk for the rapid detection of KPC among K. pneumoniae for infection control should not be recommended.
Collapse
Affiliation(s)
- Atossa Ghasemnejad
- Department of Biology, Science and Research branch, Islamic Azad University, Tehran, Iran
| | - Monir Doudi
- Department of Microbiology, Falavarjan branch, Islamic Azad University, Esfahan, Iran
| | - Nour Amirmozafari
- Department of Microbiology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Khalil MAF, Hager R, Abd-El Reheem F, Mahmoud EE, Samir T, Moawad SS, Hefzy EM. A Study of the Virulence Traits of Carbapenem-Resistant Klebsiella pneumoniae Isolates in a Galleria mellonella Model. Microb Drug Resist 2019; 25:1063-1071. [PMID: 31033413 DOI: 10.1089/mdr.2018.0270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The increasing incidence of carbapenem-resistant Klebsiella pneumoniae (CRKP) strains is considered as a terrifying public health concern. This study target was to gain a further insight into the virulence traits of CRKP isolates in Egypt. The study was carried out by using 43 clinical K. pneumoniae isolates. Antibiotic susceptibility testing, biofilm formation assay, and molecular characterization of carbapenemase and virulence genes were done for all isolates. In addition, the genotypic relationship between CRKP isolates was identified by using enterobacterial repetitive intergenic consensus-polymerase chain reactions (ERIC-PCRs). A Galleria mellonella survival assay was adopted for in vivo testing of virulence of the CRKP. Carbapenem resistance was exhibited among 58% (25/43) isolates. Minimum inhibitory concentration values of carbapenem-resistant K. pneumoniae (CRKP) ranged from 32 to 128 μg/mL. Biofilm assay has revealed that 21 isolates (49%) had moderate biofilm formation and 11 isolates (25.5%) were strong biofilm producers. BlaNDM-1 was recognized in 20.9% (9/43) of the isolates, while blaOXA-48 was observed in 18.5% (8/43). Type 3 fimbriae (mrkD) and entB were addressed among 72.1% and 62.8% of K. pneumoniae isolates, respectively. The ybtS and iutA genes were detected among 44.2% and 37.2% of the isolates, respectively. ERIC-PCR showed 23 genetic profiles among CRKP isolates. CRKP biofilm producers were virulent according to the G. mellonella model, which indicates the importance of biofilm as a virulence trait among CRKP. This study indicates the emergence of CRKP with increased virulence traits, especially biofilm formation, in Egypt. This alarming report highlights the ongoing need for effective screening procedures and strict infection control measures.
Collapse
Affiliation(s)
- Mahmoud A F Khalil
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Raghda Hager
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Misr University for Science and Technology, 6th October City, Egypt
| | - Fadwa Abd-El Reheem
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Eman E Mahmoud
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Tamer Samir
- Department of Microbiology and Immunology, Faculty of Pharmacy and Industrial Science, Misr University for Science and Technology, 6th October City, Egypt
| | - Sawsan S Moawad
- Department of Pests and Plant Protection, National Research Center (N.R.C), Giza, Egypt
| | - Enas M Hefzy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| |
Collapse
|
36
|
Sheu CC, Chang YT, Lin SY, Chen YH, Hsueh PR. Infections Caused by Carbapenem-Resistant Enterobacteriaceae: An Update on Therapeutic Options. Front Microbiol 2019; 10:80. [PMID: 30761114 PMCID: PMC6363665 DOI: 10.3389/fmicb.2019.00080] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/15/2019] [Indexed: 11/13/2022] Open
Abstract
Carbapenems are considered as last-resort antibiotics for the treatment of infections caused by multidrug-resistant Gram-negative bacteria. With the increasing use of carbapenems in clinical practice, the emergence of carbapenem-resistant pathogens now poses a great threat to human health. Currently, antibiotic options for the treatment of carbapenem-resistant Enterobacteriaceae (CRE) are very limited, with polymyxins, tigecycline, fosfomycin, and aminoglycosides as the mainstays of therapy. The need for new and effective anti-CRE therapies is urgent. Here, we describe the current understanding of issues related to CRE and review combination therapeutic strategies for CRE infections, including high-dose tigecycline, high-dose prolonged-infusion of carbapenem, and double carbapenem therapy. We also review the newly available antibiotics which have potential in the future treatment of CRE infections: ceftazidime/avibactam, which is active against KPC and OXA-48 producers; meropenem/vaborbactam, which is active against KPC producers; plazomicin, which is a next-generation aminoglycoside with in vitro activity against CRE; and eravacycline, which is a tetracycline class antibacterial with in vitro activity against CRE. Although direct evidence for CRE treatment is still lacking and the development of resistance is a concern, these new antibiotics provide additional therapeutic options for CRE infections. Finally, we review other potential anti-CRE antibiotics in development: imipenem/relebactam and cefiderocol. Currently, high-dose and combination strategies that may include the new β-lactam/β-lactamase inhibitors should be considered in severe CRE infections to maximize treatment success. In the future, when more treatment options are available, therapy for CRE infections should be individualized and based on molecular phenotypes of resistance, susceptibility profiles, disease severity, and patient characteristics. More high-quality studies are needed to guide effective treatment for infections caused by CRE.
Collapse
Affiliation(s)
- Chau-Chyun Sheu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Medicine, Sepsis Research Institute, Graduate Institute of Medicine, Graduate Institute of Clinical Medicine, Center of Dengue Fever Control and Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ting Chang
- School of Medicine, Sepsis Research Institute, Graduate Institute of Medicine, Graduate Institute of Clinical Medicine, Center of Dengue Fever Control and Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shang-Yi Lin
- School of Medicine, Sepsis Research Institute, Graduate Institute of Medicine, Graduate Institute of Clinical Medicine, Center of Dengue Fever Control and Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yen-Hsu Chen
- School of Medicine, Sepsis Research Institute, Graduate Institute of Medicine, Graduate Institute of Clinical Medicine, Center of Dengue Fever Control and Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
37
|
Kim SH, Bae IK, Kim NY, Song SA, Kim S, Jeong J, Shin JH. Development and Evaluation of Multiplex PCR for the Detection of Carbapenemase-Producing Enterobacteriaceae. ANNALS OF CLINICAL MICROBIOLOGY 2019. [DOI: 10.5145/acm.2019.22.1.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Si Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Korea
| | - Il Kwon Bae
- Department of Dental Hygiene, Silla University, Busan, Korea
| | - Na Young Kim
- Department of Laboratory Medicine, Inje University College of Medicine, Inje University College of Medicine, Busan, Korea
- Paik Institute for Clinical Research, Inje University College of Medicine, Busan, Korea
| | - Sae Am Song
- Department of Laboratory Medicine, Inje University College of Medicine, Inje University College of Medicine, Busan, Korea
| | - Sunjoo Kim
- Department of Laboratory Medicine, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Joseph Jeong
- Department of Laboratory Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine, Inje University College of Medicine, Inje University College of Medicine, Busan, Korea
- Paik Institute for Clinical Research, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
38
|
Phenotypic Detection of Carbapenemase-Producing Organisms from Clinical Isolates. J Clin Microbiol 2018; 56:JCM.01140-18. [PMID: 30158194 DOI: 10.1128/jcm.01140-18] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The rapid spread of multidrug-resistant Gram-negative organisms constitutes one of the greatest challenges to global health. While Gram-negative organisms have developed several mechanisms to avert the bactericidal effects of commonly prescribed antibiotic agents, the increasing prevalence of carbapenemase-producing organisms (CPO) is particularly concerning given the rapid spread of mobile genetic elements containing carbapenemase genes, the limited treatment options for infections caused by these organisms, and the high mortality rates associated with CPO infections. Understanding if an organism is carbapenemase producing and, if so, the class of carbapenemase(s) produced has treatment implications, as some agents preferentially have activity against specific carbapenemases. Furthermore, CPO disseminate between patients with greater ease than non-CP-carbapenem-resistant organisms and warrant more intensive infection control measures than would be employed in the absence of carbapenemase production. Phenotypic assays currently used in clinical practice to detect CPO consist of the following: (i) growth-based assays which measure carbapenem resistance based on organism growth in the presence of a carbapenem antibiotic (e.g., modified Hodge test and modified carbapenem inactivation method), (ii) hydrolysis methods which detect carbapenem degradation products (e.g., Carba NP test and matrix-assisted laser desorption-ionization time of flight mass spectrometry), and (iii) lateral flow immunoassays which detect carbapenemase enzymes through the use of specific antibodies. Although there is no single phenotypic test that meets all specifications of the ideal test, as we describe in this review, there are a number of tests that are user-friendly, affordable, accurate, and feasible for implementation in clinical microbiology laboratories of all sizes.
Collapse
|
39
|
Jean SS, Lee WS, Hsueh PR. Ertapenem non-susceptibility and independent predictors of the carbapenemase production among the Enterobacteriaceae isolates causing intra-abdominal infections in the Asia-Pacific region: results from the Study for Monitoring Antimicrobial Resistance Trends (SMART). Infect Drug Resist 2018; 11:1881-1891. [PMID: 30425537 PMCID: PMC6203167 DOI: 10.2147/idr.s181085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Objectives This study investigated the prevalence rates of carbapenemase positivity, antibiotic susceptibility, and independent predictors of carbapenemase producers among the Enterobacteriaceae isolates recovered from patients with intra-abdominal infections (IAI) in the Asia-Pacific region between 2008 and 2014. Materials and methods Multiplex PCR was used for the detection of specific β-lactamases, while the broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) of antibiotics among the IAI-related Enterobacteriaceae isolates. We studied the abovementioned parameters in 484 ertapenem-non-susceptible (Erta-NS) isolates and explored the independent predictors of carbapenemase-producing Enterobacteriaceae (CPE) isolates. Results Eighty (16.5%) Erta-NS-IAI Enterobacteriaceae isolates were found to be CPE. Vietnam and the Philippines had the highest CPE prevalence rates. The IAI isolates of Enterobacter species and Klebsiella pneumoniae followed by Escherichia coli were the three major pathogens with 77.4%, 40.9%, and 11.7% Erta-NS prevalence rates, respectively. Furthermore, the highest CPE prevalence (35%) was noted among the Erta-NS-K. pneumoniae isolates. The CPE isolates harboring the blaNDM, blaKPC, or blaOXA-48-like alleles had higher imipenem MIC levels than those harboring the blaIMP alleles. Using multivariate logistic regression analysis, we concluded that Erta-NS-IAI isolates with an imipenem non-susceptible phenotype (OR, 56.4), with cefepime MIC >8 µg/mL (OR, 4.4), cultured from the peritoneal space samples (tissue or abscess; OR, 3.3), and harboring the extended-spectrum β-lactamase encoding allele (OR, 11.5) are independent predictors of CPE. Conclusion Imipenem non-susceptibility, cefepime MIC >8 µg/mL, and the peritoneal space as a culture site are independent clinical predictors of CPE among the Erta-NS-IAI Enterobacteriaceae isolates in the Asia-Pacific region.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wen-Sen Lee
- Division of Infectious Diseases, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan, .,Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan,
| | | |
Collapse
|
40
|
Chopra T, Rivard C, Awali RA, Krishna A, Bonomo RA, Perez F, Kaye KS. Epidemiology of Carbapenem-Resistant Enterobacteriaceae at a Long-term Acute Care Hospital. Open Forum Infect Dis 2018; 5:ofy224. [PMID: 30302351 PMCID: PMC6168706 DOI: 10.1093/ofid/ofy224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/19/2018] [Indexed: 01/30/2023] Open
Abstract
Background Residents of long-term acute care hospitals (LTACHs) are considered important reservoirs of multidrug-resistant organisms, including Carbapenem-resistant Enterobacteriaceae (CRE). We conducted this study to define the characteristics of CRE-infected/colonized patients admitted to an LTACH and the molecular characteristics of the CRE isolates. Methods This retrospective study was conducted to collect information on demographic and comorbid conditions in CRE-colonized/infected patients admitted to a 77-bed LTACH in Detroit between January 2011 and July 2012. Data pertaining to hospital-related exposures were collected for 30 days before positive CRE culture. Polymerase chain reaction (PCR) gene amplification, repetitive sequence–based PCR, and multilocus sequence typing (MLST) were performed on 8 of the CRE isolates. Results The study cohort included 30 patients with CRE-positive cultures, 24 (80%) with infections, and 6 (20%) with colonization. The mean age of cohort was 69 ±12.41 years; 19 (63%) patients were ventilator-dependent, and 20 (67%) were treated with at least 1 antibiotic. Twenty-three (77%) patients had CRE detected following LTACH admission, and the median days from admission to CRE detection in these patients (interquartile range) was 25 (11–43). Seven more patients were already positive for CRE at the time of LTACH admission. Molecular genotyping and MLST of 8 CRE isolates demonstrated that all isolates belonged to the same strain type (ST258) and contained the blaKPC-3 sequence. Conclusions The majority of patients with CRE presented several days to weeks after LTACH admission, indicating possible organism acquisition in the LTACH itself. The genetic similarity of the CRE isolates tested could further indicate the occurrence of horizontal transmission in the LTACH or simply be representative of the regionally dominant strain.
Collapse
Affiliation(s)
- Teena Chopra
- Division of Infectious Diseases, Detroit Medical Center, Wayne State University School of Medicine, Detroit, Michigan
| | - Christopher Rivard
- Division of Infectious Diseases, Detroit Medical Center, Wayne State University School of Medicine, Detroit, Michigan
| | - Reda A Awali
- Division of Infectious Diseases, Detroit Medical Center, Wayne State University School of Medicine, Detroit, Michigan
| | - Amar Krishna
- Division of Infectious Diseases, Detroit Medical Center, Wayne State University School of Medicine, Detroit, Michigan
| | - Robert A Bonomo
- Division of Infectious Diseases and HIV Medicine, Louis Stokes Cleveland VA Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Federico Perez
- Division of Infectious Diseases and HIV Medicine, Louis Stokes Cleveland VA Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Keith S Kaye
- Division of Infectious Diseases, Detroit Medical Center, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
41
|
Yoo JH. The Infinity War: How to Cope with Carbapenem-resistant Enterobacteriaceae. J Korean Med Sci 2018; 33:e255. [PMID: 30275806 PMCID: PMC6159103 DOI: 10.3346/jkms.2018.33.e255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 08/28/2018] [Indexed: 01/10/2023] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) are now spread worldwide. In Korea, the number of CRE isolation is rapidly increasing, and impending endemicity is a concern. To cope well with CRE, thorough infection control, such as active surveillance, early detection, strict contact precaution, cleaning the environment, and antibiotic stewardship is very important. Therapeutic options include polymyxin, tigecycline, fosfomycin or the combination of them with carbapenem, which is currently the mainstay of treatment. In addition, various combination regimens with new carbapenemase inhibitors such as avibactam, vaborbactam, or relebactam, and other classes of antimicrobials such as plazomicin and siderophore cephalosporin are in the process of evaluation.
Collapse
Affiliation(s)
- Jin-Hong Yoo
- Division of Infectious Diseases, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Bucheon St. Mary's Hospital, Bucheon, Korea
| |
Collapse
|
42
|
Laolerd W, Akeda Y, Preeyanon L, Ratthawongjirakul P, Santanirand P. Carbapenemase-Producing Carbapenem-Resistant Enterobacteriaceae from Bangkok, Thailand, and Their Detection by the Carba NP and Modified Carbapenem Inactivation Method Tests. Microb Drug Resist 2018; 24:1006-1011. [DOI: 10.1089/mdr.2018.0080] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Warawut Laolerd
- Microbiology Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Yukihiro Akeda
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Osaka, Japan
- Department of Infection Control and Prevention, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Likit Preeyanon
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Panan Ratthawongjirakul
- Research Group of Innovative Diagnosis of Antimicrobial Resistance, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pitak Santanirand
- Microbiology Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
43
|
Comparative Evaluation of Four Phenotypic Methods for Detection of Class A and B Carbapenemase-Producing Enterobacteriaceae in China. J Clin Microbiol 2018; 56:JCM.00395-18. [PMID: 29769274 DOI: 10.1128/jcm.00395-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/08/2018] [Indexed: 01/05/2023] Open
Abstract
The objective of this study was to evaluate the performance of four phenotypic methods in the detection of carbapenemase-producing Enterobacteriaceae (CPE) in China. We evaluated the performance of four carbapenemase detection methods, the modified Hodge test (MHT), the Carba NP test, the meropenem hydrolysis assay (MHA) with 1- and 2-h incubation, and the modified carbapenem inactivation method (mCIM) with meropenem, imipenem, and ertapenem, on 342 carbapenem-resistant Enterobacteriaceae isolates (CRE) in China. PCR was used as the gold standard. The 2-h-incubation MHA performed the best in carbapenemase detection (overall sensitivity, specificity, positive predictive value, and negative predictive value all 100%). Second was the Carba NP test, with a sensitivity of 99.6%. The 1-h-incubation MHA performed poorly in Klebsiella pneumoniae carbapenemase (KPC) detection (sensitivity, 71.3%). For mCIM, the best performance was observed with the meropenem disk. The MHT exhibited the worst performance, with a specificity of 88.8%. All assays except 1-h-incubation MHA, which failed to identify 68 KPC-2s, had a sensitivity of >98% in the detection of 172 KPCs. Likewise, all assays had a sensitivity of >95% in the detection of 70 class B carbapenemases, except for MHT (82.9%). The 2-h-incubation MHA significantly improved the accuracy in CPE detection compared with that for 1-h incubation and performed the best in the detection of class A and B carbapenemases. Our findings suggest that the MHA is the most practical assay for carbapenemase detection. For those who cannot afford the associated equipment, both the Carba NP test and mCIM are good alternatives with regard to the practical requirements of time and cost.
Collapse
|
44
|
Gonzales Zamora JA. Carbapenemase-producing Klebsiella pneumoniae in Perú: Is there a need for further phenotypic and genotypic testing? Medwave 2018; 18:e7213. [DOI: 10.5867/medwave.2018.03.7213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 05/30/2018] [Indexed: 11/27/2022] Open
|
45
|
Knob R, Hanson RL, Tateoka OB, Wood RL, Guerrero-Arguero I, Robison RA, Pitt WG, Woolley AT. Sequence-specific sepsis-related DNA capture and fluorescent labeling in monoliths prepared by single-step photopolymerization in microfluidic devices. J Chromatogr A 2018; 1562:12-18. [PMID: 29859687 DOI: 10.1016/j.chroma.2018.05.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/16/2018] [Accepted: 05/20/2018] [Indexed: 02/08/2023]
Abstract
Fast determination of antibiotic resistance is crucial in selecting appropriate treatment for sepsis patients, but current methods based on culture are time consuming. We are developing a microfluidic platform with a monolithic column modified with oligonucleotides designed for sequence-specific capture of target DNA related to the Klebsiella pneumoniae carbapenemase (KPC) gene. We developed a novel single-step monolith fabrication method with an acrydite-modified capture oligonucleotide in the polymerization mixture, enabling fast monolith preparation in a microfluidic channel using UV photopolymerization. These prepared columns had a threefold higher capacity compared to monoliths prepared in a multistep process involving Schiff-base DNA attachment. Conditions for denaturing, capture and fluorescence labeling using hybridization probes were optimized with synthetic 90-mer oligonucleotides. These procedures were applied for extraction of a PCR amplicon from the KPC antibiotic resistance gene in bacterial lysate obtained from a blood sample spiked with E. coli. The results showed similar eluted peak areas for KPC amplicon extracted from either hybridization buffer or bacterial lysate. Selective extraction of the KPC DNA was verified by real time PCR on eluted fractions. These results show great promise for application in an integrated microfluidic diagnostic system that combines upstream blood sample preparation and downstream single-molecule counting detection.
Collapse
Affiliation(s)
- Radim Knob
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States
| | - Robert L Hanson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States
| | - Olivia B Tateoka
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, United States
| | - Ryan L Wood
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, United States
| | - Israel Guerrero-Arguero
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, United States
| | - Richard A Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, United States
| | - William G Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, United States
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States.
| |
Collapse
|
46
|
Treatment of Infections Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing Enterobacteriaceae. Clin Microbiol Rev 2018; 31:31/2/e00079-17. [PMID: 29444952 DOI: 10.1128/cmr.00079-17] [Citation(s) in RCA: 441] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Therapy of invasive infections due to multidrug-resistant Enterobacteriaceae (MDR-E) is challenging, and some of the few active drugs are not available in many countries. For extended-spectrum β-lactamase and AmpC producers, carbapenems are the drugs of choice, but alternatives are needed because the rate of carbapenem resistance is rising. Potential active drugs include classic and newer β-lactam-β-lactamase inhibitor combinations, cephamycins, temocillin, aminoglycosides, tigecycline, fosfomycin, and, rarely, fluoroquinolones or trimethoprim-sulfamethoxazole. These drugs might be considered in some specific situations. AmpC producers are resistant to cephamycins, but cefepime is an option. In the case of carbapenemase-producing Enterobacteriaceae (CPE), only some "second-line" drugs, such as polymyxins, tigecycline, aminoglycosides, and fosfomycin, may be active; double carbapenems can also be considered in specific situations. Combination therapy is associated with better outcomes for high-risk patients, such as those in septic shock or with pneumonia. Ceftazidime-avibactam was recently approved and is active against KPC and OXA-48 producers; the available experience is scarce but promising, although development of resistance is a concern. New drugs active against some CPE isolates are in different stages of development, including meropenem-vaborbactam, imipenem-relebactam, plazomicin, cefiderocol, eravacycline, and aztreonam-avibactam. Overall, therapy of MDR-E infection must be individualized according to the susceptibility profile, type, and severity of infection and the features of the patient.
Collapse
|
47
|
van Loon K, Voor In 't Holt AF, Vos MC. A Systematic Review and Meta-analyses of the Clinical Epidemiology of Carbapenem-Resistant Enterobacteriaceae. Antimicrob Agents Chemother 2018; 62:e01730-17. [PMID: 29038269 PMCID: PMC5740327 DOI: 10.1128/aac.01730-17] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/29/2017] [Indexed: 01/23/2023] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) are major health care-associated pathogens and responsible for hospital outbreaks worldwide. To prevent a further increase in CRE infections and to improve infection prevention strategies, it is important to summarize the current knowledge about CRE infection prevention in hospital settings. This systematic review aimed to identify risk factors for CRE acquisition among hospitalized patients. In addition, we summarized the environmental sources/reservoirs and the most successful infection prevention strategies related to CRE. A total of 3,983 potentially relevant articles were identified and screened. Finally, we included 162 studies in the systematic review, of which 69 studies regarding risk factors for CRE acquisition were included in the random-effects meta-analysis studies. The meta-analyses regarding risk factors for CRE acquisition showed that the use of medical devices generated the highest pooled estimate (odds ratio [OR] = 5.09; 95% confidence interval [CI] = 3.38 to 7.67), followed by carbapenem use (OR = 4.71; 95% CI = 3.54 to 6.26). To control hospital outbreaks, bundled interventions, including the use of barrier/contact precautions for patients colonized or infected with CRE, are needed. In addition, it is necessary to optimize the therapeutic approach, which is an important message to infectious disease specialists, who need to be actively involved in a timely manner in the treatment of patients with known CRE infections or suspected carriers of CRE.
Collapse
Affiliation(s)
- Karlijn van Loon
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anne F Voor In 't Holt
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Margreet C Vos
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
48
|
Sayed AM, Behiry IK, Elsherief RH, Elsir SA. Detection of carbapenemase-producing Enterobacteriaceae in rectal surveillance cultures in non-hospitalized patients. J Anal Sci Technol 2017. [DOI: 10.1186/s40543-017-0114-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
49
|
Park JM, Kim JI, Noh JY, Kim M, Kang MJ, Pyun JC. A highly sensitive carbapenemase assay using laser desorption/ionization mass spectrometry based on a parylene-matrix chip. Enzyme Microb Technol 2017. [DOI: 10.1016/j.enzmictec.2017.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Molecular characterization of KPC-producing Klebsiella pneumoniae isolated from patients in a Public Hospital in Caracas, Venezuela. Enferm Infecc Microbiol Clin 2017; 35:411-416. [DOI: 10.1016/j.eimc.2017.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 11/17/2022]
|