1
|
Ouafi M, Réguème A, Chevaliez S, Faure E, Guigon A, Bouvier-Alias M, Canva V, Hober D, Bocket L, Alidjinou EK. Longstanding, undiagnosed, highly replicative hepatitis B virus reactivation in the presence of high levels of anti-HBs antibodies. Lab Med 2025:lmaf003. [PMID: 40319465 DOI: 10.1093/labmed/lmaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
INTRODUCTION Kidney transplant recipients are among the populations at risk for Hepatitis B Virus (HBV) reactivation, and close monitoring is needed for its early detection. METHODS We describe a case of HBV reactivation in a patient who underwent kidney transplantation more than 30 years ago, with a known serological profile of past HBV infection. RESULTS Reactivation occurred as a highly replicative infection that went undiagnosed for 7 years due to negative results for HB surface antigen (HBsAg) and high levels of anti-HBs antibodies. Viral genome sequencing showed a high number of mutations in the major hydrophilic region of HBsAg that could explain such a profile. DISCUSSION This case highlights the usefulness of frequent and systematic HBV viral load testing in patients at risk of reactivation, with anti-hepatitis B core antibodies, regardless of HBsAg detection, aminotransferases, and anti-HBs antibody levels.
Collapse
Affiliation(s)
- Mahdi Ouafi
- Univ Lille, CHU de Lille, Laboratoire de Virologie ULR3610, 59000 Lille, France
| | - Alexandre Réguème
- Univ Lille, CHU de Lille, Laboratoire de Virologie ULR3610, 59000 Lille, France
| | - Stéphane Chevaliez
- Department of Virology, Henri Mondor Hospital, National Reference Center for Viral Hepatitis B, C and delta D, INSERMU955, Créteil, France
| | - Emmanuel Faure
- CHU Lille, Département de Maladies Infectieuses, Lille, France
| | - Aurélie Guigon
- Univ Lille, CHU de Lille, Laboratoire de Virologie ULR3610, 59000 Lille, France
| | - Magali Bouvier-Alias
- Department of Virology, Henri Mondor Hospital, National Reference Center for Viral Hepatitis B, C and delta D, INSERMU955, Créteil, France
| | - Valérie Canva
- CHU Lille, Service des Maladies de l'Appareil Digestif, 59000 Lille, France
| | - Didier Hober
- Univ Lille, CHU de Lille, Laboratoire de Virologie ULR3610, 59000 Lille, France
| | - Laurence Bocket
- Univ Lille, CHU de Lille, Laboratoire de Virologie ULR3610, 59000 Lille, France
| | | |
Collapse
|
2
|
Pondé RADA, Amorim GDSP. Exchanges in the 'a' determinant of the hepatitis B virus surface antigen revisited. Virology 2024; 599:110184. [PMID: 39127000 DOI: 10.1016/j.virol.2024.110184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
The hepatitis B virus surface antigen's (HBsAg) 'a' determinant comprises a sequence of amino acid residues located in the major hydrophilic region of the S protein, whose exchanges are closely associated with compromising the antigenicity and immunogenicity of that antigen. The HBsAg is generally present in the bloodstream of individuals with acute or chronic hepatitis B virus (HBV) infection. It is classically known as the HBV infection marker, and is therefore the first marker to be investigated in the laboratory in the clinical hypothesis of infection by this agent. One of the factors that compromises the HBsAg detection in the bloodstream by the assays adopted in serological screening in both clinical contexts is the loss of S protein antigenicity. This can occur due to mutations that emerge in the HBV genome regions that encode the S protein, especially for its immunodominant region - the 'a' determinant. These mutations can induce exchanges of amino acid residues in the S protein's primary structure, altering its tertiary structure and the antigenic conformation, which may not be recognized by anti-HBs antibodies, compromising the infection diagnosis. In addition, these exchanges can render ineffective the anti-HBs antibodies action acquired by vaccination, compromise the effectiveness of the chronically HBV infected patient's treatment, and also the HBsAg immunogenicity, by promoting its retention within the cell. In this review, the residues exchange that alter the S protein's structure is revisited, as well as the mechanisms that lead to the HBsAg antigenicity loss, and the clinical, laboratory and epidemiological consequences of this phenomenon.
Collapse
Affiliation(s)
- Robério Amorim de Almeida Pondé
- Secretaria de Estado da Saúde -SES/Superintendência de Vigilância Em Saúde-SUVISA/GO, Gerência de Vigilância Epidemiológica de Doenças Transmissíveis-GVEDT/Coordenação de Análises e Pesquisas-CAP, Goiânia, Goiás, Brazil; Laboratory of Human Virology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| | | |
Collapse
|
3
|
Phinius BB, Choga WT, Anderson M, Mokomane M, Gobe I, Ratsoma T, Phakedi B, Mpebe G, Bhebhe L, Gaolathe T, Mosepele M, Makhema J, Shapiro R, Lockman S, Musonda R, Moyo S, Gaseitsiwe S. Molecular Characterization of Hepatitis B Virus in People Living with HIV in Rural and Peri-Urban Communities in Botswana. Biomedicines 2024; 12:1561. [PMID: 39062134 PMCID: PMC11275055 DOI: 10.3390/biomedicines12071561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Hepatitis B virus (HBV) sequencing data are important for monitoring HBV evolution. We aimed to molecularly characterize HBV sequences from participants with HBV surface antigen-positive (HBsAg+) serology and occult hepatitis B infection (OBI+). (2) Methods: We utilized archived plasma samples from people living with human immunodeficiency virus (PLWH) in Botswana. HBV DNA was sequenced, genotyped and analyzed for mutations. We compared mutations from study sequences to those from previously generated HBV sequences in Botswana. The impact of OBI-associated mutations on protein function was assessed using the Protein Variation Effect Analyzer. (3) Results: Sequencing success was higher in HBsAg+ than in OBI+ samples [86/128 (67.2%) vs. 21/71 (29.2%)]. Overall, 93.5% (100/107) of sequences were genotype A1, 2.8% (3/107) were D3 and 3.7% (4/107) were E. We identified 13 escape mutations in 18/90 (20%) sequences with HBsAg coverage, with K122R having the highest frequency. The mutational profile of current sequences differed from previous Botswana HBV sequences, suggesting possible mutational changes over time. Mutations deemed to have an impact on protein function were tpQ6H, surfaceV194A and preCW28L. (4) Conclusions: We characterized HBV sequences from PLWH in Botswana. Escape mutations were prevalent and were not associated with OBI. Longitudinal HBV studies are needed to investigate HBV natural evolution.
Collapse
Affiliation(s)
- Bonolo B. Phinius
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone Private Bag UB0022, Botswana; (M.M.); (I.G.)
| | - Wonderful T. Choga
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone Private Bag UB0022, Botswana; (M.M.); (I.G.)
| | - Motswedi Anderson
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
- Africa Health Research Institute (AHRI), Private Bag X7, Congella, Durban 4013, South Africa
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Margaret Mokomane
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone Private Bag UB0022, Botswana; (M.M.); (I.G.)
| | - Irene Gobe
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone Private Bag UB0022, Botswana; (M.M.); (I.G.)
| | - Tsholofelo Ratsoma
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
| | - Basetsana Phakedi
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
| | - Gorata Mpebe
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
| | - Lynnette Bhebhe
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
| | - Tendani Gaolathe
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
- Faculty of Medicine, University of Botswana, Gaborone Private Bag UB0022, Botswana
| | - Mosepele Mosepele
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
- Faculty of Medicine, University of Botswana, Gaborone Private Bag UB0022, Botswana
| | - Joseph Makhema
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Roger Shapiro
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Shahin Lockman
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Rosemary Musonda
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sikhulile Moyo
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone Private Bag UB0022, Botswana; (M.M.); (I.G.)
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Private Bag X1, Matieland, Cape Town 7602, South Africa
- School of Health Systems and Public Health, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Simani Gaseitsiwe
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
4
|
El-Mowafy M, Elegezy M, El-Mesery M, Elgaml A. Characterization of a breakthrough vaccine escape strain associated with overt hepatitis B virus infection. Virus Genes 2024:10.1007/s11262-024-02055-w. [PMID: 38349448 DOI: 10.1007/s11262-024-02055-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Hepatitis B virus (HBV) vaccine is composed of the purified hepatitis B surface antigen (HBsAg) that is produced by recombinant DNA technology. The neutralizing antibodies induced by vaccination target mainly the "a" determinant, aa124-147, of the outer viral envelope (HBsAg). In the present work, we demonstrate a case study for vaccinated patient that is infected with a vaccine escape HBV strain (Eg200). Characterization of the isolate Eg200 showed that it belongs to the genotype D and an uncommon sub-genotype in Egypt; D9. The DNA sequence encoding HBsAg was sequenced. Mutational analysis of the HBsAg showed a double mutation in the "a" determinant of this HBV isolate; T125M and P127T. However, such substitutions were found to be conserved to the detected serotype, ayw3, of Eg200 isolate. This case report indicates that continuous characterization of breakthrough vaccine escape strains of HBV is essential to develop the immunization strategies against HBV infection.
Collapse
Affiliation(s)
- Mohammed El-Mowafy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed Elegezy
- Department of Endemic Hepatology and Gastroenterology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Tropical Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abdelaziz Elgaml
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Horus University, New Damietta, Egypt.
| |
Collapse
|
5
|
Downs LO, Campbell C, Yonga P, Githinji G, Ansari MA, Matthews PC, Etyang AO. A systematic review of Hepatitis B virus (HBV) prevalence and genotypes in Kenya: Data to inform clinical care and health policy. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001165. [PMID: 36963057 PMCID: PMC10022289 DOI: 10.1371/journal.pgph.0001165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/28/2022] [Indexed: 02/04/2023]
Abstract
The aim of this systematic review and meta-analysis is to evaluate available prevalence and viral sequencing data representing chronic hepatitis B (CHB) infection in Kenya. More than 20% of the global disease burden from CHB is in Africa, however there is minimal high quality seroprevalence data from individual countries and little viral sequencing data available to represent the continent. We undertook a systematic review of the prevalence and genetic data available for hepatitis B virus (HBV) in Kenya using the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) 2020 checklist. We identified 23 studies reporting HBV prevalence and 8 studies that included HBV genetic data published in English between January 2000 and December 2021. We assessed study quality using the Joanna Briggs Institute critical appraisal checklist. Due to study heterogeneity, we divided the studies to represent low, moderate, high and very high-risk for HBV infection, identifying 8, 7, 5 and 3 studies in these groups, respectively. We calculated pooled HBV prevalence within each group and evaluated available sequencing data. Pooled HBV prevalence was 3.4% (95% CI 2.7-4.2%), 6.1% (95% CI 5.1-7.4%), 6.2% (95% CI 4.64-8.2) and 29.2% (95% CI 12.2-55.1), respectively. Study quality was overall low; only three studies detailed sample size calculation and 17/23 studies were cross sectional. Eight studies included genetic information on HBV, with two undertaking whole genome sequencing. Genotype A accounted for 92% of infections. Other genotypes included genotype D (6%), D/E recombinants (1%) or mixed populations (1%). Drug resistance mutations were reported by two studies. There is an urgent need for more high quality seroprevalence and genetic data to represent HBV in Kenya to underpin improved HBV screening, treatment and prevention in order to support progress towards elimination targets.
Collapse
Affiliation(s)
- Louise O Downs
- Nuffield Department of Medicine, Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, John Radcliffe Hospital, Headley Way, Oxford, United Kingdom
| | - Cori Campbell
- Nuffield Department of Medicine, Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Paul Yonga
- CA Medlynks Clinic and Laboratory, Nairobi, and Fountain Projects and Research Office, Fountain Health Care Hospital, Eldoret, Kenya
| | - George Githinji
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
| | - M Azim Ansari
- Nuffield Department of Medicine, Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Philippa C Matthews
- Nuffield Department of Medicine, Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Division of Infection and Immunity, University College London, London, London, United Kingdom
- Department of Infectious Diseases, University College London Hospital, London, London, United Kingdom
| | | |
Collapse
|
6
|
Podschwadt P, Malyshkina A, Windmann S, Papadamakis A, Kerkmann L, Lapuente D, Tenbusch M, Lu M, Schindler M, Lang KS, Hansen W, Bayer W. Immune suppression of vaccine-induced CD8 + T-cell responses by gamma retrovirus envelope is mediated by interleukin-10-producing CD4 + T cells. Front Immunol 2022; 13:934399. [PMID: 36605206 PMCID: PMC9807908 DOI: 10.3389/fimmu.2022.934399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Retroviral envelope (Env) proteins have long been recognized to exhibit immunosuppressive properties, which affect the CD8+ T-cell response to an infection but also to immunization. Interestingly, we previously showed in the Friend murine leukemia virus (F-MuLV) model that the surface Env protein gp70 also plays a role in immunosuppression, in addition to the immunosuppressive function attributed to the transmembrane Env protein. We now demonstrate that immunization with F-MuLV Env leads to a significant increase in interleukin-10 (IL-10)-producing CD4+ T cells and that the induction of CD8+ T-cell responses in the presence of Env is rescued if the capacity of CD4+ T cells to produce IL-10 is abrogated, indicating a mechanistic role of IL-10-producing CD4+ T cells in mediating the Env-induced suppression of CD8+ T-cell responses in Env co-immunization. We found that CD8+ T-cell responses against different immunogens are not all equally affected. On the other hand, suppression of immunity was observed not only in co-immunization experiments but also for immune control of subcutaneous tumor growth after an Env immunization. Finally, we show that suppression of CD8+ T cells by the surface Env protein is observed not only for Friend MuLV Env but also for the Env proteins of other gamma retroviruses. Taken together, our results show that IL-10-producing CD4+ T cells mechanistically underlie the Env-mediated suppression of CD8+ T-cell responses and suggest the presence of an immunosuppressive motif in the surface Env protein of gamma retroviruses.
Collapse
Affiliation(s)
- Philip Podschwadt
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anna Malyshkina
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sonja Windmann
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Athanasios Papadamakis
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Leonie Kerkmann
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Dennis Lapuente
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Michael Schindler
- Department for Molecular Virology, Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, University Tübingen, Tübingen, Germany
| | - Karl Sebastian Lang
- Institute for Immunology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Wiebke Hansen
- Institute for Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany,*Correspondence: Wibke Bayer,
| |
Collapse
|
7
|
Roca TP, Villar LM, Nogueira Lima FS, Vasconcelos MPA, Borzacov LMP, Silva EDCE, do Lago BV, da Silva MTL, Botelho Souza LF, Salcedo JMV, dos Santos ADO, Vieira DS. Genomic Variability of Hepatitis B Virus Circulating in Brazilian Western Amazon. Viruses 2022; 14:v14102100. [PMID: 36298655 PMCID: PMC9611064 DOI: 10.3390/v14102100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
The emergence of clinically relevant mutations in the hepatitis B virus (HBV) genome has been a matter of great debate because of the possibility of escape from the host’s immune system, the potential to cause more severe progression of liver diseases and the emergence of treatment-resistant variants. Here we characterized the circulating variants of HBV in Rondônia State, in the north of Brazil. Serum samples of 62 chronic HBV carriers were subjected to PCR assays and clinical data were collected. Mutations and genotypes were characterized through direct sequencing. The findings show the presence of subgenotypes A1 (54.83%, 34/62), D3 (16.13%, 10/62), F2 (16.13%, 10/62), A2 (4.84%, 3/62), D2 (3.23%, 2/62), D1 (1.61%, 1/62), D4 (1.61%, 1/62) and F4 (1.61%, 1/62). Deletions in the pre-S2 region were found in 13.79% (8/58) of the samples, mutations in the S gene in 59.68% (37/62) and RT mutations in 48.39% (30/62). We found a variable genotypic distribution in different locations and important mutations related to immune escape and drug resistance in Western Amazonia, which contributed to genetic surveillance and provided important information to help control the disease.
Collapse
Affiliation(s)
- Tárcio Peixoto Roca
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
- Laboratory of Molecular Virology, Oswaldo Cruz Foundation of Rondônia—FIOCRUZ/RO, Porto Velho 76812-245, Brazil
- Correspondence: (T.P.R.); (L.M.V.)
| | - Livia Melo Villar
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
- Correspondence: (T.P.R.); (L.M.V.)
| | - Felipe Souza Nogueira Lima
- Laboratory of Molecular Virology, Oswaldo Cruz Foundation of Rondônia—FIOCRUZ/RO, Porto Velho 76812-245, Brazil
| | | | | | | | - Bárbara Vieira do Lago
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Mayara Torquato Lima da Silva
- Laboratory of Biotechnology and Structural Bioengineering, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | | | - Juan Miguel Villalobos Salcedo
- Laboratory of Molecular Virology, Oswaldo Cruz Foundation of Rondônia—FIOCRUZ/RO, Porto Velho 76812-245, Brazil
- Tropical Medicine Research Center of Rondônia—CEPEM/RO, Porto Velho 76812-329, Brazil
| | | | - Deusilene Souza Vieira
- Laboratory of Molecular Virology, Oswaldo Cruz Foundation of Rondônia—FIOCRUZ/RO, Porto Velho 76812-245, Brazil
- Tropical Medicine Research Center of Rondônia—CEPEM/RO, Porto Velho 76812-329, Brazil
- Postgraduate Program in Experimental Biology, Federal University of Rondônia—PGBIOEXP/UNIR, Porto Velho 76801-059, Brazil
| |
Collapse
|
8
|
Wang Y, Xiao X, Chen S, Huang C, Zhou J, Dai E, Li Y, Liu L, Huang X, Gao Z, Wu C, Fang M, Gao C. The Impact of HBV Quasispecies Features on Immune Status in HBsAg+/HBsAb+ Patients With HBV Genotype C Using Next-Generation Sequencing. Front Immunol 2021; 12:775461. [PMID: 34899733 PMCID: PMC8656693 DOI: 10.3389/fimmu.2021.775461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Background This study aimed to explore the molecular mechanism of the coexistence of hepatitis B surface antigen (HBsAg) and hepatitis B surface antibody (HBsAb) serological pattern via intensive characterization of HBV s gene in both chronic hepatitis B (CHB) and hepatocellular carcinoma (HCC) patients. Method A total of 73 HBsAg+/HBsAb+ patients (CHB = 36, HCC = 37) and 96 HBsAg+/HBsAb− patients (CHB = 47, HCC = 49) were enrolled from 13 medical centers in China. The sequence features were elaborated based on the combination of next-generation sequencing (NGS) and multidimensional bioinformatics analysis. Results The 16 high-frequency missense mutations, changes of stop codon mutation, clustering, and random forest models based on quasispecies features demonstrated the significant discrepancy power between HBsAg+/HBsAb+ and HBsAg+/HBsAb− in CHB and HCC, respectively. The immunogenicity for cytotoxic T lymphocyte (CTL) epitope Se and antigenicity for the major hydrophilic region (MHR) were both reduced in HBsAg+/HBsAb+ patients (CTL Se: p < 0.0001; MHR: p = 0.0216). Different mutation patterns were observed between HBsAg+/HBsAb+ patients with CHB and with HCC. Especially, mutations in antigenic epitopes, such as I126S in CHB and I126T in HCC, could impact the conformational structure and alter the antigenicity/immunogenicity of HBsAg. Conclusion Based on NGS and bioinformatics analysis, this study indicates for the first time that point mutations and quasispecies diversities of HBV s gene could alter the MHR antigenicity and CTL Se immunogenicity and could contribute to the concurrent HBsAg+/HBsAb+ with different features in HCC and CHB. Our findings might renew the understanding of this special serological profile and benefit the clinical management in HBV-related diseases.
Collapse
Affiliation(s)
- Ying Wang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xiao Xiao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China.,Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shipeng Chen
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Chenjun Huang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jun Zhou
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Erhei Dai
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Ya Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lijuan Liu
- Department of Laboratory Medicine, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Xianzhang Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiyuan Gao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China.,Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuanyong Wu
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Fang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Chunfang Gao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China.,Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Elgaml A, Elegezy M, El-Mesery M, El-Mowafy M. Natural variability in surface antigen and reverse transcriptase domain of hepatitis B virus in treatment-naïve chronic HBV-infected Egyptian patients. Virus Res 2021; 302:198422. [PMID: 33836203 DOI: 10.1016/j.virusres.2021.198422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/01/2022]
Abstract
Hepatitis B virus (HBV) infection is a serious health problem not only in Egypt, but also worldwide. We collected 57 serum samples from treatment-naïve chronic HBV-infected Egyptians. The DNA segment encoding HBV surface antigen (HBsAg) and reverse transcriptase (RT) domain was partially sequenced. Our data revealed that all viral isolates belonged to genotype D with ayw2 as the predominant serotype (89 %). Regarding HBsAg, 45 substitutions were detected in the collected isolates. Eleven substitutions were found in the major hydrophilic region, including two novel ones (M103T and G130E) that were not correlated before with genotype D. Additionally, 11 occult samples (19 %) were detected, in which the predominant mutations of HBsAg were S143L (7 samples) followed by D144A and T125M (4 samples each). Concerning the RT domain, 26 isolates (45 %) harbored 19 natural mutations that were reported to be associated with antiviral resistance. Eleven different mutations were not correlated previously with genotype D. The most predominant mutation was Y124H (47 samples, 82 %). Interestingly, such mutation was detected in 91 % of the previous reported sequences of HBV isolates collected in Egypt (157 sequences). Furthermore, our study illustrated the presence of viral quasispecies in the HBsAg (10 samples, 17.5 %) and RT domain (9 samples, 15.7 %). In conclusion, we elucidated the presence of natural substitutions in HBsAg and RT domain of HBV isolates obtained from treatment-naïve chronic HBV-infected Egyptian patients. Additionally, we detected viral quasispecies and revealed Y124H as a characteristic substitution in the RT domain for HBV isolates in Egypt. Moreover, novel substitutions in HBsAg and RT domain were reported with genotype D.
Collapse
Affiliation(s)
- Abdelaziz Elgaml
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Mohamed Elegezy
- Department of Endemic Hepatology and Gastroenterology, and Department of Tropical Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Mesery
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohammed El-Mowafy
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
10
|
Salpini R, Piermatteo L, Battisti A, Colagrossi L, Aragri M, Yu La Rosa K, Bertoli A, Saccomandi P, Lichtner M, Marignani M, Maylin S, Delaugerre C, Morisco F, Coppola N, Marrone A, Iapadre N, Cerva C, Aquaro S, Angelico M, Sarmati L, Andreoni M, Verheyen J, Ceccherini-Silberstein F, Levrero M, Perno CF, Belloni L, Svicher V. A Hyper-Glycosylation of HBV Surface Antigen Correlates with HBsAg-Negativity at Immunosuppression-Driven HBV Reactivation in Vivo and Hinders HBsAg Recognition in Vitro. Viruses 2020; 12:251. [PMID: 32102257 PMCID: PMC7077195 DOI: 10.3390/v12020251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Immune-suppression driven Hepatitis B Virus (HBV)-reactivation poses serious concerns since it occurs in several clinical settings and can result in severe forms of hepatitis. Previous studies showed that HBV strains, circulating in patients with HBV-reactivation, are characterized by an enrichment of immune-escape mutations in HBV surface antigen (HBsAg). Here, we focused on specific immune-escape mutations associated with the acquisition of N-linked glycosylation sites in HBsAg (NLGSs). In particular, we investigated profiles of NLGSs in 47 patients with immunosuppression-driven HBV-reactivation and we evaluated their impact on HBsAg-antigenicity and HBV-replication in vitro. At HBV-reactivation, despite a median serum HBV-DNA of 6.7 [5.3-8.0] logIU/mL, 23.4% of patients remained HBsAg-negative. HBsAg-negativity at HBV-reactivation correlated with the presence of >1 additional NLGSs (p < 0.001). These NLGSs are located in the major hydrophilic region of HBsAg (known to be the target of antibodies) and resulted from the single mutation T115N, T117N, T123N, N114ins, and from the triple mutant S113N+T131N+M133T. In vitro, NLGSs strongly alter HBsAg antigenic properties and recognition by antibodies used in assays for HBsAg-quantification without affecting HBsAg-secretion and other parameters of HBV-replication. In conclusion, additional NLGSs correlate with HBsAg-negativity despite HBV-reactivation, and hamper HBsAg-antigenicity in vitro, supporting the role of NGSs in immune-escape and the importance of HBV-DNA for a proper diagnosis of HBV-reactivation.
Collapse
Affiliation(s)
- Romina Salpini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Lorenzo Piermatteo
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Arianna Battisti
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Luna Colagrossi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Marianna Aragri
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Katia Yu La Rosa
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Ada Bertoli
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Patrizia Saccomandi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Miriam Lichtner
- Public Health and Infectious Disease Department, Sapienza University, 00185 Rome, Italy;
| | - Massimo Marignani
- Department of Gastroenterology, S.Andrea Hospital, 00189 Rome, Italy;
| | - Sarah Maylin
- Laboratoire de Virologie, AP-HP Hopital Saint-Louis, 75010 Paris, France; (S.M.); (C.D.)
| | - Constance Delaugerre
- Laboratoire de Virologie, AP-HP Hopital Saint-Louis, 75010 Paris, France; (S.M.); (C.D.)
| | - Filomena Morisco
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples Federico II, 80138 Naples, Italy;
| | - Nicola Coppola
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, Second University of Naples, 80138 Naples, Italy;
| | - Aldo Marrone
- Internal Medicine and Hepatology Unit, Second University of Naples, 80138 Naples, Italy;
| | - Nerio Iapadre
- Infectious Diseases Unit, San Salvatore Hospital, 67100 L’Aquila, Italy;
| | - Carlotta Cerva
- Infectious Diseases Unit, Tor Vergata University Hospital, 00133 Rome, Italy; (C.C.); (L.S.); (M.A.)
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Mario Angelico
- Hepatology Unit, Tor Vergata University Hospital, 00133 Rome, Italy;
| | - Loredana Sarmati
- Infectious Diseases Unit, Tor Vergata University Hospital, 00133 Rome, Italy; (C.C.); (L.S.); (M.A.)
| | - Massimo Andreoni
- Infectious Diseases Unit, Tor Vergata University Hospital, 00133 Rome, Italy; (C.C.); (L.S.); (M.A.)
| | - Jens Verheyen
- Institute of Virology, University-Hospital, University Duisburg-Essen, 47057 Essen, Germany;
| | - Francesca Ceccherini-Silberstein
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Massimo Levrero
- Department of Internal Medicine-DMISM, Sapienza University, 00185 Rome, Italy; (M.L.); (L.B.)
- INSERM U1052-Cancer Research Center of Lyon (CRCL), University of Lyon, UMR_S1052, 69008 Lyon, France
| | - Carlo Federico Perno
- Department of Oncology and Haemato-oncology, University of Milan, 20122 Milan, Italy;
| | - Laura Belloni
- Department of Internal Medicine-DMISM, Sapienza University, 00185 Rome, Italy; (M.L.); (L.B.)
- Center for Life NanoSciences (CLNS), IIT-Sapienza, 00133 Rome, Italy
| | - Valentina Svicher
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| |
Collapse
|
11
|
Hossain MG, Mahmud MM, Nazir KHMNH, Ueda K. PreS1 Mutations Alter the Large HBsAg Antigenicity of a Hepatitis B Virus Strain Isolated in Bangladesh. Int J Mol Sci 2020; 21:ijms21020546. [PMID: 31952213 PMCID: PMC7014173 DOI: 10.3390/ijms21020546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/04/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Mutations in the hepatitis B virus (HBV) genome can potentially lead to vaccination failure, diagnostic escape, and disease progression. However, there are no reports on viral gene expression and large hepatitis B surface antigen (HBsAg) antigenicity alterations due to mutations in HBV isolated from a Bangladeshi population. Here, we sequenced the full genome of the HBV isolated from a clinically infected patient in Bangladesh. The open reading frames (ORFs) (P, S, C, and X) of the isolated HBV strain were successfully amplified and cloned into a mammalian expression vector. The HBV isolate was identified as genotype C (sub-genotype C2), serotype adr, and evolutionarily related to strains isolated in Indonesia, Malaysia, and China. Clinically significant mutations, such as preS1 C2964A, reverse transcriptase domain I91L, and small HBsAg N3S, were identified. The viral P, S, C, and X genes were expressed in HEK-293T and HepG2 cells by transient transfection with a native subcellular distribution pattern analyzed by immunofluorescence assay. Western blotting of large HBsAg using preS1 antibody showed no staining, and preS1 ELISA showed a significant reduction in reactivity due to amino acid mutations. This mutated preS1 sequence has been identified in several Asian countries. To our knowledge, this is the first report investigating changes in large HBsAg antigenicity due to preS1 mutations.
Collapse
Affiliation(s)
- Md. Golzar Hossain
- Division of Virology, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.M.M.); (K.H.M.N.H.N.)
- Correspondence: (M.G.H.); (K.U.)
| | - Md. Muket Mahmud
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.M.M.); (K.H.M.N.H.N.)
| | - K. H. M. Nazmul Hussain Nazir
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.M.M.); (K.H.M.N.H.N.)
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Correspondence: (M.G.H.); (K.U.)
| |
Collapse
|
12
|
Zhang L, Chang L, Laperche S, Ji H, Zhao J, Jiang X, Wang L, Candotti D. Occult HBV infection in Chinese blood donors: role of N-glycosylation mutations and amino acid substitutions in S protein transmembrane domains. Emerg Microbes Infect 2020; 8:1337-1346. [PMID: 31516090 PMCID: PMC6758628 DOI: 10.1080/22221751.2019.1663130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Occult hepatitis B virus infection (OBI) is a low-level asymptomatic phase of HBV infection. Evidence of OBI clinical relevance is emerging but the mechanisms of its occurrence remain unclear. In this study, the molecular characteristics of 97 confirmed OBI from Chinese blood donors were analyzed and relevant mutations were identified. Recombinant HBsAg bearing these mutations were expressed in vitro and the antigenicity and HBsAg secretion properties were analyzed. Results showed that 45 (46.4%) genotype B, 50 (51.5%) genotype C, and 2 (2.1%) genotype D sequences were identified. Two groups of mutations in the S gene were significantly associated with OBI. The first group included mutations creating new N-linked glycosylation sites at positions s116, s123, s130, and s131 + s133 or removing the existing one at s146. Mutations TCT123-125NCT/NFT were associated with reduced antigenicity, while TST116-118NST, GTS130-132NTS, and TSM131-133NSS/NYT/NST were associated with varying levels of impaired HBsAg secretion. N146 mutations had no effect on HBsAg production pattern. The second group included substitutions within the S transmembrane domains TMD1-3. Only mutations C85R, L87R, L88R, and C90R within TMD2 were associated with defective HBsAg production. These mutations appear to be rare and mostly strain specific but they may contribute to the multifactorial occurrence of OBI.
Collapse
Affiliation(s)
- Lu Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology , Beijing , People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital , Beijing , People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , People's Republic of China
| | - Le Chang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology , Beijing , People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital , Beijing , People's Republic of China
| | - Syria Laperche
- National Institute of Blood Transfusion, DATS, CNR RIT , Paris , France
| | - Huimin Ji
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology , Beijing , People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital , Beijing , People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , People's Republic of China
| | - Junpeng Zhao
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology , Beijing , People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital , Beijing , People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , People's Republic of China
| | - Xinyi Jiang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology , Beijing , People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital , Beijing , People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , People's Republic of China
| | - Lunan Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology , Beijing , People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital , Beijing , People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , People's Republic of China
| | - Daniel Candotti
- National Institute of Blood Transfusion, DATS, CNR RIT , Paris , France
| |
Collapse
|
13
|
Poortahmasebi V, Poorebrahim M, Sadeghi A, Abazari MF, Sadredinamin M, Hasanpoor E, Jazayeri SM. Conformational analysis of hepatitis B virus surface antigen mutations among HIV-positive patients diagnosed with occult hepatitis B virus. Future Virol 2019. [DOI: 10.2217/fvl-2019-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: We analyzed the role of mutations on the conformational structure of hepatitis B surface antigen (HBsAg) among HIV-1 positive patients who were infected with occult hepatitis B. Methods: The effects of the potential impact of amino-acid substitutions on the 3D structures of the HBsAg and molecular ducking were investigated using bioinformatics software. Results: Mutations classified in seven groups in accordance with their positions in occult hepatitis B virus infection patients. Some substitutions of residues could linearize the ‘a’ determinant loops. The affinity of binding in mutant HBsAg structures to MAb 12 was lower compared with the wild ones. T123I and P127L substitutions were undergone decrease in HBsAg antigenicity. Conclusion: These findings could be beneficial for a better understanding of hepatitis B virus antigen/antibody interactions.
Collapse
Affiliation(s)
- Vahdat Poortahmasebi
- Infectious & Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Liver & Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mansour Poorebrahim
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Sadeghi
- Iranian Tissue Bank & Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad F Abazari
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrzad Sadredinamin
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ermia Hasanpoor
- School of Electrical & Computer Engineering, University College of Engineering, University of Tehran, Tehran, Iran
| | - Seyed M Jazayeri
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
- Hepatitis B Molecular Laboratory, Department of Virology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Hossain MG, Ueda K. A meta-analysis on genetic variability of RT/HBsAg overlapping region of hepatitis B virus (HBV) isolates of Bangladesh. Infect Agent Cancer 2019; 14:33. [PMID: 31709005 PMCID: PMC6836373 DOI: 10.1186/s13027-019-0253-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
Background and aim Hepatitis B caused by HBV is a serious public health hazard prevalent worldwide including Bangladesh. Few scattered molecular studies of HBV have been reported in Bangladesh. This study aimed to analyze the genetic variability of RT/HBsAg overlapping region of HBV isolates of Bangladesh and determination of correlation among the genotype/serotype and HBsAg escape and/or drug-resistant mutations. Methods A total of 97 complete HBsAg sequences of Bangladeshi HBV isolates from 2005 to 2017 from NCBI GenBank were extracted and analyzed using several HBV bioinformatics tools such as Geno2pheno-HBV, HBV Serotyper, HIV-Grade:HBV-Tool, and CLC sequence viewer. Results The prevalence of genotypes A, C, and D are 18, 46 and 35% which correspond to serotype adw, adr, and ayw, respectively. The prevalence of HBsAg escape mutations is 51% and most of which (62%) are found in the genotype D followed by 32% in genotype C and 6% in genotype A. Interestingly most (24/36) of the sequences of HBsAg escape mutations contained 128 V mutant which all belongs to only serotype ayw3 (Genotype D). Prevalence of drug-resistant mutations is ~ 11%, most of which are from genotype C (63.64%) and D (36.36%). Lamivudine resistant mutations were found in ~ 11% of sequences followed by Telbivudine 10% and Adefovir 3% where Tenofovir showed susceptibility to all 97 sequences. Moreover, 7 among of 97 sequences showed both HBsAg and drugs resistant mutations and none of them are found due to the same nucleotide substitutions. Conclusion There is a strong correlation among the genotype/serotype and HBsAg escape and/or drug-resistant mutations. This meta-analytical review will be helpful for genotype-serotype prediction by PCR-based diagnosis and development of vaccine and/or diagnostic kits, and the treatment against HBV infection in the future.
Collapse
Affiliation(s)
- Md Golzar Hossain
- 1Division of Virology, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.,2Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Keiji Ueda
- 1Division of Virology, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
15
|
Deep Sequencing Reveals the Characteristics of Hepatitis B Virus (HBV) S Region in Vertical Transmission and the Influence of Mutations on Vaccination Failure. HEPATITIS MONTHLY 2019. [DOI: 10.5812/hepatmon.90964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
16
|
Mijočević H, Karimzadeh H, Seebach J, Usman Z, Al-Mahtab M, Bazinet M, Vaillant A, Roggendorf M. Variants of hepatitis B virus surface antigen observed during therapy with nucleic acid polymer REP 2139-Ca have no influence on treatment outcome and its detection by diagnostic assays. J Viral Hepat 2019; 26:485-495. [PMID: 30450662 DOI: 10.1111/jvh.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022]
Abstract
The treatment of patients suffering from HBeAg-positive chronic hepatitis B with REP 2139-Ca resulted in potent reductions in HBsAg and HBV DNA, seroconversion to anti-HBs and the establishment of functional control of infection. In this cohort of 12 patients, we investigated whether differences between HBsAg sequences might explain the lack of response to REP 2139-Ca observed in 3 of 12 patients. We also assessed if the reduction or complete loss of HBsAg in serum observed during therapy were caused by mutations in the "a" determinant preventing the detection of HBsAg by standard diagnostic assays. The complete pre-S/S open reading frame (ORF) was sequenced and pre-S1, pre-S2 and S amino acid sequences were analysed. We found no major differences between pre-S1, pre-S2 and S sequences in responders and nonresponders correlated with low reduction in HBsAg. In addition, we found no mutations in the "a" determinant that would significantly affect the reactivity of HBsAg in diagnostic assays. These results demonstrate that the amino acid sequence of complete pre-S/S ORF has no direct influence on response to REP 2139-Ca therapy.
Collapse
Affiliation(s)
- Hrvoje Mijočević
- Institute of Virology, Technische Universität München, Munich, Germany
| | - Hadi Karimzadeh
- Institute of Virology, Technische Universität München, Munich, Germany.,Department of Medicine II, University Hospital Munich-Grosshadern, Munich, Germany
| | - Judith Seebach
- Institute of Virology, Technische Universität München, Munich, Germany
| | - Zainab Usman
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Mamun Al-Mahtab
- Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | | | | | | |
Collapse
|
17
|
Boyd A, Moh R, Maylin S, Abdou Chekaraou M, Mahjoub N, Gabillard D, Anglaret X, Eholié SP, Danel C, Delaugerre C, Zoulim F, Lacombe K. Effect of hepatitis B virus (HBV) surface-gene variability on markers of replication during treated human immunodeficiency virus-HBV infection in Western Africa. Liver Int 2019; 39:280-289. [PMID: 30257068 DOI: 10.1111/liv.13975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 08/18/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Replication markers exhibit substantial variation during chronic hepatitis B virus (HBV) infection, part of which can be explained by mutations on the surface (S) gene. We aimed to identify S-gene mutations possibly influencing the quantification of HBV replication markers (MUPIQH) in HBV genotype E infection, common to Western Africa. METHODS Seventy-three antiretroviral treatment (ART)-naïve human immunodeficiency virus (HIV)-HBV co-infected patients from Côte d'Ivoire, initiating anti-HBV-containing ART, had available HBV S-gene sequences. S-gene MUPIQHs were screened at ART initiation based on lower HBV-DNA or HBsAg quantification (qHBsAg) compared to wildtype. Their association with HBV virological response and qHBsAg slope during treatment was evaluated. RESULTS Genotype E was predominant (95.9%). At ART initiation, median HBV-DNA was 7.27 log10 copies/mL (IQR = 5.26-8.33) and qHBsAg 4.08 log10 IU/mL (IQR = 3.49-4.61). Twelve S-gene MUPIQHs were identified among 21 patients (28.8%): sS140L (n = 4), sD144A (n = 1), sS167L (n = 2), sS174N (n = 6), sP178Q (n = 2), sG185L (n = 2), sW191L (n = 2), sP203Q/R (n = 2), sS204N/I/R/K/T/G (n = 7), sN207T (n = 2), sF212C (n = 1) and sV224A/Y (n = 7). MUPIQHs at positions s185+s191+s224 and s178+s204 were within highly covarying networks of S-gene mutations. Older age (P = 0.02), elevated transaminases (P = 0.03) and anti-hepatitis B "e" antibody-positive serology (P = 0.009) were significantly associated with prevalent MUPIQHs at ART initiation. During treatment, baseline MUPIQHs were not associated with time-to-undetectable HBV-DNA (P = 0.7) and qHBsAg levels decreased at similar rates between those with vs without MUPIQHs (P = 0.5). CONCLUSION Several novel S-gene mutations were associated with reductions in replication markers among West African co-infected patients. These mutations, however, do not affect response during antiviral treatment. Their diagnostic and clinical consequences need clarification.
Collapse
Affiliation(s)
- Anders Boyd
- INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Saint Antoine Hospital, AP-HP, Sorbonne Université, Paris, France
| | - Raoul Moh
- Programme PAC-CI, ANRS Research Site, Treichville University Hospital, Abidjan, Côte d'Ivoire.,Department of Infectious and Tropical Diseases, Treichville University Teaching Hospital, Abidjan, Côte d'Ivoire.,Medical School, University Felix Houphouet Boigny, Abidjan, Côte d'Ivoire
| | - Sarah Maylin
- Laboratoire de Virologie, Hôpital Saint-Louis, AP-HP, Paris, France.,Université Paris-Diderot, Paris, France
| | | | - Nadia Mahjoub
- Laboratoire de Virologie, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Delphine Gabillard
- INSERM U1219, Bordeaux, France.,ISPED, University of Bordeaux, Bordeaux, France
| | - Xavier Anglaret
- Programme PAC-CI, ANRS Research Site, Treichville University Hospital, Abidjan, Côte d'Ivoire.,INSERM U1219, Bordeaux, France.,ISPED, University of Bordeaux, Bordeaux, France
| | - Serge Paul Eholié
- Programme PAC-CI, ANRS Research Site, Treichville University Hospital, Abidjan, Côte d'Ivoire.,Department of Infectious and Tropical Diseases, Treichville University Teaching Hospital, Abidjan, Côte d'Ivoire.,Medical School, University Felix Houphouet Boigny, Abidjan, Côte d'Ivoire
| | - Christine Danel
- Programme PAC-CI, ANRS Research Site, Treichville University Hospital, Abidjan, Côte d'Ivoire.,INSERM U1219, Bordeaux, France.,ISPED, University of Bordeaux, Bordeaux, France
| | - Constance Delaugerre
- Laboratoire de Virologie, Hôpital Saint-Louis, AP-HP, Paris, France.,Université Paris-Diderot, Paris, France.,INSERM U941, Paris, France
| | - Fabien Zoulim
- INSERM U1052-Centre de Recherche sur le Cancer de Lyon (CRCL), Lyon, France.,UMR_S1052, CRCL, University of Lyon, Lyon, France.,Department of Hepatology, Hospices Civils de Lyon, Lyon, France
| | - Karine Lacombe
- INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Saint Antoine Hospital, AP-HP, Sorbonne Université, Paris, France.,Department of Infectious and Tropical Diseases, Saint-Antoine Hospital, AP-HP, Paris, France
| | | |
Collapse
|
18
|
Malagnino V, Fofana DB, Lacombe K, Gozlan J. Occult Hepatitis B Virus Infection: An Old Entity With Novel Clinical Involvements. Open Forum Infect Dis 2018; 5:ofy227. [PMID: 30324127 PMCID: PMC6180285 DOI: 10.1093/ofid/ofy227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/12/2018] [Indexed: 12/27/2022] Open
Abstract
Background Occult hepatitis B infection (OBI) is recognized as a risk factor for cirrhosis and hepato-cellular carcinoma. However, OBI brings together a large spectrum of patients who might harbor different characteristics and prognosis. Methods We analyzed the databases of a university hospital in Paris to identify OBI among patients (n = 3966) concomitantly tested for hepatitis B virus (HBV) DNA and serology during a 7-year period. OBI patients were gathered into clinical entities according to their clinical records. Results Forty-seven OBIs were identified (1.2%). All patients had detectable anti-HBc, isolated (n = 26) or associated with anti-HBs (n = 21). The proportion of OBIs was 3.4% for patients with isolated anti-HBc and 4.2% for patients with both anti-HBc and anti-HBs. Four clinical categories of OBI patients were identified: patients with a passed HBV infection with HBs Ag clearance (group A, 23.4%); HBV-exposed patients receiving immunosuppressive therapy (group B, 29.8%); HIV/HBV-coinfected patients with therapy discontinuation (group C, 17%); HBV-exposed patients with severe liver conditions (group D, 29.8%). Significant follow-up was available for 32 patients, showing a more deleterious prognosis in group D patients, associated more with their underlying condition than the OBI status. Conclusions OBI is a heterogeneous condition with various clinical implications.
Collapse
Affiliation(s)
- Vincenzo Malagnino
- Service des Maladies Infectieuses et Tropicales, Hôpital Saint-Antoine, AP-HP, Paris, France
| | | | - Karine Lacombe
- Service des Maladies Infectieuses et Tropicales, Hôpital Saint-Antoine, AP-HP, Paris, France.,Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, F75012, Paris, France
| | - Joel Gozlan
- Laboratoire de Virologie, Hôpital Saint-Antoine, AP-HP, Paris, France.,UPMC UMRS CR7, INSERM U1135 CIMI, Paris, France
| |
Collapse
|
19
|
Molecular Characterization of Near Full-Length Genomes of Hepatitis B Virus Isolated from Predominantly HIV Infected Individuals in Botswana. Genes (Basel) 2018; 9:genes9090453. [PMID: 30205537 PMCID: PMC6162474 DOI: 10.3390/genes9090453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022] Open
Abstract
The World Health Organization plans to eliminate hepatitis B and C Infections by 2030. Therefore, there is a need to study and understand hepatitis B virus (HBV) epidemiology and viral evolution further, including evaluating occult (HBsAg-negative) HBV infection (OBI), given that such infections are frequently undiagnosed and rarely treated. We aimed to molecularly characterize HBV genomes from 108 individuals co-infected with human immunodeficiency virus (HIV) and chronic hepatitis B (CHB) or OBI identified from previous HIV studies conducted in Botswana from 2009 to 2012. Full-length (3.2 kb) and nearly full-length (~3 kb) genomes were amplified by nested polymerase chain reaction (PCR). Sequences from OBI participants were compared to sequences from CHB participants and GenBank references to identify OBI-unique mutations. HBV genomes from 50 (25 CHB and 25 OBI) individuals were successfully genotyped. Among OBI participants, subgenotype A1 was identified in 12 (48%), D3 in 12 (48%), and E in 1 (4%). A similar genotype distribution was observed in CHB participants. Whole HBV genome sequences from Botswana, representing OBI and CHB, were compared for the first time. There were 43 OBI-unique mutations, of which 26 were novel. Future studies using larger sample sizes and functional analysis of OBI-unique mutations are warranted.
Collapse
|
20
|
Kang Y, Li F, Guo H, Yang S, Zhang Y, Zhu H, Wang J, Mao R, Qin Y, Xu J, Chen X, Wu C, Zhang J. Amino acid substitutions Q129N and T131N/M133T in hepatitis B surface antigen (HBsAg) interfere with the immunogenicity of the corresponding HBsAg or viral replication ability. Virus Res 2018; 257:33-39. [PMID: 30179704 DOI: 10.1016/j.virusres.2018.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022]
Abstract
Variants of hepatitis B surface antigen (HBsAg) influenced its antigenicity and immunogenicity. In our study, we aim to investigate biological significance of amino acid (aa) substitutions in HBsAg, Q129 N and T131 N/M133 T, for glycosylation, antigenicity and immunogenicity of variant HBsAg (vtHBsAg) and viral replication. Expression plasmids of vtHBsAg with aa substitutions Q129 L, T123 N, Q129 N and T131 N/M133 T were constructed. Immunofluorescence (IF) staining and Western blot were simultaneously utilized to examine expression of vtHBsAg proteins in Huh7 cells transfected with vtHBsAg constructs. vtHBsAg of Q129 N and T131 N/M133 T created new N-glycosylation and displayed perinuclear distribution by IF staining with the anti-HA. Antigenicity of vtHBsAg of Q129 N and T131 N/M133 T was reduced compared with wild type (wt) HBsAg. In addition, we discovered impaired ability to induce anti-HBs responses against wtHBsAg in mice immunized with plasmids pHBsAg- Q129 N and T131 N/M133 T. Even so, efficient protective response toward wild type HBV can be primed by the two vtHBsAgs in mice. Further, we discovered that vtHBsAg with Q129 N distinctly impaired HBV replication capacity, but vtHBsAg with T131 N/M133 T had no impact on viral replication. Thus, we conclude that vtHBsAg with Q129 N or T131 N/M133 T creates new N-glycosylation and interferes with both the antigenicity and immunogenicity of vtHBsAg. And vtHBsAg with Q129 N impaired HBV replication ability.
Collapse
Affiliation(s)
- Yaoyue Kang
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Department of Infectious Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fahong Li
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Hongying Guo
- Department of Hepatitis Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Sisi Yang
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Yongmei Zhang
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Haoxiang Zhu
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jinyu Wang
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Richeng Mao
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Yanli Qin
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jie Xu
- Department of Infectious Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinwen Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei Province, China
| | - Chunchen Wu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei Province, China.
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Key laboratory of Medical Molecular Virology of the Ministries of Education and Health (MOH&MOE), Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Anderson M, Choga WT, Moyo S, Bell TG, Mbangiwa T, Phinius BB, Bhebhe L, Sebunya TK, Makhema J, Marlink R, Kramvis A, Essex M, Musonda RM, Blackard JT, Gaseitsiwe S. In Silico Analysis of Hepatitis B Virus Occult Associated Mutations in Botswana Using a Novel Algorithm. Genes (Basel) 2018; 9:genes9090420. [PMID: 30134551 PMCID: PMC6162659 DOI: 10.3390/genes9090420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023] Open
Abstract
Occult hepatitis B infections (OBI) represent a reservoir of undiagnosed and untreated hepatitis B virus (HBV), hence the need to identify mutations that lead to this phenotype. Functionally characterizing these mutations by in vitro studies is time-consuming and expensive. To bridge this gap, in silico approaches, which predict the effect of amino acid (aa) variants on HBV protein function, are necessary. We developed an algorithm for determining the relevance of OBI-associated mutations using in silico approaches. A 3 kb fragment of subgenotypes A1 and D3 from 24 chronic HBV-infected (CHB) and 24 OBI participants was analyzed. To develop and validate the algorithm, the effects of 68 previously characterized occult-associated mutations were determined using three computational tools: PolyPhen2, SNAP2, and PROVEAN. The percentage of deleterious mutations (with impact on protein function) predicted were 52 (76.5%) by PolyPhen2, 55 (80.9%) by SNAP2, and 65 (95.6%) by PROVEAN. At least two tools correctly predicted 59 (86.8%) mutations as deleterious. To identify OBI-associated mutations exclusive to Botswana, study sequences were compared to CHB sequences from GenBank. Of the 43 OBI-associated mutations identified, 26 (60.5%) were predicted by at least two tools to have an impact on protein function. To our knowledge, this is the first study to use in silico approaches to determine the impact of OBI-associated mutations, thereby identifying potential candidates for functional analysis to facilitate mechanistic studies of the OBI phenotype.
Collapse
Affiliation(s)
- Motswedi Anderson
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
- Faculty of Science, Department of Biological Sciences, University of Botswana, Gaborone, Botswana.
| | | | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Trevor Graham Bell
- Hepatitis Virus Diversity Research Unit (HVDRU), Faculty of Health Sciences, Department of Internal Medicine, School of Clinical Medicine, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Tshepiso Mbangiwa
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
- Faculty of Allied Health Sciences, University of Botswana, Gaborone, Botswana.
| | - Bonolo B Phinius
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
| | - Lynette Bhebhe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
| | - Theresa K Sebunya
- Faculty of Science, Department of Biological Sciences, University of Botswana, Gaborone, Botswana.
| | - Joseph Makhema
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Richard Marlink
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
- Rutgers Global Health Institute, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08854, USA.
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit (HVDRU), Faculty of Health Sciences, Department of Internal Medicine, School of Clinical Medicine, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Max Essex
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | | | - Jason T Blackard
- College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Occult Hepatitis B Virus Infection and Associated Genotypes among HBsAg-negative Subjects in Burkina Faso. Mediterr J Hematol Infect Dis 2018; 10:e2018007. [PMID: 29326804 PMCID: PMC5760064 DOI: 10.4084/mjhid.2018.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
Background The presence of HBV DNA in the liver (with detectable or undetectable HBV DNA in the serum) of individuals tested HBsAg negative by currently available assays is defined occult B Infection (OBI). It remains a potential transmission threat and risk to HBV chronic infection. The purpose of this study was to determine the OBI prevalence among HBsAg negative subjects and to characterize associated genotypes. Methods Blood samples of 219 HBsAg-negative subjects tested by ELISA were collected. HBV DNA was investigated in all samples. Viral loads were determined using quantitative real-time PCR. All samples were screened for HBV markers (anti-HBc, anti-HBe, HBsAg). The Pre-S/S region of the HBV genome was sequenced. The database was analyzed using the SPSS and Epi info software. Phylogenetic analysis was performed using the BioEdit and MEGA software. Results Of the 219 samples, 20.1% were anti-HBc positive, 1.8% HBeAg and 22.8% were anti-HBe positive. Fifty-six (56) (25.6%) of the samples had a detectable HBV DNA and viral loads ranging from 4 IU/mL to 13.6 106 IU/mL. Sixteen of them (16/56) had a viral load < 200 IU/mL, resulting in an OBI prevalence of 7.3% (16/219) in our study. The remaining 40 subjects had viral loads > 200 IU/mL, resulting in a “false OBI” prevalence of 18.3% (40/219). HBV genotype E was predominant followed by the quasi-sub-genotype A3. A single “false OBI” strain had the characteristic mutation G145R. Other mutations were observed and all located in the major hydrophilic region (MHR) of the S gene. Conclusion The study reported a prevalence of 7.3% of occult hepatitis B infection. It confirms the predominance of genotype E and the existence of a subgroup of quasi-sub-genotype A3 of HBV in Burkina Faso. It further provides information on the presence of “false OBI.” This study has found mutations in the major hydrophilic region (MHR) of the pre-S/S gene of HBV.
Collapse
|
23
|
Prevalence of S gene mutations within the major hydrophilic region of hepatitis B virus in patients in Dongguan, southern China. Arch Virol 2017; 162:2949-2957. [PMID: 28600703 DOI: 10.1007/s00705-017-3437-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/18/2017] [Indexed: 12/30/2022]
|
24
|
Kim MH, Kang SY, Lee WI. Occult HBV among Anti-HBc Alone: Mutation Analysis of an HBV Surface Gene and Pre-S Gene. Yonsei Med J 2017; 58:557-563. [PMID: 28332361 PMCID: PMC5368141 DOI: 10.3349/ymj.2017.58.3.557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/23/2016] [Accepted: 01/26/2017] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The aim of this study is to investigate the molecular characteristics of occult hepatitis B virus (HBV) infection in 'anti-HBc alone' subjects. MATERIALS AND METHODS Twenty-four patients with 'anti-HBc alone' and 20 control patients diagnosed with HBV were analyzed regarding S and pre-S gene mutations. All specimens were analyzed for HBs Ag, anti-HBc, and anti-HBs. For specimens with an anti-HBc alone, quantitative analysis of HBV DNA, as well as sequencing and mutation analysis of S and pre-S genes, were performed. RESULTS A total 24 were analyzed for the S gene, and 14 were analyzed for the pre-S gene through sequencing. A total of 20 control patients were analyzed for S and pre-S gene simultaneously. Nineteen point mutations of the major hydrophilic region were found in six of 24 patients. Among them, three mutations, S114T, P127S/T, M133T, were detected in common. Only one mutation was found in five subjects of the control group; this mutation was not found in the occult HBV infection group, however. Pre-S mutations were detected in 10 patients, and mutations of site aa58-aa100 were detected in 9 patients. A mutation on D114E was simultaneously detected. Although five mutations from the control group were found at the same location (aa58-aa100), no mutations of occult HBV infection were detected. CONCLUSION The prevalence of occult HBV infection is not low among 'anti-HBc alone' subjects. Variable mutations in the S gene and pre-S gene were associated with the occurrence of occult HBV infection. Further larger scale studies are required to determine the significance of newly detected mutations.
Collapse
Affiliation(s)
- Myeong Hee Kim
- Department of Laboratory Medicine, Kyung Hee University School of Medicine and Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - So Young Kang
- Department of Laboratory Medicine, Kyung Hee University School of Medicine and Kyung Hee University Hospital at Gangdong, Seoul, Korea.
| | - Woo In Lee
- Department of Laboratory Medicine, Kyung Hee University School of Medicine and Kyung Hee University Hospital at Gangdong, Seoul, Korea
| |
Collapse
|
25
|
Wang Q, Klenerman P, Semmo N. Significance of anti-HBc alone serological status in clinical practice. Lancet Gastroenterol Hepatol 2017; 2:123-134. [DOI: 10.1016/s2468-1253(16)30076-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/26/2016] [Accepted: 07/29/2016] [Indexed: 02/07/2023]
|
26
|
Hossain MG, Ueda K. Investigation of a Novel Hepatitis B Virus Surface Antigen (HBsAg) Escape Mutant Affecting Immunogenicity. PLoS One 2017; 12:e0167871. [PMID: 28045894 PMCID: PMC5207502 DOI: 10.1371/journal.pone.0167871] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023] Open
Abstract
Mutation in the hepatitis B virus surface antigen (HBsAg) may affect the efficiency of diagnostic immunoassays or success of vaccinations using HBsAg. Thus, antigenicity and immunogenicity analyses of the mutated HBsAg are necessary to develop novel diagnostic tools and efficient vaccinations. Here, the in vitro antigenicity of three wild-type HBsAg open reading frames (ORFs) (adr4, W1S [subtype adr] and W3S [subtype adr]) isolated from clinically infected patients and nineteen synthesized single/double/multiple amino acid-substituted mutants were tested with commercial ELISA kits. Immunofluorescence staining of transfected cells and Western blot analysis confirmed that these ORFs were expressed at comparable levels in HEK-293 cells. W1S and adr4 were clearly detected, whereas W3S could not be detected. Using the same commercial immunoassay kit, we found that the single mutants, K120P and D123T, were marginally reactive, whereas W3S-aW1S and the double mutant, K120P/D123T, exhibited antigenicity roughly equivalent to the wild-type wako1S. On the other hand, the single mutants of W1S, P120K and T123D, significantly impaired the reactivity, while W1S-aW3S and the double mutant of W1S, P120K/T123D, resulted in a complete loss of antigenicity. In addition, ELISA revealed reduced HBs antigenicity of two mutants, W1S N146G and W1S Q129R/G145R. These commercial ELISA-based antigenic reactivities of HBsAg were also strongly correlated with the predicted Ai alterations of affected amino acids due to the specific mutation. In conclusion, this study showed for the first time that lysine (K120) and aspartate (D123) simultaneously affected HBsAg antigenicity, leading to diagnostic failure. These findings will improve diagnostic assays and vaccine development.
Collapse
Affiliation(s)
- Md. Golzar Hossain
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
27
|
Chaouch H, Taffon S, Villano U, Equestre M, Bruni R, Belhadj M, Hannachi N, Aouni M, Letaief A, Ciccaglione AR. Naturally Occurring Surface Antigen Variants of Hepatitis B Virus in Tunisian Patients. Intervirology 2016; 59:36-47. [PMID: 27544241 DOI: 10.1159/000445894] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/02/2016] [Indexed: 11/19/2022] Open
Abstract
In Tunisia, the prevalence of naturally occurring surface (S) gene variants of hepatitis B virus (HBV) has not been determined. In the present study, the prevalence of these variants was examined in terms of the clinical and viral state in a series of 99 Tunisian patients with HBV infection. The S genes were amplified and directly sequenced. Genotype D was predominant (98%), 40.4% isolates belonged to subgenotypes D7 and 1 to subgenotype D2. The most common subtype was ayw2 (95.9%). In total, 60.6% of the studied strains harbored S mutations. Several novel mutation patterns were detected. Interestingly, the presence of S mutations was significantly correlated with the D7 subgenotype, low HBV DNA and advancing age (≥35 years), and tended to be higher in liver cirrhosis than in chronic infection. The global prevalence of the major hydrophilic region variants was 12.1%, with substitution S143L/T as the most frequent (4%). Only 33.9% of S substitutions produced amino acid changes in the polymerase gene. In conclusion, a high prevalence of naturally occurring HBsAg variants was observed among Tunisian HBV carriers. Natural viral variability in a geographical region and duration of infection are among the major factors associated with the occurrence of S mutations.
Collapse
Affiliation(s)
- Houda Chaouch
- Department of Infectious Diseases, Viral Hepatitis Research Unit (UR12SP35), University Hospital Farhat Hached, Sousse, Tunisia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sadeghi A, Shirvani-Dastgerdi E, Tacke F, Yagmur E, Poortahmasebi V, Poorebrahim M, Mohraz M, Hajabdolbaghi M, Rasoolinejad M, Abbasian L, Jafari R, Fakhari Z, Norouzi M, Ebrahimian A, Geravand B, Alavian SM, Jazayeri SM. HBsAg mutations related to occult hepatitis B virus infection in HIV-positive patients result in a reduced secretion and conformational changes of HBsAg. J Med Virol 2016; 89:246-256. [DOI: 10.1002/jmv.24623] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Ahmadreza Sadeghi
- Hepatitis B Molecular Laboratory, Department of Virology; School of Public Health, Tehran University of Medical Sciences; Tehran Iran
| | | | - Frank Tacke
- Department of Medicine III; RWTH-University Hospital Aachen; Aachen Germany
| | - Eray Yagmur
- Laboratory Diagnostics Center; RWTH-University Hospital Aachen and Medical Care Center, Dr. Stein and Colleagues; Moenchengladbach Germany
| | - Vahdat Poortahmasebi
- Hepatitis B Molecular Laboratory, Department of Virology; School of Public Health, Tehran University of Medical Sciences; Tehran Iran
| | - Mansour Poorebrahim
- Department of Medical Biotechnology; School of Advanced Technologies in Medicine, Tehran University of Medical Sciences; Tehran Iran
| | - Minoo Mohraz
- Iranian Research Center for HIV/AIDS; Tehran Iran
| | | | | | | | - Rezvaneh Jafari
- Hepatitis B Molecular Laboratory, Department of Virology; School of Public Health, Tehran University of Medical Sciences; Tehran Iran
| | - Zahra Fakhari
- Hepatitis B Molecular Laboratory, Department of Virology; School of Public Health, Tehran University of Medical Sciences; Tehran Iran
| | - Mehdi Norouzi
- Hepatitis B Molecular Laboratory, Department of Virology; School of Public Health, Tehran University of Medical Sciences; Tehran Iran
| | - Arefeh Ebrahimian
- Hepatitis B Molecular Laboratory, Department of Virology; School of Public Health, Tehran University of Medical Sciences; Tehran Iran
| | - Babak Geravand
- Hepatitis B Molecular Laboratory, Department of Virology; School of Public Health, Tehran University of Medical Sciences; Tehran Iran
| | | | - Seyed Mohammad Jazayeri
- Hepatitis B Molecular Laboratory, Department of Virology; School of Public Health, Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
29
|
Golsaz-Shirazi F, Mohammadi H, Amiri MM, Khoshnoodi J, Kardar GA, Jeddi-Tehrani M, Shokri F. Localization of immunodominant epitopes within the "a" determinant of hepatitis B surface antigen using monoclonal antibodies. Arch Virol 2016; 161:2765-72. [PMID: 27439498 DOI: 10.1007/s00705-016-2980-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 07/10/2016] [Indexed: 01/15/2023]
Abstract
The common "a" determinant is the major immunodominant region of hepatitis B surface antigen (HBsAg) shared by all serotypes and genotypes of hepatitis B virus (HBV). Antibodies against this region are thought to confer protection against HBV and are essential for viral clearance. Mutations within the "a" determinant may lead to conformational changes in this region, which can affect the binding of neutralizing antibodies. There is an increasing concern about identification and control of mutant viruses which is possible by comprehensive structural investigation of the epitopes located within this region. Anti-HBs monoclonal antibodies (mAbs) against different epitopes of HBsAg are a promising tool to meet this goal. In the present study, 19 anti-HBs mAbs were employed to map epitopes localized within the "a" determinant, using a panel of recombinant mutant HBsAgs. The topology of the epitopes was analyzed by competitive enzyme-linked immunosorbent assay (ELISA). Our results indicate that all of the mAbs seem to recognize epitopes within or in the vicinity of the "a" determinant of HBsAg. Different patterns of binding with mutant forms were observed with different mAbs. Amino acid substitutions at positions 123, 126, 129, 144, and 145 dramatically reduced the reactivity of antibodies with HBsAg. The T123N mutation had the largest impact on antibody binding to HBsAg. The reactivity pattern of our panel of mAbs with mutant forms of HBsAg could have important clinical implications for immunoscreening, diagnosis of HBV infection, design of a new generation of recombinant HB vaccines, and immunoprophylaxis of HBV infection as an alternative to therapy with hepatitis B immune globulin (HBIG).
Collapse
Affiliation(s)
- Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, PO Box 6446-14155, Tehran, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, PO Box 6446-14155, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, PO Box 6446-14155, Tehran, Iran.,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Shahid Beheshti University, Evin, PO Box 19835-1177, Tehran, Iran
| | - Jalal Khoshnoodi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, PO Box 6446-14155, Tehran, Iran
| | - Gholam Ali Kardar
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Shahid Beheshti University, Evin, PO Box 19835-1177, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, PO Box 6446-14155, Tehran, Iran. .,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Shahid Beheshti University, Evin, PO Box 19835-1177, Tehran, Iran.
| |
Collapse
|
30
|
Osiowy C, Kowalec K, Giles E. Discordant diagnostic results due to a hepatitis B virus T123A HBsAg mutant. Diagn Microbiol Infect Dis 2016; 85:328-333. [DOI: 10.1016/j.diagmicrobio.2016.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022]
|
31
|
Archampong TN, Boyce CL, Lartey M, Sagoe KW, Obo-Akwa A, Kenu E, Blackard JT, Kwara A. HBV genotypes and drug resistance mutations in antiretroviral treatment-naive and treatment-experienced HBV-HIV-coinfected patients. Antivir Ther 2016; 22:13-20. [PMID: 27167598 DOI: 10.3851/imp3055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND The presence of HBV resistance mutations upon initiation or during antiretroviral therapy (ART) in HIV-coinfected patients is an important determinant of treatment response. The main objective of the study was to determine the prevalence of HBV resistance mutations in antiretroviral treatment-naive and treatment-experienced HBV-HIV-coinfected Ghanaian patients with detectable HBV viraemia. METHODS HBV-HIV-coinfected patients who were ART-naive or had received at least 9 months of lamivudine (3TC)-containing ART were enrolled in a cross-sectional study. Demographic and clinical data were collected and HBV DNA quantified. Partial HBV sequences were amplified by PCR and sequenced bi-directionally to obtain a 2.1-2.2 kb fragment for phylogenetic analysis of HBV genotypes and evaluation of drug resistance mutations. RESULTS Of the 100 HBV-HIV-coinfected study patients, 75 were successfully PCR-amplified, and 63 were successfully sequenced. Of these 63 patients, 27 (42.9%) were ART-experienced and 58 (92.1%) had HBV genotype E. No resistance mutations were observed in the 36 ART-naive patients, while 21 (77.8%) of 27 treatment-experienced patients had resistance mutations. All patients with resistance mutations had no tenofovir in their regimens, and 80% of them had HIV RNA <40 copies/ml. The 3TC resistance mutations rtL180M and rtM204V were observed in 10 (47.6%) of the 21 patients, while 5 patients (23.8%) had rtV173L, rtL180M and rtM204V mutations. CONCLUSIONS A high proportion of HBV-HIV-coinfected patients with detectable viraemia on 3TC-containing ART had resistance mutations despite good ART adherence as determined by HIV RNA suppression. This study emphasizes the need for dual therapy as part of a fully suppressive ART in all HBV-HIV-coinfected patients in Ghana.
Collapse
Affiliation(s)
- Timothy Na Archampong
- Department of Medicine and Therapeutics, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Accra, Ghana.,Korle-Bu Teaching Hospital, Accra, Ghana
| | - Ceejay L Boyce
- Division of Digestive Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Margaret Lartey
- Department of Medicine and Therapeutics, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Accra, Ghana.,Korle-Bu Teaching Hospital, Accra, Ghana
| | - Kwamena W Sagoe
- Department of Medical Microbiology, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Adjoa Obo-Akwa
- Department of Medicine and Therapeutics, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ernest Kenu
- Korle-Bu Teaching Hospital, Accra, Ghana.,School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Jason T Blackard
- Division of Digestive Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Awewura Kwara
- Warren Alpert Medical School of Brown University, Providence, RI, USA.,The Miriam Hospital, Providence, RI, USA
| |
Collapse
|
32
|
Zhu HL, Li X, Li J, Zhang ZH. Genetic variation of occult hepatitis B virus infection. World J Gastroenterol 2016; 22:3531-3546. [PMID: 27053845 PMCID: PMC4814639 DOI: 10.3748/wjg.v22.i13.3531] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/13/2015] [Accepted: 12/30/2015] [Indexed: 02/06/2023] Open
Abstract
Occult hepatitis B virus infection (OBI), characterized as the persistence of hepatitis B virus (HBV) surface antigen (HBsAg) seronegativity and low viral load in blood or liver, is a special form of HBV infection. OBI may be related mainly to mutations in the HBV genome, although the underlying mechanism of it remains to be clarified. Mutations especially within the immunodominant "α" determinant of S protein are "hot spots" that could contribute to the occurrence of OBI via affecting antigenicity and immunogenicity of HBsAg or replication and secretion of virion. Clinical reports account for a large proportion of previous studies on OBI, while functional analyses, especially those based on full-length HBV genome, are rare.
Collapse
|
33
|
El Hadad S, Alakilli S, Rabah S, Sabir J. Sequence analysis of sub-genotype D hepatitis B surface antigens isolated from Jeddah, Saudi Arabia. Saudi J Biol Sci 2016; 25:838-847. [PMID: 29740253 PMCID: PMC5936882 DOI: 10.1016/j.sjbs.2016.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/16/2016] [Accepted: 03/05/2016] [Indexed: 12/20/2022] Open
Abstract
Little is known about the prevalence of HBV genotypes/sub-genotypes in Jeddah province, although the hepatitis B virus (HBV) was identified as the most predominant type of hepatitis in Saudi Arabia. To characterize HBV genotypes/sub-genotypes, serum samples from 15 patients with chronic HBV were collected and subjected to HBsAg gene amplification and sequence analysis. Phylogenetic analysis of the HBsAg gene sequences revealed that 11 (48%) isolates belonged to HBV/D while 4 (18%) were associated with HBV/C. Notably, a HBV/D sub-genotype phylogenetic tree identified that eight current isolates (72%) belonged to HBV/D1, whereas three isolates (28%) appeared to be more closely related to HBV/D5, although they formed a novel cluster supported by a branch with 99% bootstrap value. Isolates belonging to D1 were grouped in one branch and seemed to be more closely related to various strains isolated from different countries. For further determination of whether the three current isolates belonged to HBV/D5 or represented a novel sub-genotype, HBV/DA, whole HBV genome sequences would be required. In the present study, we verified that HBV/D1 is the most prevalent HBV sub-genotype in Jeddah, and identified novel variant mutations suggesting that an additional sub-genotype designated HBV/DA should be proposed. Overall, the results of the present HBsAg sequence analyses provide us with insights regarding the nucleotide differences between the present HBsAg/D isolates identified in the populace of Jeddah, Saudi Arabia and those previously isolated worldwide. Additional studies with large numbers of subjects in other areas might lead to the discovery of the specific HBV strain genotypes or even additional new sub-genotypes that are circulating in Saudi Arabia.
Collapse
Key Words
- C/pre C, HBV core/pre Core gene
- DDBJ, DNA Data Bank of Japan
- EMBL, European Molecular Biology Laboratory
- HAV, hepatitis A virus
- HBV sub-genotypes
- HBV, hepatitis B virus
- HBV/D
- HBsAg
- HBsAg, HBV surface antigen
- HCC, hepatocellular carcinoma
- HCV, hepatitis C virus
- Hepatitis B virus
- IFN, interferon
- P, HBV polymerase gene
- PCR, polymerase chain reaction
- Population studies
- Pre S1/Pre S2/S, HBsAg genes
- Viral isolates
- X, HBV X gene
Collapse
Affiliation(s)
- Sahar El Hadad
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleha Alakilli
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samar Rabah
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamal Sabir
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
34
|
Yang Y, Nan Y, Cai J, Xu J, Huang Z, Cai X. The Thr to Met substitution of amino acid 118 in hepatitis B virus surface antigen escapes from immune-assay-based screening of blood donors. J Gen Virol 2016; 97:1210-1217. [PMID: 26873737 DOI: 10.1099/jgv.0.000427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hepatitis B surface antigen (HBsAg) is the main diagnosis marker for hepatitis B virus (HBV) infection. In this study, a novel HBV mutant from an HBV-positive blood donor with false-negative results during HBsAg screening was identified. DNA sequencing discovered two mutations at nt 353 (A to T) and nt 349 (T to A), leading to Thr to Met and Ser to Thr substitutions at aa 118 and 117 of HBsAg, respectively. Further analysis showed that eight of ten HBsAg ELISA kits failed to detect this HBsAg mutant. A mutagenesis assay indicated that the Thr to Met substitution at aa 118 was the determinant for escape from HBsAg ELISA detection. A small-scale screening of blood donors identified two individuals infected by this unique HBV mutant, suggesting a certain level of prevalence among the general population. In conclusion, our study identified the aa 118 mutation in HBV surface antigen and provided information for improvement of HBV diagnosis products.
Collapse
Affiliation(s)
- Yonglin Yang
- Nanjing Red Cross Blood Center,Nanjing 210003, PRChina
| | - Yuchen Nan
- College of Veterinary Medicine,Northwest A&F University, Yangling 712100, PRChina
| | - Jie Cai
- Nanjing Red Cross Blood Center,Nanjing 210003, PRChina
| | - Jiling Xu
- Nanjing Red Cross Blood Center,Nanjing 210003, PRChina
| | - Zuhu Huang
- Department of Infectious Disease,the First Affiliated Hospital of Nanjing medical University, Nanjing 210009, PRChina
| | - Xubing Cai
- Nanjing Red Cross Blood Center,Nanjing 210003, PRChina
| |
Collapse
|
35
|
Zhang ZH, Wu CC, Chen XW, Li X, Li J, Lu MJ. Genetic variation of hepatitis B virus and its significance for pathogenesis. World J Gastroenterol 2016; 22:126-144. [PMID: 26755865 PMCID: PMC4698480 DOI: 10.3748/wjg.v22.i1.126] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/25/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) has a worldwide distribution and is endemic in many populations. Due to its unique life cycle which requires an error-prone reverse transcriptase for replication, it constantly evolves, resulting in tremendous genetic variation in the form of genotypes, sub-genotypes, and mutations. In recent years, there has been considerable research on the relationship between HBV genetic variation and HBV-related pathogenesis, which has profound implications in the natural history of HBV infection, viral detection, immune prevention, drug treatment and prognosis. In this review, we attempted to provide a brief account of the influence of HBV genotype on the pathogenesis of HBV infection and summarize our current knowledge on the effects of HBV mutations in different regions on HBV-associated pathogenesis, with an emphasis on mutations in the preS/S proteins in immune evasion, occult HBV infection and hepatocellular carcinoma (HCC), mutations in polymerase in relation to drug resistance, mutations in HBV core and e antigen in immune evasion, chronicalization of infection and hepatitis B-related acute-on-chronic liver failure, and finally mutations in HBV x proteins in HCC.
Collapse
|
36
|
Kucinskaite-Kodze I, Pleckaityte M, Bremer CM, Seiz PL, Zilnyte M, Bulavaite A, Mickiene G, Zvirblis G, Sasnauskas K, Glebe D, Zvirbliene A. New broadly reactive neutralizing antibodies against hepatitis B virus surface antigen. Virus Res 2016; 211:209-21. [DOI: 10.1016/j.virusres.2015.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 12/20/2022]
|
37
|
Hundie GB, Raj VS, Michael DG, Pas SD, Osterhaus ADME, Koopmans MP, Smits SL, Haagmans BL. Molecular epidemiology and genetic diversity of hepatitis B virus in Ethiopia. J Med Virol 2015; 88:1035-43. [PMID: 26629781 DOI: 10.1002/jmv.24437] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2015] [Indexed: 12/18/2022]
Abstract
Although hepatitis B virus (HBV) infection is hyperendemic in Ethiopia and constitutes a major public health problem, little is known about its genetic diversity, genotypes, and circulation. The aim of this study was to determine the molecular epidemiology and genetic diversity of HBV in Ethiopia, using 391 serum samples collected from HBsAg-positive blood donors living in five different geographic regions. The HBV S/pol gene was amplified, sequenced, and HBV genotypes, subgenotypes, serotypes, and major hydrophilic region (MHR) variants were determined. Phylogenetic analysis of 371 samples (95%) revealed the distribution of genotypes A (78%) and D (22%) in Ethiopia. Further phylogenetic analysis identified one subgenotype (A1) within genotype A, and 4 subgenotypes within genotype D (D1; 1.3%, D2; 55%, D4; 2.5%, and D6; 8.8%). Importantly, 24 isolates (30%) of genotype D formed a novel phylogenetic cluster, distinct from any known D subgenotypes, and two A/D recombinants. Analysis of predicted amino-acid sequences within the HBsAg revealed four serotypes: adw2 (79%), ayw1 (3.1%), ayw2 (7.8%), and ayw3 (11.6%). Subsequent examination of sequences showed that 51 HBV isolates (14%) had mutations in the MHR and 8 isolates (2.2%) in the reverse transcriptase known to confer antiviral resistance. This study provides the first description of HBV genetic diversity in Ethiopia with a predominance of subgenotypes A1 and D2, and also identified HBV isolates that could represent a novel subgenotype. Furthermore, a significant prevalence of HBsAg variants in Ethiopian population is revealed.
Collapse
Affiliation(s)
| | - V Stalin Raj
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Suzan D Pas
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Marion P Koopmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.,Division of Virology, Centre for Infectious Diseases Research, Diagnostics and Screening, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Saskia L Smits
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bart L Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
38
|
Ye Q, Shang SQ, Li W. A new vaccine escape mutant of hepatitis B virus causes occult infection. Hum Vaccin Immunother 2015; 11:407-10. [PMID: 25692622 DOI: 10.4161/21645515.2014.994461] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There is growing public concern regarding assay sensitivity to HBsAg mutants in clinical diagnosis and vaccine escape. The aim of this study is to introduce a new HBsAg mutant strain. The serum samples were those of patient X at the age of 3 months and 3 years respectively, and of her mother immediately before parturition, which were used to amplify the HBsAg-coding DNA fragments by PCR. The HBsAg DNA sequences were translated into their corresponding amino acid sequences and then aligned in pubmed with nucleotide blast. The sequencing data of S coding regions shows that patient X has been infected by a new HBV variant with an A to C substitution at nt431, resulting in an Asp(GAC)to Ala(GCC) substitution at aa144 of major protein; CC to AA substitution at nt359 and nt360, resulting in an Pro(CCC) to Gln(CAA) substitution at aa120 of pre "a" epitope; A to G substitution at nt491, resulting in an Glu(GAG) to Gly(GGG) substitution at aa164 of post "a" epitope. Three new mutations (S171F, S174N and Q181R) at the antigenic epitopes of HBV presented by HLA class I molecules are found. The HBV mutant strain causes vaccine escape and occult infection.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- AchE, acetylcholin esterase
- Alb, albumin
- Anti-HBc, antibodies to hepatitis B core antigen
- Anti-HBs, antibodies to HBsAg
- CMV, cytomegalovirus
- CRP, C-reactive protein
- EBNA, Epstein-Barr nuclear antigen
- EBV, Epstein-Barr virus
- EIA, enzyme immunoassay
- HBV
- HBsAg, hepatitis B surface antigen
- HCV, hepatitis C virus
- Hb, hemoglobin
- LDH, lactate dehydrogenase
- Plt, platelet count
- RBC, red blood cell count
- T-Bil, total bilirubin
- TG, triglycerides
- TP, total protein
- UA, uric acid
- VCA, viral capsid antigen
- WBC, white blood cell count
- anti-HA, antibody to hepatitis A
- gene mutation
- occult infection
- vaccine escape
- γGTP, γ-glutamyl transferase
Collapse
Affiliation(s)
- Qing Ye
- a Clinical Laboratory; The Children's Hospital; School of Medicine ; Zhejiang University ; Hangzhou , PR China
| | | | | |
Collapse
|
39
|
Moussa S, Brah S, Parola P, Gerolami R, Gamerre M, Boubli L, Ruiz JM, Ravaux I, Mokhtari S, Mancini J, Romera MH, Motte A, Tamalet C, Colson P. Epidemiological, clinical, virological features of hepatitis B newly diagnosed in 2011 in Marseille University hospitals, southeastern France. J Med Virol 2015; 88:828-36. [PMID: 26439319 DOI: 10.1002/jmv.24398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) infection is a public health problem. In France, 0.68% of adults are chronically infected. We aimed to describe the epidemiological, virological and clinical characteristics of HBV infections newly diagnosed in 2011 in University hospitals of Marseille, the second largest French city. HBV serology was performed for 18,130 sera from 15,744 patients. A total of 167 patients were newly-diagnosed with HBV based upon the detection of hepatitis B surface antigen and anti-hepatitis B core antibodies. Clinico-epidemiological features were analyzed for 78 patients. Patients included a majority of men (59%), women being significantly younger with a mean age of 36 ± 17 versus 43.5 ± 16.2 years (P = 0.009). Country of birth was available for 52 patients and 35% of them originated from sub-Saharan Africa. Levels of the liver biological parameters were significantly lower in women compared to men, in whom mean alanine aminotransferase and gammaglutamyl transferase levels were 24 ± 39 versus 37 ± 36 IU/l (P = 0.0001) and 20 ± 20 versus 51 ± 53 IU/l (P = 0.0001), respectively. Co-infections with hepatitis C and human immunodeficiency viruses were found in 5% and 6% of the patients, respectively. HBV DNA was detectable in 90% of the HBeAg-negative patients. In addition, there was a positive correlation between the HBsAg titer and the HBV DNA level (P = 0.001). Genotype D was the most common HBV genotype and was found in 53% of the patients tested, followed by genotype E (21%). HBV remains a major concern with a slightly greater number of new diagnoses than in 2004. HBV genetic diversity was substantial in the present cohort.
Collapse
Affiliation(s)
- Sahada Moussa
- IHU Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Service de Maladies Infectieuses, Centre Hospitalo-Universitaire Nord, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Souleymane Brah
- IHU Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Service de Maladies Infectieuses, Centre Hospitalo-Universitaire Nord, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Aix-Marseille University, URMITE UM63 CNRS 7278 IRD 198 INSERM U1905, Marseille, France
| | - Philippe Parola
- IHU Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Service de Maladies Infectieuses, Centre Hospitalo-Universitaire Nord, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Aix-Marseille University, URMITE UM63 CNRS 7278 IRD 198 INSERM U1905, Marseille, France
| | - René Gerolami
- Service d'Hépato-Gastro-Entérologie, Centre Hospitalo-Universitaire Conception, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Marc Gamerre
- Service d'Hépato-Gastro-Entérologie, Centre Hospitalo-Universitaire Conception, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Léon Boubli
- Service de Gynecologie-Obstrétique, Centre Hospitalo-Universitaire Nord, Assistance Publique-Hôpitaux de Marseille, chemin des Bourrely, Marseille, France
| | - Jean-Marie Ruiz
- Assistance-Publique Hôpitaux de Marseille, Hôpitaux Sud, Service de Médecine en milieu pénitentiaire, Centre pénitentiaire de Marseille, Marseille, France
| | - Isabelle Ravaux
- IHU Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Service de Maladies Infectieuses, Centre Hospitalo-Universitaire Nord, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Saada Mokhtari
- Aix-Marseille University, URMITE UM63 CNRS 7278 IRD 198 INSERM U1905, Marseille, France
| | - Julien Mancini
- Assistance Publique-Hôpitaux de Marseille, hôpital Timone, Service Biostatistique et Technologies de l'Information et de la Communication, Marseille, France
| | - Marie-Hélène Romera
- IHU Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Anne Motte
- IHU Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Catherine Tamalet
- Aix-Marseille University, URMITE UM63 CNRS 7278 IRD 198 INSERM U1905, Marseille, France.,IHU Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Philippe Colson
- Aix-Marseille University, URMITE UM63 CNRS 7278 IRD 198 INSERM U1905, Marseille, France.,IHU Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
40
|
Kim HJ, Ahn KY, Bae KD, Lee J, Sim SJ, Lee J. Adjuvant effect of B domain of staphyloccocal protein A displayed on the surface of hepatitis B virus capsid. Biotechnol Bioeng 2015. [DOI: 10.1002/bit.25716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hyun Jin Kim
- Department of Chemical and Biological Engineering; Korea University, Anam-Dong 5-1; Seongbuk-Gu, Seoul 136-713; Seoul Sungbuk-Ku Republic of Korea
| | - Keum-Young Ahn
- Department of Chemical and Biological Engineering; Korea University, Anam-Dong 5-1; Seongbuk-Gu, Seoul 136-713; Seoul Sungbuk-Ku Republic of Korea
| | - Kyung Dong Bae
- Berna Biotech Korea Corp.; Incheon Yeonsu-gu Republic of Korea
| | - Jiyun Lee
- Department of Chemical and Biological Engineering; Korea University, Anam-Dong 5-1; Seongbuk-Gu, Seoul 136-713; Seoul Sungbuk-Ku Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering; Korea University, Anam-Dong 5-1; Seongbuk-Gu, Seoul 136-713; Seoul Sungbuk-Ku Republic of Korea
| | - Jeewon Lee
- Department of Chemical and Biological Engineering; Korea University, Anam-Dong 5-1; Seongbuk-Gu, Seoul 136-713; Seoul Sungbuk-Ku Republic of Korea
| |
Collapse
|
41
|
Ultradeep Sequencing for Detection of Quasispecies Variants in the Major Hydrophilic Region of Hepatitis B Virus in Indonesian Patients. J Clin Microbiol 2015. [PMID: 26202119 DOI: 10.1128/jcm.00602-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Quasispecies of hepatitis B virus (HBV) with variations in the major hydrophilic region (MHR) of the HBV surface antigen (HBsAg) can evolve during infection, allowing HBV to evade neutralizing antibodies. These escape variants may contribute to chronic infections. In this study, we looked for MHR variants in HBV quasispecies using ultradeep sequencing and evaluated the relationship between these variants and clinical manifestations in infected patients. We enrolled 30 Indonesian patients with hepatitis B infection (11 with chronic hepatitis and 19 with advanced liver disease). The most common subgenotype/subtype of HBV was B3/adw (97%). The HBsAg titer was lower in patients with advanced liver disease than that in patients with chronic hepatitis. The MHR variants were grouped based on the percentage of the viral population affected: major, ≥20% of the total population; intermediate, 5% to <20%; and minor, 1% to <5%. The rates of MHR variation that were present in the major and intermediate viral population were significantly greater in patients with advanced liver disease than those in chronic patients. The most frequent MHR variants related to immune evasion in the major and intermediate populations were P120Q/T, T123A, P127T, Q129H/R, M133L/T, and G145R. The major population of MHR variants causing impaired of HBsAg secretion (e.g., G119R, Q129R, T140I, and G145R) was detected only in advanced liver disease patients. This is the first study to use ultradeep sequencing for the detection of MHR variants of HBV quasispecies in Indonesian patients. We found that a greater number of MHR variations was related to disease severity and reduced likelihood of HBsAg titer.
Collapse
|
42
|
Characterization of C69R variant HBsAg: effect on binding to anti-HBs and the structure of virus-like particles. Arch Virol 2015; 160:2427-33. [DOI: 10.1007/s00705-015-2515-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/26/2015] [Indexed: 12/11/2022]
|
43
|
Pondé RAA. Molecular mechanisms underlying HBsAg negativity in occult HBV infection. Eur J Clin Microbiol Infect Dis 2015; 34:1709-31. [PMID: 26105620 DOI: 10.1007/s10096-015-2422-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/03/2015] [Indexed: 02/06/2023]
Abstract
Although genomic detection is considered the gold standard test on HBV infection identification, the HBsAg investigation is still the most frequent clinical laboratory request to diagnose HBV infection in activity. However, the non-detection of HBsAg in the bloodstream of chronic or acutely infected individuals has been a phenomenon often observed in clinical practice, despite the high sensitivity and specificity of screening assays standardized commercially and adopted in routine. The expansion of knowledge about the hepatitis B virus biology (replication/life cycle, genetic variability/mutability/heterogeneity), their biochemical and immunological properties (antigenicity and immunogenicity), in turn, has allowed to elucidate some mechanisms that may explain the occurrence of this phenomenon. Therefore, the negativity for HBsAg during the acute or chronic infection course may become a fragile or at least questionable result. This manuscript discusses some mechanisms that could explain the negativity for HBsAg in a serological profile of individuals with HBV infection in activity, or factors that could compromise its detection in the bloodstream during HBV infection.
Collapse
Affiliation(s)
- R A A Pondé
- Laboratory of Human Virology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil,
| |
Collapse
|
44
|
Investigation of occult hepatitis B virus infection in anti-hbc positive patients from a liver clinic. PLoS One 2015; 10:e0117275. [PMID: 25763579 PMCID: PMC4357471 DOI: 10.1371/journal.pone.0117275] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/22/2014] [Indexed: 12/15/2022] Open
Abstract
Occult hepatitis B infection (OBI) is manifested by presence of very low levels (<200IU/mL) of Hepatitis B viral DNA (HBV DNA) in the blood and the liver while exhibiting undetectable HBV surface antigen (HBsAg). The molecular mechanisms underlying this occurrence are still not completely understood. This study investigated the prevalence of OBI in a high-risk Australian population and compared the HBV S gene sequences of our cohort with reference sequences. Serum from HBV DNA positive, HBsAg negative, and hepatitis B core antibody (anti-HBc) positive patients (study cohort) were obtained from samples tested at SEALS Serology Laboratory using the Abbott Architect, as part of screening and diagnostic testing. From a total of 228,108 samples reviewed, 1,451 patients were tested for all three OBI markers. Only 10 patients (0.69%) out of the 1,451 patients were found to fit the selection criteria for OBI. Sequence analysis of the HBV S gene from 5 suspected OBI infected patients showed increased sequence variability in the ‘a’ epitope of the major hydrophilic region compared to reference sequences. In addition, a total of eight consistent nucleotide substitutions resulting in seven amino acid changes were observed, and three patients had truncated S gene sequence. These mutations appeared to be stable and may result in alterations in HBsAg conformation. These may negatively impact the affinity of hepatitis B surface antibody (anti-HBs) and may explain the false negative results in serological HBV diagnosis. These changes may also enable the virus to persist in the liver by evading immune surveillance. Further studies on a bigger cohort are required to determine whether these amino acid variations have been acquired in the process of immune escape and serve as markers of OBI.
Collapse
|
45
|
Darmawan E, Turyadi, El-Khobar KE, Nursanty NKD, Thedja MD, Muljono DH. Seroepidemiology and occult hepatitis B virus infection in young adults in Banjarmasin, Indonesia. J Med Virol 2014; 87:199-207. [PMID: 25521058 DOI: 10.1002/jmv.24045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2014] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) infection remains a public health problem in Indonesia. There has been limited data regarding HBV infection in young adult population. This study aimed to evaluate the seroepidemiology of HBV infection and characterize occult HBV variants in healthy young adults in Banjarmasin, Indonesia, who were born before the implementation of the universal infant hepatitis B vaccination. Serum samples of 195 healthy young adults were tested for HBsAg, anti-HBc, and anti-HBs. The prevalence of HBsAg, anti-HBc, and anti-HBs was 9 (4.6%), 62 (31.8%), and 96 (49.2%), respectively. Seventy four (37.9%) samples were seronegative for all three parameters, indicating the susceptibility to HBV infection. Among 66 samples positive for HBsAg and/or anti-HBc, 13 (19.7%) were HBV DNA positive; of these, four were HBsAg positive and nine were HBsAg negative, and categorized as occult HBV infection. Most occult HBV cases had high-level anti-HBs (>100 IU/l), suggesting that blood with positive anti-HBs and anti-HBc could not be regarded as noninfectious. Thirteen amino acid substitutions were identified: T126S, P127S, Q129R, T131N, M133T, and Y161S in the HBsAg-positive group; P120T, T126I, G145S, Y161F, E164V, and V168F in the occult-HBV group; and T143S in both groups. More studies are required to provide data on the prevalence and characteristics of mutants to ensure reliable diagnosis. The occult HBV infection, combined with the HBsAg prevalence, could indicate the high HBV carriage among young adults in this area. The high percentage of individuals susceptible to HBV infection reiterates the need for catch-up immunization strategies targeted at young adults.
Collapse
Affiliation(s)
- Erica Darmawan
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | | | | | | | | |
Collapse
|
46
|
Cheng HR, Kao JH, Wu HL, Chen TC, Tseng TC, Liu CH, Su TH, Chen PJ, Chen DS, Liu CJ. Clinical and virological features of occult hepatitis B in patients with HBsAg seroclearance post-treatment or spontaneously. Liver Int 2014; 34:e71-e79. [PMID: 24119014 DOI: 10.1111/liv.12324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/29/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND Occult hepatitis B virus (HBV) infection (OHB) may exist in patients experiencing hepatitis B surface antigen (HBsAg) seroclearance. AIMS We examined the clinical and virological features of OHB in patients who lost HBsAg post-treatment or spontaneously. METHODS We collected 44 patients with HBsAg seroclearance: 15 patients with dual HBV/hepatitis C virus (HCV) infection who lost HBsAg after peginterferon alfa-2a (PEG-IFN) plus ribavirin therapy; 13 HBV mono-infected patients who lost HBsAg after various oral antiviral therapies; and 16 patients who lost HBsAg spontaneously. OHB was defined as detectable serum HBV DNA in the absence of HBsAg. Viral mutations associated with OHB were identified by comparison with matched controls that remained positive for HBsAg, and further characterized in vitro. RESULTS The prevalence of OHB was 34.1% (15/44) in all patients, which was not significantly different among three groups. One mutation in surface promoter/polymerase region, C3050T (preS1T68I), was identified to be associated with the seroclearance of HBsAg in six cases. This mutation does not change the amino acid sequence of the polymerase protein. The S promoter activity was significantly lower in the construct containing C3050T mutation as compared with the wild-type (P = 0.0008). However, this mutation did not affect HBV replication, transcription and translation in the context of the full-length HBV genome. OHB was not rare in patients with HBsAg seroclearance. CONCLUSIONS One mutation, C3050T (preS1T68I), decreased S promoter activity; nevertheless, other factors may play more important role in the clearance of HBsAg in these OHB patients.
Collapse
Affiliation(s)
- Huei-Ru Cheng
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Golsaz Shirazi F, Mohammadi H, Amiri MM, Singethan K, Xia Y, Bayat AA, Bahadori M, Rabbani H, Jeddi-Tehrani M, Protzer U, Shokri F. Monoclonal antibodies to various epitopes of hepatitis B surface antigen inhibit hepatitis B virus infection. J Gastroenterol Hepatol 2014; 29:1083-91. [PMID: 24325676 DOI: 10.1111/jgh.12483] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIM Antibodies against the "a" determinant of hepatitis B surface antigen (HBsAg) are able to neutralize circulating hepatitis B virus (HBV) particles and prevent HBV infection. It has been proposed that a single amino acid exchange may allow the virus to escape the immune response. We used a set of monoclonal antibodies (MAbs) to investigate whether a single mutation may account for virus escape from humoral immunity. METHODS Nine murine HBsAg-specific MAbs were raised. Reactivity of all antibodies with 14 recombinant mutants of HBsAg was assessed by ELISA. HBV infection of HepaRG cells was used to evaluate viral neutralization capacity of MAbs in vitro. RESULTS All MAbs were able to inhibit the establishment of HBV infection in a dose-dependent fashion, but recognition of HBsAg variants varied. The MAbs were classified into three subgroups based on their pattern of reactivity to the HBsAg variants. Accordingly, three MAbs showed weak reactivity (< 40%) to variants with mutations within the first loop of "a" determinant, five MAbs displayed negligible binding to variants with mutations within the second loop, and one MAb lost its binding to variants having mutations in both loops of the "a" determinant. CONCLUSIONS Our results indicate that antibodies against different epitopes of the "a" determinant of HBsAg are able to neutralize HBV. It seems that mutations within a single or a limited number of amino acids within this determinant can hardly result in viral escape. These results have important implications for the development of antibody-based therapies against HBV.
Collapse
Affiliation(s)
- Forough Golsaz Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lacombe K, Boyd A, Lavocat F, Pichoud C, Gozlan J, Miailhes P, Lascoux-Combe C, Vernet G, Girard PM, Zoulim F. High incidence of treatment-induced and vaccine-escape hepatitis B virus mutants among human immunodeficiency virus/hepatitis B-infected patients. Hepatology 2013; 58:912-22. [PMID: 23468093 DOI: 10.1002/hep.26374] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 02/28/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED Anti-hepatitis B virus (HBV) nucleos(t)ides analogs (NA) exert selective pressures on polymerase (pol) and surface (S) genes, inducing treatment resistance and increasing the risk of vaccine escape mutants. The rate of emergence for these mutations is largely unknown in patients coinfected with human immunodeficiency virus (HIV) and HBV undergoing dual-active therapy. In a 3-year, repeat-sampling, prospective cohort study, HBV viral genome sequences of 171 HIV-HBV coinfected patients, presenting with HBV viremia for at least one visit, were analyzed every 12 months via DNA chip. Logistic and Cox proportional hazard models were used to determine risk factors specifically for S gene mutations at baseline and during follow-up, respectively. HBV-DNA levels >190 IU/mL substantially decreased from 91.8% at inclusion to 40.3% at month 36 (P < 0.001), while lamivudine (LAM) or emtricitabine (FTC) use remained steady (71.9%) and tenofovir (TDF) use expanded (month 0, 17.5%; month 36, 66.7%; P < 0.001). The largest increase of any mutation class was observed in l-nucleoside-associated pol gene/antiviral-associated S gene mutations (cumulative incidence at the end of follow-up, 17.5%) followed by alkyl phosphonate-associated pol-gene (7.4%), immune-associated S gene (specifically any amino acid change at positions s120/s145, 6.4%), and d-cyclopentane-associated pol-gene mutations (2.4%). Incidence of l-nucleoside-associated pol-gene/antiviral-associated S gene mutations was significantly associated with concomitant LAM therapy (adjusted hazard ratio [HR], 4.61; 95% confidence interval [CI], 1.36-15.56), but inversely associated with TDF use (adjusted HR/month, 0.94; 95% CI,0.89-0.98). Cumulative duration of TDF was significantly associated with a reduction in the occurrence of immune-associated S gene mutations (HR/month, 0.88; 95% CI, 0.79-0.98). No major liver-related complications (e.g., fulminant hepatitis, decompensated liver, and hepatocellular carcinoma) were observed in patients with incident mutations. CONCLUSION Vaccine escape mutants selected by NA exposure were frequent and steadily increasing during follow-up. Although the high antiviral potency of TDF can mitigate incident mutations, other antiviral options are limited in this respect. The public health implications of their transmission need to be addressed.
Collapse
|
49
|
Analysis of residual perinatal transmission of hepatitis B virus (HBV) and of genetic variants in human immunodeficiency virus and HBV co-infected women and their offspring. J Clin Virol 2013; 58:415-21. [PMID: 23916828 DOI: 10.1016/j.jcv.2013.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/16/2013] [Accepted: 06/16/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Despite implementation of universal infant hepatitis B (HB) vaccination, mother-to-child transmission (MTCT) of hepatitis B virus (HBV) still occurs. Limited data are available on the residual MTCT of HBV in human immunodeficiency virus (HIV)-HBV co-infected women. OBJECTIVES We assessed the prevalence of HBV infection among HIV-infected pregnant women and the rate of residual MTCT of HBV from HIV-HBV co-infected women and analyzed the viral determinants in mothers and their HBV-infected children. STUDY DESIGN HIV-1 infected pregnant women enrolled in two nationwide perinatal HIV prevention trials in Thailand were screened for HB surface antigen (HBsAg) and tested for HBeAg and HBV DNA load. Infants born to HBsAg-positive women had HBsAg and HBV DNA tested at 4-6 months. HBV diversity within each HBV-infected mother-infant pair was analyzed by direct sequencing of amplified HBsAg-encoding gene and cloning of amplified products. RESULTS Among 3312 HIV-1 infected pregnant women, 245 (7.4%) were HBsAg-positive, of whom 125 were HBeAg-positive. Of 230 evaluable infants born to HBsAg-positive women, 11 (4.8%) were found HBsAg and HBV DNA positive at 4-6 months; 8 were born to HBeAg-positive mothers. HBV genetic analysis was performed in 9 mother-infant pairs and showed that 5 infants were infected with maternal HBV variants harboring mutations within the HBsAg "a" determinant, and four were infected with wild-type HBV present in highly viremic mothers. CONCLUSIONS HBV-MTCT still occurs when women have high HBV DNA load and/or are infected with HBV variants. Additional interventions targeting highly viremic women are thus needed to reduce further HBV-MTCT.
Collapse
|
50
|
Li L, Shen H, Li A, Zhang Z, Wang B, Wang J, Zheng X, Wu J, Yang D, Lu M, Song J. Inhibition of hepatitis B virus (HBV) gene expression and replication by HBx gene silencing in a hydrodynamic injection mouse model with a new clone of HBV genotype B. Virol J 2013; 10:214. [PMID: 23805945 PMCID: PMC3751867 DOI: 10.1186/1743-422x-10-214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/21/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND It has been suggested that different hepatitis B virus (HBV) genotypes may have distinct virological characteristics that correlate with clinical outcomes during antiviral therapy and the natural course of infection. Hydrodynamic injection (HI) of HBV in the mouse model is a useful tool for study of HBV replication in vivo. However, only HBV genotype A has been used for studies with HI. METHODS We constructed 3 replication-competent clones containing 1.1, 1.2 and 1.3 fold overlength of a HBV genotype B genome and tested them both in vitro and in vivo. Moreover, A HBV genotype B clone based on the pAAV-MCS vector was constructed with the 1.3 fold HBV genome, resulting in the plasmid pAAV-HBV1.3B and tested by HI in C57BL/6 mice. Application of siRNA against HBx gene was tested in HBV genotype B HI mouse model. RESULTS The 1.3 fold HBV clone showed higher replication and gene expression than the 1.1 and 1.2 fold HBV clones. Compared with pAAV-HBV1.2 (genotype A), the mice HI with pAAV-HBV1.3B showed higher HBsAg and HBeAg expression as well as HBV DNA replication level but a higher clearance rate. Application of two plasmids pSB-HBxi285 and pSR-HBxi285 expressing a small/short interfering RNA (siRNA) to the HBx gene in HBV genotype B HI mouse model, leading to an inhibition of HBV gene expression and replication. However, HBV gene expression may resume in some mice despite an initial delay, suggesting that transient suppression of HBV replication by siRNA may be insufficient to prevent viral spread, particularly if the gene silencing is not highly effective. CONCLUSIONS Taken together, the HI mouse model with a HBV genotype B genome was successfully established and showed different characteristics in vivo compared with the genotype A genome. The effectiveness of gene silencing against HBx gene determines whether HBV replication may be sustainably inhibited by siRNA in vivo.
Collapse
Affiliation(s)
- Lei Li
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Department of Infectious Disease, Anhui Provincial Hospital, No.9 Lujiang Road, Hefei, P.R. China
| | - Hong Shen
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Anyi Li
- Animal Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zhenhua Zhang
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Baoju Wang
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Junzhong Wang
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jun Wu
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Jingjiao Song
- Division of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|