1
|
Lewis J, Lloyd VK, Robichaud GA. Development, Optimization, and Validation of a Quantitative PCR Assay for Borrelia burgdorferi Detection in Tick, Wildlife, and Human Samples. Pathogens 2024; 13:1034. [PMID: 39770294 PMCID: PMC11679815 DOI: 10.3390/pathogens13121034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 01/30/2025] Open
Abstract
Tick-borne pathogens are growing in importance for human and veterinary research worldwide. We developed, optimized, and validated a reliable quantitative PCR (qPCR; real-time PCR) assay to assess Borrelia burgdorferi infection by targeting two B. burgdorferi genes, ospA and flaB. When assessing previously tested tick samples, its performance surpassed the nested PCR in efficiency, sensitivity, and specificity. Since the detection of Borrelia is more difficult in mammalian samples, the qPCR assay was also assessed using wildlife tissues. For wildlife samples, the sensitivity and specificity of ospA primers, with the incorporation of a pre-amplification step, was equivalent or superior to the nested PCR. For human samples, no primer set was successful with human tissue without culture, but we detected Borrelia with ospA and flaB primers in 50% of the Lyme culture samples, corresponding to 60% of the participants with a Lyme disease diagnosis or suspicion. The specificity of amplification was confirmed by Sanger sequencing. The healthy participant culture samples were negative. This PCR-based direct detection assay performs well for the detection of Borrelia in different biological samples. Advancements in detection methods lead to a better surveillance of Borrelia in vectors and hosts, and, ultimately, enhance human and animal health.
Collapse
Affiliation(s)
- Julie Lewis
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Vett K. Lloyd
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
| | - Gilles A. Robichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
2
|
Ghosh R, Joung HA, Goncharov A, Palanisamy B, Ngo K, Pejcinovic K, Krockenberger N, Horn EJ, Garner OB, Ghazal E, O'Kula A, Arnaboldi PM, Dattwyler RJ, Ozcan A, Di Carlo D. Rapid single-tier serodiagnosis of Lyme disease. Nat Commun 2024; 15:7124. [PMID: 39164226 PMCID: PMC11336255 DOI: 10.1038/s41467-024-51067-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Point-of-care serological and direct antigen testing offers actionable insights for diagnosing challenging illnesses, empowering distributed health systems. Here, we report a POC-compatible serologic test for Lyme disease (LD), leveraging synthetic peptides specific to LD antibodies and a paper-based platform for rapid, and cost-effective diagnosis. Antigenic epitopes conserved across Borrelia burgdorferi genospecies, targeted by IgG and IgM antibodies, are selected to develop a multiplexed panel for detection of LD antibodies from patient sera. Multiple peptide epitopes, when combined synergistically with a machine learning-based diagnostic model achieve high sensitivity without sacrificing specificity. Blinded validation with 15 LD-positive and 15 negative samples shows 95.5% sensitivity and 100% specificity. Blind testing with the CDC's LD repository samples confirms the test accuracy, matching lab-based two-tier results, correctly differentiating between LD and look-alike diseases. This LD diagnostic test could potentially replace the cumbersome two-tier testing, improving diagnosis and enabling earlier treatment while facilitating immune monitoring and surveillance.
Collapse
Affiliation(s)
- Rajesh Ghosh
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
| | - Hyou-Arm Joung
- Electrical & Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Artem Goncharov
- Electrical & Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Barath Palanisamy
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
| | - Kevin Ngo
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
| | - Katarina Pejcinovic
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
| | - Nicole Krockenberger
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
| | | | - Omai B Garner
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Ezdehar Ghazal
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, 10595, USA
| | - Andrew O'Kula
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, 10595, USA
| | - Paul M Arnaboldi
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, 10595, USA
- Biopeptides, Corp, Ridgefield, CT, 06877, USA
| | - Raymond J Dattwyler
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, 10595, USA
- Biopeptides, Corp, Ridgefield, CT, 06877, USA
| | - Aydogan Ozcan
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA.
- Electrical & Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA.
- Department of Surgery, University of California, Los Angeles, CA, 90095, USA.
| | - Dino Di Carlo
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA.
- Department of Mechanical Engineering, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Landry ML, Hassan S, Rottmann BG, Pesak SJ, Ordazzo M, Skrzyniarz M, Deponte S, Peaper DR. Performance of two modified two-tier algorithms for the serologic diagnosis of Lyme disease. J Clin Microbiol 2024; 62:e0013924. [PMID: 38597655 PMCID: PMC11077974 DOI: 10.1128/jcm.00139-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024] Open
Abstract
We compared the performance of a new modified two-tier testing (MTTT) platform, the Diasorin Liaison chemiluminescent immunoassay (CLIA), to the Zeus enzyme-linked immunoassay (ELISA) MTTT and to Zeus ELISA/Viramed immunoblot standard two-tier testing (STTT) algorithm. Of 537 samples included in this study, 91 (16.9%) were positive or equivocal by one or more screening tests. Among these 91 samples, only 57 samples were concordant positive by first-tier screening tests, and only 19 of 57 were concordant by the three second-tier methods. For IgM results, positive percent agreement (PPA) was 68.1% for Diasorin versus 89.4% for Zeus compared to immunoblot. By contrast, the PPA for IgG for both Diasorin and Zeus was 100%. Using a 2-out-of-3 consensus reference standard, the PPAs for IgM were 75.6%, 97.8%, and 95.6% for Diasorin, Zeus, and immunoblot, respectively. The difference between Zeus MTTT and Diasorin MTTT for IgM detection was significant (P = 0.0094). PPA for both Diasorin and Zeus MTTT IgG assays was 100% but only 65.9% for immunoblot STTT (P = 0.0005). In total, second-tier positive IgM and/or IgG results were reported for 57 samples by Diasorin MTTT, 63 by Zeus MTTT, and 54 by Viramed STTT. While Diasorin CLIA MTTT had a much more rapid, automated, and efficient workflow, Diasorin MTTT was less sensitive for the detection of IgM than Zeus MTTT and STTT including in 5 early Lyme cases that were IgM negative but IgG positive. IMPORTANCE The laboratory diagnosis of Lyme disease relies upon the detection of antibodies to Borrelia species. Standard two tier testing (STTT) methods rely upon immunoblots which have clinical and technical limitations. Modified two-tier testing (MTTT) methods have recently become available and are being widely adopted. There are limited independent data available assessing the performance of MTTT and STTT methods.
Collapse
Affiliation(s)
- Marie L. Landry
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sajjad Hassan
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Bruce G. Rottmann
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | - David R. Peaper
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Porwancher R, Levin A, Trevejo R. Reply to Shah, J.S.; Ramasamy, R. Target Antigens in Western and Line Immunoblots for Supporting the Diagnosis of Lyme Disease. Comment on "Porwancher et al. Immunoblot Criteria for Diagnosis of Lyme Disease: A Comparison of CDC Criteria to Alternative Interpretive Approaches. Pathogens 2023, 12, 1282". Pathogens 2024; 13:353. [PMID: 38787205 PMCID: PMC11124438 DOI: 10.3390/pathogens13050353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
We are writing in response to comments made by Shah and Ramasamy [...].
Collapse
Affiliation(s)
- Richard Porwancher
- Section of Allergy, Immunology, and Infectious Diseases, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- Princeton Infectious Diseases Associates, LLC, Plainsboro, NJ 08536, USA
| | - Andrew Levin
- Kephera Diagnostics, LLC, Framingham, MA 01702, USA;
| | - Rosalie Trevejo
- Acute and Communicable Disease Prevention, Oregon Health Authority, Portland, OR 97232, USA;
| |
Collapse
|
5
|
Kim L, Lashnits E, Breitschwerdt EB, Elam A, Grade N, Miller J, Shikhman AR. Antibodies to Borrelia burgdorferi and Bartonella species in serum and synovial fluid from people with rheumatic diseases. Microbiol Spectr 2024; 12:e0165323. [PMID: 38483477 PMCID: PMC10986562 DOI: 10.1128/spectrum.01653-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 02/03/2024] [Indexed: 04/06/2024] Open
Abstract
Vector-borne infections may underlie some rheumatic diseases, particularly in people with joint effusions. This study aimed to compare serum and synovial fluid antibodies to B. burgdorferi and Bartonella spp. in patients with rheumatic diseases. This observational, cross-sectional study examined paired synovial fluid and serum specimens collected from 110 patients with joint effusion between October 2017 and January 2022. Testing for antibodies to B. burgdorferi (using CDC criteria) and Bartonella spp. via two indirect fluorescent antibody (IFA) assays was performed as part of routine patient care at the Institute for Specialized Medicine (San Diego, CA, USA). There were 30 participants (27%) with positive two-tier B. burgdorferi serology and 26 participants (24%) with IFA seroreactivity (≥1:256) to B. henselae and/or B. quintana. Both B. burgdorferi IgM and IgG were detected more frequently in synovial fluid than serum: 27% of patients were either IgM or IgG positive in synovial fluid, compared to 15.5% in serum (P = 0.048). Conversely, B. henselae and B. quintana antibodies were detected more frequently in serum than synovial fluid; overall only 2% of patients had positive IFA titers in synovial fluid, compared to 24% who had positive IFA titers in serum (P < 0.001). There were no significant associations between B. burgdorferi or Bartonella spp. seroreactivity with any of the clinical rheumatological diagnoses. This study provides preliminary support for the importance of synovial fluid antibody testing for documenting exposure to B. burgdorferi but not for documenting exposure to Bartonella spp. IMPORTANCE This study focuses on diagnostic testing for two common vector-borne diseases in an affected patient population. In it, we provide data showing that antibodies to B. burgdorferi, but not Bartonella spp., are more commonly found in synovial fluid than serum of patients with joint effusion. Since Lyme arthritis is a common-and sometimes difficult to diagnose-rheumatic disease, improving diagnostic capabilities is of utmost importance. While our findings are certainly not definitive for changes to practice, they do suggest that synovial fluid could be a useful sample for the clinical diagnosis of Lyme disease, and future prospective studies evaluating this claim are warranted.
Collapse
Affiliation(s)
- Lisa Kim
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Erin Lashnits
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Edward B. Breitschwerdt
- Intracellular Pathogens Research Laboratory and Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Amanda Elam
- Galaxy Diagnostics, Research Triangle, North Carolina, USA
| | - Neenah Grade
- Galaxy Diagnostics, Research Triangle, North Carolina, USA
| | | | | |
Collapse
|
6
|
Alexandre A, Ribeiro D, Sousa MJ, Reis H, Silveira J, Torres S. An Unusual Presentation of Lyme Carditis and Adenosine-Sensitive Atrioventricular Block. Arq Bras Cardiol 2024; 121:e20230228. [PMID: 38324857 PMCID: PMC11098578 DOI: 10.36660/abc.20230228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/25/2023] [Indexed: 02/09/2024] Open
Affiliation(s)
- André Alexandre
- Centro Hospitalar Universitário de Santo AntónioPortoPortugal
Departamento de Cardiologia,
Centro Hospitalar Universitário de Santo António
(CHUDSA),
Porto
–
Portugal
| | - Diana Ribeiro
- Centro Hospitalar Universitário de Santo AntónioPortoPortugal
Departamento de Cardiologia,
Centro Hospitalar Universitário de Santo António
(CHUDSA),
Porto
–
Portugal
| | - Maria João Sousa
- Centro Hospitalar Universitário de Santo AntónioPortoPortugal
Departamento de Cardiologia,
Centro Hospitalar Universitário de Santo António
(CHUDSA),
Porto
–
Portugal
| | - Hipólito Reis
- Centro Hospitalar Universitário de Santo AntónioPortoPortugal
Departamento de Cardiologia,
Centro Hospitalar Universitário de Santo António
(CHUDSA),
Porto
–
Portugal
- Faculdade de Medicina e Ciências BiomédicasUniversidade do PortoPortoPortugal
ICBAS –
Faculdade de Medicina e Ciências Biomédicas
,
Universidade do Porto
,
Porto
–
Portugal
| | - João Silveira
- Centro Hospitalar Universitário de Santo AntónioPortoPortugal
Departamento de Cardiologia,
Centro Hospitalar Universitário de Santo António
(CHUDSA),
Porto
–
Portugal
- Faculdade de Medicina e Ciências BiomédicasUniversidade do PortoPortoPortugal
ICBAS –
Faculdade de Medicina e Ciências Biomédicas
,
Universidade do Porto
,
Porto
–
Portugal
| | - Severo Torres
- Centro Hospitalar Universitário de Santo AntónioPortoPortugal
Departamento de Cardiologia,
Centro Hospitalar Universitário de Santo António
(CHUDSA),
Porto
–
Portugal
- Faculdade de Medicina e Ciências BiomédicasUniversidade do PortoPortoPortugal
ICBAS –
Faculdade de Medicina e Ciências Biomédicas
,
Universidade do Porto
,
Porto
–
Portugal
| |
Collapse
|
7
|
Sanderson VP, Miller JC, Bamm VV, Tilak M, Lloyd VK, Singh-Ranger G, Wills MKB. Profiling disease burden and Borrelia seroprevalence in Canadians with complex and chronic illness. PLoS One 2023; 18:e0291382. [PMID: 37939060 PMCID: PMC10631674 DOI: 10.1371/journal.pone.0291382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/25/2023] [Indexed: 11/10/2023] Open
Abstract
Lyme disease, caused by vector-borne Borrelia bacteria, can present with diverse multi-system symptoms that resemble other conditions. The objective of this study was to evaluate disease presentations and Borrelia seroreactivity in individuals experiencing a spectrum of chronic and complex illnesses. We recruited 157 participants from Eastern Canada who reported one or more diagnoses of Lyme disease, neurological, rheumatic, autoimmune, inflammatory, gastrointestinal, or cardiovascular illnesses, or were asymptomatic and presumed healthy. Intake categories were used to classify participants based on their perceived proximity to Lyme disease, distinguishing between those with a disclosed history of Borrelia infection, those with lookalike conditions (e.g. fibromyalgia syndrome), and those with unrelated ailments (e.g. intestinal polyps). Participants completed three questionnaires, the SF-36 v1, SIQR, and HMQ, to capture symptoms and functional burden, and provided blood serum for analysis at an accredited diagnostic lab. Two-tiered IgG and IgM serological assessments (whole cell ELISA and Western blot) were performed in a blinded fashion on all samples. The pattern of symptoms and functional burden were similarly profound in the presumptive Lyme and Lyme-like disease categories. Borrelia seroprevalence across the study cohort was 10% for each of IgG and IgM, and occurred within and beyond the Lyme disease intake category. Western blot positivity in the absence of reactive ELISA was also substantial. Fibromyalgia was the most common individual diagnostic tag disclosed by two-tier IgG-positive participants who did not report a history of Lyme disease. Within the IgG seropositive cohort, the presence of antibodies against the 31 kDa Outer Surface Protein A (OspA) was associated with significantly better health outcomes. Previously, this marker has been linked to treatment-refractory Lyme arthritis. Overall, our findings support prior observations of phenotypic overlap between Lyme and other diseases. Seropositivity associated with non-specific symptoms and functional impairment warrants further mechanistic investigation and therapeutic optimization.
Collapse
Affiliation(s)
- Victoria P. Sanderson
- G. Magnotta Lyme Disease Research Lab, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jennifer C. Miller
- Galaxy Diagnostics, Research Triangle Park, North Carolina, Raleigh, United States of America
| | - Vladimir V. Bamm
- G. Magnotta Lyme Disease Research Lab, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Manali Tilak
- G. Magnotta Lyme Disease Research Lab, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Vett K. Lloyd
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Gurpreet Singh-Ranger
- Upper River Valley Hospital, Horizon Health Network, Waterville, New Brunswick, Canada
| | - Melanie K. B. Wills
- G. Magnotta Lyme Disease Research Lab, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
8
|
Haddad NS, Nozick S, Ohanian S, Smith R, Elias S, Auwaerter PG, Lee FEH, Daiss JL. Circulating antibody-secreting cells are a biomarker for early diagnosis in patients with Lyme disease. PLoS One 2023; 18:e0293203. [PMID: 37922270 PMCID: PMC10624293 DOI: 10.1371/journal.pone.0293203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/07/2023] [Indexed: 11/05/2023] Open
Abstract
BACKGROUND Diagnostic immunoassays for Lyme disease have several limitations including: 1) not all patients seroconvert; 2) seroconversion occurs later than symptom onset; and 3) serum antibody levels remain elevated long after resolution of the infection. INTRODUCTION MENSA (Medium Enriched for Newly Synthesized Antibodies) is a novel diagnostic fluid that contains antibodies produced in vitro by circulating antibody-secreting cells (ASC). It enables measurement of the active humoral immune response. METHODS In this observational, case-control study, we developed the MicroB-plex Anti-C6/Anti-pepC10 Immunoassay to measure antibodies specific for the Borrelia burgdorferi peptide antigens C6 and pepC10 and validated it using a CDC serum sample collection. Then we examined serum and MENSA samples from 36 uninfected Control subjects and 12 Newly Diagnosed Lyme Disease Patients. RESULTS Among the CDC samples, antibodies against C6 and/or pepC10 were detected in all seropositive Lyme patients (8/8), but not in sera from seronegative patients or healthy controls (0/24). Serum antibodies against C6 and pepC10 were detected in one of 36 uninfected control subjects (1/36); none were detected in the corresponding MENSA samples (0/36). In samples from newly diagnosed patients, serum antibodies identified 8/12 patients; MENSA antibodies also detected 8/12 patients. The two measures agreed on six positive individuals and differed on four others. In combination, the serum and MENSA tests identified 10/12 early Lyme patients. Typically, serum antibodies persisted 80 days or longer while MENSA antibodies declined to baseline within 40 days of successful treatment. DISCUSSION MENSA-based immunoassays present a promising complement to serum immunoassays for diagnosis and tracking therapeutic success in Lyme infections.
Collapse
Affiliation(s)
| | - Sophia Nozick
- MicroB-plex, Inc., Atlanta, GA, United States of America
| | - Shant Ohanian
- MicroB-plex, Inc., Atlanta, GA, United States of America
| | - Robert Smith
- Division of Infectious Diseases, Maine Medical Center, MaineHealth Institute for Research, Portland, ME, United States of America
| | - Susan Elias
- Division of Infectious Diseases, Maine Medical Center, MaineHealth Institute for Research, Portland, ME, United States of America
| | - Paul G. Auwaerter
- Sherrilyn and Ken Fisher Center for Environmental Infectious Diseases, The Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | - F. Eun-Hyung Lee
- MicroB-plex, Inc., Atlanta, GA, United States of America
- Division of Pulmonary, Allergy & Immunology, Emory University, Atlanta, GA, United States of America
| | - John L. Daiss
- MicroB-plex, Inc., Atlanta, GA, United States of America
| |
Collapse
|
9
|
Porwancher R, Levin A, Trevejo R. Immunoblot Criteria for Diagnosis of Lyme Disease: A Comparison of CDC Criteria to Alternative Interpretive Approaches. Pathogens 2023; 12:1282. [PMID: 38003747 PMCID: PMC10674374 DOI: 10.3390/pathogens12111282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 11/26/2023] Open
Abstract
The current Centers for Disease Control and Prevention (CDC) interpretive criteria for serodiagnosis of Lyme disease (LD) involve a two-tiered approach, consisting of a first-tier EIA, IFA, or chemiluminescent assay, followed by confirmation of positive or equivocal results by either immunoblot or a second-tier EIA. To increase overall sensitivity, single-tier alternative immunoblot assays have been proposed, often utilizing antigens from multiple Borrelia burgdorferi strains or genospecies in a single immunoblot; including OspA and OspB in their antigen panel; requiring fewer positive bands than permitted by current CDC criteria; and reporting equivocal results. Published reports concerning alternative immunoblot assays have used relatively small numbers of LD patients and controls to evaluate novel multi-antigen assays and interpretive criteria. We compared the two most commonly used alternative immunoblot interpretive criteria (labeled A and B) to CDC criteria using data from multiple FDA-cleared IgG and IgM immunoblot test kits. These single-tier alternative interpretive criteria, applied to both IgG and IgM immunoblots, demonstrated significantly more false-positive or equivocal results in healthy controls than two-tiered CDC criteria (12.4% and 35.0% for Criteria A and B, respectively, versus 1.0% for CDC criteria). Due to limited standardization and high false-positive rates, the presently evaluated single-tier alternative immunoblot interpretive criteria appear inferior to CDC two-tiered criteria.
Collapse
Affiliation(s)
- Richard Porwancher
- Section of Allergy, Immunology, and Infectious Diseases, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- Princeton Infectious Diseases Associates, LLC, Plainsboro, NJ 08536, USA
| | - Andrew Levin
- Kephera Diagnostics, LLC, Framingham, MA 01702, USA;
| | - Rosalie Trevejo
- Epidemiologist, Acute and Communicable Disease Prevention, Oregon Health Authority, Portland, OR 97232, USA;
| |
Collapse
|
10
|
Giri J, Pezzi L, Cachay R, Gèlvez Ramirez RM, Tami A, Bethencourt S, Lozano A, Gotuzzo Herencia JE, Poje J, Jaenisch T, Chu M. Specimen sharing for epidemic preparedness: Building a virtual biorepository system from local governance to global partnerships. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001568. [PMID: 37819913 PMCID: PMC10566708 DOI: 10.1371/journal.pgph.0001568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/03/2023] [Indexed: 10/13/2023]
Abstract
We present a framework for a federated, virtual biorepository system (VBS) with locally collected and managed specimens, as a 'global public good' model based on principles of equitable access and benefit sharing. The VBS is intended to facilitate timely access to biological specimens and associated data for outbreak-prone infectious diseases to accelerate the development and evaluation of diagnostics, assess vaccine efficacy, and to support surveillance and research needs. The VBS is aimed to be aligned with the WHO BioHub and other specimen sharing efforts as a force multiplier to meet the needs of strengthening global tools for countering epidemics. The purpose of our initial research is to lay the basis of the collaboration, management and principles of equitable sharing focused on low- and middle-income country partners. Here we report on surveys and interviews undertaken with biorepository-interested parties to better understand needs and barriers for specimen access and share examples from the ZIKAlliance partnership on the governance and operations of locally organized biorepositories.
Collapse
Affiliation(s)
- Judith Giri
- Center for Global Health, Colorado School of Public Health, Anschutz Medical Center, Aurora, Colorado, United States of America
| | - Laura Pezzi
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Rodrigo Cachay
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, San Martín de Porres, Lima, Peru
| | | | - Adriana Tami
- Facultad de Ciencias de la Salud, Departamento de Parasitología, Universidad de Carabobo, Valencia, Venezuela
| | - Sarah Bethencourt
- Departamento de Estudios Clínicos-Department of Clinical Studies, Universidad de Carabobo, Valencia, Venezuela
| | - Anyela Lozano
- Centro de Investigaciones Epidemiológicas, Universidad Industrial de Santander, Bucamaranga, Colombia
| | - José Eduardo Gotuzzo Herencia
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, San Martín de Porres, Lima, Peru
| | - Julia Poje
- Center for Global Health, Colorado School of Public Health, Anschutz Medical Center, Aurora, Colorado, United States of America
| | - Thomas Jaenisch
- Center for Global Health, Colorado School of Public Health, Anschutz Medical Center, Aurora, Colorado, United States of America
| | - May Chu
- Center for Global Health, Colorado School of Public Health, Anschutz Medical Center, Aurora, Colorado, United States of America
| |
Collapse
|
11
|
Shah JS, Burrascano JJ, Ramasamy R. Recombinant protein immunoblots for differential diagnosis of tick-borne relapsing fever and Lyme disease. J Vector Borne Dis 2023; 60:353-364. [PMID: 38174512 DOI: 10.4103/0972-9062.383641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Lyme disease (LD) is caused by a group of tick-borne bacteria of the genus Borrelia termed Lyme disease Borreliae (LDB). The detection of serum antibodies to specific LDB antigens is widely used to support diagnosis of LD. Recent findings highlight a need for serological tests that can differentiate LD from tick-borne relapsing fever (TBRF) caused by a separate group of Borrelia species termed relapsing fever Borreliae. This is because LD and TBRF share some clinical symptoms and can occur in overlapping locations. The development of serological tests for TBRF is at an early stage compared with LD. This article reviews the application of line immunoblots (IBs), where recombinant proteins applied as lines on nitrocellulose membrane strips are used to detect antibodies in patient sera, for the diagnosis and differentiation of LD and TBRF.
Collapse
Affiliation(s)
- Jyotsna S Shah
- IGeneX Inc. Milpitas; ID-FISH Technology Inc., California, USA
| | | | | |
Collapse
|
12
|
Ghosh R, Joung HA, Goncharov A, Palanisamy B, Ngo K, Pejcinovic K, Krockenberger N, Horn EJ, Garner OB, Ghazal E, O’Kula A, Arnaboldi PM, Dattwyler RJ, Ozcan A, Di Carlo D. Single-tier point-of-care serodiagnosis of Lyme disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544508. [PMID: 37398357 PMCID: PMC10312703 DOI: 10.1101/2023.06.14.544508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Point-of-care (POC) serological testing provides actionable information for several difficult to diagnose illnesses, empowering distributed health systems. Accessible and adaptable diagnostic platforms that can assay the repertoire of antibodies formed against pathogens are essential to drive early detection and improve patient outcomes. Here, we report a POC serologic test for Lyme disease (LD), leveraging synthetic peptides tuned to be highly specific to the LD antibody repertoire across patients and compatible with a paper-based platform for rapid, reliable, and cost-effective diagnosis. A subset of antigenic epitopes conserved across Borrelia burgdorferi genospecies and targeted by IgG and IgM antibodies, were selected based on their seroreactivity to develop a multiplexed panel for a single-step measurement of combined IgM and IgG antibodies from LD patient sera. Multiple peptide epitopes, when combined synergistically using a machine learning-based diagnostic model, yielded a high sensitivity without any loss in specificity. We blindly tested the platform with samples from the U.S. Centers for Disease Control & Prevention (CDC) LD repository and achieved a sensitivity and specificity matching the lab-based two-tier results with a single POC test, correctly discriminating cross-reactive look-alike diseases. This computational LD diagnostic test can potentially replace the cumbersome two-tier testing paradigm, improving diagnosis and enabling earlier effective treatment of LD patients while also facilitating immune monitoring and surveillance of the disease in the community.
Collapse
Affiliation(s)
- Rajesh Ghosh
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
| | - Hyou-Arm Joung
- Electrical & Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095 USA
| | - Artem Goncharov
- Electrical & Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095 USA
| | - Barath Palanisamy
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
| | - Kevin Ngo
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
| | - Katarina Pejcinovic
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
| | | | | | - Omai B. Garner
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095 USA
| | - Ezdehar Ghazal
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York 10595, United States
| | - Andrew O’Kula
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York 10595, United States
| | - Paul M. Arnaboldi
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York 10595, United States
- Biopeptides, Corp. East Setauket, NY 11733
| | - Raymond J. Dattwyler
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York 10595, United States
- Biopeptides, Corp. East Setauket, NY 11733
| | - Aydogan Ozcan
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
- Electrical & Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095 USA
- Department of Surgery, University of California, Los Angeles, CA 90095 USA
| | - Dino Di Carlo
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095 USA
- Department of Mechanical Engineering, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
13
|
Goff NK, Dou T, Higgins S, Horn EJ, Morey R, McClellan K, Kurouski D, Rogovskyy AS. Testing Raman spectroscopy as a diagnostic approach for Lyme disease patients. Front Cell Infect Microbiol 2022; 12:1006134. [PMID: 36389168 PMCID: PMC9647194 DOI: 10.3389/fcimb.2022.1006134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Lyme disease (LD), the leading tick-borne disease in the Northern hemisphere, is caused by spirochetes of several genospecies of the Borreliella burgdorferi sensu lato complex. LD is a multi-systemic and highly debilitating illness that is notoriously challenging to diagnose. The main drawbacks of the two-tiered serology, the only approved diagnostic test in the United States, include poor sensitivity, background seropositivity, and cross-reactivity. Recently, Raman spectroscopy (RS) was examined for its LD diagnostic utility by our earlier proof-of-concept study. The previous investigation analyzed the blood from mice that were infected with 297 and B31 strains of Borreliella burgdorferi sensu stricto (s.s.). The selected strains represented two out of the three major clades of B. burgdorferi s.s. isolates found in the United States. The obtained results were encouraging and prompted us to further investigate the RS diagnostic capacity for LD in this study. The present investigation has analyzed blood of mice infected with European genospecies, Borreliella afzelii or Borreliella garinii, or B. burgdorferi N40, a strain of the third major class of B. burgdorferi s.s. in the United States. Moreover, 90 human serum samples that originated from LD-confirmed, LD-negative, and LD-probable human patients were also analyzed by RS. The overall results demonstrated that blood samples from Borreliella-infected mice were identified with 96% accuracy, 94% sensitivity, and 100% specificity. Furthermore, human blood samples were analyzed with 88% accuracy, 85% sensitivity, and 90% specificity. Together, the current data indicate that RS should be further explored as a potential diagnostic test for LD patients.
Collapse
Affiliation(s)
- Nicolas K. Goff
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Tianyi Dou
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Samantha Higgins
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | | | - Rohini Morey
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Kyle McClellan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
- *Correspondence: Dmitry Kurouski, ; Artem S. Rogovskyy,
| | - Artem S. Rogovskyy
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- *Correspondence: Dmitry Kurouski, ; Artem S. Rogovskyy,
| |
Collapse
|
14
|
Li L, Di L, Akther S, Zeglis BM, Qiu W. Evolution of the vls Antigenic Variability Locus of the Lyme Disease Pathogen and Development of Recombinant Monoclonal Antibodies Targeting Conserved VlsE Epitopes. Microbiol Spectr 2022; 10:e0174322. [PMID: 36150043 PMCID: PMC9604149 DOI: 10.1128/spectrum.01743-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/02/2022] [Indexed: 01/12/2023] Open
Abstract
VlsE (variable major protein-like sequence, expressed) is an outer surface protein of the Lyme disease pathogen (Borreliella species) responsible for its within-host antigenic variation and a key diagnostic biomarker of Lyme disease. However, the high sequence variability of VlsE poses a challenge to the development of consistent VlsE-based diagnostics and therapeutics. In addition, the standard diagnostic protocols detect immunoglobins elicited by the Lyme pathogen, not the presence of the pathogen or its derived antigens. Here, we described the development of recombinant monoclonal antibodies (rMAbs) that bound specifically to conserved epitopes on VlsE. We first quantified amino-acid sequence variability encoded by the vls genes from 13 B. burgdorferi genomes by evolutionary analyses. We showed broad inconsistencies of the sequence phylogeny with the genome phylogeny, indicating rapid gene duplications, losses, and recombination at the vls locus. To identify conserved epitopes, we synthesized peptides representing five long conserved invariant regions (IRs) on VlsE. We tested the antigenicity of these five IR peptides using sera from three mammalian host species including human patients, the natural reservoir white-footed mouse (Peromyscus leucopus), and VlsE-immunized New Zealand rabbits (Oryctolagus cuniculus). The IR4 and IR6 peptides emerged as the most antigenic and reacted strongly with both the human and rabbit sera, while all IR peptides reacted poorly with sera from natural hosts. Four rMAbs binding specifically to the IR4 and IR6 peptides were identified, cloned, and purified. Given their specific recognition of the conserved epitopes on VlsE, these IR-specific rMAbs are potential novel diagnostic and research agents for direct detection of Lyme disease pathogens regardless of strain heterogeneity. IMPORTANCE Current diagnostic protocols of Lyme disease indirectly detect the presence of antibodies produced by the patient upon infection by the bacterial pathogen, not the pathogen itself. These diagnostic tests tend to underestimate early-stage bacterial infections before the patients develop robust immune responses. Further, the indirect tests do not distinguish between active or past infections by the Lyme disease bacteria in a patient sample. Here, we described novel monoclonal antibodies that have the potential to become the basis of direct and definitive diagnostic detection of the Lyme disease pathogen, regardless of its genetic heterogeneity.
Collapse
Affiliation(s)
- Li Li
- Graduate Center, City University of New York, New York, New York, USA
| | - Lia Di
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA
| | - Saymon Akther
- Graduate Center, City University of New York, New York, New York, USA
| | - Brian M. Zeglis
- Graduate Center, City University of New York, New York, New York, USA
- Department of Chemistry, Hunter College, City University of New York, New York, New York, USA
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Weigang Qiu
- Graduate Center, City University of New York, New York, New York, USA
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
15
|
Abstract
Standard 2-tier testing (STTT), incorporating a screening enzyme immunoassay (EIA) or an immunofluorescence assay (IFA) that reflexes to IgM and IgG immunoblots, has been the primary diagnostic test for Lyme disease since 1995. In 2019, the Food and Drug Administration approved a modified 2-tier test strategy using 2 EIAs: offering a faster, less expensive, and more sensitive assay compared with STTT. New technologies examine early immune responses to Borrelia burgdorferi have the potential to diagnose Lyme disease in the first weeks of infection when existing serologic testing is not recommended due to low sensitivity.
Collapse
Affiliation(s)
- Takaaki Kobayashi
- Division of Infectious Diseases, Department of Internal Medicine, University of Iowa Hospitals & Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| | - Paul G Auwaerter
- Sherrilyn and Ken Fisher Center for Environmental Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Curtis MW, Krishnavajhala A, Kneubehl AR, Embers ME, Gettings JR, Yabsley MJ, Lopez JE. Characterization of Immunological Responses to Borrelia Immunogenic Protein A (BipA), a Species-Specific Antigen for North American Tick-Borne Relapsing Fever. Microbiol Spectr 2022; 10:e0172221. [PMID: 35579456 PMCID: PMC9241729 DOI: 10.1128/spectrum.01722-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Tick-borne relapsing fever (TBRF) is a neglected vector-borne bacterial disease distributed worldwide. Borrelia turicatae, Borrelia parkeri, and Borrelia hermsii are three argasid-borne TBRF species previously implicated in human disease in North America. TBRF is likely underdiagnosed due to its nonspecific symptoms and poorly developed diagnostic tests. Studies suggest that the Borrelia immunogenic protein A (BipA) is specific to TBRF Borrelia but heterogenic between species. In this study, we hypothesized that antibody responses generated to BipA are specific to the North American TBRF species infecting a given animal. To test this, we characterized the expression and localization of native BipA in North American species of TBRF Borrelia. We also infected mice by needle inoculation or tick bite with B. turicatae, B. hermsii, or B. parkeri and evaluated serum sample reactivity to recombinant BipA (rBipA) that was produced from each species. Furthermore, serum samples from nonhuman primates and domestic dogs experimentally infected with B. turicatae were assessed. Lastly, we tested human Lyme disease (LD) serum samples to determine potential cross-reactivity to rBipA generated from B. turicatae, B. parkeri, and B. hermsii. Our findings indicate that rBipA has the potential to distinguish between infections of LD- and TBRF-causing spirochetes and that antibody responses were more robust toward the Borrelia species causing infection. This work further supports that rBipA can likely distinguish between B. turicatae, B. hermsii, and B. parkeri infections in mice, canines, and nonhuman primates. IMPORTANCEBorrelia species transmitted by soft or hard ticks cause tick-borne relapsing fever (TBRF). This is a debilitating disease distributed worldwide but is likely underdiagnosed or misdiagnosed as Lyme disease due to poorly developed diagnostic tests. Borrelia turicatae, Borrelia parkeri, and Borrelia hermsii are three TBRF species previously implicated in human disease in North America. Commonly used diagnostic methods do not identify the species causing infection. In this study, we evaluated the potential of recombinant Borrelia immunogenic protein A (rBipA) as a diagnostic antigen capable of distinguishing between infections of TBRF Borrelia species. We show that serum from mice, canines, and nonhuman primates infected with B. turicatae, B. parkeri, or B. hermsii react more strongly to the rBipA from the species causing infection. Furthermore, sera from Lyme disease patients failed to cross-react with our rBipA proteins, indicating the potential to use rBipA as a species-specific diagnostic antigen for TBRF.
Collapse
Affiliation(s)
- Michael W. Curtis
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Aparna Krishnavajhala
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Alexander R. Kneubehl
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, Louisiana, USA
| | - Jenna R. Gettings
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Michael J. Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
| | - Job E. Lopez
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
17
|
Pratt GW, Platt M, Velez A, Rao LV. A Comparison of Lyme Serological Testing Platforms with a Panel of Clinically Characterized Samples from Various Stages of Lyme Disease. J Appl Lab Med 2022; 7:1445-1449. [DOI: 10.1093/jalm/jfac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/09/2022] [Indexed: 11/14/2022]
Abstract
Abstract
Background
In 2019, the CDC updated serology testing guidelines for Lyme disease diagnosis to include alternative modified two-tiered testing that replaces the western blots of standard testing with an additional ELISA. Antibody-capture serological assays have also been used as an aid for Lyme diagnosis. A panel of clinically characterized samples from the CDC was tested to compare modified two-tiered testing to the standard two-tiered algorithm and an antibody capture immunoassay.
Methods
A CDC panel of 92 samples comprised a range of samples including early Lyme, Lyme neuroborreliosis, Lyme arthritis, infections by other pathogens, and healthy controls. The panel was tested on a standard two-tiered platform by the CDC, the ZEUS Borrelia Test System for modified two-tiered testing, and a lab-developed antibody-capture serological assay. Sensitivity and specificity results from each assay were compared to determine significance.
Results
The antibody-capture assay demonstrated increased sensitivity but decreased specificity compared to the modified and standard two-tiered platforms. There was no statistical difference found between the modified and standard two-tiered platforms.
Conclusions
Improved sensitivity of antibody-capture when testing early Lyme disease samples is offset by decreased specificity, especially with syphilis-positive samples. Modified two-tiered testing is similar to standard two-tiered methods while also being more scalable and simpler to interpret.
Collapse
Affiliation(s)
| | - Mihae Platt
- Quest Diagnostics , North Region, Marlborough, MA , USA
- Athena Diagnostics , Marlborough, MA , USA
| | - Ana Velez
- Quest Diagnostics , North Region, Marlborough, MA , USA
| | - Lokinendi V Rao
- Quest Diagnostics , North Region, Marlborough, MA , USA
- UMass Chan Medical School , Worcester, MA , USA
| |
Collapse
|
18
|
Sfeir MM, Meece JK, Theel ES, Granger D, Fritsche TR, Steere AC, Branda JA. Multicenter Clinical Evaluation of Modified Two-Tiered Testing Algorithms for Lyme Disease Using Zeus Scientific Commercial Assays. J Clin Microbiol 2022; 60:e0252821. [PMID: 35418241 PMCID: PMC9116174 DOI: 10.1128/jcm.02528-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
Modified two-tiered testing (MTTT) algorithms for Lyme disease (LD), which involve the sequential use of orthogonal enzyme immunoassays (EIAs) without immunoblotting, are acceptable alternatives to standard two-tiered testing (STTT; EIA followed by immunoblots) provided the EIAs have been FDA-cleared for this intended use. We evaluated four Zeus Scientific LD EIAs used in two distinct MTTT algorithms for FDA review. MTTT 1 used a VlsE1/pepC10 polyvalent EIA followed by a whole-cell sonicate (WCS) polyvalent EIA. MTTT 2 used the same first-tier EIA followed by separate IgM and IgG WCS EIAs. In a retrospective phase, we compared each MTTT algorithm to STTT using archived samples from LD patients or control subjects. In a prospective phase, we used the same algorithms to analyze consecutive excess samples submitted for routine LD serology to three clinical laboratories. For the retrospective phase, MTTTs 1 and 2 were more sensitive (56% and 74%) than STTT (41%; P ≤ 0.03) among 61 patients with acute erythema migrans (EM). In LD patients with neuroborreliosis, carditis, or arthritis (n = 75), sensitivity was comparable between algorithms (96 to 100%; P = 1.0). Among 190 control subjects without past LD, all algorithms were highly and comparably specific (≥99%, P = 0.48). For the prospective phase, (n = 2,932), positive percent-agreement (PPA), negative percent-agreement (NPA), and overall agreement of MTTT 1 with STTT were 93%, 97.7% and 97.4% (kappa 0.80). MTTT 2 yielded higher PPA (98%) but lower NPA (96.1%) and overall agreement (96.2%, kappa 0.74; all P < 0.05). Compared with STTT, both MTTT algorithms provided increased sensitivity in EM patients, comparable sensitivity in later disease and non-inferior specificity.
Collapse
Affiliation(s)
| | | | - Elitza S. Theel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dane Granger
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Allen C. Steere
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - John A. Branda
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Di L, Akther S, Bezrucenkovas E, Ivanova L, Sulkow B, Wu B, Mneimneh S, Gomes-Solecki M, Qiu WG. Maximum antigen diversification in a lyme bacterial population and evolutionary strategies to overcome pathogen diversity. THE ISME JOURNAL 2022; 16:447-464. [PMID: 34413477 PMCID: PMC8376116 DOI: 10.1038/s41396-021-01089-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 12/03/2022]
Abstract
Natural populations of pathogens and their hosts are engaged in an arms race in which the pathogens diversify to escape host immunity while the hosts evolve novel immunity. This co-evolutionary process poses a fundamental challenge to the development of broadly effective vaccines and diagnostics against a diversifying pathogen. Based on surveys of natural allele frequencies and experimental immunization of mice, we show high antigenic specificities of natural variants of the outer surface protein C (OspC), a dominant antigen of a Lyme Disease-causing bacterium (Borrelia burgdorferi). To overcome the challenge of OspC antigenic diversity to clinical development of preventive measures, we implemented a number of evolution-informed strategies to broaden OspC antigenic reactivity. In particular, the centroid algorithm-a genetic algorithm to generate sequences that minimize amino-acid differences with natural variants-generated synthetic OspC analogs with the greatest promise as diagnostic and vaccine candidates against diverse Lyme pathogen strains co-existing in the Northeast United States. Mechanistically, we propose a model of maximum antigen diversification (MAD) mediated by amino-acid variations distributed across the hypervariable regions on the OspC molecule. Under the MAD hypothesis, evolutionary centroids display broad cross-reactivity by occupying the central void in the antigenic space excavated by diversifying natural variants. In contrast to vaccine designs based on concatenated epitopes, the evolutionary algorithms generate analogs of natural antigens and are automated. The novel centroid algorithm and the evolutionary antigen designs based on consensus and ancestral sequences have broad implications for combating diversifying pathogens driven by pathogen-host co-evolution.
Collapse
Affiliation(s)
- Lia Di
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Saymon Akther
- Graduate Center, City University of New York, New York, NY, USA
| | - Edgaras Bezrucenkovas
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Larisa Ivanova
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Pediatrics Department, New York Medical College, Valhalla, NY, USA
| | - Brian Sulkow
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Bing Wu
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Saad Mneimneh
- Graduate Center, City University of New York, New York, NY, USA
- Department of Computer Science, Hunter College, City University of New York, New York, NY, USA
| | - Maria Gomes-Solecki
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Wei-Gang Qiu
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA.
- Graduate Center, City University of New York, New York, NY, USA.
- Department of Physiology and Biophysics & Institute for Computational Biomedicine, Weil Cornell Medical College, New York, NY, USA.
| |
Collapse
|
20
|
Porwancher R, Landsberg L. Optimizing use of multi-antibody assays for Lyme disease diagnosis: A bioinformatic approach. PLoS One 2021; 16:e0253514. [PMID: 34499659 PMCID: PMC8428682 DOI: 10.1371/journal.pone.0253514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/07/2021] [Indexed: 11/25/2022] Open
Abstract
Multiple different recombinant and peptide antigens are now available for serodiagnosis of Lyme disease (LD), but optimizing test utilization remains challenging. Since 1995 the Centers for Disease Control and Prevention (CDC) has recommended a 2-tiered serologic approach consisting of a first-tier whole-cell enzyme immunoassay (EIA) for polyvalent antibodies to Borrelia burgdorferi followed by confirmation of positive or equivocal results by IgG and IgM immunoblots [standard 2-tiered (STT) approach]. Newer modified 2-tiered (MTT) approaches employ a second-tier EIA to detect antibodies to B. burgdorferi rather than immunoblotting. We applied modern bioinformatic techniques to a large public database of recombinant and peptide antigen-based immunoassays to improve testing strategy. A retrospective CDC collection of 280 LD samples and 559 controls had been tested using the STT approach as well as kinetic-EIAs for VlsE1-IgG, C6-IgG, VlsE1-IgM, and pepC10-IgM antibodies. When used individually, the cutoff for each kinetic-EIA was set to generate 99% specificity. Utilizing logistic-likelihood regression analysis and receiver operating characteristic (ROC) techniques we determined that VlsE1-IgG, C6-IgG, and pepC10-IgM antibodies each contributed significant diagnostic information; a single-tier diagnostic score (DS) was generated for each sample using a weighted linear combination of antibody levels to these 3 antigens. DS performance was then compared to the STT and to MTT models employing different combinations of kinetic-EIAs. After setting the DS cutoff to match STT specificity (99%), the DS was 22.5% more sensitive than the STT for early-acute-phase disease (95% CI: 11.8% to 32.2%), 16.0% more sensitive for early-convalescent-phase disease (95% CI: 7.2% to 24.7%), and equivalent for detection of disseminated infection. The DS was also significantly more sensitive for early-acute-phase LD than MTT models whose specificity met or exceeded 99%. Prospective validation of this single-tier diagnostic score for Lyme disease will require larger studies using a broader range of potential cross-reacting conditions.
Collapse
Affiliation(s)
- Richard Porwancher
- Division of Infectious Diseases, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
- Infectious Disease Consultants, PC, Mercerville, New Jersey, United States of America
| | - Lisa Landsberg
- Clinical Research Operations & Regulatory Affairs, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
21
|
Bobe JR, Jutras BL, Horn EJ, Embers ME, Bailey A, Moritz RL, Zhang Y, Soloski MJ, Ostfeld RS, Marconi RT, Aucott J, Ma'ayan A, Keesing F, Lewis K, Ben Mamoun C, Rebman AW, McClune ME, Breitschwerdt EB, Reddy PJ, Maggi R, Yang F, Nemser B, Ozcan A, Garner O, Di Carlo D, Ballard Z, Joung HA, Garcia-Romeu A, Griffiths RR, Baumgarth N, Fallon BA. Recent Progress in Lyme Disease and Remaining Challenges. Front Med (Lausanne) 2021; 8:666554. [PMID: 34485323 PMCID: PMC8416313 DOI: 10.3389/fmed.2021.666554] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Lyme disease (also known as Lyme borreliosis) is the most common vector-borne disease in the United States with an estimated 476,000 cases per year. While historically, the long-term impact of Lyme disease on patients has been controversial, mounting evidence supports the idea that a substantial number of patients experience persistent symptoms following treatment. The research community has largely lacked the necessary funding to properly advance the scientific and clinical understanding of the disease, or to develop and evaluate innovative approaches for prevention, diagnosis, and treatment. Given the many outstanding questions raised into the diagnosis, clinical presentation and treatment of Lyme disease, and the underlying molecular mechanisms that trigger persistent disease, there is an urgent need for more support. This review article summarizes progress over the past 5 years in our understanding of Lyme and tick-borne diseases in the United States and highlights remaining challenges.
Collapse
Affiliation(s)
- Jason R. Bobe
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Brandon L. Jutras
- Department of Biochemistry, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | | | - Monica E. Embers
- Tulane University Health Sciences, New Orleans, LA, United States
| | - Allison Bailey
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mark J. Soloski
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - John Aucott
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Avi Ma'ayan
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Kim Lewis
- Department of Biology, Northeastern University, Boston, MA, United States
| | | | - Alison W. Rebman
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mecaila E. McClune
- Department of Biochemistry, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Edward B. Breitschwerdt
- Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | | | - Ricardo Maggi
- Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bennett Nemser
- Steven & Alexandra Cohen Foundation, Stamford, CT, United States
| | - Aydogan Ozcan
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Omai Garner
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Dino Di Carlo
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Zachary Ballard
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Hyou-Arm Joung
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Albert Garcia-Romeu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Roland R. Griffiths
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases and the Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Brian A. Fallon
- Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
22
|
Naeem M, Enos D, Shah S, Patel N, Fisher T. Management of Chronic Symptoms of Lyme Disease With Intravenous Ceftriaxone. Cureus 2021; 13:e16354. [PMID: 34395132 PMCID: PMC8359626 DOI: 10.7759/cureus.16354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 11/18/2022] Open
Abstract
Lyme disease is a vector-borne illness of North America and Europe transmitted by Borrelia burgdorferi, over 30,000 cases are reported in the United States yearly. Patients typically present having early localized disease with fevers, headaches, myalgias, and a single erythema migrans. Usually, oral doxycycline is administered with a good disease prognosis but we report the case of a 58-year-old male who presented with Lyme disease diagnosed by immunoassay; he was treated with doxycycline but was refractory and saw an improvement in his symptoms with IV ceftriaxone.
Collapse
Affiliation(s)
- Muhammad Naeem
- Internal Medicine, St. Francis Medical Center, Trenton, USA
| | - Derek Enos
- Internal Medicine, St. Francis Medical Center, Trenton, USA
| | - Shazia Shah
- Internal Medicine, St. Francis Medical Center, Trenton, USA
| | - Nidhi Patel
- Medicine, Drexel University College of Medicine, Philadelphia, USA
| | - Tara Fisher
- Medicine, Seton Hall University Hackensack Meridian School of Medicine, Philadelphia, USA
| |
Collapse
|
23
|
Diagnostic Performance of the Novel BioPlex Lyme Serological Assays in European Patients with Lyme Disease. J Clin Microbiol 2021; 59:e0320520. [PMID: 33883179 DOI: 10.1128/jcm.03205-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serodiagnosis of Lyme borreliosis (LB) comes with several drawbacks, among which is limited sensitivity in early disease. This study assesses the sensitivity and specificity of the novel BioPlex 2200 Lyme IgG and Lyme IgM assays. It also assesses potential improvements to the assays through receiver-operating characteristic (ROC) analysis. The BioPlex assays were performed on sera of 158 Dutch patients with physician-confirmed LB (both early localized and disseminated), 800 healthy blood donors from the Netherlands, and 90 cross-reactive controls. The BioPlex (Biopl) assays were compared with two commercial enzyme immunoassays (Euroimmun [Eur]/C6-ELISA) and one immunoblot (recomLine). The highest sensitivity in early LB was achieved with the BioPlex assays, which outperformed the Euroimmun and C6-ELISA (Biopl: 81/88, 92.1%; Eur: 64/88, 72.7%; C6: 72/88, 81.8%). Sensitivity of all assays was comparable in patients with disseminated LB. The BioPlex assays were outperformed in terms of specificity (all healthy blood donors, Biopl: 571/800, 71.4%; Eur: 711/800, 88.9%; C6: 727/800, 90.9%), but further analyses showed promising avenues following cutoff optimization. ROC analysis showed that 2/6 antigens of the combined BioPlex IgG and IgM assays had significantly higher areas under the curve (AUCs) than those of the other analyses. Potential modified versions of the assays based on these antigens largely outperformed the Euroimmun and C6-ELISA in EM patients (Biopl: 81/80, 92.1%) while maintaining a comparable or even higher specificity (Biopl: 714/800, 89.3%). The BioPlex 2200 Lyme IgG and Lyme IgM assays are promising tools for the serodiagnosis of early LB, with the potential to be used as a standalone test. Further research is necessary to validate the findings of this discovery cohort.
Collapse
|
24
|
Chou E, Minor A, Cady NC. Quantitative multiplexed strategies for human Lyme disease serological testing. Exp Biol Med (Maywood) 2021; 246:1388-1399. [PMID: 33794698 PMCID: PMC8243215 DOI: 10.1177/15353702211003496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lyme disease, which is primarily caused by infection with the bacterium Borrelia burgdorferi in the United States or other Borrelia species internationally, presents an ongoing challenge for diagnostics. Serological testing is the primary means of diagnosis but testing approaches differ widely, with varying degrees of sensitivity and specificity. Moreover, there is currently no reliable test to determine disease resolution following treatment. A distinct challenge in Lyme disease diagnostics is the variable patterns of human immune response to a plurality of antigens presented by Borrelia spp. during the infection. Thus, multiplexed testing approaches that capture these patterns and detect serological response against multiple antigens may be the key to prompt, accurate Lyme disease diagnosis. In this review, current state-of-the-art multiplexed diagnostic approaches are presented and compared with respect to their diagnostic accuracy and their potential for monitoring response to treatment.
Collapse
Affiliation(s)
- Eunice Chou
- Nanobioscience Constellation, College of Nanoscale Science &
Engineering, State University of New York Polytechnic Institute, Albany, NY
12203, USA
- College of Medicine, State University of New York, Downstate
Medical Center, Brooklyn, NY 11203, USA
| | - Armond Minor
- Nanobioscience Constellation, College of Nanoscale Science &
Engineering, State University of New York Polytechnic Institute, Albany, NY
12203, USA
| | - Nathaniel C Cady
- Nanobioscience Constellation, College of Nanoscale Science &
Engineering, State University of New York Polytechnic Institute, Albany, NY
12203, USA
| |
Collapse
|
25
|
Lantos PM, Rumbaugh J, Bockenstedt LK, Falck-Ytter YT, Aguero-Rosenfeld ME, Auwaerter PG, Baldwin K, Bannuru RR, Belani KK, Bowie WR, Branda JA, Clifford DB, DiMario FJ, Halperin JJ, Krause PJ, Lavergne V, Liang MH, Meissner HC, Nigrovic LE, Nocton JJJ, Osani MC, Pruitt AA, Rips J, Rosenfeld LE, Savoy ML, Sood SK, Steere AC, Strle F, Sundel R, Tsao J, Vaysbrot EE, Wormser GP, Zemel LS. Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA), American Academy of Neurology (AAN), and American College of Rheumatology (ACR): 2020 Guidelines for the Prevention, Diagnosis and Treatment of Lyme Disease. Clin Infect Dis 2021; 72:e1-e48. [PMID: 33417672 DOI: 10.1093/cid/ciaa1215] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
This evidence-based clinical practice guideline for the prevention, diagnosis, and treatment of Lyme disease was developed by a multidisciplinary panel representing the Infectious Diseases Society of America (IDSA), the American Academy of Neurology (AAN), and the American College of Rheumatology (ACR). The scope of this guideline includes prevention of Lyme disease, and the diagnosis and treatment of Lyme disease presenting as erythema migrans, Lyme disease complicated by neurologic, cardiac, and rheumatologic manifestations, Eurasian manifestations of Lyme disease, and Lyme disease complicated by coinfection with other tick-borne pathogens. This guideline does not include comprehensive recommendations for babesiosis and tick-borne rickettsial infections, which are published in separate guidelines. The target audience for this guideline includes primary care physicians and specialists caring for this condition such as infectious diseases specialists, emergency physicians, internists, pediatricians, family physicians, neurologists, rheumatologists, cardiologists and dermatologists in North America.
Collapse
Affiliation(s)
- Paul M Lantos
- Duke University School of Medicine, Durham, North Carolina, USA
| | | | | | - Yngve T Falck-Ytter
- Case Western Reserve University, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | | | - Paul G Auwaerter
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kelly Baldwin
- Geisinger Medical Center, Danville, Pennsylvania, USA
| | | | - Kiran K Belani
- Childrens Hospital and Clinical of Minnesota, Minneapolis, Minnesota, USA
| | - William R Bowie
- University of British Columbia, Vancouver, British Columbia, Canada
| | - John A Branda
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David B Clifford
- Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | - Peter J Krause
- Yale School of Public Health, New Haven, Connecticut, USA
| | | | | | | | | | | | | | - Amy A Pruitt
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jane Rips
- Consumer Representative, Omaha, Nebraska, USA
| | | | | | | | - Allen C Steere
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Franc Strle
- University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Robert Sundel
- Boston Children's Hospital Boston, Massachusetts, USA
| | - Jean Tsao
- Michigan State University, East Lansing, Michigan, USA
| | | | | | - Lawrence S Zemel
- Connecticut Children's Medical Center, Hartford, Connecticut, USA
| |
Collapse
|
26
|
Abstract
Lyme borreliosis is caused by a growing list of related, yet distinct, spirochetes with complex biology and sophisticated immune evasion mechanisms. It may result in a range of clinical manifestations involving different organ systems, and can lead to persistent sequelae in a subset of cases. The pathogenesis of Lyme borreliosis is incompletely understood, and laboratory diagnosis, the focus of this review, requires considerable understanding to interpret the results correctly. Direct detection of the infectious agent is usually not possible or practical, necessitating a continued reliance on serologic testing. Still, some important advances have been made in the area of diagnostics, and there are many promising ideas for future assay development. This review summarizes the state of the art in laboratory diagnostics for Lyme borreliosis, provides guidance in test selection and interpretation, and highlights future directions.
Collapse
|
27
|
Reifert J, Kamath K, Bozekowski J, Lis E, Horn EJ, Granger D, Theel ES, Shon J, Sawyer JR, Daugherty PS. Serum Epitope Repertoire Analysis Enables Early Detection of Lyme Disease with Improved Sensitivity in an Expandable Multiplex Format. J Clin Microbiol 2021; 59:e01836-20. [PMID: 33148704 PMCID: PMC8111119 DOI: 10.1128/jcm.01836-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
Widely employed diagnostic antibody serology for Lyme disease, known as standard two-tier testing (STTT), exhibits insufficient sensitivity in early Lyme disease, yielding many thousands of false-negative test results each year. Given this problem, we applied serum antibody repertoire analysis (SERA), or next-generation sequencing (NGS)-based serology, to discover IgG and IgM antibody epitope motifs capable of detecting Lyme disease-specific antibodies with high sensitivity and specificity. Iterative motif discovery and bioinformatic analysis of epitope repertoires from subjects with Lyme disease (n = 264) and controls (n = 391) yielded a set of 28 epitope motifs representing 20 distinct IgG antibody epitopes and a set of 38 epitope motifs representing 21 distinct IgM epitopes, which performed equivalently in a large validation cohort of STTT-positive samples. In a second validation set from subjects with clinically defined early Lyme disease (n = 119) and controls (n = 257), the SERA Lyme IgG and IgM assay exhibited significantly improved sensitivity relative to STTT (77% versus 62%; Z-test; P = 0.013) and improved specificity (99% versus 97%). Early Lyme disease subjects exhibited significantly fewer reactive epitopes (Mann-Whitney U test; P < 0.0001) relative to subjects with Lyme arthritis. Thus, SERA Lyme IgG and M panels provided increased accuracy in early Lyme disease in a readily expandable multiplex assay format.
Collapse
Affiliation(s)
| | | | | | - Ewa Lis
- Serimmune Inc., Goleta, California, USA
| | | | - Dane Granger
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester Minnesota, USA
| | - Elitza S Theel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester Minnesota, USA
| | - John Shon
- Serimmune Inc., Goleta, California, USA
| | | | | |
Collapse
|
28
|
Nigrovic LE, Neville DN, Balamuth F, Levas MN, Bennett JE, Kharbanda AB, Thompson AD, Branda JA, Garro AC. Pediatric Lyme Disease Biobank, United States, 2015-2020. Emerg Infect Dis 2020; 26:3099-3101. [PMID: 33219811 PMCID: PMC7706969 DOI: 10.3201/eid2612.200920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In 2015, we founded Pedi Lyme Net, a pediatric Lyme disease research network comprising 8 emergency departments in the United States. Of 2,497 children evaluated at 1 of these sites for Lyme disease, 515 (20.6%) were infected. This network is a unique resource for evaluating new approaches for diagnosing Lyme disease in children.
Collapse
|
29
|
Jayaraman V, Krishna K, Yang Y, Rajasekaran KJ, Ou Y, Wang T, Bei K, Krishnamurthy HK, Rajasekaran JJ, Rai AJ, Green DA. An ultra-high-density protein microarray for high throughput single-tier serological detection of Lyme disease. Sci Rep 2020; 10:18085. [PMID: 33093502 PMCID: PMC7581523 DOI: 10.1038/s41598-020-75036-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 10/09/2020] [Indexed: 11/14/2022] Open
Abstract
Current serological immunoassays have inherent limitations for certain infectious diseases such as Lyme disease, a bacterial infection caused by Borrelia burgdorferi in North America. Here we report a novel method of manufacturing high-density multiplexed protein microarrays with the capacity to detect low levels of antibodies accurately from small blood volumes in a fully automated system. A panel of multiple serological markers for Lyme disease are measured using a protein microarray system, Lyme Immunochip, in a single step but interpreted adhering to the standard two-tiered testing algorithm (enzyme immunoassay followed by Western blot). Furthermore, an enhanced IgM assay was supplemented to improve the test's detection sensitivity for early Lyme disease. With a training cohort (n = 40) and a blinded validation cohort (n = 90) acquired from CDC, the Lyme Immunochip identified a higher proportion of Lyme disease patients than the two-tiered testing (82.4% vs 70.6% in the training set, 66.7% vs 60.0% in the validation set, respectively). Additionally, the Immunochip improved sensitivity to 100% while having a lower specificity of 95.2% using a set of investigational antigens which are being further evaluated with a large cohort of blinded samples from the CDC and Columbia University. This universal microarray platform provides an unprecedented opportunity to resolve a broad range of issues with diagnostic tests, including multiplexing, workflow simplicity, and reduced turnaround time and cost.
Collapse
Affiliation(s)
| | | | | | | | - Yuzheng Ou
- Vibrant America LLC., San Carlos, CA, USA
| | | | - Kang Bei
- Vibrant Sciences LLC., San Carlos, CA, USA
| | | | | | - Alex J Rai
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Daniel A Green
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
30
|
Performance of a Modified Two-Tiered Testing Enzyme Immunoassay Algorithm for Serologic Diagnosis of Lyme Disease in Nova Scotia. J Clin Microbiol 2020; 58:JCM.01841-19. [PMID: 32321781 DOI: 10.1128/jcm.01841-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/07/2020] [Indexed: 12/25/2022] Open
Abstract
Compared to the standard two-tiered testing (STTT) algorithm for Lyme disease serology using an enzyme immunoassay (EIA) followed by Western blotting, data from the United States suggest that a modified two-tiered testing (MTTT) algorithm employing two EIAs has improved sensitivity to detect early localized Borrelia burgdorferi infections without compromising specificity. From 2011 to 2014, in the Canadian province of Nova Scotia, where Lyme disease is hyperendemic, sera submitted for Lyme disease testing were subjected to a whole-cell EIA, followed by C6 EIA and subsequently IgM and/or IgG immunoblots on sera with EIA-positive or equivocal results. Here, we evaluate the effectiveness of the MTTT algorithm compared to the STTT approach in a Nova Scotian population. Retrospective chart reviews were performed on patients testing positive with the whole-cell and C6 EIAs (i.e., the MTTT algorithm). Patients were classified as having Lyme disease if they had a positive STTT result, a negative STTT result but symptoms consistent with Lyme disease, or evidence of seroconversion on paired specimens. Of the 10,253 specimens tested for Lyme disease serology, 9,806 (95.6%) were negative. Of 447 patients who tested positive, 271 charts were available for review, and 227 were classified as patients with Lyme disease. The MTTT algorithm detected 25% more early infections with a specificity of 99.56% (99.41 to 99.68%) compared to the STTT. These are the first Canadian data to show that serology using a whole-cell sonicate EIA followed by a C6 EIA (MTTT) had improved sensitivity for detecting early B. burgdorferi infection with specificity similar to that of two-tiered testing using Western blots.
Collapse
|
31
|
Abstract
The laboratory diagnosis of Lyme disease relies upon serologic testing. A standard or modified two-tiered testing algorithm is used to enhance the accuracy of antibody detection. However, this approach suffers from a lack of sensitivity in early Lyme disease. Ongoing efforts to develop more sensitive antibody detection technologies and other diagnostic approaches are dependent upon the availability of quality-assured biospecimens linked to reliable clinical data. In this issue of the Journal of Clinical Microbiology, Horn et al. (E. J. Horn, G. Dempsey, A. M. Schotthoefer, U. L. Prisco, et al., J Clin Microbiol 58:e00032-20, 2020, https://doi.org/10.1128/JCM.00032-20) described the development of the Lyme Disease Biobank. Clinically categorized case patients with early Lyme disease and healthy controls were identified (without laboratory diagnostic testing) from three sites where Lyme disease is endemic. Subjects provided whole blood and urine, which were processed and stored at a central biorepository. Whole blood, serum, and urine aliquots were prepared and are available to investigators developing laboratory diagnostics for Lyme disease. After obtaining samples, extensive laboratory testing was performed, including serologic and nucleic acid amplification testing for B. burgdorferi and other tick-borne pathogens. Direct detection methods yielded few positive results. Relative to the findings for another commonly used biorepository cohort, the results of this testing demonstrated a low seropositive rate, as determined by standard two-tiered testing. Additionally, relatively few subjects demonstrated seroconversion with testing of convalescent-phase samples. This clinical and serologically defined cohort of samples from Lyme disease and control cases from areas of Lyme disease endemicity offers an additional valuable resource for novel test development that includes alternate specimen types.
Collapse
|
32
|
Horn EJ, Dempsey G, Schotthoefer AM, Prisco UL, McArdle M, Gervasi SS, Golightly M, De Luca C, Evans M, Pritt BS, Theel ES, Iyer R, Liveris D, Wang G, Goldstein D, Schwartz I. The Lyme Disease Biobank: Characterization of 550 Patient and Control Samples from the East Coast and Upper Midwest of the United States. J Clin Microbiol 2020; 58:e00032-20. [PMID: 32102853 PMCID: PMC7269379 DOI: 10.1128/jcm.00032-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/15/2020] [Indexed: 12/21/2022] Open
Abstract
Lyme disease (LD) is an increasing public health problem. Current laboratory testing is insensitive in early infection, the stage at which appropriate treatment is most effective in preventing disease sequelae. The Lyme Disease Biobank (LDB) collects samples from individuals with symptoms consistent with early LD presenting with or without erythema migrans (EM) or an annular, expanding skin lesion and uninfected individuals from areas of endemicity. Samples were collected from 550 participants (298 cases and 252 controls) according to institutional review board-approved protocols and shipped to a centralized biorepository. Testing was performed to confirm the presence of tick-borne pathogens by real-time PCR, and a subset of samples was tested for Borrelia burgdorferi by culture. Serology was performed on all samples using the CDC's standard two-tiered testing algorithm (STTTA) for LD. LD diagnosis was supported by laboratory testing in 82 cases, including positive results by use of the STTTA, PCR, or culture or positive results by two enzyme-linked immunosorbent assays for cases presenting with EM lesion sizes of >5 cm. The remaining 216 cases had negative laboratory testing results. For the controls, 43 were positive by at least one of the tiers and 6 were positive by use of the STTTA. The results obtained with this collection highlight and reinforce the known limitations of serologic testing in early LD, with only 29% of individuals presenting with EM lesion sizes of >5 cm yielding a positive result using the STTTA. Aliquots of whole blood, serum, and urine from clinically characterized patients with and without LD are available to investigators in academia and industry for evaluation or development of novel diagnostic assays for LD, to continue to improve upon currently available methods.
Collapse
Affiliation(s)
| | - George Dempsey
- East Hampton Family Medicine, East Hampton, New York, USA
| | | | - U Lena Prisco
- Vineyard Center for Clinical Research, Martha's Vineyard, Massachusetts, USA
| | | | | | - Marc Golightly
- Department of Pathology, Stony Brook University, Stony Brook, New York, USA
| | - Cathy De Luca
- Department of Pathology, Stony Brook University, Stony Brook, New York, USA
| | - Mel Evans
- Department of Pathology, Stony Brook University, Stony Brook, New York, USA
| | - Bobbi S Pritt
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Elitza S Theel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Radha Iyer
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Dionysios Liveris
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Guiqing Wang
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Don Goldstein
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Ira Schwartz
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
33
|
Modified two-tiered testing algorithm for Lyme disease serology: the Canadian context. Can Commun Dis Rep 2020; 46:125-131. [PMID: 32558809 DOI: 10.14745/ccdr.v46i05a05] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lyme disease (LD) is emerging in many parts of central and eastern Canada. Serological testing is most commonly used to support laboratory diagnosis of LD. Standard two-tiered testing (STTT) for LD involves detection of Borrelia burgdorferi antibodies using an enzyme immunoassay (EIA) followed by IgM and/or IgG immunoblots. However, improved sensitivity has been demonstrated using a modified two-tiered testing (MTTT) approach, in which a second EIA instead of the traditional immunoblot is used. This article summarises the evidence supporting the MTTT versus STTT for laboratory diagnosis of LD in Canada. METHODS Peer reviewed literature on the sensitivity and specificity of different EIAs were compared by Canadian experts in LD diagnostic for MTTT vs STTT in patients with clinical history of LD residing in LD endemic areas or in samples from the LD serum repository. RESULTS The MTTT approach consistently demonstrated improved sensitivity to detect early infections with B. burgdorferi and also maintained high specificity vs STTT. CONCLUSION Diagnostic improvements in sensitivity of LD testing without significant loss of specificity have been consistently reported when MTTT is compared with STTT in studies conducted in highly LD endemic regions. Our working group agrees with the recommendation by the United States Centers for Disease Control that serological testing for LD using MTTT is an acceptable alternative to STTT. This recommendation is contingent on development and implementation of comprehensive validation studies on the performance of MTTT vs STTT within the Canadian context, including evaluation of the test performance in areas of low endemicity for LD.
Collapse
|
34
|
A Fully Automated Multiplex Assay for Diagnosis of Lyme Disease with High Specificity and Improved Early Sensitivity. J Clin Microbiol 2020; 58:JCM.01785-19. [PMID: 32132190 DOI: 10.1128/jcm.01785-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Lyme borreliosis is a tick-borne disease caused by the Borrelia burgdorferi sensu lato complex. Bio-Rad Laboratories has developed a fully automated multiplex bead-based assay for the detection of IgM and IgG antibodies to B. burgdorferi The BioPlex 2200 Lyme Total assay exhibits an improved rate of seropositivity in patients with early Lyme infection. Asymptomatic subjects from endemic and nonendemic origins demonstrated a seroreactivity rate of approximately 4% that was similar to other commercial assays evaluated in this study. Coupled to this result was the observation that the Lyme Total assay retained a high first-tier specificity of 96% while demonstrating a relatively high sensitivity of 91% among a well-characterized CDC Premarketing Lyme serum panel. The Lyme Total assay also performs well under a modified two-tier algorithm (sensitivity, 84.4 to 88.9%; specificity, 98.4 to 99.5%). Furthermore, the new assay is able to readily detect early Lyme infection in patient samples from outside North America.
Collapse
|
35
|
Chou E, Lasek-Nesselquist E, Taubner B, Pilar A, Guignon E, Page W, Lin YP, Cady NC. A fluorescent plasmonic biochip assay for multiplex screening of diagnostic serum antibody targets in human Lyme disease. PLoS One 2020; 15:e0228772. [PMID: 32040491 PMCID: PMC7010292 DOI: 10.1371/journal.pone.0228772] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Lyme disease (LD) diagnosis using the current two-tier algorithm is constrained by low sensitivity for early-stage infection and ambiguity in determining treatment response. We recently developed a protein microarray biochip that measures diagnostic serum antibody targets using grating-coupled fluorescent plasmonics (GC-FP) technology. This strategy requires microliters of blood serum to enable multiplexed biomarker screening on a compact surface and generates quantitative results that can be further processed for diagnostic scoring. The GC-FP biochip was used to detect serum antibodies in patients with active and convalescent LD, as well as various negative controls. We hypothesized that the quantitative, high-sensitivity attributes of the GC-FP approach permit: 1) screening of antibody targets predictive for LD status, and 2) development a diagnostic algorithm that is more sensitive, specific, and informative than the standard ELISA and Western blot assays. Notably, our findings led to a diagnostic algorithm that may be more sensitive than the current standard for detecting early LD, while maintaining 100% specificity. We further show that analysis of relative antibody levels to predict disease status, such as in acute and convalescent stages of infection, is possible with a highly sensitive and quantitative platform like GC-FP. The results from this study add to the urgent conversation regarding better diagnostic strategies and more effective treatment for patients affected by tick-borne disease.
Collapse
Affiliation(s)
- Eunice Chou
- College of Nanoscale Science & Engineering, State University of New York Polytechnic Institute, Albany, New York, United States of America
- College of Medicine, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
| | - Erica Lasek-Nesselquist
- Bioinformatics Core, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Benjamin Taubner
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Engineering, Mercer University, Macon, Georgia, United States of American
| | - Arturo Pilar
- Ciencia, Inc., East Hartford, Connecticut, United States of America
| | - Ernest Guignon
- Ciencia, Inc., East Hartford, Connecticut, United States of America
| | - William Page
- Ciencia, Inc., East Hartford, Connecticut, United States of America
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Science, State University of New York at Albany, Albany, New York, United States of America
| | - Nathaniel C. Cady
- College of Nanoscale Science & Engineering, State University of New York Polytechnic Institute, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
36
|
Brandt KS, Horiuchi K, Biggerstaff BJ, Gilmore RD. Evaluation of Patient IgM and IgG Reactivity Against Multiple Antigens for Improvement of Serodiagnostic Testing for Early Lyme Disease. Front Public Health 2019; 7:370. [PMID: 31867303 PMCID: PMC6906137 DOI: 10.3389/fpubh.2019.00370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/20/2019] [Indexed: 01/22/2023] Open
Abstract
Serologic testing is the standard for laboratory diagnosis and confirmation of Lyme disease. Serodiagnostic assays to detect antibodies against Borrelia burgdorferi, the agent of Lyme borreliosis, are used for detection of infection. However, serologic testing within the first month of infection is less sensitive as patients' antibody responses continue to develop. Previously, we screened several B. burgdorferi in vivo expressed antigens for candidates that elicit early antibody responses in patients with Stage 1 and 2 Lyme disease. We evaluated patient IgM seroreactivity against 6 antigens and found an increase in sensitivity without compromising specificity when compared to current IgM second-tier immunoblot scoring. In this study, we continued the evaluation using a multi-antigen panel to measure IgM plus IgG seroreactivity in these early Lyme disease patients' serum samples. Using two statistical methods for calculating positivity cutoff values, sensitivity was 70 and 84-87%, for early acute and early convalescent Lyme disease patients, respectively. Specificity was 98-100% for healthy non-endemic control patients, and 96-100% for healthy endemic controls depending on the statistical analysis. We conclude that improved serologic testing for early Lyme disease may be achieved by the addition of multiple borrelial antigens that elicit IgM and IgG antibodies early in infection.
Collapse
Affiliation(s)
- Kevin S Brandt
- Division of Vector Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Kalanthe Horiuchi
- Division of Vector Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Brad J Biggerstaff
- Division of Vector Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Robert D Gilmore
- Division of Vector Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| |
Collapse
|
37
|
Arumugam S, Nayak S, Williams T, di Santa Maria FS, Guedes MS, Chaves RC, Linder V, Marques AR, Horn EJ, Wong SJ, Sia SK, Gomes-Solecki M. A Multiplexed Serologic Test for Diagnosis of Lyme Disease for Point-of-Care Use. J Clin Microbiol 2019; 57:e01142-19. [PMID: 31597750 PMCID: PMC6879297 DOI: 10.1128/jcm.01142-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022] Open
Abstract
Single multiplexed assays could replace the standard 2-tiered (STT) algorithm recommended for the laboratory diagnosis of Lyme disease if they perform with a specificity and a sensitivity superior or equal to those of the STT algorithm. We used human serum rigorously characterized to be sera from patients with acute- and convalescent-phase early Lyme disease, Lyme arthritis, and posttreatment Lyme disease syndrome, as well as the necessary controls (n = 241 samples), to select the best of 12 Borrelia burgdorferi proteins to improve our microfluidic assay (mChip-Ld). We then evaluated its serodiagnostic performance in comparison to that of a first-tier enzyme immunoassay and the STT algorithm. We observed that more antigens became positive as Lyme disease progressed from early to late stages. We selected three antigens (3Ag) to include in the mChip-Ld: VlsE and a proprietary synthetic 33-mer peptide (PepVF) to capture sensitivity in all disease stages and OspC for early Lyme disease. With the specificity set at 95%, the sensitivity of the mChip-Ld with 3Ag ranged from 80% (95% confidence interval [CI], 56% to 94%) and 85% (95% CI, 74% to 96%) for two panels of serum from patients with early Lyme disease and was 100% (95% CI, 83% to 100%) for serum from patients with Lyme arthritis; the STT algorithm detected early Lyme disease in the same two panels of serum from patients with early Lyme disease with a sensitivity of 48.5% and 75% and Lyme arthritis in serum from patients with Lyme arthritis with a sensitivity of 100%, and the specificity was 97.5% to 100%. The mChip-Ld platform outperformed the STT algorithm according to sensitivity. These results open the door for the development of a single, rapid, multiplexed diagnostic test for point-of-care use that can be designed to identify the Lyme disease stage.
Collapse
Affiliation(s)
- Siddarth Arumugam
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Samiksha Nayak
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | | | | | - Mariana Soares Guedes
- Immuno Technologies Inc., Memphis, Tennessee, USA
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | - Adriana R Marques
- Lyme Disease Studies Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Susan J Wong
- Wadsworth Center, New York State Department of Health, Axelrod Institute, Albany, New York, USA
| | - Samuel K Sia
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Maria Gomes-Solecki
- Immuno Technologies Inc., Memphis, Tennessee, USA
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
38
|
Mead P, Petersen J, Hinckley A. Updated CDC Recommendation for Serologic Diagnosis of Lyme Disease. MMWR-MORBIDITY AND MORTALITY WEEKLY REPORT 2019; 68:703. [PMID: 31415492 PMCID: PMC6818702 DOI: 10.15585/mmwr.mm6832a4] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Paul Mead
- Division of Vector-borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, CDC
| | - Jeannine Petersen
- Division of Vector-borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, CDC
| | - Alison Hinckley
- Division of Vector-borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, CDC
| |
Collapse
|
39
|
Facente SN, Busch MP, Grebe E, Pilcher CD, Welte A, Rice B, Murphy G. Challenges to the performance of current HIV diagnostic assays and the need for centralized specimen archives: a review of the Consortium for the Evaluation and Performance of HIV Incidence Assays (CEPHIA) repository. Gates Open Res 2019; 3:1511. [PMID: 31460496 PMCID: PMC6706958 DOI: 10.12688/gatesopenres.13048.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2019] [Indexed: 11/20/2022] Open
Abstract
Background: New challenges for diagnosis of HIV infection abound, including the impact on key viral and immunological markers of HIV vaccine studies, pre-exposure prophylaxis usage and breakthrough infections, and very early initiation of anti-retroviral treatment. These challenges impact the performance of current diagnostic assays, and require suitable specimens for development and evaluation. In this article we review and describe an archive developed by the Consortium for the Evaluation and Performance of HIV Incidence Assays (CEPHIA), in order to identify the critical features required to create a centralized specimen archive to support these current and future developments. Review and Findings: We review and describe the CEPHIA repository, a large, consolidated repository comprised of over 31,000 highly-selected plasma samples and other body fluid specimen types, with over 50 purposely designed specimen panels distributed to 19 groups since 2012. The CEPHIA repository provided financial return on investment, supported the standardization of HIV incidence assays, and informed guidance and standards set by the World Health Organization and UNAIDS. Unified data from extensively characterized specimens has allowed this resource to support biomarker discovery, assay optimization, and development of new strategies for estimating duration of HIV infection. Critical features of a high-value repository include 1) extensively-characterized samples, 2) high-quality clinical background data, 3) multiple collaborations facilitating ongoing sample replenishment, and 4) sustained history of high-level specimen utilization. Conclusion: With strong governance and leadership, a large consolidated archive of samples from multiple studies provides investigators and assay developers with easy access to diverse samples designed to address challenges associated with HIV diagnosis, helping to enable improvements to HIV diagnostic assays and ultimately elimination of HIV. Its creation and ongoing utilization should compel funders, institutions and researchers to address and improve upon current approaches to sharing specimens.
Collapse
Affiliation(s)
- Shelley N. Facente
- University of California, San Francisco, San Francisco, CA, 94110, USA
- Vitalant Research Institute (formerly Blood Systems Research Institute), San Francisco, CA, 94118, USA
- Facente Consulting, Richmond, CA, 94804, USA
| | - Michael P. Busch
- University of California, San Francisco, San Francisco, CA, 94110, USA
- Vitalant Research Institute (formerly Blood Systems Research Institute), San Francisco, CA, 94118, USA
| | - Eduard Grebe
- University of California, San Francisco, San Francisco, CA, 94110, USA
- Vitalant Research Institute (formerly Blood Systems Research Institute), San Francisco, CA, 94118, USA
- The South African DST-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch, South Africa
| | | | - Alex Welte
- The South African DST-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch, South Africa
| | - Brian Rice
- London School of Hygiene and Tropical Medicine, London, UK
| | | |
Collapse
|
40
|
Best SJ, Tschaepe MI, Wilson KM. Investigation of the performance of serological assays used for Lyme disease testing in Australia. PLoS One 2019; 14:e0214402. [PMID: 31034492 PMCID: PMC6488061 DOI: 10.1371/journal.pone.0214402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/12/2019] [Indexed: 11/23/2022] Open
Abstract
Spirochaetes of the Borrelia burgdorferi sensu lato complex, which includes those that cause Lyme disease, have not been identified in Australia. Nevertheless, Australian patients exist, some of whom have not left the country, who have symptoms consistent with so-called “chronic Lyme disease”. Blood specimens from these individuals may be tested in Australian laboratories and in specialist laboratories outside Australia and sometimes conflicting results are obtained. Such discrepancies cause the patients to question the results from the Australian laboratories and seek assistance from the Australian Government in clarifying why the discrepancies occur. The aim of this study was to determine the level of agreement in results between commonly used B. burgdorferi serology assays in specimens of known status, and between results reported by different laboratories when they use the same serology assay. Five immunoassays and five immunoblots used in Australia and elsewhere were examined for the detection of IgG antibodies to Borrelia burgdorferi sensu lato. Predominantly, archived specimens previously tested for Lyme disease were used for the study and included 639 contributed by seven clinical laboratories located either in Australia or in areas endemic for Lyme disease. Also included were 308 prospectively collected Australian blood donor specimens. All clinical specimens were tested in all 10 assays whereas blood donor specimens were tested in all immunoassays and a subset was tested on immunoblots. With the exception of one immunoblot, the results between the assays agreed with each other in a known positive specimen population ≥ 77% of the time and in a known negative population, 88% of the time or greater. The test results obtained during the study were different from the participating laboratory’s less than 2% of the time when the same assay was used. These findings suggest that discordance in results between laboratories is more likely due to variation in algorithms or in the use of assays with different sensitivities or specificities rather than conflicting results being reported from the same assay in different laboratories. In the known negative population, specificities of the immunoassays ranged between 87.7% and 99.7%. In Australia’s low prevalence population, this would translate to a positive predictive value of < 4%.
Collapse
Affiliation(s)
- Susan J. Best
- National Serology Reference Laboratory, Division of St Vincent’s Institute of Medical Research, Melbourne, Victoria, Australia
- * E-mail:
| | - Marlene I. Tschaepe
- National Serology Reference Laboratory, Division of St Vincent’s Institute of Medical Research, Melbourne, Victoria, Australia
| | - Kim M. Wilson
- National Serology Reference Laboratory, Division of St Vincent’s Institute of Medical Research, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Brandt KS, Ullmann AJ, Molins CR, Horiuchi K, Biggerstaff BJ, Gilmore RD. Evaluation of in vivo expressed Borrelia burgdorferi antigens for improved IgM serodiagnosis of early Lyme disease. Diagn Microbiol Infect Dis 2018; 93:196-202. [PMID: 30344068 DOI: 10.1016/j.diagmicrobio.2018.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 11/27/2022]
Abstract
Improved serologic tests are needed for accurate diagnosis and proper treatment of early stage Lyme disease. We evaluated the 3 antigens currently used for 2-tiered IgM immunoblot testing (FlaB, OspC, and BmpA) in combination with 3 additional antigens (BBA65, BBA70, and BBA73) and measured the sensitivity and specificity against a serum repository of positive and negative controls. Using 3 statistical methods for positivity cutoff determinations and scoring criteria, we found increased sensitivities for early Lyme disease when 2 of 6 antigens were positive as compared with the 2 of 3 antigen IgM criteria currently used for second-tier immunoblot scoring. Specificities for negative controls were comparable or superior to using 2 of 3 antigens. These results indicate that IgM sensitivity and specificity of serological testing for Lyme disease in the early stages of illness can be improved by employing antigens that target the initial host antibody responses.
Collapse
Affiliation(s)
- Kevin S Brandt
- Division of Vector Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
| | - Amy J Ullmann
- Division of Vector Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
| | - Claudia R Molins
- Division of Vector Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
| | - Kalanthe Horiuchi
- Division of Vector Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
| | - Brad J Biggerstaff
- Division of Vector Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
| | - Robert D Gilmore
- Division of Vector Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America.
| |
Collapse
|
42
|
Identification of Urine Metabolites as Biomarkers of Early Lyme Disease. Sci Rep 2018; 8:12204. [PMID: 30111850 PMCID: PMC6093930 DOI: 10.1038/s41598-018-29713-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023] Open
Abstract
Metabolites detectible in human biofluids are attractive biomarkers for the diagnosis of early Lyme disease (ELD), a vector-borne infectious disease. Urine represents an easily obtained clinical sample that can be applied for diagnostic purposes. However, few studies have explored urine for biomarkers of ELD. In this study, metabolomics approaches were applied to evaluate small molecule metabolites in urine from patients with ELD (n = 14), infectious mononucleosis (n = 14) and healthy controls (n = 14). Metabolic biosignatures for ELD versus healthy controls and ELD versus infectious mononucleosis were generated using untargeted metabolomics. Pathway analyses and metabolite identification revealed the dysregulation of several metabolic processes in ELD as compared to healthy controls or mononucleosis, including metabolism of tryptophan. Linear discriminant analyses demonstrated that individual metabolic biosignatures can correctly discriminate ELD from the other patient groups with accuracies of 71 to 100%. These data provide proof-of-concept for use of urine metabolites as biomarkers for diagnostic classification of ELD.
Collapse
|
43
|
Evaluation of Modified Two-Tiered Testing Algorithms for Lyme Disease Laboratory Diagnosis Using Well-Characterized Serum Samples. J Clin Microbiol 2018; 56:JCM.01943-17. [PMID: 29743307 DOI: 10.1128/jcm.01943-17] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/23/2018] [Indexed: 11/20/2022] Open
Abstract
Standard two-tiered testing (STTT) is the recommended algorithm for laboratory diagnosis of Lyme disease (LD). Several limitations are associated with STTT that include low sensitivity in the early stages of disease, as well as technical complexity and subjectivity associated with second-tier immunoblotting; therefore, modified two-tiered testing (MTTT) algorithms that utilize two sequential first-tier tests and eliminate immunoblotting have been evaluated. Recently, a novel MTTT that uses a VlsE chemiluminescence immunoassay followed by a C6 enzyme immunoassay has been proposed. The purpose of this study was to evaluate the performance of the VlsE/C6 MTTT using well-characterized serum samples. Serum samples from the CDC Lyme Serum Repository were tested using three MTTTs, VlsE/C6, whole-cell sonicate (WCS)/C6, and WCS/VlsE, and three STTTs (immunoblotting preceded by three different first-tier assays: VlsE, C6, and WCS). Significant differences were not observed between the results of the MTTTs assessed; however, the VlsE/C6 MTTT resulted in the highest specificity (100%) when other diseases were tested and the lowest sensitivity (75%) for LD samples. Significant differences were present between the results for various MTTTs and STTTs evaluated. Specifically, all MTTTs resulted in higher sensitivities than the STTTs for all LD groups combined and were significantly more accurate (i.e., higher proportion of correct classifications) for this group, with the exception of the WCS/ViraStripe STTT. Additionally, when other diseases were tested, only the results of the VlsE/C6 MTTT differed significantly from those of the WCS/ViraStripe STTT, with the VlsE/C6 MTTT resulting in a 6.2% higher accuracy. Overall, the VlsE/C6 MTTT offers an additional laboratory testing algorithm for LD with equivalent or enhanced performance compared to that of the other MTTTs and STTTs evaluated in this study.
Collapse
|
44
|
Development of a tick-borne pathogen QPCR panel for detection of Anaplasma, Ehrlichia, Rickettsia, and Lyme disease Borrelia in animals. J Microbiol Methods 2018; 151:83-89. [PMID: 29802869 DOI: 10.1016/j.mimet.2018.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 11/20/2022]
Abstract
Anaplasma spp., Ehrlichia spp., Rickettsia spp., and Lyme disease associated Borrelia spp. are the most common tick-borne pathogens reported to infect human beings worldwide and other animals, such as dogs and horses. In the present study, we developed a broad-coverage SYBR Green QPCR panel consisting of four individual assays for the detection and partial differentiation of the aforementioned pathogens. All assays were optimized to the same thermocycling condition and had a detection limit of 10 copies per reaction. The assays remained sensitive when used to test canine and equine blood DNA samples spiked with known amounts of synthetic DNA (gBlock) control template. The assays were specific, as evidenced by lack of cross reaction to non-target gBlock or other pathogens commonly tested in veterinary diagnostic labs. With appropriate Ct cutoff values for positive samples and negative controls and the melting temperature (TM) ranges established in the present study, the QPCR panel is suitable for accurate, convenient and rapid screening and confirmation of tick-borne pathogens in animals.
Collapse
|
45
|
Tokarz R, Mishra N, Tagliafierro T, Sameroff S, Caciula A, Chauhan L, Patel J, Sullivan E, Gucwa A, Fallon B, Golightly M, Molins C, Schriefer M, Marques A, Briese T, Lipkin WI. A multiplex serologic platform for diagnosis of tick-borne diseases. Sci Rep 2018; 8:3158. [PMID: 29453420 PMCID: PMC5816631 DOI: 10.1038/s41598-018-21349-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/01/2018] [Indexed: 12/16/2022] Open
Abstract
Tick-borne diseases are the most common vector-borne diseases in the United States, with serology being the primary method of diagnosis. We developed the first multiplex, array-based assay for serodiagnosis of tick-borne diseases called the TBD-Serochip. The TBD-Serochip was designed to discriminate antibody responses to 8 major tick-borne pathogens present in the United States, including Anaplasma phagocytophilum, Babesia microti, Borrelia burgdorferi, Borrelia miyamotoi, Ehrlichia chaffeensis, Rickettsia rickettsii, Heartland virus and Powassan virus. Each assay contains approximately 170,000 12-mer linear peptides that tile along the protein sequence of the major antigens from each agent with 11 amino acid overlap. This permits accurate identification of a wide range of specific immunodominant IgG and IgM epitopes that can then be used to enhance diagnostic accuracy and integrate differential diagnosis into a single assay. To test the performance of the TBD-Serochip, we examined sera from patients with confirmed Lyme disease, babesiosis, anaplasmosis, and Powassan virus disease. We identified a wide range of specific discriminatory epitopes that facilitated accurate diagnosis of each disease. We also identified previously undiagnosed infections. Our results indicate that the TBD-Serochip is a promising tool for a differential diagnosis not available with currently employed serologic assays for TBDs.
Collapse
Affiliation(s)
- Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Nischay Mishra
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Teresa Tagliafierro
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Stephen Sameroff
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Adrian Caciula
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Lokendrasingh Chauhan
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jigar Patel
- Roche Sequencing Solutions, Madison, WI, USA
| | | | - Azad Gucwa
- Department of Biology, Farmingdale State College, Farmingdale, NY, USA
| | - Brian Fallon
- Lyme and Tick-borne Diseases Research Center, Columbia University, New York, NY, USA
| | - Marc Golightly
- Department of Pathology, Stony Brook University, New York, NY, USA
| | - Claudia Molins
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Martin Schriefer
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Adriana Marques
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Briese
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
46
|
Mavin S, Evans R, Cornulier T, Bowman AS. The development of an IgG avidity Western blot with potential to differentiate patients with active Lyme borreliosis from those with past infection. J Microbiol Methods 2018; 146:71-76. [PMID: 29421691 DOI: 10.1016/j.mimet.2018.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/02/2018] [Accepted: 02/04/2018] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Current serological methods cannot distinguish active from past infection with Borrelia burgdorferi sensu lato. The aim of this study was to develop an IgG avidity Western blot and assess its potential to differentiate patients with early and late Lyme borreliosis (LB) i.e. active disease, from those infected in the past. METHODS An IgG avidity Western blot was developed. Penalized linear discriminant analysis (PLDA) was employed to compare the Western blot/avidity Western blot profiles of an evaluation panel consisting of 75 sera from patients with early (n = 26) and late (n = 24) LB and past infection (n = 25). The PLDA models produced were used to predict infection stage for 20 well characterised sera from the Centers for Disease Control and Prevention (CDC) Lyme disease serum repository and 112 routine seropositive sera (disease stage unknown), to validate and assess the usefulness of the avidity Western blot/avidity Western blot and PLDA approach. RESULTS PLDA correctly classified 40/51 (78%) of patients when early LB and past infection groups in the evaluation panel were compared. Likewise, when late LB and past infection groups were compared, 34/49 (69%) were correct. The resultant PLDA models correctly predicted infection stage for 18/20 (90%) of the CDC sera, validating the use of the avidity Western blot/avidity Western blot and PLDA approach. When tested with the routine sera, 21/29 (72%) tested with the early LB vs. past infection model were correct but only 32/83 (39%) with the late LB vs. past infection model. Past infection was predicted for 40/112 (35%) of the routine sera, 80% of which correlated with the clinical picture. CONCLUSION The Western blot/avidity Western blot with PLDA approach shows exciting potential for being able to predict disease stage in some patients with LB, which could improve patient management.
Collapse
Affiliation(s)
- Sally Mavin
- Raigmore Hospital, Inverness, UK; University of Aberdeen, Aberdeen, UK.
| | | | | | | |
Collapse
|
47
|
Moore A, Nelson C, Molins C, Mead P, Schriefer M. Current Guidelines, Common Clinical Pitfalls, and Future Directions for Laboratory Diagnosis of Lyme Disease, United States. Emerg Infect Dis 2018; 22. [PMID: 27314832 PMCID: PMC4918152 DOI: 10.3201/eid2207.151694] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the United States, Lyme disease is caused by Borrelia burgdorferi and transmitted to humans by blacklegged ticks. Patients with an erythema migrans lesion and epidemiologic risk can receive a diagnosis without laboratory testing. For all other patients, laboratory testing is necessary to confirm the diagnosis, but proper interpretation depends on symptoms and timing of illness. The recommended laboratory test in the United States is 2-tiered serologic analysis consisting of an enzyme-linked immunoassay or immunofluorescence assay, followed by reflexive immunoblotting. Sensitivity of 2-tiered testing is low (30%-40%) during early infection while the antibody response is developing (window period). For disseminated Lyme disease, sensitivity is 70%-100%. Specificity is high (>95%) during all stages of disease. Use of other diagnostic tests for Lyme disease is limited. We review the rationale behind current US testing guidelines, appropriate use and interpretation of tests, and recent developments in Lyme disease diagnostics.
Collapse
|
48
|
Improved Serodiagnostic Performance for Lyme Disease by Use of Two Recombinant Proteins in Enzyme-Linked Immunosorbent Assay Compared to Standardized Two-Tier Testing. J Clin Microbiol 2017; 55:3046-3056. [PMID: 28768731 PMCID: PMC5625391 DOI: 10.1128/jcm.01004-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/28/2017] [Indexed: 12/25/2022] Open
Abstract
The most reliable test method for the serological confirmation of Lyme disease (LD) is a 2-tier method recommended by the CDC in 1995. The first-tier test is a low-specificity enzyme-linked immunosorbent assay (ELISA), and the second-tier tests are higher-specificity IgG and IgM Western blots. This study describes the selection of two Borrelia burgdorferi recombinant proteins and evaluation of their performance in a simple 1-tier test for the serological confirmation of LD. These two proteins were generated from (i) the full-length dbpA gene combined with the invariable region 6 of the vlsE gene (DbpA/C6) and (b) the full-length ospC gene (OspC). The expressed DbpA/C6 and OspC proteins were useful in detecting anti-Borrelia IgG and IgM antibodies, respectively. A blind study was conducted on a well-characterized panel of 279 human sera from the CDC, comparing ELISAs using these two recombinant antigens with the 2-tier test method. The two methods (DbpA/C6-OspC versus 2-tier test) were equivalent in identifying sera from negative-control subjects (99% and 100% specificity, respectively) and in detecting stage II and III LD patient sera (100% and 100% sensitivity). However, the DbpA/C6-OspC ELISA was markedly better (80% versus 63%) than the 2-tier test method in detecting anti-Borrelia antibodies in stage I LD patients. The findings suggest that these antigens could be used in a simple 1-tier ELISA that is faster to perform, easier to interpret, and less expensive than the 2-tier test method and which is better at detecting Borrelia-specific antibodies in sera from patients with stage I LD.
Collapse
|
49
|
Branda JA, Strle K, Nigrovic LE, Lantos PM, Lepore TJ, Damle NS, Ferraro MJ, Steere AC. Evaluation of Modified 2-Tiered Serodiagnostic Testing Algorithms for Early Lyme Disease. Clin Infect Dis 2017; 64:1074-1080. [PMID: 28329259 DOI: 10.1093/cid/cix043] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/17/2017] [Indexed: 12/21/2022] Open
Abstract
Background The conventional 2-tiered serologic testing protocol for Lyme disease (LD), an enzyme immunoassay (EIA) followed by immunoglobulin M and immunoglobulin G Western blots, performs well in late-stage LD but is insensitive in patients with erythema migrans (EM), the most common manifestation of the illness. Western blots are also complex, difficult to interpret, and relatively expensive. In an effort to improve test performance and simplify testing in early LD, we evaluated several modified 2-tiered testing (MTTT) protocols, which use 2 assays designed as first-tier tests sequentially, without the need of Western blots. Methods The MTTT protocols included (1) a whole-cell sonicate (WCS) EIA followed by a C6 EIA; (2) a WCS EIA followed by a VlsE chemiluminescence immunoassay (CLIA); and (3) a variable major protein-like sequence, expressed (VlsE) CLIA followed by a C6 EIA. Sensitivity was determined using serum from 55 patients with erythema migrans; specificity was determined using serum from 50 patients with other illnesses and 1227 healthy subjects. Results Sensitivity of the various MTTT protocols in patients with acute erythema migrans ranged from 36% (95% confidence interval [CI], 25%-50%) to 54% (95% CI, 42%-67%), compared with 25% (95% CI, 16%-38%) using the conventional protocol (P = .003-0.3). Among control subjects, the 3 MTTT protocols were similarly specific (99.3%-99.5%) compared with conventional 2-tiered testing (99.5% specificity; P = .6-1.0). Conclusions Although there were minor differences in sensitivity and specificity among MTTT protocols, each provides comparable or greater sensitivity in acute EM, and similar specificity compared with conventional 2-tiered testing, obviating the need for Western blots.
Collapse
Affiliation(s)
- John A Branda
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Klemen Strle
- Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Lise E Nigrovic
- Division of Emergency Medicine, Boston Children's Hospital, Massachusetts, USA
| | - Paul M Lantos
- Departments of Medicine and Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Nitin S Damle
- South County Internal Medicine, Wakefield, RI, USA.,Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| | - Mary Jane Ferraro
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Allen C Steere
- Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| |
Collapse
|
50
|
Evaluation of bioMérieux's Dissociated Vidas Lyme IgM II and IgG II as a First-Tier Diagnostic Assay for Lyme Disease. J Clin Microbiol 2017; 55:1698-1706. [PMID: 28330884 DOI: 10.1128/jcm.02407-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/11/2017] [Indexed: 11/20/2022] Open
Abstract
The recommended laboratory diagnostic approach for Lyme disease is a standard two-tiered testing (STTT) algorithm where the first tier is typically an enzyme immunoassay (EIA) that if positive or equivocal is reflexed to Western immunoblotting as the second tier. bioMérieux manufactures one of the most commonly used first-tier EIAs in the United States, the combined IgM/IgG Vidas test (LYT). Recently, bioMérieux launched its dissociated first-tier tests, the Vidas Lyme IgM II (LYM) and IgG II (LYG) EIAs, which use purified recombinant test antigens and a different algorithm than STTT. The dissociated LYM/LYG EIAs were evaluated against the combined LYT EIA using samples from 471 well-characterized Lyme patients and controls. Statistical analyses were conducted to assess the performance of these EIAs as first-tier tests and when used in two-tiered algorithms, including a modified two-tiered testing (MTTT) approach where the second-tier test was a C6 EIA. Similar sensitivities and specificities were obtained for the two testing strategies (LYT versus LYM/LYG) when used as first-tier tests (sensitivity, 83 to 85%; specificity, 85 to 88%) with an observed agreement of 80%. Sensitivities of 68 to 69% and 76 to 77% and specificities of 97% and 98 to 99% resulted when the two EIA strategies were followed by Western immunoblotting and when used in an MTTT, respectively. The MTTT approach resulted in significantly higher sensitivities than did STTT. Overall, the LYM/LYG EIAs performed equivalently to the LYT EIA in test-to-test comparisons or as first-tier assays in STTT or MTTT with few exceptions.
Collapse
|