1
|
Beavis AC, Li Z, Briggs K, Gingerich MC, Wrobel ER, Najera M, An D, Orr-Burks N, Murray J, Patil P, Huang J, Mousa J, Hao L, Hsiang TY, Gale M, Harvey SB, Tompkins SM, Hogan RJ, Lafontaine ER, Jin H, He B. Efficacy of parainfluenza virus 5 (PIV5)-vectored intranasal COVID-19 vaccine as a single dose primer and booster against SARS-CoV-2 variants. J Virol 2025; 99:e0198924. [PMID: 40116505 PMCID: PMC11998504 DOI: 10.1128/jvi.01989-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 03/23/2025] Open
Abstract
Immunization with COVID-19 vaccines has greatly reduced COVID-19-related deaths and hospitalizations from SARS-CoV-2 infection, but waning immunity and the emergence of variants capable of immune escape indicate the need for annual vaccine updates or development of different SARS-CoV-2 vaccine platforms. Parainfluenza virus 5 (PIV5)-vectored intranasal COVID-19 vaccine with the ancestral spike (S) protein (CVXGA1) has been shown to be a promising next-generation COVID-19 vaccine preclinically and is currently being evaluated in humans. This work investigates the immunogenicity and efficacy of CVXGA1 and other PIV5-vectored vaccine candidates expressing additional SARS-CoV-2 nucleoprotein (N) antigen or SARS-CoV-2 variant S proteins of beta, delta, gamma, and omicron variants against homologous and heterologous challenges in hamsters. A single intranasal dose of CVXGA1 induces neutralizing antibodies (nAbs) against SARS-CoV-2 WA1 (ancestral), delta variant, and omicron variant and protects against both homologous and heterologous virus challenges. Compared to mRNA COVID-19 vaccine, neutralizing antibody titers induced by CVXGA1 were well maintained over time. When administered as a booster following two doses of an mRNA COVID-19 vaccine, PIV5-vectored vaccines expressing the S protein from WA1 (CVXGA1), delta, or omicron variants generate higher levels of cross-reactive nAbs than three doses of mRNA vaccine. Our data indicate that an intranasal PIV5-vectored COVID-19 vaccine can serve as a booster vaccine against emerging variants. IMPORTANCE With emerging new variants of concern (VOC), SARS-CoV-2 continues to be a major threat to human health. Approved COVID-19 vaccines have been less effective against these emerging VOCs. This work demonstrates the protective efficacy and strong boosting effect of an intranasal viral-vectored vaccine against SARS-CoV-2 variants in hamsters. Our intranasal vaccine can act as an effective booster for individuals already 58 vaccinated against SARS-CoV-2.
Collapse
Affiliation(s)
- Ashley C. Beavis
- CyanVac LLC, Athens, Georgia, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Zhuo Li
- CyanVac LLC, Athens, Georgia, USA
| | - Kelsey Briggs
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - María Cristina Gingerich
- CyanVac LLC, Athens, Georgia, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Elizabeth R. Wrobel
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | | | - Dong An
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Nichole Orr-Burks
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | | | - Jiachen Huang
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jarrod Mousa
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Linhui Hao
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Tien-Ying Hsiang
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Stephen B. Harvey
- Animal Resources, University of Georgia, Athens, Georgia, USA
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - S. Mark Tompkins
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Robert Jeffrey Hogan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Eric R. Lafontaine
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Hong Jin
- CyanVac LLC, Athens, Georgia, USA
| | - Biao He
- CyanVac LLC, Athens, Georgia, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Schnaubelt AT, Brett-Major DM, Williamson J, Barcal B, Carstens J, Peer A, Wiley M, Broadhurst MJ. SARS-CoV-2 genomic surveillance using self-collected saliva specimens during occupational testing programs. Front Public Health 2025; 13:1360862. [PMID: 40265067 PMCID: PMC12011812 DOI: 10.3389/fpubh.2025.1360862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/25/2025] [Indexed: 04/24/2025] Open
Abstract
Continually emerging SARS-CoV-2 variants pose challenges to clinical and public health interventions, necessitating sustainable approaches to real-time variant monitoring. This case study describes an innovative SARS-CoV-2 screening and surveillance program that demonstrates the utility of sequencing-based variant monitoring using self-collected saliva specimens. We conducted saliva-based SARS-CoV-2 screening in occupational settings in Omaha, Nebraska from December 2021 through November 2022. 8,372 saliva specimens collected from 1,480 participants were tested for SARS-CoV-2 RNA by extraction-free PCR, with 334 positive samples referred for whole-genome sequencing analysis. Program utilization, quality metrics, and sequencing outputs were compared across sites. Specimen quality was high across program settings, demonstrating the suitability of self-collected saliva specimens for PCR and genomic surveillance testing. Virus RNA sequencing successfully determined the variant strain in 83 and 67% of SARS-CoV-2-positive saliva samples collected in two program settings, demonstrating the successful integration of SARS-CoV-2 sequencing for variant determination into screening programs in occupational settings using self-collected saliva with an extraction-free qRT-PCR testing method. We further demonstrate that the sensitivity and efficiency of variant analysis is dependent on the PCR cycle threshold (Ct) cutoff of the diagnostic assay virus gene target. Use of an optimized Ct value cutoff for sequencing referral is recommended. Community-based saliva testing programs can be utilized to enhance variant monitoring, and could be considered in the risk identification of other respiratory infections. This approach offers the advantages of a non-invasive specimen collection, no need for supervised collection by a healthcare worker, supply chain resiliency, distributable access, and scalability.
Collapse
Affiliation(s)
- Andrew T. Schnaubelt
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - David M. Brett-Major
- Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Janet Williamson
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Bailey Barcal
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Julie Carstens
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Ashley Peer
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michael Wiley
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - M. Jana Broadhurst
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
3
|
Bassit L, Bowers HB, Greenleaf M, Sabino C, Lai E, Yu G, Piantadosi A, Wang E, O'Sick W, McLendon K, Sullivan JA, Schinazi RF, Damhorst GL, Lam W, Rao A. Protocol for the creation and characterization of SARS-CoV-2 variant testing panels using remnant clinical samples for diagnostic assay testing. STAR Protoc 2024; 5:103146. [PMID: 38905104 PMCID: PMC11246040 DOI: 10.1016/j.xpro.2024.103146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 06/23/2024] Open
Abstract
The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Alpha variant in 2020 demonstrated the need for reanalysis of diagnostic tests to ensure detection of emerging variants. Here, we present a protocol for creating and characterizing SARS-CoV-2 variant testing panels using remnant clinical samples for diagnostic assay testing. We describe steps for characterizing SARS-CoV-2 remnant clinical samples and preparing them into pools and their use in preparing varying quantities of virus. We then detail procedures for verifying variant detection using the resulting sample panel. For complete details on the use and execution of this protocol, please refer to Rao et al.1,2.
Collapse
Affiliation(s)
- Leda Bassit
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA, USA; Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, USA.
| | - Heather B Bowers
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA, USA; Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Morgan Greenleaf
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA, USA; Georgia CTSA, Emory University School of Medicine, Atlanta, GA, USA
| | - Courtney Sabino
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA, USA; Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Eric Lai
- Personalized Science, San Diego, CA 05403, USA
| | - Grace Yu
- VentureWell, 100 Venture Way, Hadley, MA 01035, USA
| | - Anne Piantadosi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ethan Wang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - William O'Sick
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Emory/Children's Laboratory for Innovative Assay Development, Atlanta, GA, USA
| | - Kaleb McLendon
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Emory/Children's Laboratory for Innovative Assay Development, Atlanta, GA, USA
| | - Julie A Sullivan
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Raymond F Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Gregory L Damhorst
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA, USA; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Wilbur Lam
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Anuradha Rao
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
Damhorst GL, Lin J, Frediani JK, Sullivan JA, Westbrook A, McLendon K, Baugh TJ, O'Sick WH, Roback JD, Piantadosi AL, Waggoner JJ, Bassit L, Rao A, Greenleaf M, O'Neal JW, Swanson S, Pollock NR, Martin GS, Lam WA, Levy JM. Comparison of RT-PCR and antigen test sensitivity across nasopharyngeal, nares, and oropharyngeal swab, and saliva sample types during the SARS-CoV-2 omicron variant. Heliyon 2024; 10:e27188. [PMID: 38500996 PMCID: PMC10945130 DOI: 10.1016/j.heliyon.2024.e27188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/29/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Limited data highlight the need to understand differences in SARS-CoV-2 omicron (B.1.1.529) variant viral load between the gold standard nasopharyngeal (NP) swab, mid-turbinate (MT)/anterior nasal swabs, oropharyngeal (OP) swabs, and saliva. MT, OP, and saliva samples from symptomatic individuals in Atlanta, GA, in January 2022 and longitudinal samples from a small familial cohort were tested by both RT-PCR and ultrasensitive antigen assays. Higher concentrations in the nares were observed in the familial cohort, but a dominant sample type was not found among 39 cases in the cross-sectional cohort. The composite of positive MT or OP assay for both RT-PCR and antigen assay trended toward higher diagnostic yield but did not achieve significant difference. Our data did not identify a singular preferred sample type for SARS-CoV-2 testing, but higher levels of saliva nucleocapsid, a trend toward higher yield of composite OP/MT result, and association of apparent MT or OP predominance with symptoms warrant further study.
Collapse
Affiliation(s)
- Gregory L. Damhorst
- Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Emory University, USA
- Division of Infectious Diseases, Emory University School of Medicine, USA
| | - Jessica Lin
- Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Emory University, USA
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, USA
| | - Jennifer K. Frediani
- Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Emory University, USA
- Nell Hodgson Woodruff School of Nursing, Emory University, USA
| | - Julie A. Sullivan
- Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Emory University, USA
- Department of Pediatrics, Emory University School of Medicine, USA
| | - Adrianna Westbrook
- Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Emory University, USA
- Pediatric Biostatistics Core, Department of Pediatrics, Emory University School of Medicine, USA
| | - Kaleb McLendon
- Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Emory University, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, USA
| | - Tyler J. Baugh
- Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Emory University, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, USA
| | - William H. O'Sick
- Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Emory University, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, USA
| | - John D. Roback
- Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Emory University, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, USA
| | - Anne L. Piantadosi
- Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Emory University, USA
- Division of Infectious Diseases, Emory University School of Medicine, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, USA
| | - Jesse J. Waggoner
- Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Emory University, USA
- Division of Infectious Diseases, Emory University School of Medicine, USA
| | - Leda Bassit
- Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Emory University, USA
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, USA
| | - Anuradha Rao
- Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Emory University, USA
- Department of Pediatrics, Emory University School of Medicine, USA
| | - Morgan Greenleaf
- Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Emory University, USA
| | - Jared W. O'Neal
- Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Emory University, USA
- Emory University School of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, USA
| | - Seegar Swanson
- Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Emory University, USA
| | - Nira R. Pollock
- Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Emory University, USA
- Department of Laboratory Medicine, Boston Children's Hospital, USA
| | - Greg S. Martin
- Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Emory University, USA
- Emory University School of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, USA
| | - Wilbur A. Lam
- Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Emory University, USA
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, USA
- Department of Pediatrics, Emory University School of Medicine, USA
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, USA
| | - Joshua M. Levy
- Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Emory University, USA
- Emory University School of Medicine, Department of Otolaryngology-Head and Neck Surgery, USA
- Sinonasal and Olfaction Program, National Institute on Deafness and Other Communication Disorders, NIDCD/NIH
| |
Collapse
|
5
|
Hedskog C, Rodriguez L, Roychoudhury P, Huang ML, Jerome KR, Hao L, Ireton RC, Li J, Perry JK, Han D, Camus G, Greninger AL, Gale M, Porter DP. Viral Resistance Analyses From the Remdesivir Phase 3 Adaptive COVID-19 Treatment Trial-1 (ACTT-1). J Infect Dis 2023; 228:1263-1273. [PMID: 37466213 PMCID: PMC10629708 DOI: 10.1093/infdis/jiad270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Remdesivir is approved for treatment of coronavirus disease 2019 (COVID-19) in nonhospitalized and hospitalized adult and pediatric patients. Here we present severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resistance analyses from the phase 3 ACTT-1 randomized placebo-controlled trial conducted in adult participants hospitalized with COVID-19. METHODS Swab samples were collected at baseline and longitudinally through day 29. SARS-CoV-2 genomes were sequenced using next-generation sequencing. Phenotypic analysis was conducted directly on participant virus isolates and/or using SARS-CoV-2 subgenomic replicons expressing mutations identified in the Nsp12 target gene. RESULTS Among participants with both baseline and postbaseline sequencing data, emergent Nsp12 substitutions were observed in 12 of 31 (38.7%) and 12 of 30 (40.0%) participants in the remdesivir and placebo arms, respectively. No emergent Nsp12 substitutions in the remdesivir arm were observed in more than 1 participant. Phenotyping showed low to no change in susceptibility to remdesivir relative to wild-type Nsp12 reference for the substitutions tested: A16V (0.8-fold change in EC50), P323L + V792I (2.2-fold), C799F (2.5-fold), K59N (1.0-fold), and K59N + V792I (3.4-fold). CONCLUSIONS The similar rate of emerging Nsp12 substitutions in the remdesivir and placebo arms and the minimal change in remdesivir susceptibility among tested substitutions support a high barrier to remdesivir resistance development in COVID-19 patients. Clinical Trials Registration. NCT04280705.
Collapse
Affiliation(s)
| | | | - Pavitra Roychoudhury
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Meei-Li Huang
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Keith R Jerome
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Linhui Hao
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Renee C Ireton
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Jiani Li
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Dong Han
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Alexander L Greninger
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
6
|
Wadford DA, Baumrind N, Baylis EF, Bell JM, Bouchard EL, Crumpler M, Foote EM, Gilliam S, Glaser CA, Hacker JK, Ledin K, Messenger SL, Morales C, Smith EA, Sevinsky JR, Corbett-Detig RB, DeRisi J, Jacobson K. Implementation of California COVIDNet - a multi-sector collaboration for statewide SARS-CoV-2 genomic surveillance. Front Public Health 2023; 11:1249614. [PMID: 37937074 PMCID: PMC10627185 DOI: 10.3389/fpubh.2023.1249614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/27/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction The SARS-CoV-2 pandemic represented a formidable scientific and technological challenge to public health due to its rapid spread and evolution. To meet these challenges and to characterize the virus over time, the State of California established the California SARS-CoV-2 Whole Genome Sequencing (WGS) Initiative, or "California COVIDNet". This initiative constituted an unprecedented multi-sector collaborative effort to achieve large-scale genomic surveillance of SARS-CoV-2 across California to monitor the spread of variants within the state, to detect new and emerging variants, and to characterize outbreaks in congregate, workplace, and other settings. Methods California COVIDNet consists of 50 laboratory partners that include public health laboratories, private clinical diagnostic laboratories, and academic sequencing facilities as well as expert advisors, scientists, consultants, and contractors. Data management, sample sourcing and processing, and computational infrastructure were major challenges that had to be resolved in the midst of the pandemic chaos in order to conduct SARS-CoV-2 genomic surveillance. Data management, storage, and analytics needs were addressed with both conventional database applications and newer cloud-based data solutions, which also fulfilled computational requirements. Results Representative and randomly selected samples were sourced from state-sponsored community testing sites. Since March of 2021, California COVIDNet partners have contributed more than 450,000 SARS-CoV-2 genomes sequenced from remnant samples from both molecular and antigen tests. Combined with genomes from CDC-contracted WGS labs, there are currently nearly 800,000 genomes from all 61 local health jurisdictions (LHJs) in California in the COVIDNet sequence database. More than 5% of all reported positive tests in the state have been sequenced, with similar rates of sequencing across 5 major geographic regions in the state. Discussion Implementation of California COVIDNet revealed challenges and limitations in the public health system. These were overcome by engaging in novel partnerships that established a successful genomic surveillance program which provided valuable data to inform the COVID-19 public health response in California. Significantly, California COVIDNet has provided a foundational data framework and computational infrastructure needed to respond to future public health crises.
Collapse
Affiliation(s)
- Debra A. Wadford
- California Department of Public Health, Richmond, CA, United States
| | - Nikki Baumrind
- California Department of Public Health, Richmond, CA, United States
| | | | - John M. Bell
- California Department of Public Health, Richmond, CA, United States
| | | | - Megan Crumpler
- Orange County Public Health Laboratory, Santa Ana, CA, United States
| | - Eric M. Foote
- California Department of Public Health, Richmond, CA, United States
| | - Sabrina Gilliam
- California Department of Public Health, Richmond, CA, United States
| | - Carol A. Glaser
- California Department of Public Health, Richmond, CA, United States
| | - Jill K. Hacker
- California Department of Public Health, Richmond, CA, United States
| | - Katya Ledin
- California Department of Public Health, Richmond, CA, United States
| | | | | | | | | | | | - Joseph DeRisi
- University of California, San Francisco, San Francisco, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | | |
Collapse
|
7
|
Yu X, Juraszek J, Rutten L, Bakkers MJG, Blokland S, Melchers JM, van den Broek NJF, Verwilligen AYW, Abeywickrema P, Vingerhoets J, Neefs JM, Bakhash SAM, Roychoudhury P, Greninger A, Sharma S, Langedijk JPM. Convergence of immune escape strategies highlights plasticity of SARS-CoV-2 spike. PLoS Pathog 2023; 19:e1011308. [PMID: 37126534 PMCID: PMC10174534 DOI: 10.1371/journal.ppat.1011308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/11/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
The global spread of the SARS-CoV-2 virus has resulted in emergence of lineages which impact the effectiveness of immunotherapies and vaccines that are based on the early Wuhan isolate. All currently approved vaccines employ the spike protein S, as it is the target for neutralizing antibodies. Here we describe two SARS-CoV-2 isolates with unusually large deletions in the N-terminal domain (NTD) of the spike. Cryo-EM structural analysis shows that the deletions result in complete reshaping of the NTD supersite, an antigenically important region of the NTD. For both spike variants the remodeling of the NTD negatively affects binding of all tested NTD-specific antibodies in and outside of the NTD supersite. For one of the variants, we observed a P9L mediated shift of the signal peptide cleavage site resulting in the loss of a disulfide-bridge; a unique escape mechanism with high antigenic impact. Although the observed deletions and disulfide mutations are rare, similar modifications have become independently established in several other lineages, indicating a possibility to become more dominant in the future. The observed plasticity of the NTD foreshadows its broad potential for immune escape with the continued spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Xiaodi Yu
- Structural & Protein Sciences, Janssen Research and Development, Spring House, Pennsylvania, United States of America
| | - Jarek Juraszek
- Janssen Vaccines & Prevention BV, Leiden, the Netherlands
| | - Lucy Rutten
- Janssen Vaccines & Prevention BV, Leiden, the Netherlands
| | | | - Sven Blokland
- Janssen Vaccines & Prevention BV, Leiden, the Netherlands
| | | | | | | | - Pravien Abeywickrema
- Structural & Protein Sciences, Janssen Research and Development, Spring House, Pennsylvania, United States of America
| | - Johan Vingerhoets
- Janssen Pharmaceutica N.V., Clinical Microbiology and Immunology, Beerse, Belgium
| | - Jean-Marc Neefs
- Janssen Pharmaceutica N.V., Discovery Sciences, Beerse, Belgium
| | - Shah A Mohamed Bakhash
- Department of Laboratory Medicine and Pathology, Virology Division, University of Washington, Seattle, Washington, United States of America
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, Virology Division, University of Washington, Seattle, Washington, United States of America
| | - Alex Greninger
- Department of Laboratory Medicine and Pathology, Virology Division, University of Washington, Seattle, Washington, United States of America
| | - Sujata Sharma
- Structural & Protein Sciences, Janssen Research and Development, Spring House, Pennsylvania, United States of America
| | | |
Collapse
|
8
|
Koen AL, Izu A, Baillie V, Kwatra G, Cutland CL, Fairlie L, Padayachee SD, Dheda K, Barnabas SL, Bhorat QE, Briner C, Ahmed K, Bhikha S, Bhiman JN, du Plessis J, Esmail A, Horne E, Hwa SH, Oommen-Jose A, Lambe T, Laubscher M, Malahleha M, Benade G, McKenzie S, Oelofse S, Patel F, Pillay S, Rhead S, Rodel H, Taoushanis C, Tegally H, Thombrayil A, Villafana TL, Gilbert S, Pollard AJ, Madhi SA. Efficacy of primary series AZD1222 (ChAdOx1 nCoV-19) vaccination against SARS-CoV-2 variants of concern: Final analysis of a randomized, placebo-controlled, phase 1b/2 study in South African adults (COV005). Vaccine 2023; 41:3486-3492. [PMID: 37149443 PMCID: PMC10133888 DOI: 10.1016/j.vaccine.2023.04.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
COVID-19 vaccine efficacy (VE) has been observed to vary against antigenically distinct SARS-CoV-2 variants of concern (VoC). Here we report the final analysis of VE and safety from COV005: a phase 1b/2, multicenter, double-blind, randomized, placebo-controlled study of primary series AZD1222 (ChAdOx1 nCoV-19) vaccination in South African adults aged 18-65 years. South Africa's first, second, and third waves of SARS-CoV-2 infections were respectively driven by the ancestral SARS-CoV-2 virus (wild type, WT), and SARS-CoV-2 Beta and Delta VoCs. VE against asymptomatic and symptomatic infection was 90.6% for WT, 6.7% for Beta and 77.1% for Delta. No cases of severe COVID-19 were documented ahead of unblinding. Safety was consistent with the interim analysis, with no new safety concerns identified. Notably, South Africa's Delta wave occurred ≥ 9 months after primary series vaccination, suggesting that primary series AZD1222 vaccination offers a good durability of protection, potentially due to an anamnestic response. Clinical trial identifier: CT.gov NCT04444674.
Collapse
Affiliation(s)
- Anthonet L Koen
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (Wits-VIDA), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Alane Izu
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (Wits-VIDA), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Vicky Baillie
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (Wits-VIDA), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gaurav Kwatra
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (Wits-VIDA), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Clare L Cutland
- African Leadership in Vaccinology Expertise (ALIVE), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lee Fairlie
- Wits Reproductive Health and HIV Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute, University of Cape Town, South Africa
| | - Shaun L Barnabas
- Family Centre for Research with Ubuntu, Department of Paediatrics, Stellenbosch University, Cape Town, South Africa
| | | | - Carmen Briner
- Perinatal HIV Research Unit, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Khatija Ahmed
- Setshaba Research Centre, Tshwane, South Africa; Faculty of Health Sciences, Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - Sutika Bhikha
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (Wits-VIDA), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jinal N Bhiman
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa; SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Jeanine du Plessis
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (Wits-VIDA), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Aliasgar Esmail
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and University of Cape Town Lung Institute, Cape Town, South Africa
| | - Elizea Horne
- Wits Reproductive Health and HIV Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shi-Hsia Hwa
- Africa Health Research Institute, Durban, South Africa; Division of Infection and Immunity, University College London, London, UK
| | - Aylin Oommen-Jose
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (Wits-VIDA), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK; Chinese Academy of Medical Science, Oxford Institute, University of Oxford, Oxford, UK
| | - Matt Laubscher
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (Wits-VIDA), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mookho Malahleha
- Setshaba Research Centre, Tshwane, South Africa; Synergy Biomed Research Institute, East London, Eastern Cape, South Africa
| | - Gabriella Benade
- Wits Reproductive Health and HIV Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shakeel McKenzie
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (Wits-VIDA), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Suzette Oelofse
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and University of Cape Town Lung Institute, Cape Town, South Africa
| | - Faeezah Patel
- Wits Reproductive Health and HIV Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sureshnee Pillay
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa; Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, Stellenbosch, South Africa
| | - Sarah Rhead
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK
| | - Hylton Rodel
- Africa Health Research Institute, Durban, South Africa; Division of Infection and Immunity, University College London, London, UK
| | - Carol Taoushanis
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (Wits-VIDA), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa; Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, Stellenbosch, South Africa
| | - Asha Thombrayil
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (Wits-VIDA), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tonya L Villafana
- Clinical Development, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Sarah Gilbert
- Nuffield Department of Medicine, University of Oxford, ORCRB, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit (Wits-VIDA), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
9
|
Hao L, Hsiang TY, Dalmat RR, Ireton R, Morton JF, Stokes C, Netland J, Hale M, Thouvenel C, Wald A, Franko NM, Huden K, Chu HY, Sigal A, Greninger AL, Tilles S, Barrett LK, Van Voorhis WC, Munt J, Scobey T, Baric RS, Rawlings DJ, Pepper M, Drain PK, Gale M. Dynamics of SARS-CoV-2 VOC Neutralization and Novel mAb Reveal Protection against Omicron. Viruses 2023; 15:530. [PMID: 36851745 PMCID: PMC9965505 DOI: 10.3390/v15020530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
New variants of SARS-CoV-2 continue to emerge and evade immunity. We isolated SARS-CoV-2 temporally across the pandemic starting with the first emergence of the virus in the western hemisphere and evaluated the immune escape among variants. A clinic-to-lab viral isolation and characterization pipeline was established to rapidly isolate, sequence, and characterize SARS-CoV-2 variants. A virus neutralization assay was applied to quantitate humoral immunity from infection and/or vaccination. A panel of novel monoclonal antibodies was evaluated for antiviral efficacy. We directly compared all variants, showing that convalescence greater than 5 months post-symptom onset from ancestral virus provides little protection against SARS-CoV-2 variants. Vaccination enhances immunity against viral variants, except for Omicron BA.1, while a three-dose vaccine regimen provides over 50-fold enhanced protection against Omicron BA.1 compared to a two-dose. A novel Mab neutralizes Omicron BA.1 and BA.2 variants better than the clinically approved Mabs, although neither can neutralize Omicron BA.4 or BA.5. Thus, the need remains for continued vaccination-booster efforts, with innovation for vaccine and Mab improvement for broadly neutralizing activity. The usefulness of specific Mab applications links with the window of clinical opportunity when a cognate viral variant is present in the infected population.
Collapse
Affiliation(s)
- Linhui Hao
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Tien-Ying Hsiang
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Ronit R. Dalmat
- International Clinical Research Center, Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, WA 98104, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Renee Ireton
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Jennifer F. Morton
- International Clinical Research Center, Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, WA 98104, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Caleb Stokes
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jason Netland
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Malika Hale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Chris Thouvenel
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Anna Wald
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
- Allergy and Infectious Diseases Division, Laboratory Medicine & Pathology, & Epidemiology, University of Washington, Seattle, WA 98195, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Nicholas M. Franko
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Kristen Huden
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Alex Sigal
- Africa Health Research Institute, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Mayville 4058, South Africa
- Centre for the AIDS Program of Research in South Africa, Congella 4013, South Africa
| | - Alex L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Sasha Tilles
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lynn K. Barrett
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Wesley C. Van Voorhis
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jennifer Munt
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27695, USA
| | - Trevor Scobey
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27695, USA
| | - Ralph S. Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27695, USA
| | - David J. Rawlings
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Marion Pepper
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Paul K. Drain
- International Clinical Research Center, Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, WA 98104, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
10
|
SARS-CoV-2 RNA Is Readily Detectable at Least 8 Months after Shedding in an Isolation Facility. mSphere 2022; 7:e0017722. [PMID: 36218344 PMCID: PMC9769851 DOI: 10.1128/msphere.00177-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Environmental monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for research and public health purposes has grown exponentially throughout the coronavirus disease 2019 (COVID-19) pandemic. Monitoring wastewater for SARS-CoV-2 provides early warning signals of virus spread and information on trends in infections at a community scale. Indoor environmental monitoring (e.g., swabbing of surfaces and air filters) to identify potential outbreaks is less common, and the evidence for its utility is mixed. A significant challenge with surface and air filter monitoring in this context is the concern of "relic RNA," noninfectious RNA found in the environment that is not from recently deposited virus. Here, we report detection of SARS-CoV-2 RNA on surfaces in an isolation unit (a university dorm room) for up to 8 months after a COVID-19-positive individual vacated the space. Comparison of sequencing results from the same location over two time points indicated the presence of the entire viral genome, and sequence similarity confirmed a single source of the virus. Our findings highlight the need to develop approaches that account for relic RNA in environmental monitoring. IMPORTANCE Environmental monitoring of SARS-CoV-2 is rapidly becoming a key tool in infectious disease research and public health surveillance. Such monitoring offers a complementary and sometimes novel perspective on population-level incidence dynamics relative to that of clinical studies by potentially allowing earlier, broader, more affordable, less biased, and less invasive identification. Environmental monitoring can assist public health officials and others when deploying resources to areas of need and provides information on changes in the pandemic over time. Environmental surveillance of the genetic material of infectious agents (RNA and DNA) in wastewater became widely applied during the COVID-19 pandemic. There has been less research on other types of environmental samples, such as surfaces, which could be used to indicate that someone in a particular space was shedding virus. One challenge with surface surveillance is that the noninfectious genetic material from a pathogen (e.g., RNA from SARS-CoV-2) may be detected in the environment long after an infected individual has left the space. This study aimed to determine how long SARS-CoV-2 RNA could be detected in a room after a COVID-positive person had been housed there.
Collapse
|
11
|
Smith T, Holm RH, Yeager R, Moore JB, Rouchka EC, Sokoloski KJ, Elliott EM, Talley D, Arora V, Moyer S, Bhatnagar A. Combining Community Wastewater Genomic Surveillance with State Clinical Surveillance: A Framework for SARS-CoV-2 Public Health Practice. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:410-416. [PMID: 35982363 PMCID: PMC9387882 DOI: 10.1007/s12560-022-09531-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/31/2022] [Indexed: 05/16/2023]
Abstract
This study aimed to develop a framework for combining community wastewater surveillance with state clinical surveillance for the confirmation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants within the community and to provide recommendations on how to expand on such research and apply the findings in public health responses. Wastewater samples were collected weekly from 17 geographically resolved locations in Louisville/Jefferson County, Kentucky (USA), from February 10 to December 13, 2021. Genomic surveillance and quantitative reverse transcription PCR (RT-qPCR) platforms were used to screen for SARS-CoV-2 in wastewater, and state clinical surveillance was used for confirmation. The study results highlighted an increased epidemiological value of combining community wastewater genomic surveillance and RT-qPCR with conventional case-auditing methods. The spatial scale and temporal frequency of wastewater sampling provided promising sensitivity and specificity for gaining public health screening insights about SARS-CoV-2 emergence, seeding, and spread in communities. Improved national surveillance systems are needed against future pathogens and variants, and wastewater-based genomic surveillance exhibits great potential when coupled with clinical testing. This paper presents evidence that complementary wastewater and clinical testing are cost-effectively enhanced when used in combination, as they provide a strong tool for a joint public health framework. Future pathogens of interest may be examined in either a targeted fashion or using a more global approach where all pathogens are monitored. This study has also provided novel insights developed from evidence-based public health practices.
Collapse
Affiliation(s)
- Ted Smith
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd., Louisville, KY, 40202, USA
| | - Rochelle H Holm
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd., Louisville, KY, 40202, USA.
| | - Ray Yeager
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd., Louisville, KY, 40202, USA
- Center for Integrative Environmental Health Sciences, School of Medicine, University of Louisville, 500 S. Preston St., Louisville, KY, 40202, USA
| | - Joseph B Moore
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd., Louisville, KY, 40202, USA
- Diabetes and Obesity Center, School of Medicine, University of Louisville, 580 S. Preston St., Louisville, KY, 40202, USA
| | - Eric C Rouchka
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, 319 Abraham Flexner Way, Louisville, KY, 40202, USA
| | - Kevin J Sokoloski
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, 505 S. Hancock St., Louisville, KY, 40202, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, 505 S. Hancock St., Louisville, KY, 40202, USA
| | - Erin M Elliott
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd., Louisville, KY, 40202, USA
- Diabetes and Obesity Center, School of Medicine, University of Louisville, 580 S. Preston St., Louisville, KY, 40202, USA
| | - Daymond Talley
- Morris Forman Water Quality Treatment Center, Louisville/Jefferson County Metropolitan Sewer District, 4522 Algonquin Parkway, Louisville, KY, 40211, USA
| | - Vaneet Arora
- Division of Laboratory Services, Kentucky Department for Public Health, 100 Sower Blvd., Suite 204, Frankfort, KY, 40601, USA
- Department of Pathology and Laboratory Medicine, University of Kentucky, 800 Rose St., Lexington, KY, 40536, USA
| | - Sarah Moyer
- Department of Health Management and System Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray St., Louisville, KY, 40202, USA
- Department of Public Health and Wellness, Louisville-Jefferson County Metro Government, 400 E. Gray St., Louisville, KY, 40202, USA
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd., Louisville, KY, 40202, USA
| |
Collapse
|
12
|
Gregory DA, Trujillo M, Rushford C, Flury A, Kannoly S, San KM, Lyfoung DT, Wiseman RW, Bromert K, Zhou MY, Kesler E, Bivens NJ, Hoskins J, Lin CH, O’Connor DH, Wieberg C, Wenzel J, Kantor RS, Dennehy JJ, Johnson MC. Genetic diversity and evolutionary convergence of cryptic SARS- CoV-2 lineages detected via wastewater sequencing. PLoS Pathog 2022; 18:e1010636. [PMID: 36240259 PMCID: PMC9604950 DOI: 10.1371/journal.ppat.1010636] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/26/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022] Open
Abstract
Wastewater-based epidemiology (WBE) is an effective way of tracking the appearance and spread of SARS-COV-2 lineages through communities. Beginning in early 2021, we implemented a targeted approach to amplify and sequence the receptor binding domain (RBD) of SARS-COV-2 to characterize viral lineages present in sewersheds. Over the course of 2021, we reproducibly detected multiple SARS-COV-2 RBD lineages that have never been observed in patient samples in 9 sewersheds located in 3 states in the USA. These cryptic lineages contained between 4 to 24 amino acid substitutions in the RBD and were observed intermittently in the sewersheds in which they were found for as long as 14 months. Many of the amino acid substitutions in these lineages occurred at residues also mutated in the Omicron variant of concern (VOC), often with the same substitutions. One of the sewersheds contained a lineage that appeared to be derived from the Alpha VOC, but the majority of the lineages appeared to be derived from pre-VOC SARS-COV-2 lineages. Specifically, several of the cryptic lineages from New York City appeared to be derived from a common ancestor that most likely diverged in early 2020. While the source of these cryptic lineages has not been resolved, it seems increasingly likely that they were derived from long-term patient infections or animal reservoirs. Our findings demonstrate that SARS-COV-2 genetic diversity is greater than what is commonly observed through routine SARS-CoV-2 surveillance. Wastewater sampling may more fully capture SARS-CoV-2 genetic diversity than patient sampling and could reveal new VOCs before they emerge in the wider human population.
Collapse
Affiliation(s)
- Devon A. Gregory
- Department of Molecular Microbiology and Immunology, University of Missouri-School of Medicine, Columbia, Missouri, United States of America
| | - Monica Trujillo
- Department of Biological Sciences and Geology, Queensborough Community College of The City University of New York, New York City, New York, United States of America
| | - Clayton Rushford
- Department of Molecular Microbiology and Immunology, University of Missouri-School of Medicine, Columbia, Missouri, United States of America
| | - Anna Flury
- Biology Doctoral Program, The Graduate Center of The City University of New York, New York City, New York, United States of America
| | - Sherin Kannoly
- Biology Department, Queens College of The City University of New York, New York City, New York, United States of America
| | - Kaung Myat San
- Biology Department, Queens College of The City University of New York, New York City, New York, United States of America
| | - Dustin T. Lyfoung
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Roger W. Wiseman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Karen Bromert
- Genomics Technology Core, University of Missouri, Columbia, Missouri, United States of America
| | - Ming-Yi Zhou
- Genomics Technology Core, University of Missouri, Columbia, Missouri, United States of America
| | - Ellen Kesler
- Genomics Technology Core, University of Missouri, Columbia, Missouri, United States of America
| | - Nathan J. Bivens
- Genomics Technology Core, University of Missouri, Columbia, Missouri, United States of America
| | - Jay Hoskins
- Environmental Compliance Division, Engineering Department, Metropolitan St. Louis Sewer District, St. Louis, Missouri, United States of America
| | - Chung-Ho Lin
- Center of Agroforestry, School of Natural Resources, University of Missouri, Columbia, Missouri, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chris Wieberg
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, Missouri, United States of America
| | - Jeff Wenzel
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, Missouri, United States of America
| | - Rose S. Kantor
- Department of Civil and Environmental Engineering, University of California, Berkeley, California, United States of America
| | - John J. Dennehy
- Biology Doctoral Program, The Graduate Center of The City University of New York, New York City, New York, United States of America
- Biology Department, Queens College of The City University of New York, New York City, New York, United States of America
| | - Marc C. Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri-School of Medicine, Columbia, Missouri, United States of America
| |
Collapse
|
13
|
Shrestha L, Lin MJ, Xie H, Mills MG, Mohamed Bakhash SA, Gaur VP, Livingston RJ, Castor J, Bruce EA, Botten JW, Huang ML, Jerome KR, Greninger AL, Roychoudhury P. Clinical Performance Characteristics of the Swift Normalase Amplicon Panel for Sensitive Recovery of Severe Acute Respiratory Syndrome Coronavirus 2 Genomes. J Mol Diagn 2022; 24:963-976. [PMID: 35863699 PMCID: PMC9290336 DOI: 10.1016/j.jmoldx.2022.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/24/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Amplicon-based sequencing methods are central in characterizing the diversity, transmission, and evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but need to be rigorously assessed for clinical utility. Herein, we validated the Swift Biosciences' SARS-CoV-2 Swift Normalase Amplicon Panels using remnant clinical specimens. High-quality genomes meeting our established library and sequence quality criteria were recovered from positive specimens, with 95% limit of detection of 40.08 SARS-CoV-2 copies/PCR. Breadth of genome recovery was evaluated across a range of CT values (11.3 to 36.7; median, 21.6). Of 428 positive samples, 413 (96.5%) generated genomes with <10% unknown bases, with a mean genome coverage of 13,545× ± SD 8382×. No genomes were recovered from PCR-negative specimens (n = 30) or from specimens positive for non-SARS-CoV-2 respiratory viruses (n = 20). Compared with whole-genome shotgun metagenomic sequencing (n = 14) or Sanger sequencing for the spike gene (n = 11), pairwise identity between consensus sequences was 100% in all cases, with highly concordant allele frequencies (R2 = 0.99) between Swift and shotgun libraries. When samples from different clades were mixed at varying ratios, expected variants were detected even in 1:99 mixtures. When deployed as a clinical test, 268 tests were performed in the first 23 weeks, with a median turnaround time of 11 days, ordered primarily for outbreak investigations and infection control.
Collapse
Affiliation(s)
- Lasata Shrestha
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Michelle J Lin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Hong Xie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Margaret G Mills
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Shah A Mohamed Bakhash
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Vinod P Gaur
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Robert J Livingston
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Jared Castor
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Emily A Bruce
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont
| | - Jason W Botten
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Keith R Jerome
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| |
Collapse
|
14
|
Sexton ME, Waggoner JJ, Carmola LR, Nguyen PV, Wang E, Khosravi D, Taz A, Arthur RA, Patel M, Edara VV, Foster SL, Moore KM, Gagne M, Roberts-Torres J, Henry AR, Godbole S, Douek DC, Rouphael N, Suthar MS, Piantadosi A. Rapid Detection and Characterization of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Omicron Variant in a Returning Traveler. Clin Infect Dis 2022; 75:e350-e353. [PMID: 35037030 PMCID: PMC8807227 DOI: 10.1093/cid/ciac032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Indexed: 12/29/2022] Open
Abstract
We describe rapid detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant using targeted spike single-nucleotide polymorphism polymerase chain reaction and viral genome sequencing. This case occurred in a fully vaccinated and boosted returning traveler with mild symptoms who was identified through community surveillance rather than clinical care.
Collapse
Affiliation(s)
- Mary Elizabeth Sexton
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jesse J Waggoner
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ludy R Carmola
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Phuong Vi Nguyen
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ethan Wang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dara Khosravi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Azmain Taz
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Robert A Arthur
- Emory Integrated Computational Core, Emory Integrated Core Facilities, Emory University, Atlanta, Georgia, USA
| | - Mit Patel
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Venkata Viswanadh Edara
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - Stephanie L Foster
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - Kathryn M Moore
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jesmine Roberts-Torres
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sucheta Godbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nadine Rouphael
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Hope Clinic of the Emory Vaccine Center, Emory University School of Medicine, Decatur, Georgia, USA
| | - Mehul S Suthar
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Anne Piantadosi
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Hao L, Hsiang TY, Dalmat RR, Ireton R, Morton J, Stokes C, Netland J, Hale M, Thouvenel C, Wald A, Franko NM, Huden K, Chu H, Greninger A, Tilles S, Barrett LK, Van Voorhis WC, Munt J, Scobey T, Baric RS, Rawlings D, Pepper M, Drain PK, Gale M. Dynamics of SARS-CoV-2 VOC neutralization and novel mAb reveal protection against Omicron. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.08.12.22278720. [PMID: 36032965 PMCID: PMC9413723 DOI: 10.1101/2022.08.12.22278720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To evaluate SARS-CoV-2 variants we isolated SARS-CoV-2 temporally during the pandemic starting with first appearance of virus in the Western hemisphere near Seattle, WA, USA, and isolated each known major variant class, revealing the dynamics of emergence and complete take-over of all new cases by current Omicron variants. We assessed virus neutralization in a first-ever full comparison across variants and evaluated a novel monoclonal antibody (Mab). We found that convalescence greater than 5-months provides little-to-no protection against SARS-CoV-2 variants, vaccination enhances immunity against variants with the exception of Omicron BA.1, and paired testing of vaccine sera against ancestral virus compared to Omicron BA.1 shows that 3-dose vaccine regimen provides over 50-fold enhanced protection against Omicron BA.1 compared to a 2-dose regimen. We also reveal a novel Mab that effectively neutralizes Omicron BA.1 and BA.2 variants over clinically-approved Mabs. Our observations underscore the need for continued vaccination efforts, with innovation for vaccine and Mab improvement, for protection against variants of SARS-CoV-2. Summary We isolated SARS-CoV-2 temporally starting with emergence of virus in the Western hemisphere. Neutralization analyses across all variant lineages show that vaccine-boost regimen provides protection against Omicron BA.1. We reveal a Mab that protects against Omicron BA.1 and BA.2 variants.
Collapse
|
16
|
Replicating RNA platform enables rapid response to the SARS-CoV-2 Omicron variant and elicits enhanced protection in naïve hamsters compared to ancestral vaccine. EBioMedicine 2022; 83:104196. [PMID: 35932641 PMCID: PMC9349033 DOI: 10.1016/j.ebiom.2022.104196] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND In late 2021, the SARS-CoV-2 Omicron (B.1.1.529) variant of concern (VoC) was reported with many mutations in the viral spike protein that were predicted to enhance transmissibility and allow viral escape of neutralizing antibodies. Within weeks of the first report of B.1.1.529, this VoC has rapidly spread throughout the world, replacing previously circulating strains of SARS-CoV-2 and leading to a resurgence in COVID-19 cases even in populations with high levels of vaccine- and infection-induced immunity. Studies have shown that B.1.1.529 is less sensitive to protective antibody conferred by previous infections and vaccines developed against earlier lineages of SARS-CoV-2. The ability of B.1.1.529 to spread even among vaccinated populations has led to a global public health demand for updated vaccines that can confer protection against B.1.1.529. METHODS We rapidly developed a replicating RNA vaccine expressing the B.1.1.529 spike and evaluated immunogenicity in mice and hamsters. We also challenged hamsters with B.1.1.529 and evaluated whether vaccination could protect against viral shedding and replication within respiratory tissue. FINDINGS We found that mice previously immunized with A.1-specific vaccines failed to elevate neutralizing antibody titers against B.1.1.529 following B.1.1.529-targeted boosting, suggesting pre-existing immunity may impact the efficacy of B.1.1.529-targeted boosters. Furthermore, we found that our B.1.1.529-targeted vaccine provides superior protection compared to the ancestral A.1-targeted vaccine in hamsters challenged with the B.1.1.529 VoC after a single dose of each vaccine. INTERPRETATION Our data suggest that B.1.1.529-targeted vaccines may provide superior protection against B.1.1.529 but pre-existing immunity and timing of boosting may need to be considered for optimum protection. FUNDING This research was supported in part by the Intramural Research Program, NIAID/NIH, Washington Research Foundation and by grants 27220140006C (JHE), AI100625, AI151698, and AI145296 (MG).
Collapse
|
17
|
SARS-CoV-2 VOC type and biological sex affect molnupiravir efficacy in severe COVID-19 dwarf hamster model. Nat Commun 2022; 13:4416. [PMID: 35906230 PMCID: PMC9338273 DOI: 10.1038/s41467-022-32045-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
SARS-CoV-2 variants of concern (VOC) have triggered infection waves. Oral antivirals such as molnupiravir promise to improve disease management, but efficacy against VOC delta was questioned and potency against omicron is unknown. This study evaluates molnupiravir against VOC in human airway epithelium organoids, ferrets, and a lethal Roborovski dwarf hamster model of severe COVID-19-like lung injury. VOC were equally inhibited by molnupiravir in cells and organoids. Treatment reduced shedding in ferrets and prevented transmission. Pathogenicity in dwarf hamsters was VOC-dependent and highest for delta, gamma, and omicron. All molnupiravir-treated dwarf hamsters survived, showing reduction in lung virus load from one (delta) to four (gamma) orders of magnitude. Treatment effect size varied in individual dwarf hamsters infected with omicron and was significant in males, but not females. The dwarf hamster model recapitulates mixed efficacy of molnupiravir in human trials and alerts that benefit must be reassessed in vivo as VOC evolve. Molnupiravir was the first orally available SARS-CoV-2 antiviral approved for outpatient use against SARS-CoV-2, but its efficacy against variants of concern, especially delta, was questioned. Here the authors evaluate molnupiravir against variant of concern in numerous models, including human airway epithelium organoids, ferrets and Roborovski dwarf hamsters.
Collapse
|
18
|
Nakwa FL, Thomas R, van Kwawegen A, Ntuli N, Seake K, Kesting SJ, Kamanga NHB, Kgwadi DM, Chami N, Mogajane T, Ondongo-Ezhet C, Maphosa TN, Jones S, Baillie VL, Madhi SA, Velaphi S. An outbreak of infection due to severe acute respiratory corona virus-2 in a neonatal unit from a low and middle income setting. Front Pediatr 2022; 10:933982. [PMID: 35967580 PMCID: PMC9366465 DOI: 10.3389/fped.2022.933982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction The provision of kangaroo mother care (KMC) involving continuous skin-to-skin care (SSC) is an important intervention in neonatal care, which is recommended even when women are infected with severe acute respiratory syndrome coronavirus (SARS-CoV-2). We report on a nosocomial outbreak of SARS-CoV-2 infections in a KMC ward. Methods Contact tracing was conducted following the diagnosis of SARS-CoV-2 in a mother lodging in the KMC ward. All mother-newborn dyads in the KMC and healthcare workers (HCW) were tested for SARS-CoV-2 within 24-72 h of diagnosing the index case. Nasopharyngeal swab samples were obtained and tested from contacts, with a nucleic acid amplification test (NAAT) assay. Next-generation sequencing was done on positive samples. The secondary attack rate (SAR) was calculated assuming that the mother who presented with symptoms was the source of infection. Results Twelve (70.6%) of 17 mothers and 8 (42.1%) of 19 neonates who were in the KMC ward with the index case were found to be positive with SARS-CoV-2. Seven (87.5%) of the 8 neonates who tested positive had mothers who also tested positive. Seventy-five percent (9/12) of the mothers and 62.5% (5/8) of the neonates who tested positive were asymptomatic. Eight (27.6%) of 29 HCW were found to be positive and were all asymptomatic. One neonate died from Acinetobacter baumannii sepsis, and his post-mortem lung histopathology showed features compatible with SARS-CoV-2 pneumonia. The sequencing of 13 specimens, which included 1 mother-newborn dyad, indicated clustering to the same phylogenetic lineage with identical mutations. In assessing for factors contributing to this outbreak, it was found that spaces between beds were less than 1 m and mothers had their meals around the same table at the same time. Conclusion We report on a nosocomial outbreak of SARS-CoV-2 in a KMC ward, affecting a high number of mothers and neonates, and to a lesser extent HCWs. Although it is difficult to point to the index case as the source of this outbreak, as asymptomatic individuals can spread infection, the inadequate adherence to non-pharmaceutical interventions was assessed to have contributed to the spread of infection. This highlights the need for awareness and adherence to mitigation strategies to avoid SARS-CoV-2 outbreaks.
Collapse
Affiliation(s)
- Firdose Lambey Nakwa
- Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Reenu Thomas
- Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Alison van Kwawegen
- Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nandi Ntuli
- Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Karabo Seake
- Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Samantha Jane Kesting
- Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Noela Holo Bertha Kamanga
- Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Dikeledi Maureen Kgwadi
- Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neema Chami
- Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tshiamo Mogajane
- Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Claude Ondongo-Ezhet
- Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Thulisile Nelly Maphosa
- Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephanie Jones
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Vicky Lynne Baillie
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir Ahmed Madhi
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sithembiso Velaphi
- Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
19
|
Lai E, Kennedy EB, Lozach J, Hayashibara K, Davis-Turak J, Becker D, Brzoska P, Cassens T, Diamond E, Gandhi M, Greninger AL, Hajian P, Leonetti NA, Nguyen JM, O’Donovan KMC, Peck T, Ramirez JM, Roychoudhury P, Sandoval E, Wesselman C, Wesselman T, White S, Williams S, Wong D, Yu Y, Creager RS. A Method for Variant Agnostic Detection of SARS-CoV-2, Rapid Monitoring of Circulating Variants, and Early Detection of Emergent Variants Such as Omicron. J Clin Microbiol 2022; 60:e0034222. [PMID: 35766514 PMCID: PMC9297815 DOI: 10.1128/jcm.00342-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/04/2022] [Indexed: 12/13/2022] Open
Abstract
The rapid emergence of SARS-CoV-2 variants raised public health questions concerning the capability of diagnostic tests to detect new strains, the efficacy of vaccines, and how to map the geographical distribution of variants to understand transmission patterns and loads on healthcare resources. Next-generation sequencing (NGS) is the primary method for detecting and tracing new variants, but it is expensive, and it can take weeks before sequence data are available in public repositories. This article describes a customizable reverse transcription PCR (RT-PCR)-based genotyping approach which is significantly less expensive, accelerates reporting, and can be implemented in any lab that performs RT-PCR. Specific single-nucleotide polymorphisms (SNPs) and indels were identified which had high positive-percent agreement (PPA) and negative-percent agreement (NPA) compared to NGS for the major genotypes that circulated through September 11, 2021. Using a 48-marker panel, testing on 1,031 retrospective SARS-CoV-2 positive samples yielded a PPA and NPA ranging from 96.3 to 100% and 99.2 to 100%, respectively, for the top 10 most prevalent World Health Organization (WHO) lineages during that time. The effect of reducing the quantity of panel markers was explored, and a 16-marker panel was determined to be nearly as effective as the 48-marker panel at lineage assignment. Responding to the emergence of Omicron, a genotyping panel was developed which distinguishes Delta and Omicron using four highly specific SNPs. The results demonstrate the utility of the condensed panel to rapidly track the growing prevalence of Omicron across the US in December 2021 and January 2022.
Collapse
Affiliation(s)
- Eric Lai
- Personalized Science, Burlington, Vermont, USA
| | | | | | | | | | | | - Pius Brzoska
- Thermo Fisher Scientific, South San Francisco, California, USA
| | | | - Evan Diamond
- Thermo Fisher Scientific, South San Francisco, California, USA
| | - Manoj Gandhi
- Thermo Fisher Scientific, South San Francisco, California, USA
| | - Alexander L. Greninger
- University of Washington Medical Center, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Pooneh Hajian
- University of Washington Medical Center, Seattle, Washington, USA
| | | | | | | | - Troy Peck
- Helix OpCo, San Diego, California, USA
| | | | - Pavitra Roychoudhury
- University of Washington Medical Center, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | | | | | | | | - Yufei Yu
- Biocomx, Dana Point, California, USA
| | | |
Collapse
|
20
|
Roychoudhury P, Luo S, Hayashibara K, Hajian P, Mills MG, Lozach J, Cassens T, Wendm ST, Arnould I, Becker D, Wesselman T, Davis-Turak J, Creager R, Lai E, Jerome KR, Basler T, Dei Rossi A, Lee W, Greninger AL. Identification of Omicron-Delta Coinfections Using PCR-Based Genotyping. Microbiol Spectr 2022; 10:e0060522. [PMID: 35502920 PMCID: PMC9241779 DOI: 10.1128/spectrum.00605-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | - Pooneh Hajian
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Margaret G. Mills
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | | | | | - Seffir T. Wendm
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Isabel Arnould
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | | | | | | | | | - Eric Lai
- Personalized Science, LLC, South Burlington, Vermont, USA
| | - Keith R. Jerome
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
21
|
Beavis AC, Li Z, Briggs K, Huertas-Díaz MC, Wrobel ER, Najera M, An D, Orr-Burks N, Murray J, Patil P, Huang J, Mousa J, Hao L, Hsiang TY, Gale M, Harvey SB, Tompkins SM, Hogan RJ, Lafontaine ER, Jin H, He B. Efficacy of Parainfluenza Virus 5 (PIV5)-vectored Intranasal COVID-19 Vaccine as a Single Dose Vaccine and as a Booster against SARS-CoV-2 Variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.06.07.495215. [PMID: 35702147 PMCID: PMC9196109 DOI: 10.1101/2022.06.07.495215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Immunization with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines has greatly reduced coronavirus disease 2019 (COVID-19)-related deaths and hospitalizations, but waning immunity and the emergence of variants capable of immune escape indicate the need for novel SARS-CoV-2 vaccines. An intranasal parainfluenza virus 5 (PIV5)-vectored COVID-19 vaccine CVXGA1 has been proven efficacious in animal models and blocks contact transmission of SARS-CoV-2 in ferrets. CVXGA1 vaccine is currently in human clinical trials in the United States. This work investigates the immunogenicity and efficacy of CVXGA1 and other PIV5-vectored vaccines expressing additional antigen SARS-CoV-2 nucleoprotein (N) or SARS-CoV-2 variant spike (S) proteins of beta, delta, gamma, and omicron variants against homologous and heterologous challenges in hamsters. A single intranasal dose of CVXGA1 induces neutralizing antibodies against SARS-CoV-2 WA1 (ancestral), delta variant, and omicron variant and protects against both homologous and heterologous virus challenges. Compared to mRNA COVID-19 vaccine, neutralizing antibody titers induced by CVXGA1 were well-maintained over time. When administered as a boost following two doses of a mRNA COVID-19 vaccine, PIV5-vectored vaccines expressing the S protein from WA1 (CVXGA1), delta, or omicron variants generate higher levels of cross-reactive neutralizing antibodies compared to three doses of a mRNA vaccine. In addition to the S protein, the N protein provides added protection as assessed by the highest body weight gain post-challenge infection. Our data indicates that PIV5-vectored COVID-19 vaccines, such as CVXGA1, can serve as booster vaccines against emerging variants.
Collapse
Affiliation(s)
- Ashley C. Beavis
- CyanVac LLC, Athens, Georgia, 30602
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Zhuo Li
- CyanVac LLC, Athens, Georgia, 30602
| | - Kelsey Briggs
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - María Cristina Huertas-Díaz
- CyanVac LLC, Athens, Georgia, 30602
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Elizabeth R. Wrobel
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | | | - Dong An
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Nichole Orr-Burks
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | | | - Jiachen Huang
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Jarrod Mousa
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Linhui Hao
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
| | - Tien-Ying Hsiang
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
| | - Stephen B. Harvey
- Animal Resources, University of Georgia, Athens, Georgia; Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - S. Mark Tompkins
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Robert Jeffrey Hogan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Eric R. Lafontaine
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Hong Jin
- CyanVac LLC, Athens, Georgia, 30602
| | - Biao He
- CyanVac LLC, Athens, Georgia, 30602
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| |
Collapse
|
22
|
Gregory DA, Trujillo M, Rushford C, Flury A, Kannoly S, San KM, Lyfoung D, Wiseman RW, Bromert K, Zhou MY, Kesler E, Bivens N, Hoskins J, Lin CH, O'Connor DH, Wieberg C, Wenzel J, Kantor RS, Dennehy JJ, Johnson MC. Genetic Diversity and Evolutionary Convergence of Cryptic SARS-CoV-2 Lineages Detected Via Wastewater Sequencing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.06.03.22275961. [PMID: 35677072 PMCID: PMC9176656 DOI: 10.1101/2022.06.03.22275961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Wastewater-based epidemiology (WBE) is an effective way of tracking the appearance and spread of SARS-COV-2 lineages through communities. Beginning in early 2021, we implemented a targeted approach to amplify and sequence the receptor binding domain (RBD) of SARS-COV-2 to characterize viral lineages present in sewersheds. Over the course of 2021, we reproducibly detected multiple SARS-COV-2 RBD lineages that have never been observed in patient samples in 9 sewersheds located in 3 states in the USA. These cryptic lineages contained between 4 to 24 amino acid substitutions in the RBD and were observed intermittently in the sewersheds in which they were found for as long as 14 months. Many of the amino acid substitutions in these lineages occurred at residues also mutated in the Omicron variant of concern (VOC), often with the same substitution. One of the sewersheds contained a lineage that appeared to be derived from the Alpha VOC, but the majority of the lineages appeared to be derived from pre-VOC SARS-COV-2 lineages. Specifically, several of the cryptic lineages from New York City appeared to be derived from a common ancestor that most likely diverged in early 2020. While the source of these cryptic lineages has not been resolved, it seems increasingly likely that they were derived from immunocompromised patients or animal reservoirs. Our findings demonstrate that SARS-COV-2 genetic diversity is greater than what is commonly observed through routine SARS-CoV-2 surveillance. Wastewater sampling may more fully capture SARS-CoV-2 genetic diversity than patient sampling and could reveal new VOCs before they emerge in the wider human population. Author Summary During the COVID-19 pandemic, wastewater-based epidemiology has become an effective public health tool. Because many infected individuals shed SARS-CoV-2 in feces, wastewater has been monitored to reveal infection trends in the sewersheds from which the samples were derived. Here we report novel SARS-CoV-2 lineages in wastewater samples obtained from 3 different states in the USA. These lineages appeared in specific sewersheds intermittently over periods of up to 14 months, but generally have not been detected beyond the sewersheds in which they were initially found. Many of these lineages may have diverged in early 2020. Although these lineages share considerable overlap with each other, they have never been observed in patients anywhere in the world. While the wastewater lineages have similarities with lineages observed in long-term infections of immunocompromised patients, animal reservoirs cannot be ruled out as a potential source.
Collapse
Affiliation(s)
- Devon A Gregory
- Department of Molecular Microbiology and Immunology, University of Missouri-School of Medicine, Columbia, MO, USA
| | - Monica Trujillo
- Department of Biological Sciences and Geology, Queensborough Community College of The City University of New York, Queens, NY, USA
| | - Clayton Rushford
- Department of Molecular Microbiology and Immunology, University of Missouri-School of Medicine, Columbia, MO, USA
| | - Anna Flury
- Biology Doctoral Program, The Graduate Center of The City University of New York, NYC, NY, USA
| | - Sherin Kannoly
- Biology Department, Queens College of The City University of New York, Queens, NY, USA 11367
| | - Kaung Myat San
- Biology Department, Queens College of The City University of New York, Queens, NY, USA 11367
| | - Dustin Lyfoung
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Roger W Wiseman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Karen Bromert
- Genomics Technology Core, University of Missouri, Columbia, MO, USA
| | - Ming-Yi Zhou
- Genomics Technology Core, University of Missouri, Columbia, MO, USA
| | - Ellen Kesler
- Genomics Technology Core, University of Missouri, Columbia, MO, USA
| | - Nathan Bivens
- Genomics Technology Core, University of Missouri, Columbia, MO, USA
| | - Jay Hoskins
- Environmental Compliance Division, Engineering Department, Metropolitan St. Louis Sewer District, St. Louis, MO, USA 63103
| | - Chung-Ho Lin
- Center of Agroforestry, School of Natural Resources, University of Missouri, Columbia, MO, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Chris Wieberg
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO, USA
| | - Jeff Wenzel
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Rose S Kantor
- Department of Civil and Environmental Engineering, University of California, Berkeley, 663 Davis Hall, Berkeley, CA, USA 94720
| | - John J Dennehy
- Biology Doctoral Program, The Graduate Center of The City University of New York, NYC, NY, USA
- Biology Department, Queens College of The City University of New York, Queens, NY, USA 11367
| | - Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri-School of Medicine, Columbia, MO, USA
| |
Collapse
|
23
|
Facciuolo A, Scruten E, Lipsit S, Lang A, Parker Cates Z, Lew JM, Falzarano D, Gerdts V, Kusalik AJ, Napper S. High-resolution analysis of long-term serum antibodies in humans following convalescence of SARS-CoV-2 infection. Sci Rep 2022; 12:9045. [PMID: 35641545 PMCID: PMC9152668 DOI: 10.1038/s41598-022-12032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
Long-term antibody responses to SARS-CoV-2 have focused on responses to full-length spike protein, specific domains within spike, or nucleoprotein. In this study, we used high-density peptide microarrays representing the complete proteome of SARS-CoV-2 to identify binding sites (epitopes) targeted by antibodies present in the blood of COVID-19 resolved cases at 5 months post-diagnosis. Compared to previous studies that evaluated epitope-specific responses early post-diagnosis (< 60 days), we found that epitope-specific responses to nucleoprotein and spike protein have contracted, and that responses to membrane protein have expanded. Although antibody titers to full-length spike and nucleoprotein remain steady over months, taken together our data suggest that the population of epitope-specific antibodies that contribute to this reactivity is dynamic and evolves over time. Further, the spike epitopes bound by polyclonal antibodies in COVID-19 convalescent serum samples aligned with known target sites that can neutralize viral activity suggesting that the maintenance of these antibodies might provide rapid serological immunity. Finally, the most dominant epitopes for membrane protein and spike showed high diagnostic accuracy providing novel biomarkers to refine blood-based antibody tests. This study provides new insights into the specific regions of SARS-CoV-2 targeted by serum antibodies long after infection.
Collapse
Affiliation(s)
- Antonio Facciuolo
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Erin Scruten
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Sean Lipsit
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amanda Lang
- Roy Romanow Provincial Laboratory, Saskatchewan Health Authority, Regina, SK, Canada
| | - Zoë Parker Cates
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jocelyne M Lew
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Anthony J Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Scott Napper
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
24
|
Avetyan D, Hakobyan S, Nikoghosyan M, Ghukasyan L, Khachatryan G, Sirunyan T, Muradyan N, Zakharyan R, Chavushyan A, Hayrapetyan V, Hovhannisyan A, Mohamed Bakhash SA, Jerome KR, Roychoudhury P, Greninger AL, Niazyan L, Davidyants M, Melik-Andreasyan G, Sargsyan S, Nersisyan L, Arakelyan A. Molecular Analysis of SARS-CoV-2 Lineages in Armenia. Viruses 2022; 14:1074. [PMID: 35632815 PMCID: PMC9142918 DOI: 10.3390/v14051074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
The sequencing of SARS-CoV-2 provides essential information on viral evolution, transmission, and epidemiology. In this paper, we performed the whole-genome sequencing of SARS-CoV-2 using nanopore and Illumina sequencing to describe the circulation of the virus lineages in Armenia. The analysis of 145 full genomes identified six clades (19A, 20A, 20B, 20I, 21J, and 21K) and considerable intra-clade PANGO lineage diversity. Phylodynamic and transmission analysis allowed to attribute specific clades as well as infer their importation routes. Thus, the first two waves of positive case increase were caused by the 20B clade, the third peak caused by the 20I (Alpha), while the last two peaks were caused by the 21J (Delta) and 21K (Omicron) variants. The functional analyses of mutations in sequences largely affected epitopes associated with protective HLA loci and did not cause the loss of the signal in PCR tests targeting ORF1ab and N genes as confirmed by RT-PCR. We also compared the performance of nanopore and Illumina short-read sequencing and showed the utility of nanopore sequencing as an efficient and affordable alternative for large-scale molecular epidemiology research. Thus, our paper describes new data on the genomic diversity of SARS-CoV-2 variants in Armenia in the global context of the virus molecular genomic surveillance.
Collapse
Affiliation(s)
- Diana Avetyan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (M.N.); (A.H.)
| | - Siras Hakobyan
- Bioinformatics Group, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia;
- Armenian Bioinformatics Institute, Yerevan 0014, Armenia;
| | - Maria Nikoghosyan
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (M.N.); (A.H.)
- Bioinformatics Group, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia;
| | - Lilit Ghukasyan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
| | - Gisane Khachatryan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (M.N.); (A.H.)
| | - Tamara Sirunyan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (M.N.); (A.H.)
| | - Nelli Muradyan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
| | - Roksana Zakharyan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (M.N.); (A.H.)
| | - Andranik Chavushyan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
- Davidyants Laboratories, Yerevan 0054, Armenia
| | - Varduhi Hayrapetyan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (M.N.); (A.H.)
| | - Anahit Hovhannisyan
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (M.N.); (A.H.)
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia
| | - Shah A. Mohamed Bakhash
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98102, USA; (S.A.M.B.); (K.R.J.); (P.R.); (A.L.G.)
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Keith R. Jerome
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98102, USA; (S.A.M.B.); (K.R.J.); (P.R.); (A.L.G.)
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98102, USA; (S.A.M.B.); (K.R.J.); (P.R.); (A.L.G.)
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98102, USA; (S.A.M.B.); (K.R.J.); (P.R.); (A.L.G.)
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lyudmila Niazyan
- NORK Infection Clinical Hospital, MoH RA, Yerevan 0047, Armenia; (L.N.); (M.D.)
| | - Mher Davidyants
- NORK Infection Clinical Hospital, MoH RA, Yerevan 0047, Armenia; (L.N.); (M.D.)
| | - Gayane Melik-Andreasyan
- National Center of Disease Control and Prevention, Ministry of Health RA, Yerevan 0025, Armenia; (G.M.-A.); (S.S.)
| | - Shushan Sargsyan
- National Center of Disease Control and Prevention, Ministry of Health RA, Yerevan 0025, Armenia; (G.M.-A.); (S.S.)
| | - Lilit Nersisyan
- Armenian Bioinformatics Institute, Yerevan 0014, Armenia;
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Solna, Sweden
| | - Arsen Arakelyan
- Laboratory of Human Genomics, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (L.G.); (G.K.); (T.S.); (N.M.); (R.Z.); (A.C.); (V.H.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (M.N.); (A.H.)
- Bioinformatics Group, Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia;
- Armenian Bioinformatics Institute, Yerevan 0014, Armenia;
| |
Collapse
|
25
|
Adhikari EH, MacDonald L, SoRelle JA, Morse J, Pruszynski J, Spong CY. COVID-19 Cases and Disease Severity in Pregnancy and Neonatal Positivity Associated With Delta (B.1.617.2) and Omicron (B.1.1.529) Variant Predominance. JAMA 2022; 327:1500-1502. [PMID: 35325015 PMCID: PMC8949750 DOI: 10.1001/jama.2022.4356] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study examines infections, illness severity, vaccinations, and early neonatal infections among obstetric patients during the pre-Delta, Delta, and Omicron periods of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Emily H. Adhikari
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas
| | | | - Jeffrey A. SoRelle
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas
| | - Jessica Morse
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas
| | - Jessica Pruszynski
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas
| | - Catherine Y. Spong
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
26
|
Lin MJ, Rachleff VM, Xie H, Shrestha L, Lieberman NAP, Peddu V, Addetia A, Casto AM, Breit N, Mathias PC, Huang ML, Jerome KR, Greninger AL, Roychoudhury P. Host-pathogen dynamics in longitudinal clinical specimens from patients with COVID-19. Sci Rep 2022; 12:5856. [PMID: 35393464 PMCID: PMC8987511 DOI: 10.1038/s41598-022-09752-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/16/2022] [Indexed: 12/30/2022] Open
Abstract
Rapid dissemination of SARS-CoV-2 sequencing data to public repositories has enabled widespread study of viral genomes, but studies of longitudinal specimens from infected persons are relatively limited. Analysis of longitudinal specimens enables understanding of how host immune pressures drive viral evolution in vivo. Here we performed sequencing of 49 longitudinal SARS-CoV-2-positive samples from 20 patients in Washington State collected between March and September of 2020. Viral loads declined over time with an average increase in RT-QPCR cycle threshold of 0.87 per day. We found that there was negligible change in SARS-CoV-2 consensus sequences over time, but identified a number of nonsynonymous variants at low frequencies across the genome. We observed enrichment for a relatively small number of these variants, all of which are now seen in consensus genomes across the globe at low prevalence. In one patient, we saw rapid emergence of various low-level deletion variants at the N-terminal domain of the spike glycoprotein, some of which have previously been shown to be associated with reduced neutralization potency from sera. In a subset of samples that were sequenced using metagenomic methods, differential gene expression analysis showed a downregulation of cytoskeletal genes that was consistent with a loss of ciliated epithelium during infection and recovery. We also identified co-occurrence of bacterial species in samples from multiple hospitalized individuals. These results demonstrate that the intrahost genetic composition of SARS-CoV-2 is dynamic during the course of COVID-19, and highlight the need for continued surveillance and deep sequencing of minor variants.
Collapse
Affiliation(s)
- Michelle J Lin
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, 98102, USA
| | - Victoria M Rachleff
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, 98102, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA, USA
| | - Hong Xie
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, 98102, USA
| | - Lasata Shrestha
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, 98102, USA
| | - Nicole A P Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, 98102, USA
| | - Vikas Peddu
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, 98102, USA
| | - Amin Addetia
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, 98102, USA
| | - Amanda M Casto
- Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, WA, USA
| | - Nathan Breit
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, 98102, USA
| | - Patrick C Mathias
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, 98102, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, 98102, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Keith R Jerome
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, 98102, USA. .,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, 98102, USA. .,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, 98102, USA. .,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
27
|
Performance of COVIDSeq and Swift Normalase Amplicon SARS-CoV-2 Panels for SARS-CoV-2 Genome Sequencing: Practical Guide and Combining FASTQ Strategy. J Clin Microbiol 2022; 60:e0002522. [PMID: 35321551 PMCID: PMC9067563 DOI: 10.1128/jcm.00025-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Gandhi S, Klein J, Robertson AJ, Peña-Hernández MA, Lin MJ, Roychoudhury P, Lu P, Fournier J, Ferguson D, Mohamed Bakhash SAK, Catherine Muenker M, Srivathsan A, Wunder EA, Kerantzas N, Wang W, Lindenbach B, Pyle A, Wilen CB, Ogbuagu O, Greninger AL, Iwasaki A, Schulz WL, Ko AI. De novo emergence of a remdesivir resistance mutation during treatment of persistent SARS-CoV-2 infection in an immunocompromised patient: a case report. Nat Commun 2022; 13:1547. [PMID: 35301314 PMCID: PMC8930970 DOI: 10.1038/s41467-022-29104-y] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/28/2022] [Indexed: 01/18/2023] Open
Abstract
SARS-CoV-2 remdesivir resistance mutations have been generated in vitro but have not been reported in patients receiving treatment with the antiviral agent. We present a case of an immunocompromised patient with acquired B-cell deficiency who developed an indolent, protracted course of SARS-CoV-2 infection. Remdesivir therapy alleviated symptoms and produced a transient virologic response, but her course was complicated by recrudescence of high-grade viral shedding. Whole genome sequencing identified a mutation, E802D, in the nsp12 RNA-dependent RNA polymerase, which was not present in pre-treatment specimens. In vitro experiments demonstrated that the mutation conferred a ~6-fold increase in remdesivir IC50 but resulted in a fitness cost in the absence of remdesivir. Sustained clinical and virologic response was achieved after treatment with casirivimab-imdevimab. Although the fitness cost observed in vitro may limit the risk posed by E802D, this case illustrates the importance of monitoring for remdesivir resistance and the potential benefit of combinatorial therapies in immunocompromised patients with SARS-CoV-2 infection. Here, the authors identify and validate the emergence of a SARS-CoV-2 resistance mutation to Remdesivir, associated with virological recrudesce in an immunocompromised patient with persistent COVID-19.
Collapse
Affiliation(s)
- Shiv Gandhi
- Section of Infectious Diseases, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Jonathan Klein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Alexander J Robertson
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | | | - Michelle J Lin
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Peiwen Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - John Fournier
- Section of Infectious Diseases, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - David Ferguson
- Center for Outcomes Research and Evaluation, Yale New Haven Hospital, New Haven, CT, USA
| | - Shah A K Mohamed Bakhash
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - M Catherine Muenker
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Ariktha Srivathsan
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Elsio A Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Nicholas Kerantzas
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Wenshuai Wang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Brett Lindenbach
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA
| | - Anna Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.,Department of Chemistry, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Craig B Wilen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Onyema Ogbuagu
- Section of Infectious Diseases, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Wade L Schulz
- Center for Outcomes Research and Evaluation, Yale New Haven Hospital, New Haven, CT, USA.,Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Albert I Ko
- Section of Infectious Diseases, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA. .,Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
29
|
Zhao LP, Roychoudhury P, Gilbert P, Schiffer J, Lybrand TP, Payne TH, Randhawa A, Thiebaud S, Mills M, Greninger A, Pyo CW, Wang R, Li R, Thomas A, Norris B, Nelson WC, Jerome KR, Geraghty DE. Mutations in viral nucleocapsid protein and endoRNase are discovered to associate with COVID19 hospitalization risk. Sci Rep 2022; 12:1206. [PMID: 35075180 PMCID: PMC8786941 DOI: 10.1038/s41598-021-04376-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/16/2021] [Indexed: 12/27/2022] Open
Abstract
SARS-CoV-2 is spreading worldwide with continuously evolving variants, some of which occur in the Spike protein and appear to increase viral transmissibility. However, variants that cause severe COVID-19 or lead to other breakthroughs have not been well characterized. To discover such viral variants, we assembled a cohort of 683 COVID-19 patients; 388 inpatients ("cases") and 295 outpatients ("controls") from April to August 2020 using electronically captured COVID test request forms and sequenced their viral genomes. To improve the analytical power, we accessed 7137 viral sequences in Washington State to filter out viral single nucleotide variants (SNVs) that did not have significant expansions over the collection period. Applying this filter led to the identification of 53 SNVs that were statistically significant, of which 13 SNVs each had 3 or more variant copies in the discovery cohort. Correlating these selected SNVs with case/control status, eight SNVs were found to significantly associate with inpatient status (q-values < 0.01). Using temporal synchrony, we identified a four SNV-haplotype (t19839-g28881-g28882-g28883) that was significantly associated with case/control status (Fisher's exact p = 2.84 × 10-11). This haplotype appeared in April 2020, peaked in June, and persisted into January 2021. The association was replicated (OR = 5.46, p-value = 4.71 × 10-12) in an independent cohort of 964 COVID-19 patients (June 1, 2020 to March 31, 2021). The haplotype included a synonymous change N73N in endoRNase, and three non-synonymous changes coding residues R203K, R203S and G204R in the nucleocapsid protein. This discovery points to the potential functional role of the nucleocapsid protein in triggering "cytokine storms" and severe COVID-19 that led to hospitalization. The study further emphasizes a need for tracking and analyzing viral sequences in correlations with clinical status.
Collapse
Affiliation(s)
- Lue Ping Zhao
- Division of Public Health Sciences, Fred Hutch Cancer Center, Seattle, WA, 98109, USA.
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter Gilbert
- Division of Public Health Sciences, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
| | - Joshua Schiffer
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
| | - Terry P Lybrand
- Quintepa Computing LLC, Nashville, TN, USA
- Department of Chemistry, Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Thomas H Payne
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - April Randhawa
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
| | - Sara Thiebaud
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
| | - Margaret Mills
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
| | - Alex Greninger
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
| | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
- Scisco Genetics Inc., Seattle, WA, 98102, USA
| | - Ruihan Wang
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
- Scisco Genetics Inc., Seattle, WA, 98102, USA
| | - Renyu Li
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
| | - Alexander Thomas
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
| | - Brandon Norris
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
- Scisco Genetics Inc., Seattle, WA, 98102, USA
| | - Wyatt C Nelson
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
- Scisco Genetics Inc., Seattle, WA, 98102, USA
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA, 98109, USA.
- Scisco Genetics Inc., Seattle, WA, 98102, USA.
| |
Collapse
|
30
|
Stankiewicz Karita HC, Dong TQ, Johnston C, Neuzil KM, Paasche-Orlow MK, Kissinger PJ, Bershteyn A, Thorpe LE, Deming M, Kottkamp A, Laufer M, Landovitz RJ, Luk A, Hoffman R, Roychoudhury P, Magaret CA, Greninger AL, Huang ML, Jerome KR, Wener M, Celum C, Chu HY, Baeten JM, Wald A, Barnabas RV, Brown ER. Trajectory of Viral RNA Load Among Persons With Incident SARS-CoV-2 G614 Infection (Wuhan Strain) in Association With COVID-19 Symptom Onset and Severity. JAMA Netw Open 2022; 5:e2142796. [PMID: 35006245 PMCID: PMC8749477 DOI: 10.1001/jamanetworkopen.2021.42796] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
IMPORTANCE The SARS-CoV-2 viral trajectory has not been well characterized in incident infections. These data are needed to inform natural history, prevention practices, and therapeutic development. OBJECTIVE To characterize early SARS-CoV-2 viral RNA load (hereafter referred to as viral load) in individuals with incident infections in association with COVID-19 symptom onset and severity. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study was a secondary data analysis of a remotely conducted study that enrolled 829 asymptomatic community-based participants recently exposed (<96 hours) to persons with SARS-CoV-2 from 41 US states from March 31 to August 21, 2020. Two cohorts were studied: (1) participants who were SARS-CoV-2 negative at baseline and tested positive during study follow-up, and (2) participants who had 2 or more positive swabs during follow-up, regardless of the initial (baseline) swab result. Participants collected daily midturbinate swab samples for SARS-CoV-2 RNA detection and maintained symptom diaries for 14 days. EXPOSURE Laboratory-confirmed SARS-CoV-2 infection. MAIN OUTCOMES AND MEASURES The observed SARS-CoV-2 viral load among incident infections was summarized, and piecewise linear mixed-effects models were used to estimate the characteristics of viral trajectories in association with COVID-19 symptom onset and severity. RESULTS A total of 97 participants (55 women [57%]; median age, 37 years [IQR, 27-52 years]) developed incident infections during follow-up. Forty-two participants (43%) had viral shedding for 1 day (median peak viral load cycle threshold [Ct] value, 38.5 [95% CI, 38.3-39.0]), 18 (19%) for 2 to 6 days (median Ct value, 36.7 [95% CI, 30.2-38.1]), and 31 (32%) for 7 days or more (median Ct value, 18.3 [95% CI, 17.4-22.0]). The cycle threshold value has an inverse association with viral load. Six participants (6%) had 1 to 6 days of viral shedding with censored duration. The peak mean (SD) viral load was observed on day 3 of shedding (Ct value, 33.8 [95% CI, 31.9-35.6]). Based on the statistical models fitted to 129 participants (60 men [47%]; median age, 38 years [IQR, 25-54 years]) with 2 or more SARS-CoV-2-positive swab samples, persons reporting moderate or severe symptoms tended to have a higher peak mean viral load than those who were asymptomatic (Ct value, 23.3 [95% CI, 22.6-24.0] vs 30.7 [95% CI, 29.8-31.4]). Mild symptoms generally started within 1 day of peak viral load, and moderate or severe symptoms 2 days after peak viral load. All 535 sequenced samples detected the G614 variant (Wuhan strain). CONCLUSIONS AND RELEVANCE This cohort study suggests that having incident SARS-CoV-2 G614 infection was associated with a rapid viral load peak followed by slower decay. COVID-19 symptom onset generally coincided with peak viral load, which correlated positively with symptom severity. This longitudinal evaluation of the SARS-CoV-2 G614 with frequent molecular testing serves as a reference for comparing emergent viral lineages to inform clinical trial designs and public health strategies to contain the spread of the virus.
Collapse
Affiliation(s)
| | - Tracy Q. Dong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Christine Johnston
- Division of Allergy and Infectious Diseases, University of Washington, Seattle
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle
| | - Kathleen M. Neuzil
- Department of Medicine, University of Maryland School of Medicine, Baltimore
| | - Michael K. Paasche-Orlow
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Medicine, Boston Medical Center, Boston, Massachusetts
| | | | - Anna Bershteyn
- Department of Population Health, New York University Grossman School of Medicine, New York
| | - Lorna E. Thorpe
- Department of Population Health, New York University Grossman School of Medicine, New York
| | - Meagan Deming
- Department of Medicine, University of Maryland School of Medicine, Baltimore
| | - Angelica Kottkamp
- Department of Medicine, New York University Grossman School of Medicine, New York
| | - Miriam Laufer
- Department of Medicine, University of Maryland School of Medicine, Baltimore
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | | | - Alfred Luk
- Department of Medicine, Tulane University, New Orleans, Louisiana
| | - Risa Hoffman
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle
| | - Craig A. Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle
| | - Alexander L. Greninger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle
| | - Meei-Li Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle
| | - Mark Wener
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle
- Division of Rheumatology, University of Washington, Seattle
| | - Connie Celum
- Division of Allergy and Infectious Diseases, University of Washington, Seattle
- Department of Global Health, University of Washington, Seattle
- Department of Epidemiology, University of Washington, Seattle
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle
- Department of Global Health, University of Washington, Seattle
- Department of Epidemiology, University of Washington, Seattle
| | - Jared M. Baeten
- Division of Allergy and Infectious Diseases, University of Washington, Seattle
- Department of Global Health, University of Washington, Seattle
- Department of Epidemiology, University of Washington, Seattle
| | - Anna Wald
- Division of Allergy and Infectious Diseases, University of Washington, Seattle
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle
- Department of Epidemiology, University of Washington, Seattle
| | - Ruanne V. Barnabas
- Division of Allergy and Infectious Diseases, University of Washington, Seattle
- Department of Global Health, University of Washington, Seattle
- Department of Epidemiology, University of Washington, Seattle
| | - Elizabeth R. Brown
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
31
|
Greninger AL, Zerr DM. NGSocomial Infections: High-Resolution Views of Hospital-Acquired Infections Through Genomic Epidemiology. J Pediatric Infect Dis Soc 2021; 10:S88-S95. [PMID: 34951469 PMCID: PMC8755322 DOI: 10.1093/jpids/piab074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hospital outbreak investigations are high-stakes epidemiology. Contacts between staff and patients are numerous; environmental and community exposures are plentiful; and patients are highly vulnerable. Having the best data is paramount to understanding an outbreak in order to stop ongoing transmission and prevent future outbreaks. In the past 5 years, the high-resolution view of transmission offered by analyzing pathogen whole-genome sequencing (WGS) is increasingly part of hospital outbreak investigations. Concerns over speed and actionability, assay validation, liability, cost, and payment models lead to further opportunities for work in this area. Now accelerated by funding for COVID-19, the use of genomics in hospital outbreak investigations has firmly moved from the academic literature to more quotidian operations, with associated concerns involving regulatory affairs, data integration, and clinical interpretation. This review details past uses of WGS data in hospital-acquired infection outbreaks as well as future opportunities to increase its utility and growth in hospital infection prevention.
Collapse
Affiliation(s)
- Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Corresponding Author: Alexander L. Greninger MD, PhD, MS, MPhil, 1616 Eastlake Ave East Suite 320, Seattle, WA 98102, USA. E-mail:
| | - Danielle M Zerr
- Department of Pediatrics, University of Washington Medical Center, Seattle, Washington, USA,Division of Infectious Diseases, Seattle Children’s Hospital, Seattle, Washington, USA
| |
Collapse
|
32
|
Gandhi S, Klein J, Robertson A, Peña-Hernández MA, Lin MJ, Roychoudhury P, Lu P, Fournier J, Ferguson D, Mohamed Bakhash SA, Catherine Muenker M, Srivathsan A, Wunder EA, Kerantzas N, Wang W, Lindenbach B, Pyle A, Wilen CB, Ogbuagu O, Greninger AL, Iwasaki A, Schulz WL, Ko AI. De novo emergence of a remdesivir resistance mutation during treatment of persistent SARS-CoV-2 infection in an immunocompromised patient: A case report. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.11.08.21266069. [PMID: 34909781 PMCID: PMC8669848 DOI: 10.1101/2021.11.08.21266069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
SARS-CoV-2 remdesivir resistance mutations have been generated in vitro but have not been reported in patients receiving treatment with the antiviral agent. We present a case of an immunocompromised patient with acquired B-cell deficiency who developed an indolent, protracted course of SARS-CoV-2 infection. Remdesivir therapy alleviated symptoms and produced a transient virologic response, but her course was complicated by recrudescence of high-grade viral shedding. Whole genome sequencing identified a mutation, E802D, in the nsp12 RNA-dependent RNA polymerase, which was not present in pre-treatment specimens. In vitro experiments demonstrated that the mutation conferred a ∼6-fold increase in remdesivir IC50 but resulted in a fitness cost in the absence of remdesivir. Sustained clinical and virologic response was achieved after treatment with casirivimab-imdevimab. Although the fitness cost observed in vitro may limit the risk posed by E802D, this case illustrates the importance of monitoring for remdesivir resistance and the potential benefit of combinatorial therapies in immunocompromised patients with SARS-CoV-2 infection.
Collapse
|
33
|
Whole-Genome Sequencing of SARS-CoV-2: Assessment of the Ion Torrent AmpliSeq Panel and Comparison with the Illumina MiSeq ARTIC Protocol. J Clin Microbiol 2021; 59:e0064921. [PMID: 34550806 PMCID: PMC8601232 DOI: 10.1128/jcm.00649-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Fast and effective methods are needed for sequencing of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome to track genetic mutations and to identify new and emerging variants during the ongoing pandemic. The objectives were to assess the performance of the SARS-CoV-2 AmpliSeq research panel and S5 plug-in analysis tools for whole-genome sequencing analysis of SARS-CoV-2 and to compare the results with those obtained with the MiSeq-based ARTIC analysis pipeline, using metrics such as depth, coverage, and concordance of single-nucleotide variant (SNV) calls. A total of 191 clinical specimens and a single cultured isolate were extracted and sequenced with AmpliSeq technology and analysis tools. Of the 191 clinical specimens, 83 (with threshold cycle [CT] values of 15.58 to 32.54) were also sequenced using an Illumina MiSeq-based method with the ARTIC analysis pipeline, for direct comparison. A total of 176 of the 191 clinical specimens sequenced on the S5XL system and prepared using the SARS-CoV-2 research panel had nearly complete coverage (>98%) of the viral genome, with an average depth of 5,031×. Similar coverage levels (>98%) were observed for 81/83 primary specimens that were sequenced with both methods tested. The sample with the lowest viral load (CT value of 32.54) achieved 89% coverage using the MiSeq method and failed to sequence with the AmpliSeq method. Consensus sequences produced by each method were identical for 81/82 samples in areas of equal coverage, with a single difference present in one sample. The AmpliSeq approach is as effective as the Illumina-based method using ARTIC v3 amplification for sequencing SARS-CoV-2 directly from patient specimens across a range of viral loads (CT values of 15.56 to 32.54 [median, 22.18]). The AmpliSeq workflow is very easily automated with the Ion Chef and S5 instruments and requires less training and experience with next-generation sequencing sample preparation than the Illumina workflow.
Collapse
|
34
|
Cox RM, Wolf JD, Lieber CM, Sourimant J, Lin MJ, Babusis D, DuPont V, Chan J, Barrett KT, Lye D, Kalla R, Chun K, Mackman RL, Ye C, Cihlar T, Martinez-Sobrido L, Greninger AL, Bilello JP, Plemper RK. Oral prodrug of remdesivir parent GS-441524 is efficacious against SARS-CoV-2 in ferrets. Nat Commun 2021; 12:6415. [PMID: 34741049 PMCID: PMC8571282 DOI: 10.1038/s41467-021-26760-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023] Open
Abstract
Remdesivir is an antiviral approved for COVID-19 treatment, but its wider use is limited by intravenous delivery. An orally bioavailable remdesivir analog may boost therapeutic benefit by facilitating early administration to non-hospitalized patients. This study characterizes the anti-SARS-CoV-2 efficacy of GS-621763, an oral prodrug of remdesivir parent nucleoside GS-441524. Both GS-621763 and GS-441524 inhibit SARS-CoV-2, including variants of concern (VOC) in cell culture and human airway epithelium organoids. Oral GS-621763 is efficiently converted to plasma metabolite GS-441524, and in lungs to the triphosphate metabolite identical to that generated by remdesivir, demonstrating a consistent mechanism of activity. Twice-daily oral administration of 10 mg/kg GS-621763 reduces SARS-CoV-2 burden to near-undetectable levels in ferrets. When dosed therapeutically against VOC P.1 gamma γ, oral GS-621763 blocks virus replication and prevents transmission to untreated contact animals. These results demonstrate therapeutic efficacy of a much-needed orally bioavailable analog of remdesivir in a relevant animal model of SARS-CoV-2 infection. Remdesivir is an approved antiviral treatment for COVID-19, but it needs to be administered intravenously. Here, Cox et al. show that GS-621763, a prodrug of remdesivir parent nucleoside GS-441524 has good oral bioavailability and inhibits SARS-CoV-2 and variants of concerns in ferrets.
Collapse
Affiliation(s)
- Robert M Cox
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Josef D Wolf
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Carolin M Lieber
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Julien Sourimant
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Michelle J Lin
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | - Julie Chan
- Gilead Sciences Inc, Foster City, CA, USA
| | | | - Diane Lye
- Gilead Sciences Inc, Foster City, CA, USA
| | - Rao Kalla
- Gilead Sciences Inc, Foster City, CA, USA
| | - Kwon Chun
- Gilead Sciences Inc, Foster City, CA, USA
| | | | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | | | - Alexander L Greninger
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Richard K Plemper
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
35
|
Clinical and Infection Prevention Applications of SARS-CoV-2 Genotyping: an IDSA/ASM Consensus Review Document. J Clin Microbiol 2021; 60:e0165921. [PMID: 34731022 PMCID: PMC8769737 DOI: 10.1128/jcm.01659-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged into a world of maturing pathogen genomics, with more than 2 million genomes sequenced at the time of writing. The rise of more transmissible variants of concern that impact vaccine and therapeutic effectiveness has led to widespread interest in SARS-CoV-2 evolution. Clinicians are also eager to take advantage of the information provided by SARS-CoV-2 genotyping beyond surveillance purposes. Here, we review the potential role of SARS-CoV-2 genotyping in clinical care. The review covers clinical use cases for SARS-CoV-2 genotyping, methods of SARS-CoV-2 genotyping, assay validation and regulatory requirements, and clinical reporting for laboratories, as well as emerging issues in clinical SARS-CoV-2 sequencing. While clinical uses of SARS-CoV-2 genotyping are currently limited, rapid technological change along with a growing ability to interpret variants in real time foretells a growing role for SARS-CoV-2 genotyping in clinical care as continuing data emerge on vaccine and therapeutic efficacy.
Collapse
|
36
|
Greninger AL, Dien Bard J, Colgrove RC, Graf EH, Hanson KE, Hayden MK, Humphries RM, Lowe CF, Miller MB, Pillai DR, Rhoads DD, Yao JD, Lee FM. Clinical and Infection Prevention Applications of SARS-CoV-2 Genotyping: An IDSA/ASM Consensus Review Document. Clin Infect Dis 2021; 74:1496-1502. [PMID: 34731234 PMCID: PMC8689887 DOI: 10.1093/cid/ciab761] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 11/12/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged into a world of maturing pathogen genomics, with >2 million genomes sequenced at this writing. The rise of more transmissible variants of concern that affect vaccine and therapeutic effectiveness has led to widespread interest in SARS-CoV-2 evolution. Clinicians are also eager to take advantage of the information provided by SARS-CoV-2 genotyping beyond surveillance purposes. Here, we review the potential role of SARS-CoV-2 genotyping in clinical care. The review covers clinical use cases for SARS-CoV-2 genotyping, methods of SARS-CoV-2 genotyping, assay validation and regulatory requirements, clinical reporting for laboratories, and emerging issues in clinical SARS-CoV-2 sequencing. While clinical uses of SARS-CoV-2 genotyping are currently limited, rapid technological change along with a growing ability to interpret variants in real time foretell a growing role for SARS-CoV-2 genotyping in clinical care as continuing data emerge on vaccine and therapeutic efficacy.
Collapse
Affiliation(s)
- Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jennifer Dien Bard
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert C Colgrove
- Division of Infectious Diseases, Mount Auburn Hospital, Harvard School of Medicine
| | - Erin H Graf
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, USA
| | - Kimberly E Hanson
- Department of Internal Medicine and Pathology, University of Utah, Salt Lake City, UT, USA
| | - Mary K Hayden
- Division of Infectious Diseases, Department of Medicine and Division of Laboratory Medicine, Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| | - Romney M Humphries
- Division of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher F Lowe
- Division of Medical Microbiology and Virology, Providence Health Care, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Melissa B Miller
- Clinical Microbiology Laboratory, University of North Carolina Hospitals and Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Dylan R Pillai
- Department of Pathology and Laboratory Medicine and Microbiology & Infectious Diseases, University of Calgary, Alberta, Canada
| | - Daniel D Rhoads
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Joseph D Yao
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Francesca M Lee
- Division of Infectious Diseases and Geographic Medicine, Department of Pathology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
37
|
Perchetti GA, Zhu H, Mills MG, Shrestha L, Wagner C, Bakhash SM, Lin MJ, Xie H, Huang M, Mathias P, Bedford T, Jerome KR, Greninger AL, Roychoudhury P. Specific allelic discrimination of N501Y and other SARS-CoV-2 mutations by ddPCR detects B.1.1.7 lineage in Washington State. J Med Virol 2021; 93:5931-5941. [PMID: 34170525 PMCID: PMC8427099 DOI: 10.1002/jmv.27155] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Real-time epidemiological tracking of variants of concern (VOCs) can help limit the spread of more contagious forms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), such as those containing the N501Y mutation. Typically, genetic sequencing is required to be able to track VOCs in real-time. However, sequencing can take time and may not be accessible in all laboratories. Genotyping by RT-ddPCR offers an alternative to rapidly detect VOCs through discrimination of specific alleles such as N501Y, which is associated with increased transmissibility and virulence. Here we describe the first cases of the B.1.1.7 lineage of SARS-CoV-2 detected in Washington State by using a combination of reverse-transcription polymerase chain reaction (RT-PCR), RT-ddPCR, and next-generation sequencing. We initially screened 1035 samples positive for SARS-CoV-2 by our CDC-based laboratory-developed assay using ThermoFisher's multiplex RT-PCR COVID-19 assay over four weeks from late December 2020 to early January 2021. S gene target failures (SGTF) were subsequently assayed by RT-ddPCR to confirm four mutations within the S gene associated with the B.1.1.7 lineage: a deletion at amino acid (AA) 69-70 (ACATGT), deletion at AA 145, (TTA), N501Y mutation (TAT), and S982A mutation (GCA). All four targets were detected in two specimens; follow-up sequencing revealed a total of 9 mutations in the S gene and phylogenetic clustering within the B.1.1.7 lineage. Next, we continued screening samples for SGTF detecting 23 additional B.1.1.7 variants by RT-ddPCR and confirmed by sequencing. As VOCs become increasingly prevalent, molecular diagnostic tools like RT-ddPCR can be utilized to quickly, accurately, and sensitively distinguish more contagious lineages of SARS-CoV-2.
Collapse
Affiliation(s)
- Garrett A. Perchetti
- Department of Laboratory Medicine and Pathology, Virology DivisionUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Haiying Zhu
- Department of Laboratory Medicine and Pathology, Virology DivisionUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Margaret G. Mills
- Department of Laboratory Medicine and Pathology, Virology DivisionUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Lasata Shrestha
- Department of Laboratory Medicine and Pathology, Virology DivisionUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Cassia Wagner
- Department of Genome SciencesUniversity of WashingtonSeattleWashingtonUSA
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Shah Mohamed Bakhash
- Department of Laboratory Medicine and Pathology, Virology DivisionUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Michelle J. Lin
- Department of Laboratory Medicine and Pathology, Virology DivisionUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Hong Xie
- Department of Laboratory Medicine and Pathology, Virology DivisionUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Meei‐Li Huang
- Department of Laboratory Medicine and Pathology, Virology DivisionUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Patrick Mathias
- Department of Laboratory Medicine and Pathology, Virology DivisionUniversity of Washington School of MedicineSeattleWashingtonUSA
- Department of Biomedical Informatics and Medical EducationUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Trevor Bedford
- Department of Genome SciencesUniversity of WashingtonSeattleWashingtonUSA
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Keith R. Jerome
- Department of Laboratory Medicine and Pathology, Virology DivisionUniversity of Washington School of MedicineSeattleWashingtonUSA
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, Virology DivisionUniversity of Washington School of MedicineSeattleWashingtonUSA
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, Virology DivisionUniversity of Washington School of MedicineSeattleWashingtonUSA
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| |
Collapse
|
38
|
Fast SARS-CoV-2 Variant Detection Using Snapback Primer High-Resolution Melting. Diagnostics (Basel) 2021; 11:diagnostics11101788. [PMID: 34679489 PMCID: PMC8534650 DOI: 10.3390/diagnostics11101788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/28/2022] Open
Abstract
SARS-CoV-2, the virus responsible for COVID-19, emerged in late 2019 and has since spread throughout the world, infecting over 200 million people. The fast spread of SARS-CoV-2 showcased the need for rapid and sensitive testing methodologies to help track the disease. Over the past 18 months, numerous SARS-CoV-2 variants have emerged. Many of these variants are suggested to be more transmissible as well as less responsive to neutralization by vaccine-induced antibodies. Viral whole-genome sequencing is the current standard for tracking these variants. However, whole-genome sequencing is costly and the technology and expertise are limited to larger reference laboratories. Here, we present the feasibility of a fast, inexpensive methodology using snapback primer-based high-resolution melting to test for >20 high-consequence SARS-CoV-2 spike mutations. This assay can distinguish between multiple variant lineages and be completed in roughly 2 h for less than $10 per sample.
Collapse
|
39
|
Crowe J, Schnaubelt AT, SchmidtBonne S, Angell K, Bai J, Eske T, Nicklin M, Pratt C, White B, Crotts-Hannibal B, Staffend N, Herrera V, Cobb J, Conner J, Carstens J, Tempero J, Bouda L, Ray M, Lawler JV, Campbell WS, Lowe JM, Santarpia J, Bartelt-Hunt S, Wiley M, Brett-Major D, Logan C, Broadhurst MJ. Assessment of a Program for SARS-CoV-2 Screening and Environmental Monitoring in an Urban Public School District. JAMA Netw Open 2021; 4:e2126447. [PMID: 34550382 DOI: 10.1101/2021.04.14.21255036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
IMPORTANCE Scalable programs for school-based SARS-CoV-2 testing and surveillance are needed to guide in-person learning practices and inform risk assessments in kindergarten through 12th grade settings. OBJECTIVES To characterize SARS-CoV-2 infections in staff and students in an urban public school setting and evaluate test-based strategies to support ongoing risk assessment and mitigation for kindergarten through 12th grade in-person learning. DESIGN, SETTING, AND PARTICIPANTS This pilot quality improvement program engaged 3 schools in Omaha, Nebraska, for weekly saliva polymerase chain reaction testing of staff and students participating in in-person learning over a 5-week period from November 9 to December 11, 2020. Wastewater, air, and surface samples were collected weekly and tested for SARS-CoV-2 RNA to evaluate surrogacy for case detection and interrogate transmission risk of in-building activities. MAIN OUTCOMES AND MEASURES SARS-CoV-2 detection in saliva and environmental samples and risk factors for SARS-CoV-2 infection. RESULTS A total of 2885 supervised, self-collected saliva samples were tested from 458 asymptomatic staff members (mean [SD] age, 42.9 [12.4] years; 303 women [66.2%]; 25 Black or African American [5.5%], 83 Hispanic [18.1%], 312 White [68.1%], and 35 other or not provided [7.6%]) and 315 students (mean age, 14.2 [0.7] years; 151 female students [48%]; 20 Black or African American [6.3%], 201 Hispanic [63.8%], 75 White [23.8%], and 19 other race or not provided [6.0%]). A total of 46 cases of SARS-CoV-2 (22 students and 24 staff members) were detected, representing an increase in cumulative case detection rates from 1.2% (12 of 1000) to 7.0% (70 of 1000) among students and from 2.1% (21 of 1000) to 5.3% (53 of 1000) among staff compared with conventional reporting mechanisms during the pilot period. SARS-CoV-2 RNA was detected in wastewater samples from all pilot schools as well as in air samples collected from 2 choir rooms. Sequencing of 21 viral genomes in saliva specimens demonstrated minimal clustering associated with 1 school. Geographical analysis of SARS-CoV-2 cases reported district-wide demonstrated higher community risk in zip codes proximal to the pilot schools. CONCLUSIONS AND RELEVANCE In this study of staff and students in 3 urban public schools in Omaha, Nebraska, weekly screening of asymptomatic staff and students by saliva polymerase chain reaction testing was associated with increased SARS-CoV-2 case detection, exceeding infection rates reported at the county level. Experiences differed among schools, and virus sequencing and geographical analyses suggested a dynamic interplay of school-based and community-derived transmission risk. Collectively, these findings provide insight into the performance and community value of test-based SARS-CoV-2 screening and surveillance strategies in the kindergarten through 12th grade educational setting.
Collapse
Affiliation(s)
- John Crowe
- Omaha Public School District, Omaha, Nebraska
| | - Andy T Schnaubelt
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha
| | | | - Kathleen Angell
- Department of Epidemiology, University of Nebraska Medical Center, Omaha
| | - Julia Bai
- Department of Epidemiology, University of Nebraska Medical Center, Omaha
| | - Teresa Eske
- Omaha Public School District, Omaha, Nebraska
| | | | - Catherine Pratt
- Department of Environmental, Agricultural, and Occupational Health, University of Nebraska Medical Center, Omaha
| | - Bailey White
- Department of Environmental, Agricultural, and Occupational Health, University of Nebraska Medical Center, Omaha
| | | | - Nicholas Staffend
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha
| | - Vicki Herrera
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha
| | | | - Jennifer Conner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha
| | - Julie Carstens
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha
| | - Jonell Tempero
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha
| | - Lori Bouda
- Omaha Public School District, Omaha, Nebraska
| | - Matthew Ray
- Omaha Public School District, Omaha, Nebraska
| | - James V Lawler
- Department of Medicine, University of Nebraska Medical Center, Omaha
- Global Center for Health Security, University of Nebraska Medical Center, Omaha
| | - W Scott Campbell
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha
| | - John-Martin Lowe
- Department of Environmental, Agricultural, and Occupational Health, University of Nebraska Medical Center, Omaha
- Global Center for Health Security, University of Nebraska Medical Center, Omaha
| | - Joshua Santarpia
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha
- Global Center for Health Security, University of Nebraska Medical Center, Omaha
| | | | - Michael Wiley
- Department of Environmental, Agricultural, and Occupational Health, University of Nebraska Medical Center, Omaha
- Global Center for Health Security, University of Nebraska Medical Center, Omaha
| | - David Brett-Major
- Department of Epidemiology, University of Nebraska Medical Center, Omaha
- Global Center for Health Security, University of Nebraska Medical Center, Omaha
| | | | - M Jana Broadhurst
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha
- Global Center for Health Security, University of Nebraska Medical Center, Omaha
| |
Collapse
|
40
|
Bradley BT, Bryan A, Fink SL, Goecker EA, Roychoudhury P, Huang ML, Zhu H, Chaudhary A, Madarampalli B, Lu JYC, Strand K, Whimbey E, Bryson-Cahn C, Schippers A, Mani NS, Pepper G, Jerome KR, Morishima C, Coombs RW, Wener M, Cohen S, Greninger AL. Anti-SARS-CoV-2 Antibody Levels Measured by the AdviseDx SARS-CoV-2 Assay Are Concordant with Previously Available Serologic Assays but Are Not Fully Predictive of Sterilizing Immunity. J Clin Microbiol 2021; 59:e0098921. [PMID: 34165323 PMCID: PMC8373027 DOI: 10.1128/jcm.00989-21] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
With the availability of widespread SARS-CoV-2 vaccination, high-throughput quantitative anti-spike protein serological testing will likely become increasingly important. Here, we investigated the performance characteristics of the recently FDA-authorized semiquantitative anti-spike protein AdviseDx SARS-CoV-2 IgG II assay compared to the FDA-authorized anti-nucleocapsid protein Abbott Architect SARS-CoV-2 IgG, Roche Elecsys anti-SARS-CoV-2-S, EuroImmun anti-SARS-CoV-2 enzyme-linked immunosorbent assay (ELISA), and GenScript surrogate virus neutralization assays and examined the humoral response associated with vaccination, natural protection, and vaccine breakthrough infection. The AdviseDx assay had a clinical sensitivity at 14 days after symptom onset or 10 days after PCR detection of 95.6% (65/68; 95% confidence interval [CI], 87.8 to 98.8%), with two discrepant individuals seroconverting shortly thereafter. The AdviseDx assay demonstrated 100% positive percent agreement with the four other assays examined using the same symptom onset or PCR detection cutoffs. Using a recently available WHO international standard for anti-SARS-CoV-2 antibody, we provide assay unit conversion factors to international units for each of the assays examined. We performed a longitudinal survey of healthy vaccinated individuals, finding that median AdviseDx immunoglobulin levels peaked 7 weeks after first vaccine dose at approximately 4,000 IU/ml. Intriguingly, among the five assays examined, there was no significant difference in antigen binding level or neutralizing activity between two seropositive patients protected against SARS-CoV-2 infection in a previously described fishing vessel outbreak and five health care workers who experienced vaccine breakthrough of SARS-CoV-2 infection, all with variants of concern. These findings suggest that protection against SARS-CoV-2 infection cannot currently be predicted exclusively using in vitro antibody assays against wild-type SARS-CoV-2 spike. Further work is required to establish protective correlates for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Benjamin T. Bradley
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | - Andrew Bryan
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | - Susan L. Fink
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | - Erin A. Goecker
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | - Haiying Zhu
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | - Anu Chaudhary
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | - Bhanupriya Madarampalli
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | - Joyce Y. C. Lu
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | - Kathy Strand
- Division of Infectious Diseases, Department of Medicine, University of Washington Medical Center, Seattle, Washington, USA
| | - Estella Whimbey
- Division of Infectious Diseases, Department of Medicine, University of Washington Medical Center, Seattle, Washington, USA
| | - Chloe Bryson-Cahn
- Division of Infectious Diseases, Department of Medicine, University of Washington Medical Center, Seattle, Washington, USA
| | - Adrienne Schippers
- Division of Infectious Diseases, Department of Medicine, University of Washington Medical Center, Seattle, Washington, USA
| | - Nandita S. Mani
- Division of Infectious Diseases, Department of Medicine, University of Washington Medical Center, Seattle, Washington, USA
| | - Gregory Pepper
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | - Keith R. Jerome
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Chihiro Morishima
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | - Robert W. Coombs
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
- Division of Infectious Diseases, Department of Medicine, University of Washington Medical Center, Seattle, Washington, USA
| | - Mark Wener
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | - Seth Cohen
- Division of Infectious Diseases, Department of Medicine, University of Washington Medical Center, Seattle, Washington, USA
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
41
|
Bourassa L, Perchetti GA, Phung Q, Lin MJ, Mills MG, Roychoudhury P, Harmon KG, Reed JC, Greninger AL. A SARS-CoV-2 Nucleocapsid Variant that Affects Antigen Test Performance. J Clin Virol 2021; 141:104900. [PMID: 34171548 DOI: 10.1101/2021.05.05.21256527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/09/2021] [Indexed: 05/27/2023]
Abstract
More than one year into a global pandemic, SARS-CoV-2 is now defined by a variety of rapidly evolving variant lineages. Several FDA authorized molecular diagnostic tests have been impacted by viral variation, while no reports of viral variation affecting antigen test performance have occurred to date. While determining the analytical sensitivity of the Quidel Sofia SARS Antigen FIA test (Sofia 2), we uncovered a high viral load specimen that repeatedly tested negative by this antigen test. Whole genome sequencing of the specimen uncovered two mutations, T205I and D399N, present in the nucleocapsid protein of the isolate. All six SARS-CoV-2 positive clinical specimens available in our laboratory with a D399N nucleocapsid mutation and CT < 31 were not detected by the Sofia 2 but detected by the Abbott BinaxNOW COVID-19 Ag Card, while clinical specimens with the T205I mutation were detected by both assays. Testing of recombinant SARS-CoV-2 nucleocapsid with these variants demonstrated an approximate 1000-fold loss in sensitivity for the Quidel Sofia SARS Antigen FIA test associated with the D399N mutation, while the BinaxNOW and Quidel Quickvue SARS Antigen tests were unaffected by the mutation. The D399N nucleocapsid mutation has been relatively uncommon to date, appearing in only 0.02% of genomes worldwide at time of writing. Our results demonstrate how routine pathogen genomics can be integrated into the clinical microbiology laboratory to investigate diagnostic edge cases, as well as the importance of profiling antigenic diversity outside of the spike protein for SARS-CoV-2 diagnostics.
Collapse
Affiliation(s)
- Lori Bourassa
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Garrett A Perchetti
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Quynh Phung
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Michelle J Lin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Margaret G Mills
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA; Viral and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kimberly G Harmon
- Department of Family Medicine, for Stanley Herring Department of Physical Medicine and Rehabilitation, University of Washington, Seattle, Washington, USA
| | - Jonathan C Reed
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA; Viral and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
42
|
McEwen AE, Cohen S, Bryson-Cahn C, Liu C, Pergam SA, Lynch J, Schippers A, Strand K, Whimbey E, Mani NS, Zelikoff AJ, Makarewicz VA, Brown ER, Bakhash SAM, Baker NR, Castor J, Livingston RJ, Huang ML, Jerome KR, Greninger AL, Roychoudhury P. Variants of concern are overrepresented among post-vaccination breakthrough infections of SARS-CoV-2 in Washington State. Clin Infect Dis 2021; 74:1089-1092. [PMID: 34166484 PMCID: PMC8394820 DOI: 10.1093/cid/ciab581] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Indexed: 12/22/2022] Open
Abstract
Across 20 vaccine breakthrough cases detected at our institution, all 20 (100%) infections were due to variants of concern (VOCs) and had a median Ct of 20.2 (IQR, 17.1–23.3). When compared with 5174 contemporaneous samples sequenced in our laboratory, VOCs were significantly enriched among breakthrough infections (P < .05).
Collapse
Affiliation(s)
- Abbye E McEwen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Seth Cohen
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Chloe Bryson-Cahn
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Catherine Liu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Steven A Pergam
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - John Lynch
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Adrienne Schippers
- Department of Infection Prevention and Employee Health, University of Washington Medical Center, Seattle, WA, USA
| | - Kathy Strand
- Department of Infection Prevention and Employee Health, University of Washington Medical Center, Seattle, WA, USA
| | - Estella Whimbey
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nandita S Mani
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | | | - Elizabeth R Brown
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Shah A Mohamed Bakhash
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Noah R Baker
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Jared Castor
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Robert J Livingston
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Keith R Jerome
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
43
|
Bourassa L, Perchetti GA, Phung Q, Lin MJ, Mills MG, Roychoudhury P, Harmon KG, Reed JC, Greninger AL. A SARS-CoV-2 Nucleocapsid Variant that Affects Antigen Test Performance. J Clin Virol 2021; 141:104900. [PMID: 34171548 PMCID: PMC8219478 DOI: 10.1016/j.jcv.2021.104900] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
More than one year into a global pandemic, SARS-CoV-2 is now defined by a variety of rapidly evolving variant lineages. Several FDA authorized molecular diagnostic tests have been impacted by viral variation, while no reports of viral variation affecting antigen test performance have occurred to date. While determining the analytical sensitivity of the Quidel Sofia SARS Antigen FIA test (Sofia 2), we uncovered a high viral load specimen that repeatedly tested negative by this antigen test. Whole genome sequencing of the specimen uncovered two mutations, T205I and D399N, present in the nucleocapsid protein of the isolate. All six SARS-CoV-2 positive clinical specimens available in our laboratory with a D399N nucleocapsid mutation and CT < 31 were not detected by the Sofia 2 but detected by the Abbott BinaxNOW COVID-19 Ag Card, while clinical specimens with the T205I mutation were detected by both assays. Testing of recombinant SARS-CoV-2 nucleocapsid with these variants demonstrated an approximate 1000-fold loss in sensitivity for the Quidel Sofia SARS Antigen FIA test associated with the D399N mutation, while the BinaxNOW and Quidel Quickvue SARS Antigen tests were unaffected by the mutation. The D399N nucleocapsid mutation has been relatively uncommon to date, appearing in only 0.02% of genomes worldwide at time of writing. Our results demonstrate how routine pathogen genomics can be integrated into the clinical microbiology laboratory to investigate diagnostic edge cases, as well as the importance of profiling antigenic diversity outside of the spike protein for SARS-CoV-2 diagnostics.
Collapse
Affiliation(s)
- Lori Bourassa
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Garrett A Perchetti
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Quynh Phung
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Michelle J Lin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Margaret G Mills
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA; Viral and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kimberly G Harmon
- Department of Family Medicine, for Stanley Herring Department of Physical Medicine and Rehabilitation, University of Washington, Seattle, Washington, USA
| | - Jonathan C Reed
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA; Viral and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
44
|
Rapid High-Throughput Whole-Genome Sequencing of SARS-CoV-2 by Using One-Step Reverse Transcription-PCR Amplification with an Integrated Microfluidic System and Next-Generation Sequencing. J Clin Microbiol 2021; 59:JCM.02784-20. [PMID: 33653700 PMCID: PMC8091833 DOI: 10.1128/jcm.02784-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
The long-lasting global COVID-19 pandemic demands timely genomic investigation of SARS-CoV-2 viruses. Here, we report a simple and efficient workflow for whole-genome sequencing utilizing one-step reverse transcription-PCR (RT-PCR) amplification on a microfluidic platform, followed by MiSeq amplicon sequencing. The long-lasting global COVID-19 pandemic demands timely genomic investigation of SARS-CoV-2 viruses. Here, we report a simple and efficient workflow for whole-genome sequencing utilizing one-step reverse transcription-PCR (RT-PCR) amplification on a microfluidic platform, followed by MiSeq amplicon sequencing. The method uses Fluidigm integrated fluidic circuit (IFC) and instruments to amplify 48 samples with 39 pairs of primers, including 35 custom-designed primer pairs and four additional primer pairs from the ARTIC network protocol v3. Application of this method on RNA samples from both viral isolates and clinical specimens demonstrates robustness and efficiency in obtaining the full genome sequence of SARS-CoV-2.
Collapse
|
45
|
Addetia A, Lieberman NAP, Phung Q, Hsiang TY, Xie H, Roychoudhury P, Shrestha L, Loprieno MA, Huang ML, Gale M, Jerome KR, Greninger AL. SARS-CoV-2 ORF6 Disrupts Bidirectional Nucleocytoplasmic Transport through Interactions with Rae1 and Nup98. mBio 2021; 12:e00065-21. [PMID: 33849972 PMCID: PMC8092196 DOI: 10.1128/mbio.00065-21] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
RNA viruses that replicate in the cytoplasm often disrupt nucleocytoplasmic transport to preferentially translate their own transcripts and prevent host antiviral responses. The Sarbecovirus accessory protein ORF6 has previously been shown to be a major inhibitor of interferon production in both severe acute respiratory syndrome coronavirus (SARS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we show SARS-CoV-2-infected cells display an elevated level of nuclear mRNA accumulation compared to mock-infected cells. We demonstrate that ORF6 is responsible for this nuclear imprisonment of host mRNA, and using a cotransfected reporter assay, we show this nuclear retention of mRNA blocks expression of newly transcribed mRNAs. ORF6's nuclear entrapment of host mRNA is associated with its ability to copurify with the mRNA export factors, Rae1 and Nup98. These protein-protein interactions map to the C terminus of ORF6 and can be abolished by a single amino acid mutation in Met58. Overexpression of Rae1 restores reporter expression in the presence of SARS-CoV-2 ORF6. SARS-CoV ORF6 also interacts with Rae1 and Nup98. However, SARS-CoV-2 ORF6 more strongly copurifies with Rae1 and Nup98 and results in significantly reduced expression of reporter proteins compared to SARS-CoV ORF6, a potential mechanism for the delayed symptom onset and presymptomatic transmission uniquely associated with the SARS-CoV-2 pandemic. We also show that both SARS-CoV and SARS-CoV-2 ORF6 block nuclear import of a broad range of host proteins. Together, these data support a model in which ORF6 clogs the nuclear pore through its interactions with Rae1 and Nup98 to prevent both nuclear import and export, rendering host cells incapable of responding to SARS-CoV-2 infection.IMPORTANCE SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19), is an RNA virus with a large genome that encodes multiple accessory proteins. While these accessory proteins are not required for growth in vitro, they can contribute to the pathogenicity of the virus. We demonstrate that SARS-CoV-2-infected cells accumulate poly(A) mRNA in the nucleus, which is attributed to the accessory protein ORF6. Nuclear entrapment of mRNA and reduced expression of newly transcribed reporter proteins are associated with ORF6's interactions with the mRNA export proteins Rae1 and Nup98. SARS-CoV ORF6 also shows the same interactions with Rae1 and Nup98. However, SARS-CoV-2 ORF6 more strongly represses reporter expression and copurifies with Rae1 and Nup98 compared to SARS-CoV ORF6. Both SARS-CoV ORF6 and SARS-CoV-2 ORF6 block nuclear import of a wide range of host factors through interactions with Rae1 and Nup98. Together, our results suggest ORF6's disruption of nucleocytoplasmic transport prevents infected cells from responding to the invading virus.
Collapse
Affiliation(s)
- Amin Addetia
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Nicole A P Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Quynh Phung
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Tien-Ying Hsiang
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Hong Xie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Lasata Shrestha
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Michelle A Loprieno
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Keith R Jerome
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
46
|
Ni G, Lu J, Maulani N, Tian W, Yang L, Harliwong I, Wang Z, Mueller J, Yang B, Yuan Z, Hu S, Guo J. Novel Multiplexed Amplicon-Based Sequencing to Quantify SARS-CoV-2 RNA from Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:683-690. [PMID: 37566375 PMCID: PMC8276671 DOI: 10.1021/acs.estlett.1c00408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 05/18/2023]
Abstract
The application of wastewater-based epidemiology (WBE) to support the global response to the COVID-19 pandemic has shown encouraging outcomes. The accurate, sensitive, and high-throughput detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in municipal wastewater is critical for WBE. Here, we present a novel approach based on multiplexed amplicon-based sequencing, namely the ATOPlex platform, for detecting SARS-CoV-2. The ATOPlex platform is capable of quantifying SARS-CoV-2 RNA at concentrations that are at least 1 order of magnitude lower than the detection limit of reverse transcription quantitative polymerase chain reaction (RT-qPCR). Robust and accurate phylogenetic placement can be done at viral concentrations 4 times lower than the detection limit of RT-qPCR. We further found that the solid fraction in wastewater harbors a considerable amount of viral RNA, highlighting the need to extract viral RNA from the solid and liquid fractions of wastewater. This study delivers a highly sensitive, phylogenetically informative, and high-throughput analytical workflow that facilitates the application of WBE.
Collapse
Affiliation(s)
- Gaofeng Ni
- Advanced Water Management Centre, The
University of Queensland, St. Lucia, Brisbane, QLD 4072,
Australia
| | - Ji Lu
- Advanced Water Management Centre, The
University of Queensland, St. Lucia, Brisbane, QLD 4072,
Australia
| | - Nova Maulani
- Advanced Water Management Centre, The
University of Queensland, St. Lucia, Brisbane, QLD 4072,
Australia
| | - Wei Tian
- BGI Australia, 300 Herston
Road, Herston, Brisbane, QLD 4006, Australia
| | - Lin Yang
- BGI Australia, 300 Herston
Road, Herston, Brisbane, QLD 4006, Australia
| | - Ivon Harliwong
- BGI Australia, 300 Herston
Road, Herston, Brisbane, QLD 4006, Australia
| | - Zhiyao Wang
- Advanced Water Management Centre, The
University of Queensland, St. Lucia, Brisbane, QLD 4072,
Australia
| | - Jochen Mueller
- Queensland Alliance for Environmental Health Sciences
(QAEHS), The University of Queensland, 20 Cornwall Street,
Woolloongabba, QLD 4103, Australia
| | - Bicheng Yang
- BGI Australia, 300 Herston
Road, Herston, Brisbane, QLD 4006, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The
University of Queensland, St. Lucia, Brisbane, QLD 4072,
Australia
| | - Shihu Hu
- Advanced Water Management Centre, The
University of Queensland, St. Lucia, Brisbane, QLD 4072,
Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The
University of Queensland, St. Lucia, Brisbane, QLD 4072,
Australia
| |
Collapse
|
47
|
Lipsitch M, Grad YH, Sette A, Crotty S. Cross-reactive memory T cells and herd immunity to SARS-CoV-2. Nat Rev Immunol 2020; 20:709-713. [PMID: 33024281 PMCID: PMC7537578 DOI: 10.1038/s41577-020-00460-4] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 11/12/2022]
Abstract
Immunity is a multifaceted phenomenon. For T cell-mediated memory responses to SARS-CoV-2, it is relevant to consider their impact both on COVID-19 disease severity and on viral spread in a population. Here, we reflect on the immunological and epidemiological aspects and implications of pre-existing cross-reactive immune memory to SARS-CoV-2, which largely originates from previous exposure to circulating common cold coronaviruses. We propose four immunological scenarios for the impact of cross-reactive CD4+ memory T cells on COVID-19 severity and viral transmission. For each scenario, we discuss its implications for the dynamics of herd immunity and on projections of the global impact of SARS-CoV-2 on the human population, and assess its plausibility. In sum, we argue that key potential impacts of cross-reactive T cell memory are already incorporated into epidemiological models based on data of transmission dynamics, particularly with regard to their implications for herd immunity. The implications of immunological processes on other aspects of SARS-CoV-2 epidemiology are worthy of future study.
Collapse
Affiliation(s)
- Marc Lipsitch
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA.
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA.
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA.
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA.
| |
Collapse
|
48
|
|