1
|
Viral agents (2nd section). Transfusion 2024; 64 Suppl 1:S19-S207. [PMID: 38394038 DOI: 10.1111/trf.17630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 02/25/2024]
|
2
|
West Nile and Usutu Viruses' Surveillance in Birds of the Province of Ferrara, Italy, from 2015 to 2019. Viruses 2021; 13:v13071367. [PMID: 34372573 PMCID: PMC8310148 DOI: 10.3390/v13071367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 01/03/2023] Open
Abstract
West Nile (WNV) and Usutu (USUV) viruses are mosquito-borne flaviviruses. Thanks to their importance as zoonotic diseases, a regional plan for surveillance of Arboviruses was implemented in Emilia-Romagna in 2009. The province of Ferrara belongs to the Emilia-Romagna region, and it is an endemic territory for these viruses, with favorable ecological conditions for abundance of mosquitoes and wild birds. From 2015 to 2019, we collected 1842 dead-found birds at a wildlife rehabilitation center, which were analysed by three different PCRs for the detection of WNV and USUV genomes. August was characterized by the highest infection rate for both viruses. Columbiformes scored the highest USUV prevalence (8%), while Galliformes and Strigiformes reported the highest prevalence for WNV (13%). Among Passeriformes (the most populated Order), Turdus merula was the most abundant species and scored the highest prevalence for both viruses. To optimize passive surveillance plans, monitoring should be focused on the summer and towards the avian species more prone to infection by both viruses.
Collapse
|
3
|
Modelling West Nile Virus and Usutu Virus Pathogenicity in Human Neural Stem Cells. Viruses 2020; 12:v12080882. [PMID: 32806715 PMCID: PMC7471976 DOI: 10.3390/v12080882] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are genetically related neurotropic mosquito-borne flaviviruses, which frequently co-circulate in nature. Despite USUV seeming to be less pathogenic for humans than WNV, the clinical manifestations induced by these two viruses often overlap and may evolve to produce severe neurological complications. The aim of this study was to investigate the effects of WNV and USUV infection on human induced pluripotent stem cell-derived neural stem cells (hNSCs), as a model of the neural progenitor cells in the developing fetal brain and in adult brain. Zika virus (ZIKV), a flavivirus with known tropism for NSCs, was used as the positive control. Infection of hNSCs and viral production, effects on cell viability, apoptosis, and innate antiviral responses were compared among viruses. WNV displayed the highest replication efficiency and cytopathic effects in hNSCs, followed by USUV and then ZIKV. In these cells, both WNV and USUV induced the overexpression of innate antiviral response genes at significantly higher levels than ZIKV. Expression of interferon type I, interleukin-1β and caspase-3 was significantly more elevated in WNV- than USUV-infected hNSCs, in agreement with the higher neuropathogenicity of WNV and the ability to inhibit the interferon response pathway.
Collapse
|
4
|
Pacenti M, Sinigaglia A, Martello T, De Rui ME, Franchin E, Pagni S, Peta E, Riccetti S, Milani A, Montarsi F, Capelli G, Doroldi CG, Bigolin F, Santelli L, Nardetto L, Zoccarato M, Barzon L. Clinical and virological findings in patients with Usutu virus infection, northern Italy, 2018. ACTA ACUST UNITED AC 2020; 24. [PMID: 31771697 PMCID: PMC6885746 DOI: 10.2807/1560-7917.es.2019.24.47.1900180] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BackgroundUsutu virus (USUV) is a mosquito-borne flavivirus, which shares its transmission cycle with the phylogenetically related West Nile virus (WNV). USUV circulates in several European countries and its activity has increased over the last 5 years.AimTo describe human cases of USUV infection identified by surveillance for WNV and USUV infection in the Veneto Region of northern Italy in 2018.MethodsFrom 1 June to 30 November 2018, all cases of suspected autochthonous arbovirus infection and blood donors who had a reactive WNV nucleic acid test were investigated for both WNV and USUV infection by in-house molecular methods. Anti-WNV and anti-USUV IgM and IgG antibodies were detected by ELISA and in-house immunofluorescence assay, respectively; positive serum samples were further tested by WNV and USUV neutralisation assays run in parallel.ResultsEight cases of USUV infection (one with neuroinvasive disease, six with fever and one viraemic blood donor who developed arthralgia and myalgia) and 427 cases of WNV infection were identified. A remarkable finding of this study was the persistence of USUV RNA in the blood and urine of three patients during follow-up. USUV genome sequences from two patients shared over 99% nt identity with USUV sequences detected in mosquito pools from the same area and clustered within lineage Europe 2.ConclusionsClinical presentation and laboratory findings in patients with USUV infection were similar to those found in patients with WNV infection. Cross-reactivity of serology and molecular tests challenged the differential diagnosis.
Collapse
Affiliation(s)
- Monia Pacenti
- These authors contributed equally as first authors.,Microbiology and Virology Unit, Padua University Hospital, Padova, Italy
| | - Alessandro Sinigaglia
- Department of Molecular Medicine, University of Padova, Padova, Italy.,These authors contributed equally as first authors
| | | | | | - Elisa Franchin
- Department of Molecular Medicine, University of Padova, Padova, Italy.,These authors contributed equally as first authors
| | - Silvana Pagni
- Department of Molecular Medicine, University of Padova, Padova, Italy.,These authors contributed equally as first authors
| | - Elektra Peta
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Silvia Riccetti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Adelaide Milani
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro PD, Italy
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro PD, Italy
| | - Gioia Capelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro PD, Italy
| | | | - Francesco Bigolin
- Medicine Unit, Camposampiero Hospital, Azienda ULSS 6 Euganea, Padova, Italy
| | - Luca Santelli
- Neurology Department, Ospedale S. Antonio, Azienda ULSS 6 Euganea, Padova, Italy
| | - Lucia Nardetto
- Neurology Department, Ospedale S. Antonio, Azienda ULSS 6 Euganea, Padova, Italy
| | - Marco Zoccarato
- Neurology Department, Ospedale S. Antonio, Azienda ULSS 6 Euganea, Padova, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy.,These authors contributed equally as first authors
| |
Collapse
|
5
|
Carletti F, Colavita F, Rovida F, Percivalle E, Baldanti F, Ricci I, De Liberato C, Rosone F, Messina F, Lalle E, Bordi L, Vairo F, Capobianchi MR, Ippolito G, Cappiello G, Spanò A, Meschi S, Castilletti C. Expanding Usutu virus circulation in Italy: detection in the Lazio region, central Italy, 2017 to 2018. ACTA ACUST UNITED AC 2020; 24. [PMID: 30670139 PMCID: PMC6344840 DOI: 10.2807/1560-7917.es.2019.24.3.1800649] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood donation screening for West Nile virus (WNV) was mandatory in the Lazio region in 2017 and 2018 (June-November) according to the national surveillance plan. In these years, all five donations reactive in WNV nucleic acid amplification tests harboured instead Usutu virus (USUV). Clade ‘Europe 2’ was identified in four blood donations and a 2018 mosquito pool. The cocirculation of WNV and USUV in Lazio warrants increased laboratory support and awareness of possible virus misidentification.
Collapse
Affiliation(s)
- Fabrizio Carletti
- Laboratory of Virology, National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, Rome, Italy
| | - Francesca Colavita
- Laboratory of Virology, National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, Rome, Italy
| | - Francesca Rovida
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Italy.,Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ida Ricci
- Istituto Zooprofilattico Sperimentale delle regioni Lazio e Toscana, Rome, Italy
| | - Claudio De Liberato
- Istituto Zooprofilattico Sperimentale delle regioni Lazio e Toscana, Rome, Italy
| | - Francesca Rosone
- Istituto Zooprofilattico Sperimentale delle regioni Lazio e Toscana, Rome, Italy
| | - Francesco Messina
- Laboratory of Virology, National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, Rome, Italy
| | - Eleonora Lalle
- Laboratory of Virology, National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, Rome, Italy
| | - Licia Bordi
- Laboratory of Virology, National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, Rome, Italy
| | - Francesco Vairo
- Regional Service for Surveillance and Control of Infectious Diseases (SERESMI)-Lazio Region, National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, Rome, Italy
| | - Maria Rosaria Capobianchi
- Laboratory of Virology, National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, Rome, Italy
| | - Giuseppe Ippolito
- Scientific Direction, National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, Rome, Italy
| | | | - Alberto Spanò
- Unit of Microbiology, Sandro Pertini Hospital, Rome, Italy
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, Rome, Italy
| | - Concetta Castilletti
- Laboratory of Virology, National Institute for Infectious Diseases 'Lazzaro Spallanzani' IRCCS, Rome, Italy
| |
Collapse
|
6
|
Drews SJ, Makowski K, Wood H, Dimitrova K, Yan MTS, Young D, Skeate R, Ng M, Hawes G, Fearon M, Bigham M. A case series of inactivated Japanese encephalitis virus vaccination associated with positive West Nile virus blood donor screening nucleic acid tests. Transfusion 2020; 60:1097-1103. [PMID: 32154927 DOI: 10.1111/trf.15744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND West Nile Virus (WNV) is a member of the Japanese Encephalitis (JE) serocomplex within the Flaviviridae family. We report four whole blood donors and one plasma donor with WNV nucleic acid test (NAT)-reactive donations between September 2018 and November 2019, following recent Japanese Encephalitis virus (JEV) vaccination. CASE SERIES Cases 1 and 4 had reactive WNV NAT donations 1 day after receiving the JEV vaccine. Case 2 had a reactive WNV donation 3 days after receiving the JEV vaccine. Case 3 had a reactive WNV NAT donation 3 days after returning from Arizona and 1 day after receiving the JEV vaccine. Case 5 had a reactive WNV donation the same day as receiving the JEV vaccine. STUDY DESIGN AND METHODS WNV screening used the Roche cobas WNV nucleic acid test (NAT) (Roche Molecular Systems). Reference testing on WNV-reactive donations was carried out by the National Microbiology Laboratory (NML). JEV vaccine dilutions were also analyzed. RESULTS Supplemental NAT was negative for WNV and JEV for Cases 1, 3, and 5. Case 2 had a weak amplification curve for one of two JEV NAT targets. Case 4 was JEV NAT-positive, WNV NAT-negative. Serologic testing on donation specimens for Cases 2, 4, and 5 did not support recent or remote WNV infection. JEV vaccine dilutions were detected by both cobas and supplemental NAT. CONCLUSIONS We recommend implementing a temporary blood donor deferral following a JEV vaccination, if screening utilizes a WNV assay with the capability of detecting other members of the JE serocomplex.
Collapse
Affiliation(s)
- Steven J Drews
- Canadian Blood Services, Edmonton, Alberta, Canada.,Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kai Makowski
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Heidi Wood
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | | | - Matthew T S Yan
- Canadian Blood Services, Vancouver, British Columbia, Canada
| | - Dale Young
- Canadian Blood Services, Calgary, Alberta, Canada
| | | | - Michiko Ng
- Canadian Blood Services, Calgary, Alberta, Canada
| | - Gordon Hawes
- Canadian Blood Services, Brampton, Ontario, Canada
| | | | - Mark Bigham
- Canadian Blood Services, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
West Nile Virus and Usutu Virus Co-Circulation in Europe: Epidemiology and Implications. Microorganisms 2019; 7:microorganisms7070184. [PMID: 31248051 PMCID: PMC6680635 DOI: 10.3390/microorganisms7070184] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 01/01/2023] Open
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are neurotropic mosquito-borne flaviviruses that may infect humans. Although WNV is much more widespread and plays a much larger role in human health, the two viruses are characterized by similar envelope antigens, clinical manifestations, and present overlapping in terms of geographic range of transmission, host, and vector species. This review highlights some of the most relevant aspects of WNV and USUV human infections in Europe, and the possible implications of their co-circulation.
Collapse
|
8
|
Barzon L. Ongoing and emerging arbovirus threats in Europe. J Clin Virol 2018; 107:38-47. [PMID: 30176404 DOI: 10.1016/j.jcv.2018.08.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/20/2018] [Indexed: 11/17/2022]
Abstract
During the last decades, arboviruses that are endemic in Europe have expanded their geographic range and caused an increasing number of human outbreaks. These viruses include West Nile virus, which is expanding its area of circulation in central and southern Europe; Usutu virus, with increasing evidence of a role in human disease; tick-borne encephalitis virus, which is being detected in northern areas and at higher altitudes as a consequence of climate warming; Crimean-Congo hemorrhagic fever virus, which is endemic in Eastern Europe and the Middle East, but has been recently detected in Spain; other viruses, such as California encephalitis virus antigenic group, which circulate in northern and central Europe but whose relevance for human disease in largely unknown. In addition, the rise in global travel and trade has posed Europe to an increased risk of introduction and expansion of exotic arthropod vectors and autochthonous transmission of arboviruses, like dengue and chikungunya viruses, following new introductions from endemic areas. Implementation of integrated arbovirus surveillance programs has been crucial to adopt proper control measures. The identification of emerging outbreaks is however challenging and requires a high degree of awareness and laboratory capacity, especially for the most neglected but potentially threatening pathogens.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121, Padova, Italy.
| |
Collapse
|
9
|
Bakonyi T, Jungbauer C, Aberle SW, Kolodziejek J, Dimmel K, Stiasny K, Allerberger F, Nowotny N. Usutu virus infections among blood donors, Austria, July and August 2017 - Raising awareness for diagnostic challenges. ACTA ACUST UNITED AC 2018; 22. [PMID: 29043962 PMCID: PMC5710119 DOI: 10.2807/1560-7917.es.2017.22.41.17-00644] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Between July and August 2017, seven of 12,047 blood donations from eastern Austria, reacted positive to West Nile virus (WNV) in the cobas test (Roche). Follow-up investigations revealed Usutu virus (USUV) nucleic acid in six of these. Retrospective analyses of four blood donors diagnosed as WNV-infected in 2016 showed one USUV positive. Blood transfusion services and public health authorities in USUV-endemic areas should be aware of a possible increase of human USUV infections.
Collapse
Affiliation(s)
- Tamás Bakonyi
- These authors contributed equally to this article and share first authorship.,Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary.,Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christof Jungbauer
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, Vienna, Austria.,These authors contributed equally to this article and share first authorship
| | - Stephan W Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria.,These authors contributed equally to this article and share first authorship
| | - Jolanta Kolodziejek
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Katharina Dimmel
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Norbert Nowotny
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,These authors contributed equally to this article and share first authorship.,Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
10
|
Bakonyi T, Erdélyi K, Brunthaler R, Dán Á, Weissenböck H, Nowotny N. Usutu virus, Austria and Hungary, 2010-2016. Emerg Microbes Infect 2017; 6:e85. [PMID: 29018253 PMCID: PMC5658768 DOI: 10.1038/emi.2017.72] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 12/05/2022]
Abstract
Usutu virus (USUV, Flaviviridae) was first reported in Europe in Austria in 2001, where it caused wild bird (mainly blackbird) mortality until 2005. Since 2006 no further USUV cases were diagnosed in the country. However, the virus emerged in other European countries (Hungary, Italy, Switzerland, Spain, Germany and the Czech Republic) between 2005 and 2011. In 2016, widespread USUV-associated wild bird mortality was observed in Germany, France, Belgium and the Netherlands. In this study, we report the results of passive monitoring for USUV in Austria and Hungary between 2010 and 2016. In Hungary, USUV caused sporadic cases of wild bird mortality between 2010 and 2015 (altogether 18 diagnosed cases), whereas in summer and autumn 2016 the number of cases considerably increased to 12 (ten blackbirds, one Eurasian jay and one starling). In Austria, USUV was identified in two blackbirds in 2016. Phylogenetic analyses of coding-complete genomes and partial regions of the NS5 protein gene revealed that USUVs from Hungary between 2010 and 2015 are closely related to the virus that emerged in Austria in 2001 and in Hungary in 2005, while one Hungarian sequence from 2015 and all sequences from Hungary and Austria from 2016 clustered together with USUV sequences reported from Italy between 2009 and 2010. The results of the study indicate continuous USUV circulation in the region and exchange of USUV strains between Italy, Austria and Hungary.
Collapse
Affiliation(s)
- Tamás Bakonyi
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.,Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungária krt. 23-25, 1143 Budapest, Hungary
| | - Károly Erdélyi
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Tábornok utca 2, 1149 Budapest, Hungary
| | - René Brunthaler
- Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Ádám Dán
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Tábornok utca 2, 1149 Budapest, Hungary
| | - Herbert Weissenböck
- Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, PO Box 505055, Dubai Healthcare City, Dubai, United Arab Emirates
| |
Collapse
|
11
|
Percivalle E, Sassera D, Rovida F, Isernia P, Fabbi M, Baldanti F, Marone P. Usutu Virus Antibodies in Blood Donors and Healthy Forestry Workers in the Lombardy Region, Northern Italy. Vector Borne Zoonotic Dis 2017; 17:658-661. [PMID: 28759350 DOI: 10.1089/vbz.2017.2126] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Usutu virus (USUV), a member of the genus Flavivirus, is known to circulate at low prevalence in Northern Italy, and has been reported to cause overt infection. USUV was first reported in Europe in 2001, but a retrospective study showed that it has been present in Italy at least since 1996. Seroprevalence data for USUV antibodies in sera are being collected in different European countries, showing circulation at low prevalence in human populations. Interestingly, two consecutive studies in Northern Italy indicate a possible increase in the presence of the virus, from 0% to 0.23% seroprevalence in blood donors. In this study, antibodies against USUV were measured in 3 consecutive blood samples collected from October 2014 to December 2015 from 33 forestry workers in the Po river valley, while samples from 200 blood donors from the same geographical area were tested in parallel. Neutralizing and IgG antibodies were found in six forestry workers (18.1%) and in two blood donors (1%). Our results indicate that USUV circulation in the examined area, part of a highly populated region in Northern Italy, is higher than expected. Healthy subjects exhibit a higher prevalence than what was found in a previous report in an adjoining region (0.23%), while the population at risk shows a much higher prevalence value (18.1%).
Collapse
Affiliation(s)
- Elena Percivalle
- 1 S.C. Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo , Pavia, Italy
| | - Davide Sassera
- 2 Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia , Pavia, Italy
| | - Francesca Rovida
- 1 S.C. Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo , Pavia, Italy
| | - Paola Isernia
- 3 Servizio Immunoematologia e Medicina Trasfusionale, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Massimo Fabbi
- 4 Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Pavia, Italy
| | - Fausto Baldanti
- 1 S.C. Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo , Pavia, Italy .,5 Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Università degli Studi di Pavia, Pavia, Italy
| | - Piero Marone
- 1 S.C. Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo , Pavia, Italy
| |
Collapse
|
12
|
Gaibani P, Rossini G. An overview of Usutu virus. Microbes Infect 2017; 19:382-387. [DOI: 10.1016/j.micinf.2017.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 10/19/2022]
|
13
|
Calzolari M, Chiapponi C, Bonilauri P, Lelli D, Baioni L, Barbieri I, Lavazza A, Pongolini S, Dottori M, Moreno A. Co-circulation of two Usutu virus strains in Northern Italy between 2009 and 2014. INFECTION GENETICS AND EVOLUTION 2017; 51:255-262. [PMID: 28341546 DOI: 10.1016/j.meegid.2017.03.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 11/29/2022]
Abstract
Usutu virus is an arbovirus closely related to West Nile virus (genus Flavivirus), which circulates between mosquitoes and wild birds. This virus has been increasingly reported in Europe, raising concerns for its possible pathogenic potential for wild birds and humans. This study reports the whole genome sequences of 15 strains of USUV, isolated between 2010 and 2014 from mosquitoes and wild birds in the course of West Nile virus surveillance in the Emilia-Romagna and Lombardy regions of Northern Italy. Both whole and 656 partial genome sequences, obtained from isolated viruses and field samples (mosquitoes and wild birds), were analyzed to describe the temporal and geographical spread of USUV in the surveyed area. The detected sequences belonged to two groups, with one circulating primarily in the northwestern part of the area and the other in the southeastern part. This pattern is likely the result of different routes of introduction from the North (over the Alps) and from the East, respectively. The phylogenetic analysis of obtained sequences and other European sequences demonstrated that the majority of European strains belonged to one main clade, while less common strains, mainly from Western Europe, fell in other two clades. This analysis strongly suggested an autochthonous evolution process of strains of the main clade from a common ancestor with an estimated time of arrival in Europe at the beginning of the 1990s. In addition to causing mass mortality in wild birds, Usutu virus can infect humans and can sporadically cause disease. These factors and the endemization of the Usutu virus in a large area of Europe, sustained by the obtained data, strongly support the need to adequately survey Usutu virus in areas in which its circulation is detected.
Collapse
Affiliation(s)
- Mattia Calzolari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER) "B. Ubertini", Via Bianchi 9, 25124 Brescia, Italy.
| | - Chiara Chiapponi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER) "B. Ubertini", Via Bianchi 9, 25124 Brescia, Italy.
| | - Paolo Bonilauri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER) "B. Ubertini", Via Bianchi 9, 25124 Brescia, Italy.
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER) "B. Ubertini", Via Bianchi 9, 25124 Brescia, Italy.
| | - Laura Baioni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER) "B. Ubertini", Via Bianchi 9, 25124 Brescia, Italy.
| | - Ilaria Barbieri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER) "B. Ubertini", Via Bianchi 9, 25124 Brescia, Italy.
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER) "B. Ubertini", Via Bianchi 9, 25124 Brescia, Italy.
| | - Stefano Pongolini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER) "B. Ubertini", Via Bianchi 9, 25124 Brescia, Italy.
| | - Michele Dottori
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER) "B. Ubertini", Via Bianchi 9, 25124 Brescia, Italy.
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER) "B. Ubertini", Via Bianchi 9, 25124 Brescia, Italy.
| |
Collapse
|
14
|
Barr KL, Anderson BD, Prakoso D, Long MT. Working with Zika and Usutu Viruses In Vitro. PLoS Negl Trop Dis 2016; 10:e0004931. [PMID: 27541001 PMCID: PMC4991799 DOI: 10.1371/journal.pntd.0004931] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/27/2016] [Indexed: 12/22/2022] Open
Abstract
Usutu (USUV) and Zika (ZIKV) viruses are emerging arboviruses of significant medical and veterinary importance. These viruses have not been studied as well as other medically important arboviruses such as West Nile (WNV), dengue (DENV), or chikungunya (CHIKV) viruses. As such, information regarding the behavior of ZIKV and USUV viruses in the laboratory is dated. Usutu virus re-emerged in Austria in 2001 and has since spread throughout the European and Asian continents causing significant mortality among birds. Zika virus has recently appeared in the Western Hemisphere and has exhibited high rates of birth defects and sexual transmission. Information about the characteristics of USUV and ZIKV viruses are needed to better understand the transmission, dispersal, and adaptation of these viruses in new environments. Since their initial characterization in the middle of last century, technologies and reagents have been developed that could enhance our abilities to study these pathogens. Currently, standard laboratory methods for these viruses are limited to 2–3 cell lines and many assays take several days to generate meaningful data. The goal of this study was to characterize these viruses in cells from multiple diverse species. Cell lines from 17 species were permissive to both ZIKV and USUV. These viruses were able to replicate to significant titers in most of the cell lines tested. Moreover, cytopathic effects were observed in 8 of the cell lines tested. These data indicate that a variety of cell lines can be used to study ZIKV and USUV infection and may provide an updated foundation for the study of host-pathogen interactions, model development, and the development of therapeutics. Usutu and Zika viruses are arboviruses of significant medical and veterinary outbreaks in recent years. Currently, standard laboratory methods for these viruses are limited to 2–3 cell lines. Here, our studies demonstrate that Zika and Usutu viruses are able to replicate in cells from a wide range of animal cell lines. The data will allow for further study of the potential for evolution of these viruses in other hosts.
Collapse
Affiliation(s)
- Kelli L. Barr
- Department of Infectious Diseases & Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Benjamin D. Anderson
- Division of Infectious Disease, School of Medicine and Global Health Institute, Duke University, Durham, North Carolina, United States of America
| | - Dhani Prakoso
- Department of Infectious Diseases & Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Maureen T. Long
- Department of Infectious Diseases & Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
15
|
Faddy HM, Flower RL, Seed CR, Ismay S, Ong E, Linnen JM, Cory R, Holmberg JA, Hall RA, Setoh YX, Deerain JM, Prow NA. Detection of emergent strains of West Nile virus with a blood screening assay. Transfusion 2015; 56:1503-7. [DOI: 10.1111/trf.13443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/02/2015] [Accepted: 10/04/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Helen M. Faddy
- Research and Development; Australian Red Cross Blood Service; Brisbane Queensland Australia
- School of Medicine; University of Queensland; St Lucia Queensland Australia
| | - Robert L.P. Flower
- Research and Development; Australian Red Cross Blood Service; Brisbane Queensland Australia
| | - Clive R. Seed
- Medical Services; Australian Red Cross Blood Service; Perth Western Australia Australia
| | - Susan Ismay
- Manufacturing; Australian Red Cross Blood Service; Alexandria New South Wales Australia
| | | | | | | | | | - Roy A. Hall
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences; University of Queensland; St Lucia Queensland Australia
| | - Yin X. Setoh
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences; University of Queensland; St Lucia Queensland Australia
| | - Joshua M. Deerain
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences; University of Queensland; St Lucia Queensland Australia
| | - Natalie A. Prow
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences; University of Queensland; St Lucia Queensland Australia
- QIMR Berghofer, Medical Research Institute; Brisbane Queensland Australia
| |
Collapse
|
16
|
West Nile Virus Surveillance in 2013 via Mosquito Screening in Northern Italy and the Influence of Weather on Virus Circulation. PLoS One 2015; 10:e0140915. [PMID: 26488475 PMCID: PMC4619062 DOI: 10.1371/journal.pone.0140915] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/01/2015] [Indexed: 11/20/2022] Open
Abstract
West Nile virus (WNV) is a recently re-emerged health problem in Europe. In Italy, an increasing number of outbreaks of West Nile disease, with occurrences of human cases, have been reported since 2008. This is particularly true in northern Italy, where entomological surveillance systems have been implemented at a regional level. The aim of this study was to use, for the first time, all the entomological data collected in the five regions undergoing surveillance for WNV in northern Italy to characterize the viral circulation (at a spatial and temporal scale), identify potential mosquito vectors, and specify relationships between virus circulation and meteorological conditions. In 2013, 286 sites covering the entire Pianura Padana area were monitored. A total of 757,461 mosquitoes were sampled. Of these, 562,079 were tested by real-time PCR in 9,268 pools, of which 180 (1.9%) were positive for WNV. The largest part of the detected WNV sequences belonged to lineage II, demonstrating that, unlike those in the past, the 2013 outbreak was mainly sustained by this WNV lineage. This surveillance also detected the Usutu virus, a WNV-related flavivirus, in 241 (2.6%) pools. The WNV surveillance systems precisely identified the area affected by the virus and detected the viral circulation approximately two weeks before the occurrence of onset of human cases. Ninety percent of the sampled mosquitoes were Culex pipiens, and 178/180 WNV-positive pools were composed of only this species, suggesting this mosquito is the main WNV vector in northern Italy. A significantly higher abundance of the vector was recorded in the WNV circulation area, which was characterized by warmer and less rainy conditions and greater evapotranspiration compared to the rest of the Pianura Padana, suggesting that areas exposed to these conditions are more suitable for WNV circulation. This observation highlights warmer and less rainy conditions as factors able to enhance WNV circulation and cause virus spillover outside the sylvatic cycle.
Collapse
|
17
|
Bloch KC, Bitnun A, Glaser CA, Mailles A, Stahl JP, Tunkel AR, Venkatesan A. Reply to Jackson. Clin Infect Dis 2015; 61:293-4. [PMID: 25900176 DOI: 10.1093/cid/civ314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Karen C Bloch
- Department of Medicine, Division of Infectious Diseases, and Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ari Bitnun
- Division of Infectious Diseases, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada
| | - Carol A Glaser
- Division of Communicable Disease Control, California Department of Public Health, Richmond
| | - Alexandra Mailles
- Infectious Diseases Department, French Institute for Public Health Surveillance, Saint-Maurice
| | - Jean-Paul Stahl
- Infectious Diseases Department, CHU and University 1, Grenoble, France
| | - Allan R Tunkel
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Arun Venkatesan
- Johns Hopkins Encephalitis Center, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
Barzon L, Pacenti M, Ulbert S, Palù G. Latest developments and challenges in the diagnosis of human West Nile virus infection. Expert Rev Anti Infect Ther 2015; 13:327-42. [PMID: 25641365 DOI: 10.1586/14787210.2015.1007044] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus responsible for an increasing number of human outbreaks of neuroinvasive disease in Europe and in North America. Notwithstanding the improvements in the knowledge of virus epidemiology and clinical course of infection and the development of new laboratory tests, the diagnosis of WNV infection remains challenging and many cases still remain unrecognized. WNV genome diversity, transient viremia with low viral load and cross-reactivity with other flaviviruses of the antibodies induced by WNV infection are important hurdles that require the diagnosis to be performed by experienced laboratories. Herein, we present and discuss the novel findings on the molecular epidemiology and clinical features of WNV infection in humans with special focus on Europe, the performance of diagnostic tests and the novel methods that have been developed for the diagnosis of WNV infection. A view on how the field might evolve in the future is also presented.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | | | | | | |
Collapse
|
19
|
Merino-Ramos T, Blázquez AB, Escribano-Romero E, Cañas-Arranz R, Sobrino F, Saiz JC, Martín-Acebes MA. Protection of a single dose west nile virus recombinant subviral particle vaccine against lineage 1 or 2 strains and analysis of the cross-reactivity with Usutu virus. PLoS One 2014; 9:e108056. [PMID: 25229345 PMCID: PMC4168257 DOI: 10.1371/journal.pone.0108056] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/19/2014] [Indexed: 12/30/2022] Open
Abstract
West Nile virus (WNV) is a neurovirulent mosquito-borne flavivirus. High WNV virulence was mainly associated with lineage 1 strains, but recent outbreaks have unveiled circulation of highly virulent lineage 2 strains. Co-expression of flavivirus prM and E glycoproteins drives the assembly of recombinant subviral particles (RSPs) that share antigenic features with virions. Mouse immunization with lineage 1 WNV RSPs induced a potent humoral response against WNV with production of neutralizing antibodies. A single inoculation of RSPs formulated with Al(OH)3 as adjuvant protected mice against a lethal challenge with WNV strains from lineage 1 or 2. The cross-reactivity of the response elicited by these RSPs was analyzed against the related flavivirus Usutu virus (USUV), which shares multiple ecological and antigenic features with WNV. Immunization with WNV-RSPs increased specific, although low, antibody titers found upon subsequent USUV infection.
Collapse
Affiliation(s)
- Teresa Merino-Ramos
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Ana-Belén Blázquez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Estela Escribano-Romero
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Rodrigo Cañas-Arranz
- Departamento de Virología y Microbiología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Francisco Sobrino
- Departamento de Virología y Microbiología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, Madrid, Spain
- * E-mail: (FS); (JCS)
| | - Juan-Carlos Saiz
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- * E-mail: (FS); (JCS)
| | - Miguel A. Martín-Acebes
- Departamento de Virología y Microbiología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, Madrid, Spain
| |
Collapse
|
20
|
Vilibic-Cavlek T, Kaic B, Barbic L, Pem-Novosel I, Slavic-Vrzic V, Lesnikar V, Kurecic-Filipovic S, Babic-Erceg A, Listes E, Stevanovic V, Gjenero-Margan I, Savini G. First evidence of simultaneous occurrence of West Nile virus and Usutu virus neuroinvasive disease in humans in Croatia during the 2013 outbreak. Infection 2014; 42:689-95. [PMID: 24793998 DOI: 10.1007/s15010-014-0625-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/17/2014] [Indexed: 12/14/2022]
Abstract
PURPOSE We report on first evidence of simultaneous occurrence of West Nile virus (WNV) and Usutu virus (USUV) neuroinvasive infection in humans in Croatia during the transmission season 2013. METHODS From June to December 2013, a total of 95 patients with clinically suspected WNV infection (WNV fever and neuroinvasive disease) were tested for WNV IgM/IgG antibodies using enzyme-linked immunosorbent assay. Twenty-six reactive samples were further tested by virus neutralization test for confirmation. RESULTS WNV neuroinvasive infection was confirmed in 20 patients, while in three patients USUV neutralizing antibodies were detected. Cases occurred during the 11-week interval (from 24 July to 07 October 2013). Both WNV and USUV cases were distributed in three north-western Croatian counties. In addition to human cases, recent asymptomatic WNV infection (detection of IgM antibodies) was recorded in 9/3,460 (0.3 %) tested sentinel horses. Infected animals were recorded in two eastern and one north-western county. CONCLUSIONS Our results indicate co-circulation of WNV and USUV in Croatia. WNV infection could be misdiagnosed with other emerging infectious diseases presenting with neurological symptoms such as USUV infection.
Collapse
Affiliation(s)
- T Vilibic-Cavlek
- Department of Virology, Croatian National Institute of Public Health, School of Medicine University of Zagreb, Rockefellerova 12, 10000, Zagreb, Croatia,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pupella S, Pisani G, Cristiano K, Catalano L, Grazzini G. West Nile virus in the transfusion setting with a special focus on Italian preventive measures adopted in 2008-2012 and their impact on blood safety. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2013; 11:563-74. [PMID: 24120610 PMCID: PMC3827402 DOI: 10.2450/2013.0077-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 07/02/2013] [Indexed: 01/01/2023]
Affiliation(s)
| | - Giulio Pisani
- National Centre for Immunobiologicals Research and Evaluation, National Institute of Health, Rome, Italy
| | - Karen Cristiano
- National Centre for Immunobiologicals Research and Evaluation, National Institute of Health, Rome, Italy
| | - Liviana Catalano
- National Blood Centre, National Institute of Health, Rome, Italy
| | | |
Collapse
|
22
|
Sambri V, Capobianchi MR, Cavrini F, Charrel R, Donoso-Mantke O, Escadafal C, Franco L, Gaibani P, Gould EA, Niedrig M, Papa A, Pierro A, Rossini G, Sanchini A, Tenorio A, Varani S, Vázquez A, Vocale C, Zeller H. Diagnosis of west nile virus human infections: overview and proposal of diagnostic protocols considering the results of external quality assessment studies. Viruses 2013; 5:2329-2348. [PMID: 24072061 PMCID: PMC3814591 DOI: 10.3390/v5102329] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 08/28/2013] [Accepted: 09/09/2013] [Indexed: 01/14/2023] Open
Abstract
West Nile virus, genus Flavivirus, is transmitted between birds and occasionally other animals by ornithophilic mosquitoes. This virus also infects humans causing asymptomatic infections in about 85% of cases and <1% of clinical cases progress to severe neuroinvasive disease. The virus also presents a threat since most infections remain unapparent. However, the virus contained in blood and organs from asymptomatically infected donors can be transmitted to recipients of these infectious tissues. This paper reviews the presently available methods to achieve the laboratory diagnosis of West Nile virus infections in humans, discussing the most prominent advantages and disadvantages of each in light of the results obtained during four different External Quality Assessment studies carried out by the European Network for 'Imported' Viral Diseases (ENIVD).
Collapse
Affiliation(s)
- Vittorio Sambri
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Maria R. Capobianchi
- National Institute for Infectious Diseases (INMI) “L. Spallanzani”, Rome 00149, Italy; E-Mail:
| | - Francesca Cavrini
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Rémi Charrel
- UMR_D 190 “Emergence des Pathologies Virales”, APHM Public Hospitals of Marseille, EHESP French School of Public Health & IHU Mediterranee Infection, IRD French Institute of Research for Development, Aix Marseille University, 13005, Marseille, France; E-Mail: (R.C.)
| | - Olivier Donoso-Mantke
- Centre for Biological Threats and Special Pathogens (ZBS-1), Robert Koch-Institut, Berlin 13353, Germany; E-Mails: (O.D.-M.); (C.E.); (M.N.); (A.S.)
| | - Camille Escadafal
- Centre for Biological Threats and Special Pathogens (ZBS-1), Robert Koch-Institut, Berlin 13353, Germany; E-Mails: (O.D.-M.); (C.E.); (M.N.); (A.S.)
| | - Leticia Franco
- National Microbiology Centre, Instituto de Salud Carlos III, Madrid 28220, Spain; E-Mails: (L.F.); (A.T.); (A.V.)
| | - Paolo Gaibani
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Ernest A. Gould
- UMR_D 190 “Emergence des Pathologies Virales”, APHM Public Hospitals of Marseille, EHESP French School of Public Health & IHU Mediterranee Infection, IRD French Institute of Research for Development, Aix Marseille University, 13005, Marseille, France; E-Mail: (R.C.)
- NERC Centre for Ecology and Hydrology, Wallingford, Oxon OX10 8BB, UK; E-Mail: (E.A.G.)
| | - Matthias Niedrig
- Centre for Biological Threats and Special Pathogens (ZBS-1), Robert Koch-Institut, Berlin 13353, Germany; E-Mails: (O.D.-M.); (C.E.); (M.N.); (A.S.)
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; E-Mail:
| | - Anna Pierro
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Giada Rossini
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Andrea Sanchini
- Centre for Biological Threats and Special Pathogens (ZBS-1), Robert Koch-Institut, Berlin 13353, Germany; E-Mails: (O.D.-M.); (C.E.); (M.N.); (A.S.)
- European Public Health Microbiology Training Programme (EUPHEM), European Centre for Disease Prevention and Control, Stockholm 171 83, Sweden
| | - Antonio Tenorio
- National Microbiology Centre, Instituto de Salud Carlos III, Madrid 28220, Spain; E-Mails: (L.F.); (A.T.); (A.V.)
| | - Stefania Varani
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Ana Vázquez
- National Microbiology Centre, Instituto de Salud Carlos III, Madrid 28220, Spain; E-Mails: (L.F.); (A.T.); (A.V.)
| | - Caterina Vocale
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Herve Zeller
- European Centre for Disease Prevention and Control, Stockholm 171 83, Sweden; E-Mail:
| |
Collapse
|
23
|
Nikolay B, Weidmann M, Dupressoir A, Faye O, Boye CS, Diallo M, Sall AA. Development of a Usutu virus specific real-time reverse transcription PCR assay based on sequenced strains from Africa and Europe. J Virol Methods 2013; 197:51-4. [PMID: 24036076 DOI: 10.1016/j.jviromet.2013.08.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/24/2013] [Accepted: 08/29/2013] [Indexed: 12/22/2022]
Abstract
Usutu virus (USUV) has been isolated in several African and European countries mainly from mosquitoes and birds. However, previous benign and two recent severe cases of human infections point out the need of a tool for the identification of USUV in human samples. A published real-time reverse transcription (RT) PCR assay for the detection of USUV in human blood or cerebrospinal fluid does not take into account the genetic variability of USUV in different geographic regions. Therefore, this article presents a quantitative real-time RT-PCR assay based on sequences from Europe and Africa. Primers and probe were designed in conserved regions among USUV strains that differed from closely related flaviviruses. The specificity of the assay was investigated by testing 16 other flaviviruses circulating in Africa. The sensitivity was determined by testing serial dilutions of virus and RNA standard. Intra- and inter-assay coefficients of variation were evaluated by 10 reactions in a same and in different assays, respectively. The assay provides high analytical specificity for USUV and detection limits of 1.2pfu/reaction for virus dilutions in L-15 medium or human serum and 60 copies/reaction for the RNA standard. The assay needs to be evaluated in a clinical context and integrated in standard diagnosis of flaviviral diseases.
Collapse
Affiliation(s)
- B Nikolay
- Unité des arbovirus et virus de fièvres hémorragiques, Institut Pasteur de Dakar, 34 Avenue Pasteur, Dakar, Senegal; Université Cheikh Anta Diop Dakar, 24 Avenue Cheikh Anta Diop, Dakar, Senegal; University Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria.
| | - M Weidmann
- Department of Virology, University Medical Center Goettingen, Kreuzbergring 57, D-37075 Goettingen, Germany.
| | - A Dupressoir
- CNRS UMR 8122, Institut Gustave Roussy, Villejuif 94805, France.
| | - O Faye
- Unité des arbovirus et virus de fièvres hémorragiques, Institut Pasteur de Dakar, 34 Avenue Pasteur, Dakar, Senegal.
| | - C S Boye
- University Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria.
| | - M Diallo
- Unité d'entomologie médicale, Institut Pasteur de Dakar, Senegal
| | - A A Sall
- Unité des arbovirus et virus de fièvres hémorragiques, Institut Pasteur de Dakar, 34 Avenue Pasteur, Dakar, Senegal.
| |
Collapse
|
24
|
Pauli G, Bauerfeind U, Blümel J, Burger R, Drosten C, Gröner A, Gürtler L, Heiden M, Hildebrandt M, Jansen B, Montag-Lessing T, Offergeld R, Seitz R, Schlenkrich U, Schottstedt V, Strobel J, Willkommen H. West nile virus. Transfus Med Hemother 2013; 40:265-84. [PMID: 24179475 PMCID: PMC3776406 DOI: 10.1159/000353698] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 07/15/2012] [Indexed: 12/12/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Rainer Seitz
- Arbeitskreis Blut, Untergruppe «Bewertung Blutassoziierter Krankheitserreger»
| | | | | | | | | |
Collapse
|
25
|
Gaibani P, Cavrini F, Gould EA, Rossini G, Pierro A, Landini MP, Sambri V. Comparative genomic and phylogenetic analysis of the first Usutu virus isolate from a human patient presenting with neurological symptoms. PLoS One 2013; 8:e64761. [PMID: 23741387 PMCID: PMC3669420 DOI: 10.1371/journal.pone.0064761] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/18/2013] [Indexed: 11/18/2022] Open
Abstract
Usutu virus (USUV) is a mosquito-borne flavivirus, belonging to the Japanese encephalitis antigenic complex, that circulates among mosquitoes and birds. We describe and analyze the complete genome sequence of the first USUV strain isolated from an immunocompromised patient with neuroinvasive disease. This USUV isolate showed an overall nucleotide identity of 99% and 96%, respectively, with the genomes of isolates from Europe and Africa. Comparison of the human USUV complete polyprotein sequence with bird-derived strains, showed two unique amino acid substitutions. In particular, one substitution (S595G) was situated in the DIII domain of the viral Envelope protein that is recognized by flavivirus neutralizing antibodies. An additional amino acid substitution (D3425E) was identified in the RNA-dependent RNA polymerase (RdRp) domain of the NS5 protein. This substitution is remarkable since E3425 is highly conserved among the other USUV isolates that were not associated with human infection. However, a similar substitution was observed in Japanese encephalitis and in West Nile viruses isolated from humans. Phylogenetic analysis of the human USUV strain revealed a close relationship with an Italian strain isolated in 2009. Analysis of synonymous nucleotide substitutions (SNSs) among the different USUV genomes showed a specific evolutionary divergence among different countries. In addition, 15 SNSs were identified as unique in the human isolate. We also identified four specific nucleotide substitutions in the 5' and 3' untranslated regions (UTRs) in the human isolate that were not present in the other USUV sequences. Our analyses provide the basis for further experimental studies aimed at defining the effective role of these mutations in the USUV genome, their potential role in the development of viral variants pathogenic for humans and their evolution and dispersal out of Africa.
Collapse
Affiliation(s)
- Paolo Gaibani
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies-CRREM, St.Orsola-Malpighi University Hospital, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
26
|
Detection of West Nile virus RNA (lineages 1 and 2) in an external quality assessment programme for laboratories screening blood and blood components for West Nile virus by nucleic acid amplification testing. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2013; 10:515-20. [PMID: 23117401 DOI: 10.2450/2012.0036-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/02/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND A second Italian external quality assessment programme was run in 2011 to assess the performance of blood transfusion centres in detecting West Nile virus RNA in plasma. MATERIALS AND METHODS Each participant received two panels containing negative samples and samples positive for West Nile virus lineages 1 and 2, some of which with a viral concentration close to or below the 95% limit of detection of the respective commercial nucleic acid amplification test assay: the PROCLEIX WNV assay or the Cobas TaqScreen West Nile virus test. RESULTS Eleven laboratories took part in the external quality assessment programme. All of them correctly identified the positive samples with a viral concentration above the 95% limit of detection. No false positive results or pre-/post-analytical errors were observed. DISCUSSION The External quality assessment programme run in 2011 allowed participants to assess the performance of the nucleic acid amplification test methods applied in their seasonal routine screening of blood donations. The results confirm the 95% limit of detection reported by the test kits' manufacturers for both West Nile virus lineages.
Collapse
|
27
|
Abstract
The 6th International Conference on Emerging Zoonoses, held at Cancun, Mexico, 24-27 February 2011, offered 84 participants from 18 countries, a snapshot of current research in numerous zoonoses caused by viruses, bacteria or prions. Co-chaired by Professors Heinz Feldmann and Jürgen Richt, the conference explored 10 topics: (i) The ecology of emerging zoonotic diseases; (ii) The role of wildlife in emerging zoonoses; (iii) Cross-species transmission of zoonotic pathogens; (iv) Emerging and neglected influenza viruses; (v) Haemorrhagic fever viruses; (vi) Emerging bacterial diseases; (vii) Outbreak responses to zoonotic diseases; (viii) Food-borne zoonotic diseases; (ix) Prion diseases; and (x) Modelling and prediction of emergence of zoonoses. Human medicine, veterinary medicine and environmental challenges are viewed as a unity, which must be considered under the umbrella of 'One Health'. Several presentations attempted to integrate the insights gained from field data with mathematical models in the search for effective control measures of specific zoonoses. The overriding objective of the research presentations was to create, improve and use the tools essential to address the risk of contagions in a globalized society. In seeking to fulfil this objective, a three-step approach has often been applied: (i) use cultured cells, model and natural animal hosts and human clinical models to study infection; (ii) combine traditional histopathological and biochemical approaches with functional genomics, proteomics and computational biology; and (iii) obtain signatures of virulence and insights into mechanisms of host defense response, immune evasion and pathogenesis. This meeting review summarizes 39 of the conference presentations and mentions briefly the 16 articles in this Special Supplement, most of which were presented at the conference in earlier versions. The full affiliations of all presenters and many colleagues have been included to facilitate further inquiries from readers.
Collapse
Affiliation(s)
- R E Kahn
- Diagnostic Medicine/Pathobiology Department, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
28
|
Quand certains flavivirus remettent en cause nos certitudes. ACTA ACUST UNITED AC 2012; 105:251-5. [DOI: 10.1007/s13149-012-0255-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
|
29
|
Anez G, Chancey C, Grinev A, Rios M. Dengue virus and other arboviruses: a global view of risks. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1751-2824.2012.01602.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Mosquito, bird and human surveillance of West Nile and Usutu viruses in Emilia-Romagna Region (Italy) in 2010. PLoS One 2012; 7:e38058. [PMID: 22666446 PMCID: PMC3364206 DOI: 10.1371/journal.pone.0038058] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 05/02/2012] [Indexed: 12/31/2022] Open
Abstract
Background In 2008, after the first West Nile virus (WNV) detection in the Emilia-Romagna region, a surveillance system, including mosquito- and bird-based surveillance, was established to evaluate the virus presence. Surveillance was improved in following years by extending the monitoring to larger areas and increasing the numbers of mosquitoes and birds tested. Methodology/Principal Findings A network of mosquito traps, evenly distributed and regularly activated, was set up within the surveyed area. A total of 438,558 mosquitoes, grouped in 3,111 pools and 1,276 birds (1,130 actively sampled and 146 from passive surveillance), were tested by biomolecular analysis. The survey detected WNV in 3 Culex pipiens pools while Usutu virus (USUV) was found in 89 Cx. pipiens pools and in 2 Aedes albopictus pools. Two birds were WNV-positive and 12 were USUV-positive. Furthermore, 30 human cases of acute meningoencephalitis, possibly caused by WNV or USUV, were evaluated for both viruses and 1,053 blood bags were tested for WNV, without any positive result. Conclusions/Significance Despite not finding symptomatic human WNV infections during 2010, the persistence of the virus, probably due to overwintering, was confirmed through viral circulation in mosquitoes and birds, as well as for USUV. In 2010, circulation of the two viruses was lower and more delayed than in 2009, but this decrease was not explained by the relative abundance of Cx. pipiens mosquito, which was greater in 2010. The USUV detection in mosquito species confirms the role of Cx. pipiens as the main vector and the possible involvement of Ae. albopictus in the virus cycle. The effects of meteorological conditions on the presence of USUV-positive mosquito pools were considered finding an association with drought conditions and a wide temperature range. The output produced by the surveillance system demonstrated its usefulness and reliability in terms of planning public health policies.
Collapse
|
31
|
Gaibani P, Pierro A, Alicino R, Rossini G, Cavrini F, Landini MP, Sambri V. Detection of Usutu-virus-specific IgG in blood donors from northern Italy. Vector Borne Zoonotic Dis 2012; 12:431-3. [PMID: 22217176 DOI: 10.1089/vbz.2011.0813] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We developed a novel enzyme-linked immunosorbent assay to detect the specific IgG response to Usutu virus (USUV) in humans, by evaluating 359 blood donors who were living in northeastern Italy. Our results demonstrate the presence of an anti-USUV response in 4 subjects with no history of other flavivirus infection.
Collapse
|
32
|
Vázquez A, Ruiz S, Herrero L, Moreno J, Molero F, Magallanes A, Sánchez-Seco MP, Figuerola J, Tenorio A. West Nile and Usutu viruses in mosquitoes in Spain, 2008-2009. Am J Trop Med Hyg 2011; 85:178-81. [PMID: 21734145 DOI: 10.4269/ajtmh.2011.11-0042] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
West Nile virus lineage 1 (similar to the strains obtained from golden eagles in Spain, 2007) and Usutu virus (similar to the strains obtained from Culex pipiens in Spain, 2006) were detected in pools from Culex perexiguus collected in southern Spain in 2008 and 2009, respectively. This is the first detection and isolation of West Nile virus lineage 1 from mosquitoes in Spain.
Collapse
Affiliation(s)
- Ana Vázquez
- CNM-Instituto de Salud Carlos III, Majadahonda, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The genus Flavivirus includes major pathogens such as dengue, yellow fever, Japanese encephalitis, West Nile and tick-borne encephalitis viruses. Molecular amplification assays for the diagnosis of flaviviruses have been developed in the last decades. These assays were formerly based on reverse transcriptase PCR, while in recent years the real-time reverse transcriptase PCR format has taken a predominant role. In this article, we focus on the more recent developments for the molecular diagnosis of flaviviruses, with special attention to those based on new methodologies such as nucleic acid sequence-based amplification or loop-mediated isothermal amplification techniques. These new approaches may provide a good profile of sensitivity and specificity and offer a real chance to implement flavivirus molecular diagnosis in clinical and point-of-care settings.
Collapse
Affiliation(s)
| | - Pranav Patel
- Robert Koch-Institut, Center for Biological Security 1, Highly Pathogenic Viruses, Nordufer 20, 13353 Berlin, Germany
| | - Sonja Linke
- Robert Koch-Institut, Center for Biological Security 1, Highly Pathogenic Viruses, Nordufer 20, 13353 Berlin, Germany
| | - Katharina Achazi
- Robert Koch-Institut, Center for Biological Security 1, Highly Pathogenic Viruses, Nordufer 20, 13353 Berlin, Germany
| | - Matthias Niedrig
- Robert Koch-Institut, Center for Biological Security 1, Highly Pathogenic Viruses, Nordufer 20, 13353 Berlin, Germany
| |
Collapse
|