1
|
Luu LDW, Kasimov V, Phillips S, Myers GSA, Jelocnik M. Genome organization and genomics in Chlamydia: whole genome sequencing increases understanding of chlamydial virulence, evolution, and phylogeny. Front Cell Infect Microbiol 2023; 13:1178736. [PMID: 37287464 PMCID: PMC10242142 DOI: 10.3389/fcimb.2023.1178736] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
The genus Chlamydia contains important obligate intracellular bacterial pathogens to humans and animals, including C. trachomatis and C. pneumoniae. Since 1998, when the first Chlamydia genome was published, our understanding of how these microbes interact, evolved and adapted to different intracellular host environments has been transformed due to the expansion of chlamydial genomes. This review explores the current state of knowledge in Chlamydia genomics and how whole genome sequencing has revolutionised our understanding of Chlamydia virulence, evolution, and phylogeny over the past two and a half decades. This review will also highlight developments in multi-omics and other approaches that have complemented whole genome sequencing to advance knowledge of Chlamydia pathogenesis and future directions for chlamydial genomics.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Vasilli Kasimov
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Samuel Phillips
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Garry S. A. Myers
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| | - Martina Jelocnik
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
2
|
Jelocnik M, White RT, Clune T, O'Connell J, Foxwell J, Hair S, Besier S, Tom L, Phillips N, Robbins A, Bogema D, Vaz PK, Legione AR, Jenkins C, Jacobson C. Molecular characterisation of the Australian and New Zealand livestock Chlamydia pecorum strains confirms novel but clonal ST23 in association with ovine foetal loss. Vet Microbiol 2023; 283:109774. [PMID: 37216721 DOI: 10.1016/j.vetmic.2023.109774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
Chlamydia pecorum is a veterinary pathogen associated with abortions and perinatal mortality in sheep. Recent studies investigating foetal and perinatal lamb mortality in sheep from Australia and New Zealand identified C. pecorum clonal sequence type (ST)23 strains in aborted and stillborn lambs. Presently, there is limited genotypic information on C. pecorum strains associated with reproductive disease, although whole genome sequencing (WGS) of one abortigenic ST23 C. pecorum strain identified unique features, including a deletion in the CDS1 locus of the chlamydial plasmid. We applied WGS on two ST23 strains detected in aborted and stillborn lambs from Australia and used phylogenetic and comparative analyses to compare these to the other available C. pecorum genomes. To re-evaluate the genetic diversity of contemporary strains, we applied C. pecorum genotyping, and chlamydial plasmid sequencing to a range of C. pecorum positive samples and isolates from ewes, aborted foetuses and stillborn lambs, cattle and a goat from diverse geographical regions across Australia and New Zealand.The two new C. pecorum genomes are nearly identical to the genome of the Australian abortigenic strain including the unique deletion in the chlamydial plasmid. Genotyping revealed that these novel C. pecorum ST23 strains are widespread and associated with sheep abortions on Australian and New Zealand farms. In addition, a goat C. pecorum strain (denoted ST 304) from New Zealand was also characterised. This study expands the C. pecorum genome catalogue and describes a comprehensive molecular characterisation of the novel livestock ST23 strains associated with foetal and lamb mortality.
Collapse
Affiliation(s)
- Martina Jelocnik
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, Queensland 4557, Australia.
| | - Rhys T White
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, Queensland 4557, Australia; The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Brisbane, Queensland 4072, Australia; The University of Queensland, Australian Centre for Ecogenomics, Brisbane, Queensland 4072, Australia.
| | - Tom Clune
- Murdoch University, Centre for Animal Production and Health, Perth, Western Australia 6150, Australia.
| | - John O'Connell
- Ministry for Primary Industries, Diagnostic and Surveillance Services Directorate, Upper Hutt 5140, New Zealand. john.o'
| | - Jonathan Foxwell
- Animal Health Laboratory, Ministry for Primary Industries, 66 Ward Street, Upper Hutt 5018, New Zealand.
| | - Sam Hair
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia.
| | - Shane Besier
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia.
| | - La Tom
- Murdoch University, Centre for Animal Production and Health, Perth, Western Australia 6150, Australia.
| | - Nyree Phillips
- Murdoch University, Centre for Animal Production and Health, Perth, Western Australia 6150, Australia.
| | - Amy Robbins
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, Queensland 4557, Australia.
| | - Daniel Bogema
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia.
| | - Paola K Vaz
- The University of Melbourne, Melbourne Veterinary School, Asia Pacific Centre for Animal Health, Parkville, Victoria 3010, Australia.
| | - Alistair R Legione
- The University of Melbourne, Melbourne Veterinary School, Asia Pacific Centre for Animal Health, Parkville, Victoria 3010, Australia.
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia.
| | - Caroline Jacobson
- Murdoch University, Centre for Animal Production and Health, Perth, Western Australia 6150, Australia.
| |
Collapse
|
3
|
White RT, Anstey SI, Kasimov V, Jenkins C, Devlin J, El-Hage C, Pannekoek Y, Legione AR, Jelocnik M. One clone to rule them all: Culture-independent genomics of Chlamydia psittaci from equine and avian hosts in Australia. Microb Genom 2022; 8. [PMID: 36269227 PMCID: PMC9676050 DOI: 10.1099/mgen.0.000888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Chlamydia psittaci is an avian pathogen with zoonotic potential. In Australia, C. psittaci has been well reported as a cause of reproductive loss in mares which subsequently have been the source of infection and illness in some in-contact humans. To date, molecular typing studies describe the predominant and clonal C. psittaci sequence type (ST)24 strains in horse, psittacine, and human infections. We sought to assess the clonality between ST24 strains and the emergence of equine ST24 with a comprehensive genomics approach. We used culture-independent probe-based and metagenomic whole-genome sequencing to investigate 13 C. psittaci genomes from horses, psittacines, and a pigeon from Australia. Published genomes of 36 C. psittaci strains were also used to contextualise our Australian dataset and investigate lineage diversity. We utilised a single-nucleotide polymorphism (SNP) based clustering and multi-locus sequence typing (MLST) approach. C. psittaci has four major phylogenetic groups (PG1-4) based on core-genome SNP-based phylogeny. PG1 contained clonal global and Australian equine, psittacine, and human ST24 genomes, with a median pairwise SNP distance of 68 SNPs. PG2, PG3, and PG4 had greater genomic diversity, including diverse STs collected from birds, livestock, human, and horse hosts from Europe and North America and a racing pigeon from Australia. We show that the clustering of C. psittaci by MLST was congruent with SNP-based phylogeny. The monophyletic ST24 clade has four major sub-lineages. The genomes of 17 Australian human, equine, and psittacine strains collected between 2008 and 2021 formed the predominant ST24 sub-lineage 1 (emerged circa 1979). Despite a temporal distribution of 13 years, the genomes within sub-lineage 1 had a median pairwise SNP distance of 32 SNPs, suggesting a recent population expansion or potential cross-host transmission. However, two C. psittaci genomes collected in 2015 from Victorian parrots clustered into distinct ST24 sub-lineage 4 (emerged circa 1965) with ovine strain C19/98 from Germany. This work describes a comprehensive phylogenomic characterisation of ST24 and identifies a timeline of potential bird-to-equine spillover events.
Collapse
Affiliation(s)
- Rhys T White
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, Queensland 4557, Australia.,The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Brisbane, Queensland 4072, Australia.,The University of Queensland, Australian Centre for Ecogenomics, Brisbane, Queensland 4072, Australia
| | - Susan I Anstey
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, Queensland 4557, Australia
| | - Vasilli Kasimov
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, Queensland 4557, Australia
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia
| | - Joanne Devlin
- The University of Melbourne, Melbourne Veterinary School, Asia Pacific Centre for Animal Health, Parkville, Victoria 3010, Australia
| | - Charles El-Hage
- The University of Melbourne, Melbourne Veterinary School, Asia Pacific Centre for Animal Health, Parkville, Victoria 3010, Australia
| | - Yvonne Pannekoek
- University of Amsterdam, Amsterdam UMC, Department of Medical Microbiology and Infection Prevention, Amsterdam 1105, The Netherlands
| | - Alistair R Legione
- The University of Melbourne, Melbourne Veterinary School, Asia Pacific Centre for Animal Health, Parkville, Victoria 3010, Australia
| | - Martina Jelocnik
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, Queensland 4557, Australia
| |
Collapse
|
4
|
White RT, Legione AR, Taylor-Brown A, Fernandez CM, Higgins DP, Timms P, Jelocnik M. Completing the Genome Sequence of Chlamydia pecorum Strains MC/MarsBar and DBDeUG: New Insights into This Enigmatic Koala ( Phascolarctos cinereus) Pathogen. Pathogens 2021; 10:1543. [PMID: 34959498 PMCID: PMC8703710 DOI: 10.3390/pathogens10121543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022] Open
Abstract
Chlamydia pecorum, an obligate intracellular pathogen, causes significant morbidity and mortality in livestock and the koala (Phascolarctos cinereus). A variety of C. pecorum gene-centric molecular studies have revealed important observations about infection dynamics and genetic diversity in both koala and livestock hosts. In contrast to a variety of C. pecorum molecular studies, to date, only four complete and 16 draft genomes have been published. Of those, only five draft genomes are from koalas. Here, using whole-genome sequencing and a comparative genomics approach, we describe the first two complete C. pecorum genomes collected from diseased koalas. A de novo assembly of DBDeUG_2018 and MC/MarsBar_2018 resolved the chromosomes and chlamydial plasmids each as single, circular contigs. Robust phylogenomic analyses indicate biogeographical separation between strains from northern and southern koala populations, and between strains infecting koala and livestock hosts. Comparative genomics between koala strains identified new, unique, and shared loci that accumulate single-nucleotide polymorphisms and separate between northern and southern, and within northern koala strains. Furthermore, we predicted novel type III secretion system effectors. This investigation constitutes a comprehensive genome-wide comparison between C. pecorum from koalas and provides improvements to annotations of a C. pecorum reference genome. These findings lay the foundations for identifying and understanding host specificity and adaptation behind chlamydial infections affecting koalas.
Collapse
Affiliation(s)
- Rhys T. White
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Sunshine Coast, QLD 4557, Australia; (R.T.W.); (A.T.-B.); (P.T.)
| | - Alistair R. Legione
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Alyce Taylor-Brown
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Sunshine Coast, QLD 4557, Australia; (R.T.W.); (A.T.-B.); (P.T.)
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Cristina M. Fernandez
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (C.M.F.); (D.P.H.)
| | - Damien P. Higgins
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (C.M.F.); (D.P.H.)
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Sunshine Coast, QLD 4557, Australia; (R.T.W.); (A.T.-B.); (P.T.)
| | - Martina Jelocnik
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Sunshine Coast, QLD 4557, Australia; (R.T.W.); (A.T.-B.); (P.T.)
| |
Collapse
|
5
|
Robbins A, Hanger J, Jelocnik M, Quigley BL, Timms P. Koala immunogenetics and chlamydial strain type are more directly involved in chlamydial disease progression in koalas from two south east Queensland koala populations than koala retrovirus subtypes. Sci Rep 2020; 10:15013. [PMID: 32929174 PMCID: PMC7490398 DOI: 10.1038/s41598-020-72050-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/18/2020] [Indexed: 02/02/2023] Open
Abstract
Chlamydial disease control is increasingly utilised as a management tool to stabilise declining koala populations, and yet we have a limited understanding of the factors that contribute to disease progression. To examine the impact of host and pathogen genetics, we selected two geographically separated south east Queensland koala populations, differentially affected by chlamydial disease, and analysed koala major histocompatibility complex (MHC) genes, circulating strains of Chlamydia pecorum and koala retrovirus (KoRV) subtypes in longitudinally sampled, well-defined clinical groups. We found that koala immunogenetics and chlamydial genotypes differed between the populations. Disease progression was associated with specific MHC alleles, and we identified two putative susceptibility (DCb 03, DBb 04) and protective (DAb 10, UC 01:01) variants. Chlamydial genotypes belonging to both Multi-Locus Sequence Typing sequence type (ST) 69 and ompA genotype F were associated with disease progression, whereas ST 281 was associated with the absence of disease. We also detected different ompA genotypes, but not different STs, when long-term infections were monitored over time. By comparison, KoRV profiles were not significantly associated with disease progression. These findings suggest that chlamydial genotypes vary in pathogenicity and that koala immunogenetics and chlamydial strains are more directly involved in disease progression than KoRV subtypes.
Collapse
Affiliation(s)
- Amy Robbins
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia.,Endeavour Veterinary Ecology Pty Ltd, 1695 Pumicestone Road, Toorbul, QLD, 4510, Australia
| | - Jonathan Hanger
- Endeavour Veterinary Ecology Pty Ltd, 1695 Pumicestone Road, Toorbul, QLD, 4510, Australia
| | - Martina Jelocnik
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia
| | - Bonnie L Quigley
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia.
| |
Collapse
|
6
|
Quigley BL, Timms P. Helping koalas battle disease - Recent advances in Chlamydia and koala retrovirus (KoRV) disease understanding and treatment in koalas. FEMS Microbiol Rev 2020; 44:583-605. [PMID: 32556174 PMCID: PMC8600735 DOI: 10.1093/femsre/fuaa024] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/14/2020] [Indexed: 12/31/2022] Open
Abstract
The iconic Australian marsupial, the koala (Phascolarctos cinereus), has suffered dramatic population declines as a result of habitat loss and fragmentation, disease, vehicle collision mortality, dog attacks, bushfires and climate change. In 2012, koalas were officially declared vulnerable by the Australian government and listed as a threatened species. In response, research into diseases affecting koalas has expanded rapidly. The two major pathogens affecting koalas are Chlamydia pecorum, leading to chlamydial disease and koala retrovirus (KoRV). In the last eight years, these pathogens and their diseases have received focused study regarding their sources, genetics, prevalence, disease presentation and transmission. This has led to vast improvements in pathogen detection and treatment, including the ongoing development of vaccines for each as a management and control strategy. This review will summarize and highlight the important advances made in understanding and combating C. pecorum and KoRV in koalas, since they were declared a threatened species. With complementary advances having also been made from the koala genome sequence and in our understanding of the koala immune system, we are primed to make a significant positive impact on koala health into the future.
Collapse
Affiliation(s)
- Bonnie L Quigley
- Genecology Research Centre, University of the Sunshine Coast,
90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast,
90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia
| |
Collapse
|
7
|
Fawzy A, Zschöck M, Ewers C, Eisenberg T. Development of a hierarchical typing approach for Mycobacterium avium subsp. paratuberculosis (MAP) and characterization of MAP field cultures from Central Germany. J Appl Microbiol 2020; 129:1193-1206. [PMID: 32426861 DOI: 10.1111/jam.14722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/30/2020] [Accepted: 05/13/2020] [Indexed: 11/29/2022]
Abstract
AIMS Development of a novel hierarchical Mycobacterium avium subsp. paratuberculosis (MAP) typing approach and characterization of MAP field cultures in Central Germany. METHODS AND RESULTS By combining single nucleotide polymorphisms (SNPs) and mycobacterial interspersed repetitive unit-variable number tandem repeat, we developed a highly discriminating and phylogenetically accurate hierarchical MAP typing approach. Moreover, a novel stepwise workflow was employed to reduce the number of SNP reactions required making the typing approach more affordable. MAP field cultures (n = 142) from dairy herds in Central Germany were classified as cattle type and showed a high level of heterogeneity. Intra-herd multiple genotypes were evident in (13-25%) of the investigated herds. CONCLUSIONS The hierarchical MAP typing approach proved to be useful in fine discrimination between MAP cultures within limited geographical regions. This could potentially be used in unravelling MAP transmission chains in the respective regions. The observed heterogeneity in some herds is assumed to be due to either multiple introductions through inter-herd trade or intra-herd evolution over time. SIGNIFICANCE AND IMPACT OF THE STUDY Future MAP epidemiological studies will benefit from the advantages of the novel hierarchical typing approach. The SNP number reduction approach employed here could be extrapolated for other analogous pathogens.
Collapse
Affiliation(s)
- A Fawzy
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza Square, Egypt.,Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, Giessen, Germany.,Hessian State Laboratory, Giessen, Germany
| | - M Zschöck
- Hessian State Laboratory, Giessen, Germany
| | - C Ewers
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, Giessen, Germany
| | - T Eisenberg
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, Giessen, Germany.,Hessian State Laboratory, Giessen, Germany
| |
Collapse
|
8
|
Goig GA, Blanco S, Garcia-Basteiro AL, Comas I. Contaminant DNA in bacterial sequencing experiments is a major source of false genetic variability. BMC Biol 2020; 18:24. [PMID: 32122347 PMCID: PMC7053099 DOI: 10.1186/s12915-020-0748-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background Contaminant DNA is a well-known confounding factor in molecular biology and in genomic repositories. Strikingly, analysis workflows for whole-genome sequencing (WGS) data commonly do not account for errors potentially introduced by contamination, which could lead to the wrong assessment of allele frequency both in basic and clinical research. Results We used a taxonomic filter to remove contaminant reads from more than 4000 bacterial samples from 20 different studies and performed a comprehensive evaluation of the extent and impact of contaminant DNA in WGS. We found that contamination is pervasive and can introduce large biases in variant analysis. We showed that these biases can result in hundreds of false positive and negative SNPs, even for samples with slight contamination. Studies investigating complex biological traits from sequencing data can be completely biased if contamination is neglected during the bioinformatic analysis, and we demonstrate that removing contaminant reads with a taxonomic classifier permits more accurate variant calling. We used both real and simulated data to evaluate and implement reliable, contamination-aware analysis pipelines. Conclusion As sequencing technologies consolidate as precision tools that are increasingly adopted in the research and clinical context, our results urge for the implementation of contamination-aware analysis pipelines. Taxonomic classifiers are a powerful tool to implement such pipelines.
Collapse
Affiliation(s)
- Galo A Goig
- Institute of Biomedicine of Valencia, IBV-CSIC, St. Jaume Roig 11, 46010, Valencia, Spain.
| | - Silvia Blanco
- Centro de Investigaçao em Saúde de Manhiça (CISM), Bairro Cambeve, Rua 12, Distrito da Manhiça, 1929, Maputo, Mozambique
| | - Alberto L Garcia-Basteiro
- Centro de Investigaçao em Saúde de Manhiça (CISM), Bairro Cambeve, Rua 12, Distrito da Manhiça, 1929, Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Iñaki Comas
- Institute of Biomedicine of Valencia, IBV-CSIC, St. Jaume Roig 11, 46010, Valencia, Spain.,CIBER in Epidemiology and Public Health, Madrid, Spain
| |
Collapse
|
9
|
Waugh CA, Timms P. A proposed roadmap for the control of infections in wildlife using Chlamydia vaccine development in koalas Phascolarctos cinereus as a template. WILDLIFE BIOLOGY 2020. [DOI: 10.2981/wlb.00627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Courtney A. Waugh
- C. Waugh ✉ , Faculty of Bioscience and Aquaculture, Nord Univ., Steinkjer, Norway
| | - Peter Timms
- P. Timms, Univ. of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
10
|
A Complete Genome Screening Program of Clinical Methicillin-Resistant Staphylococcus aureus Isolates Identifies the Origin and Progression of a Neonatal Intensive Care Unit Outbreak. J Clin Microbiol 2019; 57:JCM.01261-19. [PMID: 31578260 PMCID: PMC6879278 DOI: 10.1128/jcm.01261-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/23/2019] [Indexed: 01/17/2023] Open
Abstract
Whole-genome sequencing (WGS) of Staphylococcus aureus is increasingly used as part of infection prevention practices. In this study, we established a long-read technology-based WGS screening program of all first-episode methicillin-resistant Staphylococcus aureus (MRSA) blood infections at a major urban hospital. Whole-genome sequencing (WGS) of Staphylococcus aureus is increasingly used as part of infection prevention practices. In this study, we established a long-read technology-based WGS screening program of all first-episode methicillin-resistant Staphylococcus aureus (MRSA) blood infections at a major urban hospital. A survey of 132 MRSA genomes assembled from long reads enabled detailed characterization of an outbreak lasting several months of a CC5/ST105/USA100 clone among 18 infants in a neonatal intensive care unit (NICU). Available hospital-wide genome surveillance data traced the origins of the outbreak to three patients admitted to adult wards during a 4-month period preceding the NICU outbreak. The pattern of changes among complete outbreak genomes provided full spatiotemporal resolution of its progression, which was characterized by multiple subtransmissions and likely precipitated by equipment sharing between adults and infants. Compared to other hospital strains, the outbreak strain carried distinct mutations and accessory genetic elements that impacted genes with roles in metabolism, resistance, and persistence. This included a DNA recognition domain recombination in the hsdS gene of a type I restriction modification system that altered DNA methylation. Transcriptome sequencing (RNA-Seq) profiling showed that the (epi)genetic changes in the outbreak clone attenuated agr gene expression and upregulated genes involved in stress response and biofilm formation. Overall, our findings demonstrate the utility of long-read sequencing for hospital surveillance and for characterizing accessory genomic elements that may impact MRSA virulence and persistence.
Collapse
|
11
|
Jelocnik M. Chlamydiae from Down Under: The Curious Cases of Chlamydial Infections in Australia. Microorganisms 2019; 7:microorganisms7120602. [PMID: 31766703 PMCID: PMC6955670 DOI: 10.3390/microorganisms7120602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
In Australia, the most researched and perhaps the most successful chlamydial species are the human pathogen Chlamydia trachomatis, animal pathogens Chlamydia pecorum and Chlamydia psittaci. C. trachomatis remains the leading cause of sexually transmitted infections in Australians and trachoma in Australian Indigenous populations. C. pecorum is globally recognised as the infamous koala and widespread livestock pathogen, whilst the avian C. psittaci is emerging as a horse pathogen posing zoonotic risks to humans. Certainly not innocuous, the human infections with Chlamydia pneumoniae seem to be less prevalent that other human chlamydial pathogens (namely C. trachomatis). Interestingly, the complete host range for C. pecorum and C. psittaci remains unknown, and infections by other chlamydial organisms in Australian domesticated and wildlife animals are understudied. Considering that chlamydial organisms can be encountered by either host at the human/animal interface, I review the most recent findings of chlamydial organisms infecting Australians, domesticated animals and native wildlife. Furthermore, I also provide commentary from leading Australian Chlamydia experts on challenges and future directions in the Chlamydia research field.
Collapse
Affiliation(s)
- Martina Jelocnik
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs 4557, Australia
| |
Collapse
|
12
|
Longitudinal study of wild koalas (Phascolarctos cinereus) reveals chlamydial disease progression in two thirds of infected animals. Sci Rep 2019; 9:13194. [PMID: 31519969 PMCID: PMC6744427 DOI: 10.1038/s41598-019-49382-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/23/2019] [Indexed: 01/12/2023] Open
Abstract
Chlamydial disease threatens many of Australia’s koala populations, and yet our understanding of chlamydial epidemiology and disease dynamics in koalas is limited by a lack of comprehensive, longitudinal population studies. To address this, we utilised longitudinal samples from a large-scale population study of wild koalas in south-east Queensland, to follow chlamydial infections over time and to investigate some of the drivers of disease progression. Our findings show, firstly, that almost two thirds of chlamydial infections progressed to disease, challenging the notion that chlamydial infections in koalas commonly remain chronic and asymptomatic. Secondly, disease progression at the urogenital tract site was associated with infection load, and urogenital tract shedding was significantly higher when koalas acquired a new infection. Thirdly, chronic chlamydial exposure was not necessary for pathogenic sequelae to develop, such as infertility and mortality. Fourthly, ompA-characterised strain sub-types may reflect tissue tropisms and pathogenicity, and the chlamydial status of some chronically infected koalas may be explained by reinfections with novel genotypes. Finally, successful antimicrobial treatment provided only short-term protection against reinfection and disease progression in susceptible koalas. These findings highlight the importance of identifying and preventing chlamydial infections in koalas, informing new population management strategies and research priorities.
Collapse
|
13
|
Bachmann NL, Rockett RJ, Timms VJ, Sintchenko V. Advances in Clinical Sample Preparation for Identification and Characterization of Bacterial Pathogens Using Metagenomics. Front Public Health 2018; 6:363. [PMID: 30619804 PMCID: PMC6299010 DOI: 10.3389/fpubh.2018.00363] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022] Open
Abstract
Whole genome sequencing (WGS) plays an increasing role in communicable disease control through high-resolution outbreak tracing, laboratory surveillance and diagnostics. However, WGS has traditionally relied on microbial culture in order to obtain pathogen specific DNA for sequencing. This has severely limited the application of whole genome sequencing on pathogens with fastidious culturing requirements. In addition, the widespread adoption of culture-independent diagnostic tests has reduced availability of cultured isolates for confirmatory testing and surveillance. These recent developments have created demand for the implementation of techniques enabling direct sequencing of microbial genomes in clinical samples without having to culture an isolate. However, sequencing of specific organisms from clinical samples can be affected by high levels of contaminating DNA from the host and other commensal microorganisms. Several methods have been introduced for selective lysis of host cells and/or separate specific organisms from a clinical sample. This review examines the different approaches for sample preparation that have been used in diagnostic and public health laboratories for metagenomic sequencing.
Collapse
Affiliation(s)
- Nathan L. Bachmann
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Centenary Institute, University of Sydney, Camperdown, NSW, Australia
| | - Rebecca J. Rockett
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Centre for Infectious Diseases and Microbiology–Public Health, Westmead Hospital, Sydney, NSW, Australia
| | - Verlaine Joy Timms
- Centre for Infectious Diseases and Microbiology–Public Health, Westmead Hospital, Sydney, NSW, Australia
| | - Vitali Sintchenko
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Centre for Infectious Diseases and Microbiology–Public Health, Westmead Hospital, Sydney, NSW, Australia
| |
Collapse
|
14
|
Madden D, Whaite A, Jones E, Belov K, Timms P, Polkinghorne A. Koala immunology and infectious diseases: How much can the koala bear? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:177-185. [PMID: 29382557 DOI: 10.1016/j.dci.2018.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 06/07/2023]
Abstract
Infectious diseases are contributing to the decline of the iconic Australian marsupial, the koala (Phascolarctos cinereus). Infections with the obligate intracellular bacteria, Chlamydia pecorum, cause debilitating ocular and urogenital-tract disease while the koala-retrovirus (KoRV) has been implicated in host immunosuppression and exacerbation of chlamydial pathogenesis. Although histological studies have provided insight into the basic architecture of koala immune tissues, our understanding of the koala immune response to infectious disease has been limited, until recently, by a lack of species-specific immune reagents. Recent advances in the characterisation of key immune genes have focused on advancing our understanding of the immune response to Chlamydia infection, revealing commonalities in disease pathologies and immunity between koalas and other hosts and paving the way for the development of a koala Chlamydia vaccine. This review summarises these recent findings and highlights key aspects of the koala immune system requiring further attention with particular regard to their most prominent infectious diseases.
Collapse
Affiliation(s)
- Danielle Madden
- Animal Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs 4556, Australia.
| | - Alessandra Whaite
- Animal Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs 4556, Australia.
| | - Elizabeth Jones
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW 2006, Australia.
| | - Katherine Belov
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW 2006, Australia.
| | - Peter Timms
- Animal Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs 4556, Australia.
| | - Adam Polkinghorne
- Animal Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs 4556, Australia.
| |
Collapse
|
15
|
Abstract
The expanding field of bacterial genomics has revolutionized our understanding of microbial diversity, biology and phylogeny. For most species, DNA extracted from culture material is used as the template for genome sequencing; however, the majority of microbes are actually uncultivable, and others, such as obligate intracellular bacteria, require laborious tissue culture to yield sufficient genomic material for sequencing. Chlamydiae are one such group of obligate intracellular microbes whose characterization has been hampered by this requirement. To circumvent these challenges, researchers have developed culture-independent sample preparation methods that can be applied to the sample directly or to genomic material extracted from the sample. These methods, which encompass both targeted [immunomagnetic separation-multiple displacement amplification (IMS-MDA) and sequence capture] and non-targeted approaches (host methylated DNA depletion-microbial DNA enrichment and cell-sorting-MDA), have been applied to a range of clinical and environmental samples to generate whole genomes of novel chlamydial species and strains. This review aims to provide an overview of the application, advantages and limitations of these targeted and non-targeted approaches in the chlamydial context. The methods discussed also have broad application to other obligate intracellular bacteria or clinical and environmental samples.
Collapse
Affiliation(s)
- Alyce Taylor-Brown
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Danielle Madden
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| |
Collapse
|
16
|
Bommana S, Walker E, Desclozeaux M, Timms P, Polkinghorne A. Humoral immune response against two surface antigens of Chlamydia pecorum in vaccinated and naturally infected sheep. PLoS One 2017; 12:e0188370. [PMID: 29190736 PMCID: PMC5708773 DOI: 10.1371/journal.pone.0188370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/24/2017] [Indexed: 01/29/2023] Open
Abstract
Chlamydia pecorum is a globally recognised livestock pathogen due to the significant clinical and economic impact it poses to livestock producers. Routine serological diagnosis is through a complement fixation test (CFT), which is often criticised for cross-reactivity, poor sensitivity and specificity. Although serology remains the preferred method in veterinary diagnostic laboratories, serological assays based on surface antigens of C. pecorum have not been established until now. In this study, we evaluated the use of two chlamydial recombinant protein antigens (PmpG and MOMP-G) by a direct IgG ELISA method for detection of ovine anti-chlamydial antibodies. Using the Pepscan method we then identified B cell epitopes across PmpG and MOMP-G proteins, in lambs with (a) naturally occurring asymptomatic C. pecorum infections (b) C. pecorum-associated polyarthritis and (c) recombinant PmpG and MOMP-G vaccine. Plasma IgG antibodies to PmpG in natural infection of lambs were detected earlier in infection than CFT and served as an acute phase marker. Antibodies to MOMP-G IgG were significantly heightened in lambs with C. pecorum-associated polyarthritis. PmpG and MOMP-G specific B-cell epitope mapping revealed epitope responses in immunised lambs cluster with some of the epitope responses in naturally infected lambs. B-cell epitope mapping further revealed that lambs with polyarthritis recognised several unique PmpG (50% frequency, peptide 8, 25, 40, 41 and 50) and MOMP (50% frequency, peptide 50) epitopes in comparison to asymptomatic infections. The findings of this study will have implications towards improved serodiagnosis of C. pecorum infections in livestock and inform the downstream development of alternative peptide-based antigens for future C. pecorum vaccine studies.
Collapse
Affiliation(s)
- Sankhya Bommana
- Centre for Animal Health Innovation, University of the Sunshine Coast, Sippy Downs, Australia
| | - Evelyn Walker
- Centre for Animal Health Innovation, University of the Sunshine Coast, Sippy Downs, Australia
- Central West Local Land Services, Dubbo, Australia
| | - Marion Desclozeaux
- Centre for Animal Health Innovation, University of the Sunshine Coast, Sippy Downs, Australia
| | - Peter Timms
- Centre for Animal Health Innovation, University of the Sunshine Coast, Sippy Downs, Australia
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, University of the Sunshine Coast, Sippy Downs, Australia
| |
Collapse
|
17
|
McCallum H, Kerlin DH, Ellis W, Carrick F. Assessing the significance of endemic disease in conservation-koalas, chlamydia, and koala retrovirus as a case study. Conserv Lett 2017. [DOI: 10.1111/conl.12425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Hamish McCallum
- Griffith School of Environment and Environmental Futures Research Institute; Griffith University; Nathan Queensland Australia
| | - Douglas H. Kerlin
- Environmental Futures Research Institute; Griffith University; Nathan Queensland 4111 Australia
| | - William Ellis
- School of Agriculture and Food Science; The University of Queensland; Brisbane Queensland Australia
| | - Frank Carrick
- Koala Study Program, Centre for Mined Land Rehabilitation; The University of Queensland; Brisbane Queensland Australia
| |
Collapse
|
18
|
Chahota R, Ogawa H, Ohya K, Yamaguchi T, Everett KDE, Fukushi H. Involvement of multiple Chlamydia suis genotypes in porcine conjunctivitis. Transbound Emerg Dis 2017; 65:272-277. [PMID: 28345224 DOI: 10.1111/tbed.12645] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Indexed: 01/07/2023]
Abstract
Chlamydia suis has been detected in numerous disease conditions of pigs, particularly in eye infections. This study examined recurring conjunctivitis cases in five commercial pig farms in Japan. 40.5% of the cases were identified as Chlamydia positive using impression cytology of ocular smears and a genus-specific direct fluorescent antibody. C. suis was detected in 59.5% of the samples using PCR tests targeting 16S-23S rRNA intergenic spacer region (ISR) and ompA gene. Genetic analysis of PCR amplicons revealed nine sequence variants of 16S-23S rRNA ISR and 20 sequence variants within ompA gene. Among C. suis-positive conjunctivitis cases, 36.4% showed concurrent infection with 2-4 varied ompA sequence types and 9.1% showed multiple 16S-23S rRNA ISR sequence types of C. suis. Multiple genotypes were found circulating in four of five farms. All 20 detected strains and 25 previously reported C. suis strains were grouped into four clusters. Japanese C. suis strains were closely related to American and European strains indicating wide distribution of these genetically variant strains. This study is the first to show multiple and genetically diverse C. suis strain associations in pig conjunctivitis.
Collapse
Affiliation(s)
- R Chahota
- Department of Applied Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.,Department of Veterinary Microbiology, DGCN College of Veterinary and Animal Sciences, CSK HPKV, Palampur, India
| | - H Ogawa
- Department of Applied Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - K Ohya
- Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - T Yamaguchi
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | | | - H Fukushi
- Department of Applied Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.,Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
19
|
Taylor-Brown A, Pillonel T, Bridle A, Qi W, Bachmann NL, Miller TL, Greub G, Nowak B, Seth-Smith HMB, Vaughan L, Polkinghorne A. Culture-independent genomics of a novel chlamydial pathogen of fish provides new insight into host-specific adaptations utilized by these intracellular bacteria. Environ Microbiol 2017; 19:1899-1913. [PMID: 28205377 DOI: 10.1111/1462-2920.13694] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 12/12/2022]
Abstract
Several Chlamydiales families are associated with epitheliocystis, a common condition of the fish gill epithelium. These families share common ancestors with the Chlamydiaceae and environmental Chlamydiae. Due to the lack of culture systems, little is known about the biology of these chlamydial fish pathogens. We investigated epitheliocystis in cultured Orange-spotted grouper (Epinephelus coioides) from North Queensland, Australia. Basophilic inclusions were present in the gills of 22/31 fish and the presence of the chlamydial pathogen in the cysts was confirmed by in situ hybridization. Giant grouper (Epinephelus lanceolatus) cultured in the same systems were epitheliocystis free. 16S rRNA gene sequencing revealed a novel member of the Candidatus Parilichlamydiaceae: Ca. Similichlamydia epinephelii. Using metagenomic approaches, we obtained an estimated 68% of the chlamydial genome, revealing that this novel chlamydial pathogen shares a number of key pathogenic hallmarks with the Chlamydiaceae, including an intact Type III Secretion system and several chlamydial virulence factors. This provides additional evidence that these pathogenic mechanisms were acquired early in the evolution of this unique bacterial phylum. The identification and genomic characterization of Ca. S. epinephelii provides new opportunities to study the biology of distantly-related chlamydial pathogens while shining a new light on the evolution of pathogenicity of the Chlamydiaceae.
Collapse
Affiliation(s)
- Alyce Taylor-Brown
- Centre for Animal Health Innovation, Faculty of Science, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Trestan Pillonel
- Institute of Microbiology, University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Andrew Bridle
- Institute of Marine and Antarctic Studies, University of Tasmania, Newnham, Tasmania, 7248, Australia
| | - Weihong Qi
- Functional Genomics Centre, University of Zurich, Zurich, CH-8057, Switzerland
| | - Nathan L Bachmann
- Centre for Animal Health Innovation, Faculty of Science, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Terrence L Miller
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Marine and Environmental Sciences, James Cook University, Cairns, Queensland, 4878, Australia
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Barbara Nowak
- Institute of Marine and Antarctic Studies, University of Tasmania, Newnham, Tasmania, 7248, Australia
| | - Helena M B Seth-Smith
- Functional Genomics Centre, University of Zurich, Zurich, CH-8057, Switzerland.,Institute of Veterinary Pathology, University of Zurich, Zurich, CH-8057, Switzerland
| | - Lloyd Vaughan
- Institute of Veterinary Pathology, University of Zurich, Zurich, CH-8057, Switzerland
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| |
Collapse
|
20
|
Marti H, Kim H, Joseph SJ, Dojiri S, Read TD, Dean D. Tet(C) Gene Transfer between Chlamydia suis Strains Occurs by Homologous Recombination after Co-infection: Implications for Spread of Tetracycline-Resistance among Chlamydiaceae. Front Microbiol 2017; 8:156. [PMID: 28223970 PMCID: PMC5293829 DOI: 10.3389/fmicb.2017.00156] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/20/2017] [Indexed: 11/13/2022] Open
Abstract
Chlamydia suis is a swine pathogen that has also recently been found to cause zoonotic infections of the human eye, pharynx, and gastrointestinal tract. Many strains contain a tetracycline class C gene [tet(C)] cassette that confers tetracycline resistance. The cassette was likely originally acquired by horizontal gene transfer from a Gram-negative donor after the introduction of tetracycline into animal feed in the 1950s. Various research groups have described the capacity for different Chlamydia species to exchange DNA by homologous recombination. Since over 90% of C. suis strains are tetracycline resistant, they represent a potential source for antibiotic-resistance spread within and between Chlamydiaceae species. Here, we examined the genetics of tet(C)-transfer among C. suis strains. Tetracycline-sensitive C. suis strain S45 was simultaneously or sequentially co-infected with tetracycline-resistant C. suis strains in McCoy cells. Potential recombinants were clonally purified by a harvest assay derived from the classic plaque assay. C. suis strain Rogers132, lacking transposases IS200 and IS605, was the most efficient donor, producing two unique recombinants detected in three of the 56 (5.4%) clones screened. Recombinants were found to have a minimal inhibitory concentration (MIC) of 8-16 μg/mL for tetracycline. Resistance remained stable over 10 passages as long as recombinants were initially grown in tetracycline at twice the MIC of S45 (0.032 μg/mL). Genomic analysis revealed that tet(C) had integrated into the S45 genome by homologous recombination at two unique sites depending on the recombinant: a 55 kb exchange between nrqF and pckG, and a 175 kb exchange between kdsA and cysQ. Neither site was associated with inverted repeats or motifs associated with recombination hotspots. Our findings show that cassette transfer into S45 has low frequency, does not require IS200/IS605 transposases, is stable if initially grown in tetracycline, and results in multiple genomic configurations. We provide a model for stable cassette transfer to better understand the capability for cassette acquisition by Chlamydiaceae species that infect humans, a matter of public health importance.
Collapse
Affiliation(s)
- Hanna Marti
- Center for Immunobiology and Vaccine Development, University of California at San Francisco/Benioff Children's Hospital Oakland Research Institute, Oakland CA, USA
| | - Hoyon Kim
- Center for Immunobiology and Vaccine Development, University of California at San Francisco/Benioff Children's Hospital Oakland Research Institute, Oakland CA, USA
| | - Sandeep J Joseph
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, AtlantaGA, USA; Department of Human Genetics, Emory University School of Medicine, AtlantaGA, USA
| | - Stacey Dojiri
- Center for Immunobiology and Vaccine Development, University of California at San Francisco/Benioff Children's Hospital Oakland Research Institute, Oakland CA, USA
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, AtlantaGA, USA; Department of Human Genetics, Emory University School of Medicine, AtlantaGA, USA
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, University of California at San Francisco/Benioff Children's Hospital Oakland Research Institute, OaklandCA, USA; Joint Graduate Program in Bioengineering, University of California, San Francisco, San FranciscoCA, USA; Joint Graduate Program in Bioengineering, University of California, Berkeley, BerkeleyCA, USA; Departments of Medicine and Pediatrics, University of California, San Francisco, San FranciscoCA, USA
| |
Collapse
|
21
|
Lau A, Kong F, Fairley CK, Donovan B, Chen M, Bradshaw C, Boyd M, Amin J, Timms P, Tabrizi S, Regan DG, Lewis DA, McNulty A, Hocking JS. Treatment efficacy of azithromycin 1 g single dose versus doxycycline 100 mg twice daily for 7 days for the treatment of rectal chlamydia among men who have sex with men - a double-blind randomised controlled trial protocol. BMC Infect Dis 2017; 17:35. [PMID: 28061753 PMCID: PMC5217553 DOI: 10.1186/s12879-016-2125-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/14/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Rectal infection with Chlamydia trachomatis is one of the most common bacterial sexually transmissible infections among men who have sex with men (MSM) with diagnosis rates continuing to rise. Current treatment guidelines recommend either azithromycin 1 g single dose or doxycycline 100 mg twice daily for 7 days. However, there are increasing concerns about treatment failure with azithromycin. We are conducting the first randomised controlled trial (RCT) to compare treatment efficacy of azithromycin versus doxycycline for the treatment of rectal chlamydia in MSM. METHODS/DESIGN The Rectal Treatment Study will recruit 700 MSM attending Australian sexual health clinics for the treatment of rectal chlamydia. Participants will be asked to provide rectal swabs and will be randomised to either azithromycin 1 g single dose or doxycycline 100 mg twice daily for 7 days. Participants will be asked to complete questionnaires about adverse drug reactions, sexual behaviour and drug adherence via short message service and online survey. The primary outcome is the treatment efficacy as determined by a negative chlamydia nucleic acid amplification test at 4 weeks post treatment. Secondary outcomes will utilise whole genome sequencing and mRNA assay to differentiate between treatment failure, reinfection or false positive results. DISCUSSION Rectal chlamydia is an increasing public health concern as use of pre-exposure prophylaxis against HIV becomes commonplace. Optimal, evidence-based treatment is critical to halting ongoing transmission. This study will provide the first RCT evidence comparing azithromycin and doxycycline for the treatment of rectal chlamydia. The results of this trial will establish which treatment is more efficacious and inform international management guidelines. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry ACTRN12614001125617.
Collapse
Affiliation(s)
- Andrew Lau
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Carlton, 3053 VIC Australia
| | - Fabian Kong
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Carlton, 3053 VIC Australia
| | - Christopher K. Fairley
- Melbourne Sexual Health Centre, Alfred Health, 580 Swanston St, Carlton, 3053 VIC Australia
- Central Clinical School, Monash University, Clayton, 3800 VIC Australia
| | - Basil Donovan
- The Kirby Institute, UNSW Australia, Kensington, 2052 NSW Australia
| | - Marcus Chen
- Melbourne Sexual Health Centre, Alfred Health, 580 Swanston St, Carlton, 3053 VIC Australia
- Central Clinical School, Monash University, Clayton, 3800 VIC Australia
| | - Catriona Bradshaw
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Carlton, 3053 VIC Australia
- Melbourne Sexual Health Centre, Alfred Health, 580 Swanston St, Carlton, 3053 VIC Australia
- Central Clinical School, Monash University, Clayton, 3800 VIC Australia
| | - Mark Boyd
- The Kirby Institute, UNSW Australia, Kensington, 2052 NSW Australia
| | - Janaki Amin
- The Kirby Institute, UNSW Australia, Kensington, 2052 NSW Australia
| | - Peter Timms
- University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, 4556 QLD Australia
| | - Sepehr Tabrizi
- Division of Laboratory Services, Department of Microbiology, University of Melbourne, Carlton, 3053 VIC Australia
| | - David G. Regan
- The Kirby Institute, UNSW Australia, Kensington, 2052 NSW Australia
| | - David A. Lewis
- Western Sydney Sexual Health Centre, 162 Marsden St, Parramatta, 2150 NSW Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity & Sydney Medical School-Westmead, University of Sydney, Sydney, 2000 NSW Australia
| | - Anna McNulty
- Sydney Sexual Health Centre, Level 3 Nightingale Wing, Sydney Hospital, Macquarie St, Sydney, 2000 NSW Australia
| | - Jane S. Hocking
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Carlton, 3053 VIC Australia
- Melbourne Sexual Health Centre, Alfred Health, 580 Swanston St, Carlton, 3053 VIC Australia
| |
Collapse
|
22
|
Jelocnik M, Polkinghorne A. Chlamydia pecorum: successful pathogen of koalas or Australian livestock? MICROBIOLOGY AUSTRALIA 2017. [DOI: 10.1071/ma17042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In Australia, the obligate intracellular bacterium Chlamydia pecorum is best known as the notorious koala pathogen that causes debilitating ocular and urogenital tract disease. While globally published data suggests that this species is essentially ubiquitous in livestock, little is known about the epidemiology of livestock C. pecorum infections here in Australia. My research is focused on investigating the genetic diversity and transmission patterns of C. pecorum, and why it causes disease. Using our newly developed C. pecorum-specific molecular epidemiology typing scheme we provided the first epidemiological data on infections in sheep and cattle in Australia, identifying strains associated with a range of diseases in livestock, and uncovering an unexpected level of diversity for this pathogen. Most importantly, we observed that the same strain can infect koala and sheep, indicating on ongoing cross-host transmission and ‘spill-over' risks to wildlife. Further, by dissecting koala, sheep, cattle and pig C. pecorum strains genomes, we have also identified novel virulence-associated factors that could be explored as vaccine candidates for both livestock and koala infections.
Collapse
|
23
|
Selective Pressure Promotes Tetracycline Resistance of Chlamydia Suis in Fattening Pigs. PLoS One 2016; 11:e0166917. [PMID: 27893834 PMCID: PMC5125646 DOI: 10.1371/journal.pone.0166917] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
In pigs, Chlamydia suis has been associated with respiratory disease, diarrhea and conjunctivitis, but there is a high rate of inapparent C. suis infection found in the gastrointestinal tract of pigs. Tetracycline resistance in C. suis has been described in the USA, Italy, Switzerland, Belgium, Cyprus and Israel. Tetracyclines are commonly used in pig production due to their broad-spectrum activity and relatively low cost. The aim of this study was to isolate clinical C. suis samples in cell culture and to evaluate their antibiotic susceptibility in vitro under consideration of antibiotic treatment on herd level. Swab samples (n = 158) identified as C. suis originating from 24 farms were further processed for isolation, which was successful in 71% of attempts with a significantly higher success rate from fecal swabs compared to conjunctival swabs. The farms were divided into three treatment groups: A) farms without antibiotic treatment, B) farms with prophylactic oral antibiotic treatment of the whole herd consisting of trimethoprime, sulfadimidin and sulfathiazole (TSS), or C) farms giving herd treatment with chlortetracycline with or without tylosin and sulfadimidin (CTS). 59 isolates and their corresponding clinical samples were selected and tested for the presence or absence of the tetracycline resistance class C gene [tet(C)] by conventional PCR and isolates were further investigated for their antibiotic susceptibility in vitro. The phenotype of the investigated isolates was either classified as tetracycline sensitive (Minimum inhibitory concentration [MIC] < 2 μg/ml), intermediate (2 μg/ml ≤ MIC < 4 μg/ml) or resistant (MIC ≥ 4 μg/ml). Results of groups and individual pigs were correlated with antibiotic treatment and time of sampling (beginning/end of the fattening period). We found clear evidence for selective pressure as absence of antibiotics led to isolation of only tetracycline sensitive or intermediate strains whereas tetracycline treatment resulted in a greater number of tetracycline resistant isolates.
Collapse
|
24
|
Culture-independent genomic characterisation of Candidatus Chlamydia sanzinia, a novel uncultivated bacterium infecting snakes. BMC Genomics 2016; 17:710. [PMID: 27595750 PMCID: PMC5011893 DOI: 10.1186/s12864-016-3055-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent molecular studies have revealed considerably more diversity in the phylum Chlamydiae than was previously thought. Evidence is growing that many of these novel chlamydiae may be important pathogens in humans and animals. A significant barrier to characterising these novel chlamydiae is the requirement for culturing. We recently identified a range of novel uncultured chlamydiae in captive snakes in Switzerland, however, nothing is known about their biology. Using a metagenomics approach, the aim of this study was to characterise the genome of a novel chlamydial taxon from the choana of a captive snake. In doing so, we propose a new candidate species in the genus Chlamydia (Candidatus Chlamydia sanzinia) and reveal new information about the biological diversity of this important group of pathogens. RESULTS We identified two chlamydial genomic contigs: a 1,113,073 bp contig, and a 7,504 bp contig, representing the chromosome and plasmid of Ca. Chlamydia sanzinia strain 2742-308, respectively. The 998 predicted coding regions include an expanded repertoire of outer membrane proteins (Pmps and Omps), some of which exhibited frameshift mutations, as well as several chlamydial virulence factors such as the translocating actin-recruitment phosphoprotein (Tarp) and macrophage inhibition potentiator (Mip). A suite of putative inclusion membrane proteins were also predicted. Notably, no evidence of a traditional chlamydial plasticity zone was identified. Phylogenetically, Ca. Chlamydia sanzinia forms a clade with C. pneumoniae and C. pecorum, distinct from former "Chlamydophila" species. CONCLUSIONS Genomic characterisation of a novel uncultured chlamydiae from the first reptilian host has expanded our understanding of the diversity and biology of a genus that was thought to be the most well-characterised in this unique phylum. It is anticipated that this method will be suitable for characterisation of other novel chlamydiae.
Collapse
|
25
|
Chlamydia pecorum is the endemic intestinal species in cattle while C. gallinacea, C. psittaci and C. pneumoniae associate with sporadic systemic infection. Vet Microbiol 2016; 193:93-9. [PMID: 27599935 DOI: 10.1016/j.vetmic.2016.08.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/11/2016] [Accepted: 08/13/2016] [Indexed: 11/20/2022]
Abstract
To investigate the prevalence and diversity of bovine Chlamydia spp. in cattle, whole blood from dairy and beef cattle in 11 provinces of China (n=2003) and vaginal swabs, whole blood samples, feces, milk samples from cows in a Yangzhou dairy farm (n=108) were examined using genus- and species-specific PCRs. In cattle from 11 provinces, 2.4% (48/2003) of whole-blood samples were positive for Chlamydia spp., and four Chlamydia species (C. pneumoniae, 41.7%, 20/48; C. psittaci, 22.9%, 11/48; C. gallinacea, 20.8%, 10/48; C. pecorum, 6.3%, 3/48) were identified. In a further study on a Yangzhou dairy farm, 64.8% (70/108) of the cows were positive for Chlamydia spp. C. pecorum was the intestinal endemic species (51/51, 100%), and C. gallinacea was the most frequent species in vaginal swabs (24/27, 88.9%), whole blood buffy coats (5/8, 62.5%) and milk (4/6, 66.7%). C. psittaci and C. pneumoniae were infrequently detected. DNA sequencing of the ompA gene demonstrated the presence of multiple in-herd C. pecorum serovars and single C. gallinacea and C. psittaci serovars which were identical with those of poultry from Yangzhou. This is the first report of C. gallinacea and C. pneumoniae in cattle. Further study is required to address the transmission of Chlamydia spp., in particular of C. gallinacea and C. pneumoniae from their natural hosts, and their potential pathogenic effect on health and production of cattle.
Collapse
|
26
|
Australian human and parrot Chlamydia psittaci strains cluster within the highly virulent 6BC clade of this important zoonotic pathogen. Sci Rep 2016; 6:30019. [PMID: 27488134 PMCID: PMC4973220 DOI: 10.1038/srep30019] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/27/2016] [Indexed: 12/02/2022] Open
Abstract
Chlamydia psittaci is an avian pathogen and zoonotic agent of atypical pneumonia. The most pathogenic C. psittaci strains cluster into the 6BC clade, predicted to have recently emerged globally. Exposure to infected parrots is a risk factor with limited evidence also of an indirect exposure risk. Genome sequencing was performed on six Australian human and a single avian C. psittaci strain isolated over a 9 year period. Only one of the five human patients had explicit psittacine contact. Genomics analyses revealed that the Australian C. psittaci strains are remarkably similar, clustering tightly within the C. psittaci 6BC clade suggested to have been disseminated by South America parrot importation. Molecular clock analysis using the newly sequenced C. psittaci genomes predicted the emergence of the 6BC clade occurring approximately 2,000 years ago. These findings reveal the potential for an Australian natural reservoir of C. psittaci 6BC strains. These strains can also be isolated from seriously ill patients without explicit psittacine contact. The apparent recent and global spread of C. psittaci 6BC strains raises important questions over how this happened. Further studies may reveal whether the dissemination of this important zoonotic pathogen is linked to Australian parrot importation rather than parrots from elsewhere.
Collapse
|
27
|
Legione AR, Patterson JLS, Whiteley PL, Amery-Gale J, Lynch M, Haynes L, Gilkerson JR, Polkinghorne A, Devlin JM, Sansom FM. Identification of unusual Chlamydia pecorum genotypes in Victorian koalas (Phascolarctos cinereus) and clinical variables associated with infection. J Med Microbiol 2016; 65:420-428. [PMID: 26932792 DOI: 10.1099/jmm.0.000241] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chlamydia pecorum infection is a threat to the health of free-ranging koalas (Phascolarctos cinereus) in Australia. Utilizing an extensive sample archive we determined the prevalence of C. pecorum in koalas within six regions of Victoria, Australia. The ompA genotypes of the detected C. pecorum were characterized to better understand the epidemiology of this pathogen in Victorian koalas. Despite many studies in northern Australia (i.e. Queensland and New South Wales), prior Chlamydia studies in Victorian koalas are limited. We detected C. pecorum in 125/820 (15 %) urogenital swabs, but in only one ocular swab. Nucleotide sequencing of the molecular marker C. pecorum ompA revealed that the majority (90/114) of C. pecorum samples typed were genotype B. This genotype has not been reported in northern koalas. In general, Chlamydia infection in Victorian koalas is associated with milder clinical signs compared with infection in koalas in northern populations. Although disease pathogenesis is likely to be multifactorial, the high prevalence of genotype B in Victoria may suggest it is less pathogenic. All but three koalas had C. pecorum genotypes unique to southern koala populations (i.e. Victoria and South Australia). These included a novel C. pecorum ompA genotype and two genotypes associated with livestock. Regression analysis determined that significant factors for the presence of C. pecorum infection were sex and geographical location. The presence of 'wet bottom' in males and the presence of reproductive tract pathology in females were significantly associated with C. pecorum infection, suggesting variation in clinical disease manifestations between sexes.
Collapse
Affiliation(s)
- Alistair R Legione
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne,Parkville, Victoria,Australia
| | - Jade L S Patterson
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne,Parkville, Victoria,Australia.,Veterinary Department, Melbourne Zoo,Parkville, Victoria,Australia
| | - Pam L Whiteley
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne,Parkville, Victoria,Australia.,Wildlife Health Surveillance Victoria, The University of Melbourne,Werribee, Victoria,Australia
| | - Jemima Amery-Gale
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne,Parkville, Victoria,Australia.,Australian Wildlife Health Centre, Healesville Sanctuary, Healesville,Victoria,Australia
| | - Michael Lynch
- Veterinary Department, Melbourne Zoo,Parkville, Victoria,Australia
| | - Leesa Haynes
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne,Werribee, Victoria,Australia
| | - James R Gilkerson
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne,Parkville, Victoria,Australia
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, University of the Sunshine Coast, Sippy Downs,Queensland,Australia
| | - Joanne M Devlin
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne,Parkville, Victoria,Australia
| | - Fiona M Sansom
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne,Parkville, Victoria,Australia
| |
Collapse
|
28
|
Penicillin G-Induced Chlamydial Stress Response in a Porcine Strain of Chlamydia pecorum. Int J Microbiol 2016; 2016:3832917. [PMID: 26997956 PMCID: PMC4779511 DOI: 10.1155/2016/3832917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/26/2016] [Indexed: 01/14/2023] Open
Abstract
Chlamydia pecorum causes asymptomatic infection and pathology in ruminants, pigs, and koalas. We characterized the antichlamydial effect of the beta lactam penicillin G on Chlamydia pecorum strain 1710S (porcine abortion isolate). Penicillin-exposed and mock-exposed infected host cells showed equivalent inclusions numbers. Penicillin-exposed inclusions contained aberrant bacterial forms and exhibited reduced infectivity, while mock-exposed inclusions contained normal bacterial forms and exhibited robust infectivity. Infectious bacteria production increased upon discontinuation of penicillin exposure, compared to continued exposure. Chlamydia-induced cell death occurred in mock-exposed controls; cell survival was improved in penicillin-exposed infected groups. Similar results were obtained both in the presence and in the absence of the eukaryotic protein translation inhibitor cycloheximide and at different times of initiation of penicillin exposure. These data demonstrate that penicillin G induces the chlamydial stress response (persistence) and is not bactericidal, for this chlamydial species/strain in vitro, regardless of host cell de novo protein synthesis.
Collapse
|
29
|
Jelocnik M, Bachmann NL, Seth-Smith H, Thomson NR, Timms P, Polkinghorne AM. Molecular characterisation of the Chlamydia pecorum plasmid from porcine, ovine, bovine, and koala strains indicates plasmid-strain co-evolution. PeerJ 2016; 4:e1661. [PMID: 26870613 PMCID: PMC4748734 DOI: 10.7717/peerj.1661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/14/2016] [Indexed: 01/07/2023] Open
Abstract
Background. Highly stable, evolutionarily conserved, small, non-integrative plasmids are commonly found in members of the Chlamydiaceae and, in some species, these plasmids have been strongly linked to virulence. To date, evidence for such a plasmid in Chlamydia pecorum has been ambiguous. In a recent comparative genomic study of porcine, ovine, bovine, and koala C. pecorum isolates, we identified plasmids (pCpec) in a pig and three koala strains, respectively. Screening of further porcine, ovine, bovine, and koala C. pecorum isolates for pCpec showed that pCpec is common, but not ubiquitous in C. pecorum from all of the infected hosts. Methods. We used a combination of (i) bioinformatic mining of previously sequenced C. pecorum genome data sets and (ii) pCpec PCR-amplicon sequencing to characterise a further 17 novel pCpecs in C. pecorum isolates obtained from livestock, including pigs, sheep, and cattle, as well as those from koala. Results and Discussion. This analysis revealed that pCpec is conserved with all eight coding domain sequences (CDSs) present in isolates from each of the hosts studied. Sequence alignments revealed that the 21 pCpecs show 99% nucleotide sequence identity, with 83 single nucleotide polymorphisms (SNPs) shown to differentiate all of the plasmids analysed in this study. SNPs were found to be mostly synonymous and were distributed evenly across all eight pCpec CDSs as well as in the intergenic regions. Although conserved, analyses of the 21 pCpec sequences resolved plasmids into 12 distinct genotypes, with five shared between pCpecs from different isolates, and the remaining seven genotypes being unique to a single pCpec. Phylogenetic analysis revealed congruency and co-evolution of pCpecs with their cognate chromosome, further supporting polyphyletic origin of the koala C. pecorum. This study provides further understanding of the complex epidemiology of this pathogen in livestock and koala hosts and paves the way for studies to evaluate the function of this putative C. pecorum virulence factor.
Collapse
Affiliation(s)
- Martina Jelocnik
- Centre for Animal Health Innovation, University of the Sunshine Coast , Sippy Downs, Queensland , Australia
| | - Nathan L Bachmann
- Centre for Animal Health Innovation, University of the Sunshine Coast , Sippy Downs, Queensland , Australia
| | - Helena Seth-Smith
- Functional Genomics Center Zurich, University of Zurich , Zurich , Switzerland
| | - Nicholas R Thomson
- Infection Genomics, The Wellcome Trust Sanger Institute , Cambridge , United Kingdom
| | - Peter Timms
- Centre for Animal Health Innovation, University of the Sunshine Coast , Sippy Downs, Queensland , Australia
| | - Adam M Polkinghorne
- Centre for Animal Health Innovation, University of the Sunshine Coast , Sippy Downs, Queensland , Australia
| |
Collapse
|
30
|
Roulis E, Bachmann N, Humphrys M, Myers G, Huston W, Polkinghorne A, Timms P. Phylogenetic analysis of human Chlamydia pneumoniae strains reveals a distinct Australian indigenous clade that predates European exploration of the continent. BMC Genomics 2015; 16:1094. [PMID: 26694618 PMCID: PMC4687280 DOI: 10.1186/s12864-015-2281-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/08/2015] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The obligate intracellular bacterium Chlamydia pneumoniae is a common respiratory pathogen, which has been found in a range of hosts including humans, marsupials and amphibians. Whole genome comparisons of human C. pneumoniae have previously highlighted a highly conserved nucleotide sequence, with minor but key polymorphisms and additional coding capacity when human and animal strains are compared. RESULTS In this study, we sequenced three Australian human C. pneumoniae strains, two of which were isolated from patients in remote indigenous communities, and compared them to all available C. pneumoniae genomes. Our study demonstrated a phylogenetically distinct human C. pneumoniae clade containing the two indigenous Australian strains, with estimates that the most recent common ancestor of these strains predates the arrival of European settlers to Australia. We describe several polymorphisms characteristic to these strains, some of which are similar in sequence to animal C. pneumoniae strains, as well as evidence to suggest that several recombination events have shaped these distinct strains. CONCLUSIONS Our study reveals a greater sequence diversity amongst both human and animal C. pneumoniae strains, and suggests that a wider range of strains may be circulating in the human population than current sampling indicates.
Collapse
Affiliation(s)
- Eileen Roulis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.
| | - Nathan Bachmann
- Centre for Animal Health Innovation, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia.
| | - Michael Humphrys
- Institute for Genomic Sciences, University of Maryland, Baltimore, MD, USA.
| | - Garry Myers
- i3 Institute, University of Technology, Sydney, NSW, Australia.
| | - Wilhelmina Huston
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.
- i3 Institute, University of Technology, Sydney, NSW, Australia.
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia.
| | - Peter Timms
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.
- Centre for Animal Health Innovation, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia.
| |
Collapse
|
31
|
Comparative genomic analysis of human Chlamydia pneumoniae isolates from respiratory, brain and cardiac tissues. Genomics 2015; 106:373-83. [DOI: 10.1016/j.ygeno.2015.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 08/14/2015] [Accepted: 09/24/2015] [Indexed: 12/18/2022]
|
32
|
Jelocnik M, Bachmann NL, Kaltenboeck B, Waugh C, Woolford L, Speight KN, Gillett A, Higgins DP, Flanagan C, Myers GSA, Timms P, Polkinghorne A. Genetic diversity in the plasticity zone and the presence of the chlamydial plasmid differentiates Chlamydia pecorum strains from pigs, sheep, cattle, and koalas. BMC Genomics 2015; 16:893. [PMID: 26531162 PMCID: PMC4632680 DOI: 10.1186/s12864-015-2053-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/08/2015] [Indexed: 12/22/2022] Open
Abstract
Background Chlamydia pecorum is a globally recognised pathogen of livestock and koalas. To date, comparative genomics of C. pecorum strains from sheep, cattle and koalas has revealed that only single nucleotide polymorphisms (SNPs) and a limited number of pseudogenes appear to contribute to the genetic diversity of this pathogen. No chlamydial plasmid has been detected in these strains despite its ubiquitous presence in almost all other chlamydial species. Genomic analyses have not previously included C. pecorum from porcine hosts. We sequenced the genome of three C. pecorum isolates from pigs with differing pathologies in order to re-evaluate the genetic differences and to update the phylogenetic relationships between C. pecorum from each of the hosts. Methods Whole genome sequences for the three porcine C. pecorum isolates (L1, L17 and L71) were acquired using C. pecorum-specific sequence capture probes with culture-independent methods, and assembled in CLC Genomics Workbench. The pairwise comparative genomic analyses of 16 pig, sheep, cattle and koala C. pecorum genomes were performed using several bioinformatics platforms, while the phylogenetic analyses of the core C. pecorum genomes were performed with predicted recombination regions removed. Following the detection of a C. pecorum plasmid, a newly developed C. pecorum-specific plasmid PCR screening assay was used to evaluate the plasmid distribution in 227 C. pecorum samples from pig, sheep, cattle and koala hosts. Results Three porcine C. pecorum genomes were sequenced using C. pecorum-specific sequence capture probes with culture-independent methods. Comparative genomics of the newly sequenced porcine C. pecorum genomes revealed an increased average number of SNP differences (~11 500) between porcine and sheep, cattle, and koala C. pecorum strains, compared to previous C. pecorum genome analyses. We also identified a third copy of the chlamydial cytotoxin gene, found only in porcine C. pecorum isolates. Phylogenetic analyses clustered porcine isolates into a distinct clade, highlighting the polyphyletic origin of C. pecorum in livestock. Most surprising, we also discovered a plasmid in the porcine C. pecorum genome. Using this novel C. pecorum plasmid (pCpec) sequence, a) we developed a pCpec screening assay to evaluate the plasmid distribution in C. pecorum from different hosts; and b) to characterise the pCpec sequences from available previously sequenced C. pecorum genome data. pCpec screening showed that the pCpec is common in all hosts of C. pecorum, however not all C. pecorum strains carry pCpec. Conclusions This study provides further insight into the complexity of C. pecorum epidemiology and novel genomic regions that may be linked to host specificity. C. pecorum plasmid characterisation may aid in improving our understanding of C. pecorum pathogenesis across the variety of host species this animal pathogen infects. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2053-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martina Jelocnik
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4558, Australia
| | - Nathan L Bachmann
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4558, Australia
| | | | - Courtney Waugh
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4558, Australia
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - K Natasha Speight
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - Amber Gillett
- Australia Zoo Wildlife Hospital, Beerwah, QLD, 4519, Australia
| | - Damien P Higgins
- Faculty of Veterinary Science, The University of Sydney, New South Wales, 2006, Australia
| | - Cheyne Flanagan
- Port Macquarie Koala Hospital, Port Macquarie, NSW, 2444, Australia
| | - Garry S A Myers
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peter Timms
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4558, Australia
| | - Adam Polkinghorne
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4558, Australia.
| |
Collapse
|
33
|
Joseph SJ, Marti H, Didelot X, Castillo-Ramirez S, Read TD, Dean D. Chlamydiaceae Genomics Reveals Interspecies Admixture and the Recent Evolution of Chlamydia abortus Infecting Lower Mammalian Species and Humans. Genome Biol Evol 2015; 7:3070-84. [PMID: 26507799 PMCID: PMC4994753 DOI: 10.1093/gbe/evv201] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chlamydiaceae are obligate intracellular bacteria that cause a diversity of severe infections among humans and livestock on a global scale. Identification of new species since 1989 and emergence of zoonotic infections, including abortion in women, underscore the need for genome sequencing of multiple strains of each species to advance our knowledge of evolutionary dynamics across Chlamydiaceae. Here, we genome sequenced isolates from avian, lower mammalian and human hosts. Based on core gene phylogeny, five isolates previously classified as Chlamydia abortus were identified as members of Chlamydia psittaci and Chlamydia pecorum. Chlamydia abortus is the most recently emerged species and is a highly monomorphic group that lacks the conserved virulence-associated plasmid. Low-level recombination and evidence for adaptation to the placenta echo evolutionary processes seen in recently emerged, highly virulent niche-restricted pathogens, such as Bacillus anthracis. In contrast, gene flow occurred within C. psittaci and other Chlamydiaceae species. The C. psittaci strain RTH, isolated from a red-tailed hawk (Buteo jamaicensis), is an outlying strain with admixture of C. abortus, C. psittaci, and its own population markers. An average nucleotide identity of less than 94% compared with other Chlamydiaceae species suggests that RTH belongs to a new species intermediary between C. psittaci and C. abortus. Hawks, as scavengers and predators, have extensive opportunities to acquire multiple species in their intestinal tract. This could facilitate transformation and homologous recombination with the potential for new species emergence. Our findings indicate that incubator hosts such as birds-of-prey likely promote Chlamydiaceae evolution resulting in novel pathogenic lineages.
Collapse
Affiliation(s)
- Sandeep J Joseph
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine
| | - Hanna Marti
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, Imperial College, London, United Kingdom
| | - Santiago Castillo-Ramirez
- Programa de Genomica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine Department of Human Genetics, Emory University School of Medicine
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California Department of Medicine, University of California, San Francisco Joint Graduate Program in Bioengineering, University of California, San Francisco, and University of California, Berkeley
| |
Collapse
|
34
|
Sullivan MJ, Bachmann NL, Timms P, Polkinghorne A. HapFlow: visualizing haplotypes in sequencing data. Bioinformatics 2015; 32:441-3. [PMID: 26449930 DOI: 10.1093/bioinformatics/btv551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/16/2015] [Indexed: 11/12/2022] Open
Abstract
SUMMARY HapFlow is a python application for visualizing haplotypes present in sequencing data. It identifies variant profiles present and reads and creates an abstract visual representation of these profiles to make haplotypes easier to identify. AVAILABILITY AND IMPLEMENTATION HapFlow is freely available (under a GPL license) for download (for Mac OS X, Unix and Microsoft Windows) from github (http://mjsull.github.io/HapFlow). CONTACT apolking@usc.edu.au.
Collapse
Affiliation(s)
- Mitchell J Sullivan
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Nathan L Bachmann
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Peter Timms
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Adam Polkinghorne
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| |
Collapse
|
35
|
Derrick T, Roberts CH, Last AR, Burr SE, Holland MJ. Trachoma and Ocular Chlamydial Infection in the Era of Genomics. Mediators Inflamm 2015; 2015:791847. [PMID: 26424969 PMCID: PMC4573990 DOI: 10.1155/2015/791847] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/05/2015] [Indexed: 12/19/2022] Open
Abstract
Trachoma is a blinding disease usually caused by infection with Chlamydia trachomatis (Ct) serovars A, B, and C in the upper tarsal conjunctiva. Individuals in endemic regions are repeatedly infected with Ct throughout childhood. A proportion of individuals experience prolonged or severe inflammatory episodes that are known to be significant risk factors for ocular scarring in later life. Continued scarring often leads to trichiasis and in-turning of the eyelashes, which causes pain and can eventually cause blindness. The mechanisms driving the chronic immunopathology in the conjunctiva, which largely progresses in the absence of detectable Ct infection in adults, are likely to be multifactorial. Socioeconomic status, education, and behavior have been identified as contributing to the risk of scarring and inflammation. We focus on the contribution of host and pathogen genetic variation, bacterial ecology of the conjunctiva, and host epigenetic imprinting including small RNA regulation by both host and pathogen in the development of ocular pathology. Each of these factors or processes contributes to pathogenic outcomes in other inflammatory diseases and we outline their potential role in trachoma.
Collapse
Affiliation(s)
- Tamsyn Derrick
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Chrissy h. Roberts
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Anna R. Last
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Sarah E. Burr
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Martin J. Holland
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
36
|
de Barsy M, Bertelli C, Jacquier N, Kebbi-Beghdadi C, Greub G. ESCCAR international congress on Rickettsia and other intracellular bacteria. Microbes Infect 2015; 17:680-8. [PMID: 26297854 DOI: 10.1016/j.micinf.2015.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 11/17/2022]
Abstract
The European Society for the study of Chlamydia, Coxiella, Anaplasma and Rickettsia (ESCCAR) held his triennial international meeting in Lausanne. This meeting gathered 165 scientists from 28 countries and all 5 continents, allowing efficient networking and major scientific exchanges. Topics covered include molecular and cellular microbiology, genomics, as well as epidemiology, veterinary and human medicine. Several breakthroughs have been revealed at the meeting, such as (i) the presence of CRISPR (the "prokaryotic immune system") in chlamydiae, (ii) an Anaplasma effector involved in host chromatin remodelling, (iii) the polarity of the type III secretion system of chlamydiae during the entry process revealed by cryo-electron tomography. Moreover, the ESCCAR meeting was a unique opportunity to be exposed to cutting-edge science and to listen to comprehensive talks on current hot topics.
Collapse
Affiliation(s)
- Marie de Barsy
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Claire Bertelli
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Jacquier
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Carole Kebbi-Beghdadi
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|