1
|
Eddicks M, Eddicks L, Stadler J, Hermanns W, Ritzmann M. [The porcine respiratory disease complex (PRDC) - a clinical review]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2021; 49:120-132. [PMID: 33902142 DOI: 10.1055/a-1403-1976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The porcine respiratory disease complex describes a clinical condition that often manifests as treatment-resistant respiratory disease of growing to finishing pigs. Its multifactorial etiology includes infectious and non-infectious factors. Besides management and hygiene conditions, particularly viral and bacterial pathogens contribute to the development and course of PRDC. The porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type 2 (PCV2), influenza A virus (IAV) and Mycoplasma (M.) hyopneunoniae are considered as the major pathogens involved in PRDC. The clinical outcome and necropsy findings may differ depending on the involvement of the different pathogens. The complex nature of the PRDC impedes the diagnostic and preventive measures on affected farms. The present review provides insight into the pathomorphology, pathogenesis and inter-pathogen-interactions and aims to support practitioners in implementing purposeful diagnostic and preventive measures.
Collapse
Affiliation(s)
- Matthias Eddicks
- Klinik für Schweine, Zentrum für Klinische Tiermedizin, Ludwig-Maximilians-Universität München
| | - Lina Eddicks
- Institut für Tierpathologie, Zentrum für Klinische Tiermedizin, Ludwig-Maximilians-Universität München
| | - Julia Stadler
- Klinik für Schweine, Zentrum für Klinische Tiermedizin, Ludwig-Maximilians-Universität München
| | - Walter Hermanns
- Institut für Tierpathologie, Zentrum für Klinische Tiermedizin, Ludwig-Maximilians-Universität München
| | - Mathias Ritzmann
- Klinik für Schweine, Zentrum für Klinische Tiermedizin, Ludwig-Maximilians-Universität München
| |
Collapse
|
2
|
Porcine Reproductive and Respiratory Syndrome Virus Promotes SLA-DR-Mediated Antigen Presentation of Nonstructural Proteins To Evoke a Nonneutralizing Antibody Response In Vivo. J Virol 2020; 94:JVI.01423-20. [PMID: 32796065 DOI: 10.1128/jvi.01423-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
The humoral immune response against porcine reproductive and respiratory syndrome virus (PRRSV) infection is characterized by a rapid induction of nonneutralizing antibodies (non-NAbs) against nonstructural proteins (NSPs). Here, we systematically investigated the potential mechanism for the induction of PRRSV NSP-specific non-NAbs. Our data suggested that PRRSV NSP-specific antibodies appeared within 10 days after PRRSV infection in vivo In the in vitro model, functional upregulation of swine leukocyte antigen (SLA)-DR was observed in bone marrow-derived dendritic cells (BMDCs) and porcine alveolar macrophages (PAMs), whereas remarkable inhibition at the mRNA level was observed after infection by both PRRSV-1 and PRRSV-2 isolates. Notably, the inconsistency in SLA-DR expression between the mRNA and protein levels resulted from deubiquitination of SLA-DR via the ovarian tumor (OTU) domain of PRRSV NSP2, which inhibited ubiquitin-mediated degradation. Moreover, mass spectrometry-based immunopeptidome analysis identified immunopeptides originating from multiple PRRSV NSPs within SLA-DR of PRRSV-infected BMDCs. Meanwhile, these PRRSV NSP-derived immunopeptides could be specifically recognized by serum from PRRSV-infected piglets. Notably, certain NSP-derived immunopeptides characterized in vitro could be identified from PAMs or hilar lymph nodes from PRRSV-infected piglets. More importantly, an in vitro neutralizing assay indicated that serum antibodies against NSP immunopeptides were unable to neutralize PRRSV in vitro Conversely, certain structural protein (SP)-derived immunopeptides were identified and could be recognize by pig hyperimmune serum against PRRSV, which further indicates that the NSP-derived antibody response is nonprotective in vivo In conclusion, our data suggested that PRRSV infection interferes with major histocompatibility complex class II (MHC-II) molecule-mediated antigen presentation in antigen-presenting cells (APCs) via promoting SLA-DR expression to present immunopeptides from PRRSV NSPs, which contributes to the induction of non-NAbs in vivo IMPORTANCE PRRSV has haunted the swine industry for over 30 years since its emergence. Besides the limited efficacy of PRRSV modified live vaccines (MLVs) against heterogeneous PRRSV isolates, rapid induction of nonneutralizing antibodies (non-NAbs) against PRRSV NSPs after MLV immunization or wild-strain infection is one of the reasons why development of an effective vaccine has been hampered. By using in vitro-generated BMDCs as models to understand the antigen presentation process of PRRSV, we obtained data indicating that PRRSV infection of BMDCs promotes functional SLA-DR upregulation to present PRRSV NSP-derived immunopeptides for evoking a non-NAb response in vivo Our work not only uncovered a novel mechanism for interference in host antigen presentation by PRRSV but also revealed a novel insight for understanding the rapid production of nonneutralizing antibodies against PRRSV NSPs, which may have benefit for developing an effective vaccine against PRRSV in the future.
Collapse
|
3
|
PRRSV Vaccine Strain-Induced Secretion of Extracellular ISG15 Stimulates Porcine Alveolar Macrophage Antiviral Response against PRRSV. Viruses 2020; 12:v12091009. [PMID: 32927637 PMCID: PMC7551094 DOI: 10.3390/v12091009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has disrupted the global swine industry since the 1980s. PRRSV-host interactions are largely still unknown but may involve host ISG15 protein. In this study, we developed a monoclonal antibody (Mab-3D5E6) specific for swine ISG15 (sISG15) by immunizing mice with recombinant sISG15. A sandwich enzyme-linked immunosorbent assay (ELISA) incorporating this sISG15-specific Mab was developed to detect sISG15 and provided a lower limit of sISG15 detection of 200 pg/mL. ELISA results demonstrated that infection of porcine alveolar macrophages (PAMs) with low-virulence or attenuated PRRSV vaccine strains induced intracellular ISG15 expression that was independent of type I IFN production, while PAMs infection with a PRRSV vaccine strain promoted extracellular ISG15 secretion from infected PAMs. Conversely, the addition of recombinant sISG15 to PAMs mimicked natural extracellular ISG15 effects whereby sISG15 functioned as a cytokine by activating PAMs. Once activated, PAMs could inhibit PRRSV replication and resist infection with PRRSV vaccine strain TJM. In summary, a sandwich ELISA incorporating homemade anti-ISG15 Mab detected ISG15 secretion induced by PAMs infection with a PRRSV vaccine strain. Recombinant ISG15 added to cells exhibited cytokine-like activity that stimulated PAMs to assume an anti-viral state that enabled them to inhibit PRRSV replication and resist viral infection.
Collapse
|
4
|
Porcine Reproductive and Respiratory Syndrome Virus Interferes with Swine Influenza A Virus Infection of Epithelial Cells. Vaccines (Basel) 2020; 8:vaccines8030508. [PMID: 32899579 PMCID: PMC7565700 DOI: 10.3390/vaccines8030508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 11/20/2022] Open
Abstract
Respiratory infections are still a major concern in pigs. Amongst the involved viruses, the porcine reproductive and respiratory syndrome virus (PRRSV) and the swine influenza type A virus (swIAV) have a major impact. These viruses frequently encounter and dual infections are reported. We analyzed here the molecular interactions between viruses and porcine tracheal epithelial cells as well as lung tissue. PRRSV-1 species do not infect porcine respiratory epithelial cells. However, PRRSV-1, when inoculated simultaneously or shortly before swIAV, was able to inhibit swIAV H1N2 infection, modulate the interferon response and alter signaling protein phosphorylations (ERK, AKT, AMPK, and JAK2), in our conditions. SwIAV inhibition was also observed, although at a lower level, by inactivated PRRSV-1, whereas acid wash treatment inactivating non-penetrated viruses suppressed the interference effect. PRRSV-1 and swIAV may interact at several stages, before their attachment to the cells, when they attach to their receptors, and later on. In conclusion, we showed for the first time that PRRSV can alter the relation between swIAV and its main target cells, opening the doors to further studies on the interplay between viruses. Consequences of these peculiar interactions on viral infections and vaccinations using modified live vaccines require further investigations.
Collapse
|
5
|
Li Y, Li J, He S, Zhang W, Cao J, Pan X, Tang H, Zhou EM, Wu C, Nan Y. Interferon Inducing Porcine Reproductive and Respiratory Syndrome Virus Vaccine Candidate Protected Piglets from HP-PRRSV Challenge and Evoke a Higher Level of Neutralizing Antibodies Response. Vaccines (Basel) 2020; 8:vaccines8030490. [PMID: 32877992 PMCID: PMC7565719 DOI: 10.3390/vaccines8030490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022] Open
Abstract
Although widespread administration of attenuated porcine reproductive and respiratory syndrome virus (PRRSV) vaccines has been implemented since they first became commercially available two decades ago, PRRSV infection prevalence in swine herds remains high. The limited success of PRRSV vaccines is partly due to the well-established fact that a given vaccine strain confers only partial or no protection against heterologous strains. In our past work, A2MC2-P90, a novel PRRSV vaccine candidate that induced a type I IFNs response in vitro, conferred complete protection against challenge with genetically heterologous PRRSV strains. Here we assessed the ability of the PRRSV vaccine candidate A2MC2-P90 to protect piglets against the HP-PRRSV challenge and compared its efficacy to that of a licensed HP-PRRSV-specific vaccine (TJM-F92) assessed in parallel. A2MC2-P90 provided vaccinated piglets with 100% protection from a lethal challenge with extremely virulent HP-PRRSV-XJA1, while 100% mortality was observed for unvaccinated piglets by day 21 post-challenge. Notably, comparison of partial sequence (GP5) of XJA1 to A2MC2-P90 suggested there was only 88.7% homology. When comparing post-HP-PRRSV challenge responses between piglets administered A2AMC2-P90 versus those immunized with licensed vaccine TJM-F92, A2MC2-P90-vaccinated piglets rapidly developed a stronger protective humoral immune response, as evidenced by much higher titers of neutralizing antibodies, more rapid clearance of viremia and less nasal virus shedding. In conclusion, our data suggest that this novel vaccine candidate A2MC2-P90 has improved protection spectrum against heterologous HP-PRRSV strains.
Collapse
Affiliation(s)
- Yafei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.L.)
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling 712100, China
| | - Junhui Li
- Tecon Biology Co., Ltd., Urumqi 830000, Xinjiang, China; (J.L.); (S.H.); (W.Z.); (J.C.); (X.P.); (H.T.)
| | - Sun He
- Tecon Biology Co., Ltd., Urumqi 830000, Xinjiang, China; (J.L.); (S.H.); (W.Z.); (J.C.); (X.P.); (H.T.)
| | - Wei Zhang
- Tecon Biology Co., Ltd., Urumqi 830000, Xinjiang, China; (J.L.); (S.H.); (W.Z.); (J.C.); (X.P.); (H.T.)
| | - Jian Cao
- Tecon Biology Co., Ltd., Urumqi 830000, Xinjiang, China; (J.L.); (S.H.); (W.Z.); (J.C.); (X.P.); (H.T.)
| | - Xiaomei Pan
- Tecon Biology Co., Ltd., Urumqi 830000, Xinjiang, China; (J.L.); (S.H.); (W.Z.); (J.C.); (X.P.); (H.T.)
| | - Huifen Tang
- Tecon Biology Co., Ltd., Urumqi 830000, Xinjiang, China; (J.L.); (S.H.); (W.Z.); (J.C.); (X.P.); (H.T.)
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.L.)
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling 712100, China
- Correspondence: (E.-M.Z.); (C.W.); (Y.N.)
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.L.)
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling 712100, China
- Correspondence: (E.-M.Z.); (C.W.); (Y.N.)
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.L.)
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling 712100, China
- Correspondence: (E.-M.Z.); (C.W.); (Y.N.)
| |
Collapse
|
6
|
Chaudhari J, Liew CS, Workman AM, Riethoven JJM, Steffen D, Sillman S, Vu HLX. Host Transcriptional Response to Persistent Infection with a Live-Attenuated Porcine Reproductive and Respiratory Syndrome Virus Strain. Viruses 2020; 12:v12080817. [PMID: 32731586 PMCID: PMC7474429 DOI: 10.3390/v12080817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Both virulent and live-attenuated porcine reproductive and respiratory syndrome virus (PRRSV) strains can establish persistent infection in lymphoid tissues of pigs. To investigate the mechanisms of PRRSV persistence, we performed a transcriptional analysis of inguinal lymphoid tissue collected from pigs experimentally infected with an attenuated PRRSV strain at 46 days post infection. A total of 6404 differentially expressed genes (DEGs) were detected of which 3960 DEGs were upregulated and 2444 DEGs were downregulated. Specifically, genes involved in innate immune responses and chemokines and receptors associated with T-cell homing to lymphoid tissues were down regulated. As a result, homing of virus-specific T-cells to lymphoid tissues seems to be ineffective, evidenced by the lower frequencies of virus-specific T-cell in lymphoid tissue than in peripheral blood. Genes associated with T-cell exhaustion were upregulated. Likewise, genes involved in the anti-apoptotic pathway were upregulated. Collectively, the data suggested that the live-attenuated PRRSV strain establishes a pro-survival microenvironment in lymphoid tissue by suppressing innate immune responses, T-cell homing, and preventing cell apoptosis.
Collapse
Affiliation(s)
- Jayeshbhai Chaudhari
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (D.S.); (S.S.)
| | - Chia-Sin Liew
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (C.-S.L.); (J.-J.M.R.)
| | - Aspen M. Workman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA;
| | - Jean-Jack M. Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (C.-S.L.); (J.-J.M.R.)
| | - David Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (D.S.); (S.S.)
| | - Sarah Sillman
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (D.S.); (S.S.)
| | - Hiep L. X. Vu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: ; Tel.: +1-402-472-4528
| |
Collapse
|
7
|
Wang G, Yu Y, Cai X, Zhou EM, Zimmerman JJ. Effects of PRRSV Infection on the Porcine Thymus. Trends Microbiol 2019; 28:212-223. [PMID: 31744664 DOI: 10.1016/j.tim.2019.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) dramatically affects the thymus and its ability to carry out its normal functions. In particular, infection incapacitates PRRSV-susceptible CD14pos antigen-presenting cells (APCs) in the thymus and throughout the body. PRRSV-induced autophagy in thymic epithelial cells modulates the development of T cells, and PRRSV-induced apoptosis in CD4posCD8pos thymocytes modulates cellular immunity against PRRSV and other pathogens. Pigs are less able to resist and/or eliminate secondary infectious agents due the effect of PRRSV on the thymus, and this susceptibility phenomenon is long recognized as a primary characteristic of PRRSV infection.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Ying Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jeffrey J Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
8
|
Bordet E, Frétaud M, Crisci E, Bouguyon E, Rault S, Pezant J, Pleau A, Renson P, Giuffra E, Larcher T, Bourge M, Bourry O, Boulesteix O, Langevin C, Schwartz-Cornil I, Bertho N. Macrophage-B Cell Interactions in the Inverted Porcine Lymph Node and Their Response to Porcine Reproductive and Respiratory Syndrome Virus. Front Immunol 2019; 10:953. [PMID: 31130951 PMCID: PMC6510060 DOI: 10.3389/fimmu.2019.00953] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/12/2019] [Indexed: 12/14/2022] Open
Abstract
Swine lymph nodes (LN) present an inverted structure compared to mouse and human, with the afferent lymph diffusing from the center to the periphery. This structure, also observed in close and distant species such as dolphins, hippopotamus, rhinoceros, and elephants, is poorly described, nor are the LN macrophage populations and their relationship with B cell follicles. B cell maturation occurs mainly in LN B cell follicles with the help of LN macrophage populations endowed with different antigen delivery capacities. We identified three macrophage populations that we localized in the inverted LN spatial organization. This allowed us to ascribe porcine LN MΦ to their murine counterparts: subcapsular sinus MΦ, medullary cord MΦ and medullary sinus MΦ. We identified the different intra and extrafollicular stages of LN B cells maturation and explored the interaction of MΦ, drained antigen and follicular B cells. The porcine reproductive and respiratory syndrome virus (PRRSV) is a major porcine pathogen that infects tissue macrophages (MΦ). PRRSV is persistent in the secondary lymphoid tissues and induces a delay in neutralizing antibodies appearance. We observed PRRSV interaction with two LN MΦ populations, of which one interacts closely with centroblasts. We observed BCL6 up-regulation in centroblast upon PRRSV infection, leading to new hypothesis on PRRSV inhibition of B cell maturation. This seminal study of porcine LN will permit fruitful comparison with murine and human LN for a better understanding of normal and inverted LN development and functioning.
Collapse
Affiliation(s)
- Elise Bordet
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas, France
| | - Maxence Frétaud
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas, France.,INRA, EMERG'IN- Plateforme d'Infectiologie Expérimentale IERP- Domaine de Vilvert, Jouy-en-Josas, France
| | - Elisa Crisci
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas, France.,UMR Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Edwige Bouguyon
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas, France
| | - Stéphane Rault
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas, France
| | - Jérémy Pezant
- INRA, UE1277, Plate-Forme d'Infectiologie Expérimentale, PFIE, Nouzilly, France
| | - Alexis Pleau
- INRA, UE1277, Plate-Forme d'Infectiologie Expérimentale, PFIE, Nouzilly, France
| | - Patricia Renson
- Anses, Laboratoire de Ploufragan-Plouzané-Niort, Unité Virologie et Immunologie Porcines, Zoopôle, BP53, Ploufragan, France.,Université Bretagne Loire, Cité Internationale, Rennes, France
| | - Elisabetta Giuffra
- UMR Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Mickael Bourge
- I2BC, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Olivier Bourry
- Anses, Laboratoire de Ploufragan-Plouzané-Niort, Unité Virologie et Immunologie Porcines, Zoopôle, BP53, Ploufragan, France.,Université Bretagne Loire, Cité Internationale, Rennes, France
| | - Olivier Boulesteix
- INRA, UE1277, Plate-Forme d'Infectiologie Expérimentale, PFIE, Nouzilly, France
| | - Christelle Langevin
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas, France.,INRA, EMERG'IN- Plateforme d'Infectiologie Expérimentale IERP- Domaine de Vilvert, Jouy-en-Josas, France
| | | | - Nicolas Bertho
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas, France.,BIOEPAR, INRA, Oniris, Nantes, France
| |
Collapse
|
9
|
Zhai T, Wu C, Wang N, Shi B, Li J, Chen R, Dong J, Zhang Y, Zhou EM, Nan Y. Development of a monoclonal antibody against swine leukocyte antigen (SLA)-DR α chain and evaluation of SLA-DR expression in bone marrow-derived dendritic cells after PRRSV infection. Vet Immunol Immunopathol 2019; 211:19-24. [PMID: 31084889 DOI: 10.1016/j.vetimm.2019.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/15/2019] [Accepted: 04/09/2019] [Indexed: 11/27/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most common diseases in the global swine industry. PRRSV infection is highly restricted to cells of the monocyte-macrophage lineage. However, the lack of antibodies to swine monocyte-macrophage lineage markers significantly hampers PRRSV research. In this study, we have developed a monoclonal antibody against the swine leukocyte antigen (SLA)-DRα chain and confirmed its reactivity with endogenous expressed SLA-DR in a variety of cell lines and primary swine antigen-presenting cells (PAMs, PBMC and BM-DCs). Moreover, the level of SLA-DR expression after PRRSV infection were evaluated by our homemade Mab and a commercial anti-SLA-DR antibody. Based on our result, the protein level of SLA-DRα expression is increased after PRRSV infection in DC, while the mRNA of both SLA-DRα and SLA-DRβ were significantly inhibited by PRRSV replication. In conclusion, we successfully developed a MAb reactive with endogenous SLA-DR in western blotting, and this MAb could be a useful tool for further research and analysis. Moreover, the inconsistency of SLA-DR expression between protein and mRNA levels may suggest a novel role of DC played during the immune response after PRRSV infection.
Collapse
Affiliation(s)
- Tianshu Zhai
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Nana Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Binjun Shi
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Jie Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Rui Chen
- Shaanxi Innolever Biotechnology Co., Ltd., Yangling, Shaanxi, 712100, China
| | - Jianhui Dong
- Shaanxi Innolever Biotechnology Co., Ltd., Yangling, Shaanxi, 712100, China
| | - Yiying Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
10
|
Zhang H, Leng C, Tian Z, Liu C, Chen J, Bai Y, Li Z, Xiang L, Zhai H, Wang Q, Peng J, An T, Kan Y, Yao L, Yang X, Cai X, Tong G. Complete genomic characteristics and pathogenic analysis of the newly emerged classical swine fever virus in China. BMC Vet Res 2018; 14:204. [PMID: 29940930 PMCID: PMC6019732 DOI: 10.1186/s12917-018-1504-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 05/29/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Classical swine fever (CSF) is one of the most devastating and highly contagious viral diseases in the world. Since late 2014, outbreaks of a new sub-genotype 2.1d CSF virus (CSFV) had caused substantial economic losses in numbers of C-strain vaccinated swine farms in China. The objective of the present study was to explore the genomic characteristics and pathogenicity of the newly emerged CSFV isolates in China during 2014-2015. RESULTS All the new 8 CSFV isolates belonged to genetic sub-genotype 2.1d. Some genomic variations or deletions were found in the UTRs and E2 of these new isolates. In addition, the pathogenicity of HLJ1 was less than Shimen, suggesting the HLJ1 of sub-genotype 2.1d may be a moderated pathogenic isolate and the C-strain vaccine can supply complete protection. CONCLUSIONS The new CSFV isolates with unique genomic characteristics and moderate pathogenicity can be epidemic in many large-scale C-strain vaccinated swine farms. This study provides the information should be merited special attention on establishing prevention and control policies for CSF.
Collapse
Affiliation(s)
- Hongliang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Chaoliang Leng
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, 473061 China
| | - Zhijun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Chunxiao Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Jiazeng Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Yun Bai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Zhen Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Lirun Xiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Hongyue Zhai
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, 473061 China
| | - Qian Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Jinmei Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Yunchao Kan
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, 473061 China
| | - Lunguang Yao
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, 473061 China
| | - Xufu Yang
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, 512005 China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241 China
| |
Collapse
|
11
|
Nan Y, Wu C, Gu G, Sun W, Zhang YJ, Zhou EM. Improved Vaccine against PRRSV: Current Progress and Future Perspective. Front Microbiol 2017; 8:1635. [PMID: 28894443 PMCID: PMC5581347 DOI: 10.3389/fmicb.2017.01635] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/11/2017] [Indexed: 12/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), one of the most economically significant pathogens worldwide, has caused numerous outbreaks during the past 30 years. PRRSV infection causes reproductive failure in sows and respiratory disease in growing and finishing pigs, leading to huge economic losses for the swine industry. This impact has become even more significant with the recent emergence of highly pathogenic PRRSV strains from China, further exacerbating global food security. Since new PRRSV variants are constantly emerging from outbreaks, current strategies for controlling PRRSV have been largely inadequate, even though our understanding of PRRSV virology, evolution and host immune response has been rapidly expanding. Meanwhile, practical experience has revealed numerous safety and efficacy concerns for currently licensed vaccines, such as shedding of modified live virus (MLV), reversion to virulence, recombination between field strains and MLV and failure to elicit protective immunity against heterogeneous virus. Therefore, an effective vaccine against PRRSV infection is urgently needed. Here, we systematically review recent advances in PRRSV vaccine development. Antigenic variations resulting from PRRSV evolution, identification of neutralizing epitopes for heterogeneous isolates, broad neutralizing antibodies against PRRSV, chimeric virus generated by reverse genetics, and novel PRRSV strains with interferon-inducing phenotype will be discussed in detail. Moreover, techniques that could potentially transform current MLV vaccines into a superior vaccine will receive special emphasis, as will new insights for future PRRSV vaccine development. Ultimately, improved PRRSV vaccines may overcome the disadvantages of current vaccines and minimize the PRRS impact to the swine industry.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Guoqian Gu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Weiyao Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College ParkMD, United States
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| |
Collapse
|
12
|
Pileri E, Mateu E. Review on the transmission porcine reproductive and respiratory syndrome virus between pigs and farms and impact on vaccination. Vet Res 2016; 47:108. [PMID: 27793195 PMCID: PMC5086057 DOI: 10.1186/s13567-016-0391-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/14/2016] [Indexed: 11/18/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is considered to be one of the most costly diseases affecting intensive pig production worldwide. Control of PRRS is a complex issue and involves a combination of measures including monitoring, diagnosis, biosecurity, herd management, and immunization. In spite of the numerous studies dealing with PRRS virus epidemiology, transmission of the infection is still not fully understood. The present article reviews the current knowledge on PRRSV transmission between and within farm, and the impact of vaccination on virus transmission.
Collapse
Affiliation(s)
- Emanuela Pileri
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus UAB, 08193 Cerdanyola del Vallès, Spain
- Centre de Recerca en Sanitat Animal (CReSA)-IRTA. Edifici CReSA, Campus UAB, 08193 Cerdanyola del Vallès, Spain
| | - Enric Mateu
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus UAB, 08193 Cerdanyola del Vallès, Spain
- Centre de Recerca en Sanitat Animal (CReSA)-IRTA. Edifici CReSA, Campus UAB, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
13
|
Singleton H, Graham SP, Bodman-Smith KB, Frossard JP, Steinbach F. Establishing Porcine Monocyte-Derived Macrophage and Dendritic Cell Systems for Studying the Interaction with PRRSV-1. Front Microbiol 2016; 7:832. [PMID: 27313573 PMCID: PMC4889594 DOI: 10.3389/fmicb.2016.00832] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/17/2016] [Indexed: 11/13/2022] Open
Abstract
Monocyte-derived macrophages (MoMØ) and monocyte-derived dendritic cells (MoDC) are two model systems well established in human and rodent systems that can be used to study the interaction of pathogens with host cells. Porcine reproductive and respiratory syndrome virus (PRRSV) is known to infect myeloid cells, such as macrophages (MØ) and dendritic cells (DC). Therefore, this study aimed to establish systems for the differentiation and characterization of MoMØ and MoDC for subsequent infection with PRRSV-1. M-CSF differentiated MoMØ were stimulated with activators for classical (M1) or alternative (M2) activation. GM-CSF and IL-4 generated MoDC were activated with the well established maturation cocktail containing PAMPs and cytokines. In addition, MoMØ and MoDC were treated with dexamethasone and IL-10, which are known immuno-suppressive reagents. Cells were characterized by morphology, phenotype, and function and porcine MØ subsets highlighted some divergence from described human counterparts, while MoDC, appeared more similar to mouse and human DCs. The infection with PRRSV-1 strain Lena demonstrated different replication kinetics between MoMØ and MoDC and within subsets of each cell type. While MoMØ susceptibility was significantly increased by dexamethasone and IL-10 with an accompanying increase in CD163/CD169 expression, MoDC supported only a minimal replication of PRRSV These findings underline the high variability in the susceptibility of porcine myeloid cells toward PRRSV-1 infection.
Collapse
Affiliation(s)
- Helen Singleton
- Virology Department, Animal and Plant Health AgencySurrey, UK; Faculty of Health and Medical Sciences, University of SurreySurrey, UK
| | - Simon P Graham
- Virology Department, Animal and Plant Health AgencySurrey, UK; Faculty of Health and Medical Sciences, University of SurreySurrey, UK
| | | | | | - Falko Steinbach
- Virology Department, Animal and Plant Health AgencySurrey, UK; Faculty of Health and Medical Sciences, University of SurreySurrey, UK
| |
Collapse
|
14
|
Effect of amino acids residues 323-433 and 628-747 in Nsp2 of representative porcine reproductive and respiratory syndrome virus strains on inflammatory response in vitro. Virus Res 2015; 208:13-21. [PMID: 26043979 DOI: 10.1016/j.virusres.2015.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 11/22/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen that is responsible for large economic losses in the swine industry worldwide. In PRRSV strains, many genetic variations occur in the central hypervariable region (HV2) of the Nsp2 gene, which encodes non-structural protein 2. For example, PRRSV strains VR2332, Em2007, MN184C, and TJM-F92 contained variations in the Nsp2 sequences and exhibited differing levels of virulence in adult pigs. However, the role of HV2 with respect to PRRSV immunity is unclear. In this study, four recombinant PRRSV strains (rBB/+30aa, rBB/Δ68aa, rBB/Δ111aa, and rBB/Δ120aa) were rescued using a highly pathogenic type 2 PRRSV cDNA clone (pBB). All rescued strains displayed similar growth characteristics to the parental rBB virus in pulmonary alveolar macrophages (PAMs). Expression levels of inflammatory cytokines IL-β, IL-6, and TNF-α were significantly lower, at the mRNA and protein level, for groups infected with rBB/Δ111aa and rBB/Δ120aa than those in the rBB group. Levels of these inflammatory cytokines in the rBB/+30aa and rBB/Δ68aa groups were not significantly different with those in the rBB group. Phosphorylation levels of IκB were decreased to a greater extent in the rBB/Δ111aa and rBB/Δ120aa groups compared with those in the rBB/+30aa, rBB/Δ68aa, and rBB groups. Our results indicate that amino acids 323-433 and 628-747 of Nsp2 failed to exert significant effects on PRRSV replication in PAMs, but modulated the expression of inflammatory cytokines in vitro.
Collapse
|
15
|
Dobrescu I, Levast B, Lai K, Delgado-Ortega M, Walker S, Banman S, Townsend H, Simon G, Zhou Y, Gerdts V, Meurens F. In vitro and ex vivo analyses of co-infections with swine influenza and porcine reproductive and respiratory syndrome viruses. Vet Microbiol 2013; 169:18-32. [PMID: 24418046 PMCID: PMC7117334 DOI: 10.1016/j.vetmic.2013.11.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/25/2013] [Accepted: 11/28/2013] [Indexed: 12/26/2022]
Abstract
Viral respiratory diseases remain problematic in swine. Among viruses, porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza virus (SIV), alone or in combination, are the two main known contributors to lung infectious diseases. Previous studies demonstrated that experimental dual infections of pigs with PRRSV followed by SIV can cause more severe disease than the single viral infections. However, our understanding of the impact of one virus on the other at the molecular level is still extremely limited. Thus, the aim of the current study was to determine the influence of dual infections, compared to single infections, in porcine alveolar macrophages (PAMs) and precision cut lung slices (PCLS). PAMs were isolated and PCLS were acquired from the lungs of healthy 8-week-old pigs. Then, PRRSV (ATCC VR-2385) and a local SIV strain of H1N1 subtype (A/Sw/Saskatchewan/18789/02) were applied simultaneously or with 3 h apart on PAMs and PCLS for a total of 18 h. Immuno-staining for both viruses and beta-tubulin, real-time quantitative PCR and ELISA assays targeting various genes (pathogen recognition receptors, interferons (IFN) type I, cytokines, and IFN-inducible genes) and proteins were performed to analyze the cell and the tissue responses. Interference caused by the first virus on replication of the second virus was observed, though limited. On the host side, a synergistic effect between PRRSV and SIV co-infections was observed for some transcripts such as TLR3, RIG-I, and IFNβ in PCLS. The PRRSV infection 3 h prior to SIV infection reduced the response to SIV while the SIV infection prior to PRRSV infection had limited impact on the second infection. This study is the first to show an impact of PRRSV/SIV co-infection and superinfections in the cellular and tissue immune response at the molecular level. It opens the door to further research in this exciting and intriguing field.
Collapse
Affiliation(s)
- I Dobrescu
- Vaccine and Infectious Disease Organization-InterVac, University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - B Levast
- Vaccine and Infectious Disease Organization-InterVac, University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - K Lai
- Vaccine and Infectious Disease Organization-InterVac, University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - M Delgado-Ortega
- INRA, Infectiologie et Santé Publique (ISP), 37380 Nouzilly, France; Université François Rabelais, UMR1282 Infectiologie et Santé Publique, 37000 Tours, France
| | - S Walker
- Vaccine and Infectious Disease Organization-InterVac, University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - S Banman
- Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada
| | - H Townsend
- Vaccine and Infectious Disease Organization-InterVac, University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - G Simon
- Anses, Ploufragan-Plouzané Laboratory, Swine Virology Immunology Unit, Zoopôle Les Croix, BP 53, 22440 Ploufragan, France
| | - Y Zhou
- Vaccine and Infectious Disease Organization-InterVac, University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - V Gerdts
- Vaccine and Infectious Disease Organization-InterVac, University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - F Meurens
- Vaccine and Infectious Disease Organization-InterVac, University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
16
|
Hall W, Neumann E. Fresh Pork and Porcine Reproductive and Respiratory Syndrome Virus: Factors Related to the Risk of Disease Transmission. Transbound Emerg Dis 2013; 62:350-66. [PMID: 24016101 DOI: 10.1111/tbed.12163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Indexed: 11/27/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRS) is a highly infectious virus. Experimentally, the disease can be induced in naïve pigs by the oral, intranasal and intramuscular routes. Depending on the virulence of the strain of the virus and the age of the pig, peak viremia can occur within 7 days of infection, and live virus can be isolated from blood or lymph nodes for several months post-infection. Young pigs tend to develop higher titres of viremia than older pigs infected by the same route and dose with the same strain of virus. Porcine reproductive and respiratory syndrome virus survives in pork harvested from infected pigs for extended periods at temperatures of -20 or -70°C. In experimentally infected pigs, survival of PRRS virus in muscle held at 4°C has been demonstrated for at least 7 days, and infectivity of the virus in these samples was confirmed by bioassay. The optimal pH range for the survival of PRRS virus is thought to be 6.0 to 7.5. The elevated pH of non-meat tissues (generally one pH unit higher) is likely to favour extended survival of PRRS virus in pig carcasses from which all superficial and deep lymph nodes have not been removed. It is likely that exsanguinated carcasses held at 4°C retain sufficient blood or lymph tissue to contain infective doses of PRRS virus. Porcine reproductive and respiratory syndrome virus is rapidly inactivated by heat, providing a predictable method to ensure that pork tissues are free of viable virus and feeding of cooked swill or garbage should not constitute a risk to pigs. While the probability of viable PRRS virus being present in a pig carcass may be low, the risk is not zero. The importation of raw pork into countries where PRRS is not endemic represents a hazard with potentially severe economic consequences.
Collapse
Affiliation(s)
- W Hall
- William Hall and Associates, Googong, NSW, Australia
| | - E Neumann
- EpiCentre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
17
|
An intact sialoadhesin (Sn/SIGLEC1/CD169) is not required for attachment/internalization of the porcine reproductive and respiratory syndrome virus. J Virol 2013; 87:9538-46. [PMID: 23785195 DOI: 10.1128/jvi.00177-13] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Surface expression of SIGLEC1, also known as sialoadhesin or CD169, is considered a primary determinant of the permissiveness of porcine alveolar macrophages for infection by porcine reproductive and respiratory syndrome virus (PRRSV). In vitro, the attachment and internalization of PRRSV are dependent on the interaction between sialic acid on the virion surface and the sialic acid binding domain of the SIGLEC1 gene. To test the role of SIGLEC1 in PRRSV infection, a SIGLEC1 gene knockout pig was created by removing part of exon 1 and all of exons 2 and 3 of the SIGLEC1 gene. The resulting knockout ablated SIGLEC1 expression on the surface of alveolar macrophages but had no effect on the expression of CD163, a coreceptor for PRRSV. After infection, PRRSV viremia in SIGLEC1(-/-) pigs followed the same course as in SIGLEC1(-/+) and SIGLEC1(+/+) littermates. The absence of SIGLEC1 had no measurable effect on other aspects of PRRSV infection, including clinical disease course and histopathology. The results demonstrate that the expression of the SIGLEC1 gene is not required for infection of pigs with PRRSV and that the absence of SIGLEC1 does not contribute to the pathogenesis of acute disease.
Collapse
|
18
|
Provost C, Jia JJ, Music N, Lévesque C, Lebel MÈ, del Castillo JRE, Jacques M, Gagnon CA. Identification of a new cell line permissive to porcine reproductive and respiratory syndrome virus infection and replication which is phenotypically distinct from MARC-145 cell line. Virol J 2012; 9:267. [PMID: 23148668 PMCID: PMC3546013 DOI: 10.1186/1743-422x-9-267] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 11/01/2012] [Indexed: 12/04/2022] Open
Abstract
Background Airborne transmitted pathogens, such as porcine reproductive and respiratory syndrome virus (PRRSV), need to interact with host cells of the respiratory tract in order to be able to enter and disseminate in the host organism. Pulmonary alveolar macrophages (PAM) and MA104 derived monkey kidney MARC-145 cells are known to be permissive to PRRSV infection and replication and are the most studied cells in the literature. More recently, new cell lines developed to study PRRSV have been genetically modified to make them permissive to the virus. The SJPL cell line origin was initially reported to be epithelial cells of the respiratory tract of swine. Thus, the goal of this study was to determine if SJPL cells could support PRRSV infection and replication in vitro. Results The SJPL cell growth was significantly slower than MARC-145 cell growth. The SJPL cells were found to express the CD151 protein but not the CD163 and neither the sialoadhesin PRRSV receptors. During the course of the present study, the SJPL cells have been reported to be of monkey origin. Nevertheless, SJPL cells were found to be permissive to PRRSV infection and replication even if the development of the cytopathic effect was delayed compared to PRRSV-infected MARC-145 cells. Following PRRSV replication, the amount of infectious viral particles produced in SJPL and MARC-145 infected cells was similar. The SJPL cells allowed the replication of several PRRSV North American strains and were almost efficient as MARC-145 cells for virus isolation. Interestingly, PRRSV is 8 to 16 times more sensitive to IFNα antiviral effect in SJPL cell in comparison to that in MARC-145 cells. PRRSV induced an increase in IFNβ mRNA and no up regulation of IFNα mRNA in both infected cell types. In addition, PRRSV induced an up regulation of IFNγ and TNF-α mRNAs only in infected MARC-145 cells. Conclusions In conclusion, the SJPL cells are permissive to PRRSV. In addition, they are phenotypically different from MARC-145 cells and are an additional tool that could be used to study PRRSV pathogenesis mechanisms in vitro.
Collapse
Affiliation(s)
- Chantale Provost
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Centre de recherche en infectiologie porcine (CRIP), Faculté de médecine vétérinaire Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, J2S 7C6, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Han K, Seo HW, Oh Y, Kang I, Park C, Chae C. Pathogenesis of Korean type 1 (European genotype) porcine reproductive and respiratory syndrome virus in experimentally infected pigs. J Comp Pathol 2012; 147:275-84. [PMID: 22316433 DOI: 10.1016/j.jcpa.2011.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/22/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
Abstract
The aim of this study was to elucidate the pathogenesis of experimental infection with Korean type 1 porcine reproductive and respiratory syndrome virus (PRRSV) by defining the virus distribution, sites of viral replication, viraemia and gross and microscopical lesions in conventional pigs studied for 28 days after intranasal inoculation. Mean rectal temperature was significantly higher in infected pigs than in negative control pigs at 2 days post inoculation (dpi) (P=0.004), 3 dpi (P<0.001), 4 dpi (P=0.003) and 5 dpi (P=0.034). The log(10)TCID(50)/ml of type 1 PRRSV increased significantly at 0-1 dpi (P=0.024) and 5-7 dpi (P=0.029), but decreased at 10-14 dpi (P=0.026) and 14-21 dpi (P=0.012) in infected pigs. Infected pigs developed multifocal, tan-mottled areas of lung tissue with irregular and indistinct borders. Microscopical lesions, when present, were multifocal, mild to moderate, generally most extensive at 5-7 dpi (P=0.036), and were nearly resolved at 28 dpi. Type 1 PRRSV nucleic acid and antigen were detected exclusively within the cytoplasm of macrophages and type I and II pneumocytes. The score for PRRSV-positive cells increased at 3-7 dpi (P<0.05) and decreased at 10-14 dpi (P=0.034) in infected pigs. Thus, respiratory disease was reproduced in conventional pigs by infection with Korean type 1 PRRSV.
Collapse
Affiliation(s)
- K Han
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
20
|
Zhang L, Liu YB, Chen L, Wang JH, Ning YB. Rapid and sensitive detection of PRRSV by a reverse transcription-loop-mediated isothermal amplification assay. Virol Sin 2011; 26:252-9. [PMID: 21847756 PMCID: PMC7091248 DOI: 10.1007/s12250-011-3185-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/11/2011] [Indexed: 10/26/2022] Open
Abstract
A real-time monitoring reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the sensitive and specific detection of prototypic, prevalent North American porcine reproductive and respiratory syndrome virus (PRRSV) strains. As a higher sensitivity and specificity method than reverse transcription polymerase chain reaction (RT-PCR), the RT-LAMP method only used a turbidimeter, exhibited a detection limit corresponding to a 10(-4) dilution of template RNA extracted from 250 μL of 10(5) of the 50% tissue culture infective dose (TCID(50)) of PRRSV-containing cells, and no cross-reactivity was observed with other related viruses including porcine circovirus type 2, swine influenza virus, porcine rotavirus and classical swine fever virus. From forty-two field samples, 33 samples in the RT-LAMP assay was detected positive, whereas three of which were not detected by RT-PCR. Furthermore, in 33 strains of PRRSV, an identical detection rate was observed with the RT-LAMP assay to what were isolated using porcine alveolar macrophages. These findings demonstrated that the RT-LAMP assay has potential clinical applications for the detection of highly pathogenic PRRSV isolates, especially in developing countries.
Collapse
Affiliation(s)
- Lei Zhang
- China Institute of Veterinary Drug Control, Beijing, 100081 China
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100 China
| | - Ye-bing Liu
- China Institute of Veterinary Drug Control, Beijing, 100081 China
| | - Lei Chen
- China Institute of Veterinary Drug Control, Beijing, 100081 China
| | - Jian-huan Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100 China
| | - Yi-bao Ning
- China Institute of Veterinary Drug Control, Beijing, 100081 China
| |
Collapse
|
21
|
In-depth global analysis of transcript abundance levels in porcine alveolar macrophages following infection with porcine reproductive and respiratory syndrome virus. Adv Virol 2011; 2010:864181. [PMID: 22331987 PMCID: PMC3275998 DOI: 10.1155/2010/864181] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 12/12/2010] [Indexed: 01/30/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a major pathogen of swine worldwide and causes considerable economic loss. Identifying specific cell signaling or activation pathways that associate with variation in PRRSV replication and macrophage function may lead to identification of novel gene targets for the control of PRRSV infection. Serial Analysis of Gene Expression (SAGE) was used to create and survey the transcriptome of in vitro mock-infected and PRRSV strain VR-2332-infected porcine alveolar macrophages (PAM) at 0, 6, 12, 16, and 24 hours after infection. The transcriptome data indicated changes in transcript abundance occurring in PRRSV-infected PAMs over time after infection with more than 590 unique tags with significantly altered transcript abundance levels identified (P < .01). Strikingly, innate immune genes (whose transcript abundances are typically altered in response to other pathogens or insults including IL-8, CCL4, and IL-1β) showed no or very little change at any time point following infection.
Collapse
|
22
|
Olanratmanee EO, Wangnaitham S, Thanawongnuwech R, Kunavongkrit A, Tummaruk P. Prevalence of porcine reproductive and respiratory syndrome virus (PRRSV) antigen-positive uterine tissues in gilts culled due to reproductive disturbance in Thailand. Trop Anim Health Prod 2010; 43:451-7. [DOI: 10.1007/s11250-010-9713-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2010] [Indexed: 10/18/2022]
|
23
|
Darwich L, Díaz I, Mateu E. Certainties, doubts and hypotheses in porcine reproductive and respiratory syndrome virus immunobiology. Virus Res 2010; 154:123-32. [PMID: 20659507 DOI: 10.1016/j.virusres.2010.07.017] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/15/2010] [Accepted: 07/18/2010] [Indexed: 12/30/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most costly pathogens for the swine industry. Since its emergence some 20 years ago, much has been learned about the immunobiology of PRRSV. Although vaccines are available, they do not provide full and universal protection against PRRSV infection. In the present review, current knowledge on the virus's immunobiology will be discussed including: role of viral receptors, innate immune response to the virus, regulation of the immune response by PRRSV, and the characteristics and role of adaptive immunity. In addition, some hypotheses for future research in this area are presented.
Collapse
Affiliation(s)
- Laila Darwich
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
24
|
The role of porcine reproductive and respiratory syndrome (PRRS) virus structural and non-structural proteins in virus pathogenesis. Anim Health Res Rev 2010; 11:135-63. [DOI: 10.1017/s1466252310000034] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractPorcine reproductive and respiratory syndrome (PRRS) is an economically devastating viral disease affecting the swine industry worldwide. The etiological agent, PRRS virus (PRRSV), possesses a RNA viral genome with nine open reading frames (ORFs). The ORF1a and ORF1b replicase-associated genes encode the polyproteins pp1a and pp1ab, respectively. The pp1a is processed in nine non-structural proteins (nsps): nsp1α, nsp1β, and nsp2 to nsp8. Proteolytic cleavage of pp1ab generates products nsp9 to nsp12. The proteolytic pp1a cleavage products process and cleave pp1a and pp1ab into nsp products. The nsp9 to nsp12 are involved in virus genome transcription and replication. The 3′ end of the viral genome encodes four minor and three major structural proteins. The GP2a, GP3and GP4(encoded by ORF2a, 3 and 4), are glycosylated membrane associated minor structural proteins. The fourth minor structural protein, the E protein (encoded by ORF2b), is an unglycosylated membrane associated protein. The viral envelope contains two major structural proteins: a glycosylated major envelope protein GP5(encoded by ORF5) and an unglycosylated membrane M protein (encoded by ORF6). The third major structural protein is the nucleocapsid N protein (encoded by ORF7). All PRRSV non-structural and structural proteins are essential for virus replication, and PRRSV infectivity is relatively intolerant to subtle changes within the structural proteins. PRRSV virulence is multigenic and resides in both the non-structural and structural viral proteins. This review discusses the molecular characteristics, biological and immunological functions of the PRRSV structural and nsps and their involvement in the virus pathogenesis.
Collapse
|
25
|
Gudmundsdottir I, Risatti GR. Infection of porcine alveolar macrophages with recombinant chimeric porcine reproductive and respiratory syndrome virus: effects on cellular gene transcription and virus growth. Virus Res 2009; 145:145-50. [PMID: 19540286 DOI: 10.1016/j.virusres.2009.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/29/2009] [Accepted: 06/03/2009] [Indexed: 12/28/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) genetic determinants affecting the response of the host primary target cell, the macrophage, to infection are yet to be defined. Here we have used recombinant viruses encompassing ORF 1A to identify PRRSV determinants associated with growth and modulation of pro- and anti-inflammatory cytokine expression in primary pulmonary alveolar macrophages (PAMs) cultures. Three genomic chimeras encompassing ORF 1A of PRRSV live attenuated vaccine Prime Pac (LAV SP) in the genetic background of pathogenic strain NVSL 97-7895 (FL12v) were characterized in vitro. Unlike parental viruses, two of the recombinant viruses encompassing the area of the genome encoding for NSP2 to NSP8 showed reduced growth in PAM cultures. The effect of virus infections on gene activation was studied for 25 immunomodulatory cellular genes in PAMs at 24 and 48h post-infection (hpi). Steady state mRNA levels in PAMs infected with recombinant and LAV SP viruses were compared to levels observed in cells infected with parental virus FL12v. Recombinant viruses induced patterns of transcriptional activation differing from patterns induced by parental FL12v, suggesting a regulatory role of PRRSV ORF1A on PAM gene expression.
Collapse
Affiliation(s)
- Ingigerdur Gudmundsdottir
- Department of Pathobiology and Veterinary Science, College of Agriculture and Natural Resources, University of Connecticut, Storrs, CT 06269-3089, USA
| | | |
Collapse
|
26
|
Li Q, Zhou QF, Xue CY, Ma JY, Zhu DZ, Cao YC. Rapid detection of porcine reproductive and respiratory syndrome virus by reverse transcription loop-mediated isothermal amplification assay. J Virol Methods 2009; 155:55-60. [DOI: 10.1016/j.jviromet.2008.09.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 09/04/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
|
27
|
Shanmukhappa K, Kim JK, Kapil S. Role of CD151, A tetraspanin, in porcine reproductive and respiratory syndrome virus infection. Virol J 2007; 4:62. [PMID: 17572908 PMCID: PMC1906853 DOI: 10.1186/1743-422x-4-62] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 06/16/2007] [Indexed: 01/04/2023] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is a RNA virus causing respiratory and reproductive diseases in swine. The susceptibility for PRRSV varies between the different breeds of swine. In cell culture, PRRSV virus can be propagated in primary porcine alveolar macrophages and some African green monkey kidney cell lines, such as MARC-145 cells. Previous studies have shown that 3' untranslated region (UTR) RNAs of the arteriviruses play an important role in the replication of the virus through interactions with cellular proteins. To better understand the differences in the replication capability of PRRSV in different cell lines, we sought to identify the host cellular proteins interacting with PRRSV 3' UTR RNA. We constructed a cDNA library of MARC-145 cell line in lambda ZAP Express vector and screened the library with the positive sense 3' UTR RNA of PRRSV. Results We found that CD151, a host cellular protein, interacting with PRRSV 3' UTR RNA. The specificity of the interaction between CD151 and PRRSV 3' UTR RNA was examined by gel shift assay as well as North-Western hybridization. The transfection of CD151 expression clone into BHK-21 rendered these cells susceptible to PRRSV infection, and the transfection of siRNA against CD151 into MARC-145 significantly reduced the level of PRRSV infection. Also, anti-CD151 antibody treatment to MARC-145 completely blocked PRRSV infection. Conclusion Based on our results, we suggest that CD151 should cooperate in PRRSV infection in vitro in MARC-145 and BHK-21 cells.
Collapse
Affiliation(s)
- Kumar Shanmukhappa
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, University of Cincinnati. Cincinnati, OH 42229, USA
| | - Jeong-Ki Kim
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sanjay Kapil
- Oklahoma Animal Disease Diagnostic Laboratory, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
28
|
Risatti GR, Holinka LG, Lu Z, Kutish GF, Tulman ER, French RA, Sur JH, Rock DL, Borca MV. Mutation of E1 glycoprotein of classical swine fever virus affects viral virulence in swine. Virology 2005; 343:116-27. [PMID: 16168455 DOI: 10.1016/j.virol.2005.08.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 08/04/2005] [Accepted: 08/12/2005] [Indexed: 11/22/2022]
Abstract
Transposon linker insertion mutagenesis of a full-length infectious clone (IC) (pBIC) of the pathogenic classical swine fever virus (CSFV) strain Brescia was used to identify genetic determinants of CSFV virulence and host range. Here, we characterize a virus mutant, RB-C22v, possessing a 19-residue insertion at the carboxyl terminus of E1 glycoprotein. Although RB-C22v exhibited normal growth characteristics in primary porcine macrophage cell cultures, the major target cell of CSFV in vivo, it was markedly attenuated in swine. All RB-C22v-infected pigs survived infection remaining clinically normal in contrast to the 100% mortality observed for BICv-infected animals. Comparative pathogenesis studies demonstrated a delay in RB-C22v spread to, and decreased replication in the tonsils, a 10(2) to 10(7) log10 reduction in virus titers in lymphoid tissues and blood, and an overall delay in generalization of infection relative to BICv. Notably, RB-C22v-infected animals were protected from clinical disease when challenged with pathogenic BICv at 3, 5, 7, and 21 days post-RB-C22v inoculation. Viremia, viral replication in tissues, and oronasal shedding were reduced in animals challenged at 7 and 21 DPI. Notably BICv-specific RNA was not detected in tonsils of challenged animals. These results indicate that a carboxyl-terminal domain of E1 glycoprotein affects virulence of CSFV in swine, and they demonstrate that mutation of this domain provides the basis for a rationally designed and efficacious live-attenuated CSF vaccine.
Collapse
Affiliation(s)
- G R Risatti
- Plum Island Animal Disease Center, USDA/ARS/NAA, P.O. Box 848, Greenport, NY 11944-0848, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lee SM, Kleiboeker SB. Porcine arterivirus activates the NF-kappaB pathway through IkappaB degradation. Virology 2005; 342:47-59. [PMID: 16129468 PMCID: PMC7111765 DOI: 10.1016/j.virol.2005.07.034] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 05/25/2005] [Accepted: 07/29/2005] [Indexed: 01/07/2023]
Abstract
Nuclear factor-kappaB (NF-κB) is a critical regulator of innate and adaptive immune function as well as cell proliferation and survival. The present study demonstrated for the first time that a virus belonging to the Arteriviridae family activates NF-κB in MARC-145 cells and alveolar macrophages. In porcine reproductive and respiratory syndrome virus (PRRSV)-infected cells, NF-κB activation was characterized by translocation of NF-κB from the cytoplasm to the nucleus, increased DNA binding activity, and NF-κB-regulated gene expression. NF-κB activation was increased as PRRSV infection progressed and in a viral dose-dependent manner. UV-inactivation of PRRSV significantly reduced the level of NF-κB activation. Degradation of IκB protein was detected late in PRRSV infection, and overexpression of the dominant negative form of IκBα (IκBαDN) significantly suppressed NF-κB activation induced by PRRSV. However, IκBαDN did not affect viral replication and viral cytopathic effect. PRRSV infection induced oxidative stress in cells by generating reactive oxygen species (ROS), and antioxidants inhibited NF-κB DNA binding activity in PRRSV-infected cells, suggesting ROS as a mechanism by which NF-κB was activated by PRRSV infection. Moreover, NF-κB-dependent expression of matrix metalloproteinase (MMP)-2 and MMP-9 was observed in PRRSV-infected cells, an observation which implies that NF-κB activation is a biologically significant aspect of PRRSV pathogenesis. The results presented here provide a basis for understanding molecular pathways of pathology and immune evasion associated with disease caused by PRRSV.
Collapse
Affiliation(s)
- Sang-Myeong Lee
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, MO 65211, USA
| | - Steven B. Kleiboeker
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, MO 65211, USA
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri-Columbia, MO 65211, USA
- Corresponding author. Department of Veterinary Pathobiology, University of Missouri, 1600 E. Rollins, Columbia, MO 65211, USA. Fax: +1 573 882 1411.
| |
Collapse
|
30
|
Risatti GR, Borca MV, Kutish GF, Lu Z, Holinka LG, French RA, Tulman ER, Rock DL. The E2 glycoprotein of classical swine fever virus is a virulence determinant in swine. J Virol 2005; 79:3787-96. [PMID: 15731272 PMCID: PMC1075681 DOI: 10.1128/jvi.79.6.3787-3796.2005] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify genetic determinants of classical swine fever virus (CSFV) virulence and host range, chimeras of the highly pathogenic Brescia strain and the attenuated vaccine strain CS were constructed and evaluated for viral virulence in swine. Upon initial screening, only chimeras 138.8v and 337.14v, the only chimeras containing the E2 glycoprotein of CS, were attenuated in swine despite exhibiting unaltered growth characteristics in primary porcine macrophage cell cultures. Additional viral chimeras were constructed to confirm the role of E2 in virulence. Chimeric virus 319.1v, which contained only the CS E2 glycoprotein in the Brescia background, was markedly attenuated in pigs, exhibiting significantly decreased virus replication in tonsils, a transient viremia, limited generalization of infection, and decreased virus shedding. Chimeras encoding all Brescia structural proteins in a CS genetic background remained attenuated, indicating that additional mutations outside the structural region are important for CS vaccine virus attenuation. These results demonstrate that CS E2 alone is sufficient for attenuating Brescia, indicating a significant role for the CSFV E2 glycoprotein in swine virulence.
Collapse
Affiliation(s)
- G R Risatti
- Plum Island Animal Disease Center, USDA/ARS/NAA, P.O. Box 848, Greenport, NY 11944-0848, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lee SM, Schommer SK, Kleiboeker SB. Porcine reproductive and respiratory syndrome virus field isolates differ in in vitro interferon phenotypes. Vet Immunol Immunopathol 2004; 102:217-31. [PMID: 15507307 PMCID: PMC7112598 DOI: 10.1016/j.vetimm.2004.09.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Type I interferons (IFN-α and -β) play an important role in the innate host defense against viral infection by inducing antiviral responses. In addition to direct antiviral activities, type I IFN serves as an important link between the innate and adaptive immune response through multiple mechanisms. Therefore, the outcome of a viral infection can be affected by IFN induction and the IFN sensitivity of a virus. North American porcine reproductive and respiratory syndrome virus (PRRSV) field isolates were studied with regard to IFN-α sensitivity and induction in order to understand the role of type I IFN in PRRSV pathogenesis. PRRSV isolates were differentially sensitive to porcine recombinant IFN-α (rIFN-α) and varied in their ability to induce IFN-α in porcine alveolar macrophages (PAM) cultures as measured by a porcine IFN-α specific ELISA on cell culture supernatants. Fifty-two plaques were purified from three PRRSV isolates (numbers 3, 7, and 12) and tested for IFN sensitivity and IFN induction. Plaque-derived populations were composed of heterogeneous populations in terms of IFN-inducing capacity and sensitivity to rIFN-α. When macrophages infected with isolates 3, 7, or 12 were treated with polycytidylic acid (polyI:C), IFN-α production was enhanced. Cells infected with isolate 3 and treated with polyI:C showed the most consistent and strongest enhancement of IFN-α production. It was demonstrated that the relatively low concentrations of IFN-α produced by isolate 3 contributed to the enhanced IFN-α synthesis in response to polyI:C. Isolates 7 and 12 significantly suppressed the enhanced IFN-α production by isolate 3 in polyI:C treated cells. To determine if suppression was at the level of IFN-α transcription, quantitative RT-PCR was performed for IFN-α mRNA and compared to GAPDH and cyclophilin mRNA quantification. However, the relative number of IFN-α transcript copies did not correlate with IFN-α protein levels, suggesting a post-transcriptional mechanism of suppression. In summary, these results demonstrate that PRRSV field isolates differ both in IFN-α sensitivity and induction. Furthermore, a PRRSV field isolate strongly enhance polyI:C-induced IFN-α production in PAM cultures and this priming effect was suppressed by other PRRSV isolates.
Collapse
Affiliation(s)
- Sang-Myeong Lee
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, 1600 E. Rollins, Columbia, MO 65211, USA
| | - Susan K. Schommer
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, 1600 E. Rollins, Columbia, MO 65211, USA
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, 1600 E. Rollins, Columbia, MO 65211, USA
| | - Steven B. Kleiboeker
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, 1600 E. Rollins, Columbia, MO 65211, USA
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, 1600 E. Rollins, Columbia, MO 65211, USA
- Corresponding author. Tel.: +1 573 882 6811; fax: +1 573 882 1411.
| |
Collapse
|
32
|
Vanderheijden N, Delputte PL, Favoreel HW, Vandekerckhove J, Van Damme J, van Woensel PA, Nauwynck HJ. Involvement of sialoadhesin in entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages. J Virol 2003; 77:8207-15. [PMID: 12857889 PMCID: PMC165228 DOI: 10.1128/jvi.77.15.8207-8215.2003] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2003] [Accepted: 05/06/2003] [Indexed: 11/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) shows a very restricted tropism for cells of the monocyte/macrophage lineage. It enters cells via receptor-mediated endocytosis. A monoclonal antibody (MAb) that is able to block PRRSV infection of porcine alveolar macrophages (PAM) and that recognizes a 210-kDa protein (p210) was described previously (MAb41D3) (X. Duan, H. Nauwynck, H. Favoreel, and M. Pensaert, J. Virol. 72:4520-4523, 1998). In the present study, the p210 protein was purified from PAM by immunoaffinity using MAb41D3 and was subjected to internal peptide sequencing after tryptic digestion. Amino acid sequence identities ranging from 56 to 91% with mouse sialoadhesin, a macrophage-restricted receptor, were obtained with four p210 peptides. Using these peptide data, the full p210 cDNA sequence (5,193 bp) was subsequently determined. It shared 69 and 78% amino acid identity, respectively, with mouse and human sialoadhesins. Swine (PK-15) cells resistant to viral entry were transfected with the cloned p210 cDNA and inoculated with European or American PRRSV strains. Internalized virus particles were detected only in PK-15 cells expressing the recombinant sialoadhesin, demonstrating that this glycoprotein mediated uptake of both types of strains. However, nucleocapsid disintegration, like that observed in infected Marc-145 cells as a result of virus uncoating after fusion of the virus with the endocytic vesicle membrane, was not observed, suggesting a block in the fusion process. The ability of porcine sialoadhesin to mediate endocytosis was demonstrated by specific internalization of MAb41D3 into PAM. Altogether, these results show that sialoadhesin is involved in the entry process of PRRSV in PAM.
Collapse
Affiliation(s)
- Nathalie Vanderheijden
- Laboratory of Virology, Faculty of Veterinary Medicine, Flanders Interuniversity Institute of Biotechnology (VIB), 5830 AA Boxmeer, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
33
|
Osorio FA, Galeota JA, Nelson E, Brodersen B, Doster A, Wills R, Zuckermann F, Laegreid WW. Passive transfer of virus-specific antibodies confers protection against reproductive failure induced by a virulent strain of porcine reproductive and respiratory syndrome virus and establishes sterilizing immunity. Virology 2002; 302:9-20. [PMID: 12429512 DOI: 10.1006/viro.2002.1612] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Immune mechanisms mediating protective immunity against porcine reproductive and respiratory syndrome virus (PRRSV) are not well understood. The PRRSV-specific humoral immune response has been dismissed as being ineffective and perhaps deleterious for the host. The function of PRRSV antibodies in protective immunity against infection with a highly abortifacient strain of this virus was examined by passive transfer experiments in pregnant swine. All of a group of pregnant gilts (n = 6) that received PRRSV immunoglobulin (Ig) from PRRSV-convalescent, hyperimmune animals were fully protected from reproductive failure as judged by 95% viability of offspring at weaning (15 days of age). On the other hand, the totality of animals in a matched control group (n = 6) receiving anti-pseudorabies virus (PRV) Ig exhibited marked reproductive failure with 4% survival at weaning. Besides protecting the pregnant females from clinical reproductive disease, the passive transfer of PRRSV Ig prevented the challenge virus from infecting the dams and precluded its vertical transmission, as evidenced by the complete absence of infectious PRRSV from the tissues of the dams and lack of infection in their offspring. In summary, these results indicate that PRRSV-Igs are capable of conferring protective immunity against PRRSV and furthermore that these Igs can provide sterilizing immunity in vivo.
Collapse
Affiliation(s)
- F A Osorio
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, 68583, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Nodelijk G. Porcine reproductive and respiratory syndrome (PRRS) with special reference to clinical aspects and diagnosis. A review. Vet Q 2002; 24:95-100. [PMID: 12095084 DOI: 10.1080/01652176.2002.9695128] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
After a short introduction on Porcine Reproductive and Respiratory Syndrome (PRRS) regarding the history, the first occurrence in several countries, and the causal virus, designated Lelystad virus, a description is given of the clinical aspects and several diagnostic methods. After some general remarks on the clinical aspects, the epidemic and the endemic phase of the disease are described. Regarding the diagnosis, special attention is paid to the detection of antibodies and of the PRRS Virus (PRRSV). Regarding the detection of antibodies, a description is given of three tests: the immunoperoxidase monolayer assay, the enzyme-linked immunosorbent assay, and the serum neutralization test. Concerning the detection of PRRSV, attention is paid to the isolation of the virus, the demonstration of PRRSV antigens in frozen or fixed tissue using immunohistochemistry or immunofluorescence, the in situ hybridisation technique and the Polymerase Chain Reaction (PCR).
Collapse
Affiliation(s)
- G Nodelijk
- Institute for Animal Science and Health, Lelystad, The Netherlands.
| |
Collapse
|
35
|
Oleksiewicz MB, Bøtner A, Normann P. Semen from boars infected with porcine reproductive and respiratory syndrome virus (PRRSV) contains antibodies against structural as well as nonstructural viral proteins. Vet Microbiol 2001; 81:109-25. [PMID: 11376957 DOI: 10.1016/s0378-1135(01)00341-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The seminal excretion of antibodies against porcine reproductive and respiratory syndrome virus (PRRSV) was examined in a group of five boars experimentally infected by the nasopharyngeal route. By using phage-displayed peptide epitopes from the PRRSV replicase and envelope glycoproteins as ELISA antigen, we were able to separately and specifically assay antibody responses against structural and nonstructural viral proteins. Antibodies against structural as well as nonstructural viral proteins were consistently found in the semen of all boars, beginning from 1-4 weeks postinfection. This is the first report documenting the presence of anti-PRRSV antibodies in boar semen. Seminal antiviral IgA was also detected, and we observed a correlation between seminal IgA responses against nonstructural viral proteins, and the duration of PRRSV RNA excretion in semen. The implications of these findings for the diagnostics and pathogenesis of venereal PRRSV infection are discussed.
Collapse
Affiliation(s)
- M B Oleksiewicz
- Danish Veterinary Institute for Virus Research, Lindholm, 4771 Kalvehave, Denmark.
| | | | | |
Collapse
|
36
|
Teifke JP, Dauber M, Fichtner D, Lenk M, Polster U, Weiland E, Beyer J. Detection of European porcine reproductive and respiratory syndrome virus in porcine alveolar macrophages by two-colour immunofluorescence and in-situ hybridization-immunohistochemistry double labelling. J Comp Pathol 2001; 124:238-45. [PMID: 11437499 DOI: 10.1053/jcpa.2000.0458] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Two groups of five pigs aged 6 weeks were each infected oronasally with one of two different European isolates of porcine reproductive and respiratory syndrome virus (PRRSV). The animals were killed sequentially at 4, 7, 14 or 21 days post-inoculation for examination. The methods used consisted of histopathology, and mono- and double-labelling techniques based on in-situ hybridization, immunofluorescence and immunohistochemistry. Porcine alveolar macrophages (PAMs) contained large amounts of PRRSV antigen and PRRSV RNA, as shown by double labelling with (1) either PRRSV immunofluorescence or PRRSV-specific in-situ hybridization with digoxigenin-labelled riboprobes, and (2) immunolabelling with Mac 387 antibody for calprotectin. Expression of PRRSV-RNA was not detectable in cytokeratin-positive hypertrophic and proliferating pneumocytes or in cells of alveolar ducts or bronchiolar epithelium. The use of two-colour immunofluorescence with confocal laser scanning microscopy and double labelling with in-situ hybridization-immunohistochemistry showed that PAMs were the only pulmonary target cells. This contradicts earlier reports that epithelial pulmonary cells may also be infected by PRRSV.
Collapse
Affiliation(s)
- J P Teifke
- Institut für Infektionsmedizin, Bundesforschungsanstalt für Viruskrankheitein der Tiere, Insel Riems, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Sur JH, Doster AR, Galeota JA, Osorio FA. Evidence for the localization of porcine reproductive and respiratory syndrome virus (PRRSV) antigen and RNA in ovarian follicles in gilts. Vet Pathol 2001; 38:58-66. [PMID: 11199165 DOI: 10.1354/vp.38-1-58] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pathogenesis of porcine reproductive and respiratory syndrome virus (PRRSV) infection in ovary was studied in sexually mature, cycling, nonsynchronized gilts infected with the PRRSV 16244B, a virulent field strain. Previous studies have shown that PRRSV can be isolated from ovaries and is transplacentally passed from gilts to the fetuses. The cause of infertility following PRRSV infection is not known. In this study, we identified the tropism of PRRSV in ovarian tissue from experimentally infected gilts in samples collected between 7 and 21 days postinfection (DPI). Tissues were collected and examined by virus isolation, in situ hybridization (ISH), immunohistochemistry (IHC), and double labeling to identify PRRSV-infected cell types. PRRSV was isolated in ovarian follicles at 7 days DPI. The IHC and ISH indicated that PRRSV-positive cells in ovaries were predominantly macrophages, which were numerous in atretic follicles. No evidence of infection and/or perpetuation of PRRSV in ova was observed, indicating that the female gonad is an unlikely site of persistence. No alteration of the normal ovarian architecture that would support a possible role of PRRSV infection in porcine female infertility was observed.
Collapse
Affiliation(s)
- J H Sur
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln 68583-0905, USA
| | | | | | | |
Collapse
|
38
|
Thanawongnuwech R, Halbur PG, Thacker EL. The role of pulmonary intravascular macrophages in porcine reproductive and respiratory syndrome virus infection. Anim Health Res Rev 2000; 1:95-102. [PMID: 11708601 DOI: 10.1017/s1466252300000086] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The objective of this article is to summarize the current state of knowledge of the complex interaction of porcine reproductive and respiratory syndrome virus (PRRSV) and porcine pulmonary intravascular macrophages (PIMs). PIMs play an important role in pulmonary surveillance, and in the past few years we have investigated their role in PRRSV infection. PRRSV antigens and nucleic acids have been demonstrated in PIMs both in vitro and in vivo. Examination of cultured PIMs infected with PRRSV revealed the accumulation of viral particles in the smooth-walled vesicles. PRRSV-infected PIMs in vitro yielded a virus titer similar to pulmonary alveolar macrophages. PRRSV infection induces either apoptosis or cell lysis of PIMs. The in vitro bactericidal activity of PRRSV-infected PIMs is significantly decreased. Phagocytic activity of PIMs, as measured by pulmonary copper clearance, is significantly decreased in PRRSV-infected pigs. This evidence supports the hypothesis that PRRSV-induced damage to PIMs results in increased susceptibility to bacteremic diseases. Recent studies with PRRSV and Streptococcus suis coinfection confirmed that PRRSV predisposes pigs to S. suis infection and bacteremia. These results could explain the increase in bacterial respiratory diseases and septicemias observed in PRRSV-infected pigs.
Collapse
Affiliation(s)
- R Thanawongnuwech
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | | |
Collapse
|
39
|
Masot AJ, Kelling CL, López O, Sur JH, Redondo E. In situ hybridization detection of bovine respiratory syncytial virus in the lung of experimentally infected lambs. Vet Pathol 2000; 37:618-25. [PMID: 11105951 DOI: 10.1354/vp.37-6-618] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We studied the distribution of bovine respiratory syncytial virus (BRSV) RNA in lungs of experimentally inoculated lambs by in situ hybridization at different times postinoculation. The probe used for in situ hybridization was prepared by reverse transcription of BRSV RNA, followed by polymerase chain reaction (PCR) amplification of the cDNA. Twenty-five Merino lambs of both sexes with a live weight of 17 +/- 3 kg received an intratracheal inoculation of 20 ml saline solution containing 1.26 X 10(6) TCID50 BRSV (strain NMK7)/ml. Lambs were slaughtered 1, 3, 7, 11, and 15 days postinoculation (PID). Bronchial and bronchiolar epithelial cells were positive for BRSV nucleic acid by ISH at 1, 3, 7, and 11 PID. However, alveolar epithelial cells contained positive cells at 1, 3, and 7 PID. Cells containing viral RNA were detected from 1 to 11 PID in exudate within bronchial and bronchiolar lumina and from 3 to 7 PID in alveolar exudates. Positive hybridization signals were identified in interstitial mononuclear cells and in bronchi-associated lymphoid tissue from 3 to 11 PID. Mononuclear cells were located in peribronchiolar tissue and interalveolar septa. The highest signal intensity in positive cells was observed at 3 and 7 PID, coinciding with the most important histopathological findings.
Collapse
Affiliation(s)
- A J Masot
- Unidad de Histología y Anatomía Patológica, School of Veterinary Medicine, University of Extremadura, Cáceres, Spain
| | | | | | | | | |
Collapse
|
40
|
Cheon DS, Chae C. Comparison of virus isolation, reverse transcription-polymerase chain reaction, immunohistochemistry, and in situ hybridization for the detection of porcine reproductive and respiratory syndrome virus from naturally aborted fetuses and stillborn piglets. J Vet Diagn Invest 2000; 12:582-7. [PMID: 11108465 DOI: 10.1177/104063870001200619] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Virus isolation, reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, and in situ hybridization methods were compared for the detection of porcine reproductive and respiratory syndrome virus (PRRSV). Seven aborted fetuses and 6 stillborn piglets naturally infected with PRRSV were used in the study. Viral antigen and viral nucleic acid were detected in macrophages and dendritic cells in the spleen, tonsil, lymph nodes, and thymus; in macrophages of liver, heart, and lung; and in endothelial cells and myocytes of the heart. Viral antigen and viral nucleic acid were most consistently detected in the spleen. Of the 13 samples, 6 were positive for PRRSV by all 4 techniques. Four (31%) samples were positive for PRRSV by RT-PCR, in situ hybridization, and virus isolation. Two (15%) samples were positive for PRRSV by virus isolation, RT-PCR, and in situ hybridization. One (8%) was positive for PRRSV by virus isolation and RT-PCR. The RT-PCR identified the presence of PRRSV more frequently than the other methods. However, when only formalin-fixed tissues are submitted, immunohistochemistry and in situ hybridization would be useful methods for the detection of PRRSV antigen and nucleic acid.
Collapse
Affiliation(s)
- D S Cheon
- Department of Veterinary Pathology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University, Suwon, Kyounggi-Do, Republic of Korea
| | | |
Collapse
|
41
|
Cheon DS, Chae C. Antigenic variation and genotype of isolates of porcine reproductive and respiratory syndrome virus in Korea. Vet Rec 2000; 147:215-8. [PMID: 10994923 DOI: 10.1136/vr.147.8.215] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A panel of three anti-glycoprotein 5 (gp5) protein monoclonal antibodies (mAbs) (15, 28 and 246) and three anti-nucleocapsid (N) protein mAbs (SDOW17, VO17 and EP147) was used to investigate, by an indirect fluorescent antibody test, the antigenic variations of 50 Korean isolates of porcine reproductive and respiratory syndrome virus (PRRSV), and compare them with a us ATCC vR2332-derived attenuated vaccine strain and the reference European Lelystad strain of PRRSV. A multiplex PCR assay for the differentiation of European and North American genotypes of PRRSV was used to determine the genotype of the 50 Korean isolates. Forty-six (92 per cent) of the 50 Korean isolates shared the epitopes recognised by the anti-N protein mAb SDOW17. No reactivity to the anti-gp5 and anti-N protein mAbs was observed with the other four isolates. Six distinct patterns could be identified on the basis of their reactivities with the anti-PRRSV mAbs. All 50 isolates were identified as North American genotypes by the differential PCR.
Collapse
Affiliation(s)
- D S Cheon
- Department of Veterinary Pathology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University, Kyounggi Do, Republic of Korea
| | | |
Collapse
|
42
|
Kleiboeker SB, Scoles GA, Burrage TG, Sur J. African swine fever virus replication in the midgut epithelium is required for infection of Ornithodoros ticks. J Virol 1999; 73:8587-98. [PMID: 10482612 PMCID: PMC112879 DOI: 10.1128/jvi.73.10.8587-8598.1999] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/1999] [Accepted: 07/12/1999] [Indexed: 11/20/2022] Open
Abstract
Although the Malawi Lil20/1 (MAL) strain of African swine fever virus (ASFV) was isolated from Ornithodoros sp. ticks, our attempts to experimentally infect ticks by feeding them this strain failed. Ten different collections of Ornithodorus porcinus porcinus ticks and one collection of O. porcinus domesticus ticks were orally exposed to a high titer of MAL. At 3 weeks postinoculation (p.i.), <25% of the ticks contained detectable virus, with viral titers of <4 log(10) 50% hemadsorbing doses/ml. Viral titers declined to undetectability in >90% of the ticks by 5 weeks p.i. To further study the growth defect, O. porcinus porcinus ticks were orally exposed to MAL and assayed at regular intervals p.i. Whole-tick viral titers dramatically declined (>1,000-fold) between 2 and 6 days p.i., and by 18 days p.i., viral titers were below the detection limit. In contrast, viral titers of ticks orally exposed to a tick-competent ASFV isolate, Pretoriuskop/96/4/1 (Pr4), increased 10-fold by 10 days p.i. and 50-fold by 14 days p.i. Early viral gene expression, but not extensive late gene expression or viral DNA synthesis, was detected in the midguts of ticks orally exposed to MAL. Ultrastructural analysis demonstrated that progeny virus was rarely present in ticks orally exposed to MAL and, when present, was associated with extensive cytopathology of phagocytic midgut epithelial cells. To determine if viral replication was restricted only in the midgut epithelium, parenteral inoculations into the hemocoel were performed. With inoculation by this route, a persistent infection was established although a delay in generalization of MAL was detected and viral titers in most tissues were typically 10- to 1,000-fold lower than those of ticks injected with Pr4. MAL was detected in both the salivary secretion and coxal fluid following feeding but less frequently and at a lower titer compared to Pr4. Transovarial transmission of MAL was not detected after two gonotrophic cycles. Ultrastructural analysis demonstrated that, when injected, MAL replicated in a number of cell types but failed to replicate in midgut epithelial cells. In contrast, ticks injected with Pr4 had replicating virus in midgut epithelial cells. Together, these results indicate that MAL replication is restricted in midgut epithelial cells. This finding demonstrates the importance of viral replication in the midgut for successful ASFV infection of the arthropod host.
Collapse
Affiliation(s)
- S B Kleiboeker
- Plum Island Animal Disease Center, Agricultural Research Service, U. S. Department of Agriculture, Greenport, New York 11944, USA.
| | | | | | | |
Collapse
|
43
|
Chueh LL, Lee KH, Jeng CR, Pang VF. A sensitive fluorescence in situ hybridization technique for detection of porcine reproductive and respiratory syndrome virus. J Virol Methods 1999; 79:133-40. [PMID: 10381083 DOI: 10.1016/s0166-0934(99)00004-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A sensitive fluorescence in situ hybridization (ISH) for detecting porcine reproductive and respiratory syndrome virus (PRRSV) RNA in viral infected tissue was developed using digoxigenin-labeled RNA probes targeted on the nucleocapsid gene of PRRSV. In situ RNA/RNA hybrids were detected with an anti-digoxigenin antibody alkaline phosphatase conjugate and further revealed with Fast Red TR salt/naphthol AS-MX phosphate using a fluorescent microscope. Viral nucleic acid was readily demonstrated within macrophages, known to be the major target of PRRSV. In addition, positively stained cells were found in the salivary gland and skin tissues which have not been reported to contain PRRSV infected cells before. In conclusion, the fluorescence ISH used in this study provides a fast and sensitive means for screening virus-infected tissues in which relatively few cells are affected. This advantage will be especially beneficial for studying viral persistence and for routine diagnosis of PRRSV infection.
Collapse
Affiliation(s)
- L L Chueh
- Department of Veterinary Medicine, National Taiwan University, Taipei, ROC.
| | | | | | | |
Collapse
|
44
|
Silva AM, Weiblen R, Irigoyen LF, Roehe PM, Sur HJ, Osorio FA, Flores EF. Experimental infection of sheep with bovine herpesvirus type-5 (BHV-5): acute and latent infection. Vet Microbiol 1999; 66:89-99. [PMID: 10227471 DOI: 10.1016/s0378-1135(98)00305-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We demonstrated that sheep are susceptible to acute and latent infection by bovine herpesvirus type-5 (BHV-5). Lambs inoculated intranasally with two South American BHV-5 isolates replicated the virus with titers up to 10(7.1) TCID50/ml for up to 15 days and showed mild signs of rhinitis. Four lambs in contact with the inoculated animals acquired the infection and excreted virus for up to seven days. One lamb developed progressive signs of neurological disease and was euthanized in extremis. Clinical signs consisted of tremors of the face, bruxism, ptyalism, incoordination, lateral flexion of the neck and head, circling, walking backwards, recumbency and paddling. The virus was detected in the anterior and posterior cerebrum, dorso- and ventro-lateral cortex, cerebellum, pons, midbrain and olfactory bulb. Viral nucleic acids were demonstrated in neurons and astrocytes of the anterior and ventro-lateral cortex by in situ hybridization. Histological changes consisting of non-suppurative meningitis, perivascular mononuclear cuffing, focal gliosis, neuronal necrosis and intranuclear inclusions were observed in the anterior cerebrum, ventro-lateral cortex and midbrain. Dexamethasone treatment at Day 50 pi resulted in reactivation of the latent infection and virus shedding in 13/16 (81%) of the lambs. Together with previous reports of BHV-5 antibodies in sheep, these findings show that sheep are fully susceptible to BHV-5 suggesting that infection by BHV-5 in sheep may occur naturally.
Collapse
Affiliation(s)
- A M Silva
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Brazil
| | | | | | | | | | | | | |
Collapse
|
45
|
Oleksiewicz MB, Nielsen J. Effect of porcine reproductive and respiratory syndrome virus (PRRSV) on alveolar lung macrophage survival and function. Vet Microbiol 1999; 66:15-27. [PMID: 10223319 DOI: 10.1016/s0378-1135(98)00309-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) recently emerged as an important cause of reproductive disorders and pneumonia in domestic pigs throughout the world. Acute cytocidal replication of PRRSV in alveolar lung macrophages causes the acute pneumonia; however, it remains largely unresolved whether there may also be a predisposition to longer-term local immunodeficiency in the PRRSV-convalescent lung. We applied various flow cytometric techniques to study the interplay between PRRSV replication and macrophage viability/function in pure cultures of porcine alveolar lung macrophages. Monitored by flow cytometric detection of intracellular PRRSV nucleocapsid protein, acute (24 h post infection) PRRSV replication did not impede the ability of alveolar macrophages to ingest fluorescently labelled Escherichia coli. At 48 h post infection, PRRSV-induced cytotoxicity (quantitated by flow analysis of cell size and membrane integrity) led to 40% reduction in the total number of phagocytozing cells. However, viable/uninfected macrophages in PRRSV-infected cultures exhibited normal phagocytic ability at 48 h, indicating that no soluble phagocytosis-suppressive mediators were induced by PRRSV infection in this system. In short, in our minimal system containing only a single cell type, phagocytosis-suppressive effects of PRRSV infection were detected, that acted at the culture level by reducing the total number of alveolar lung macrophages.
Collapse
Affiliation(s)
- M B Oleksiewicz
- Danish Veterinary Institute for Virus Research, Lindholm, Kalvehave
| | | |
Collapse
|
46
|
Sur JH, Doster AR, Osorio FA. Apoptosis induced in vivo during acute infection by porcine reproductive and respiratory syndrome virus. Vet Pathol 1998; 35:506-14. [PMID: 9823592 DOI: 10.1177/030098589803500605] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We studied apoptosis caused by porcine reproductive and respiratory syndrome virus (PRRSV) in vivo, focusing on the tissues that constitute the main targets for infection: lung and lymphoid tissues. Previous investigators have shown that the PRRSV glycoprotein p25, encoded by PRRSV open reading frame 5, induces apoptosis when expressed in COS-1 cells. Results of studies conducted in our laboratory indicate the simultaneous occurrence of PRRSV-induced alterations of spermatogenesis and apoptotic death of germinal epithelial cells in the testicle. In this study, the goal was to determine whether virus-induced apoptosis is a direct mechanism of cell death caused by PRRSV in infected pigs. Eight 3-week-old pigs were intranasally inoculated with PRRSV 16244B, a highly virulent field strain. Lung, tonsil, bronchial lymph node, spleen, and heart were assessed histologically at 4 and 7 days postinfection. To characterize PRRSV-infected cells and apoptotic cell death, we used immunohistochemical methods for detection of viral antigen, DNA electrophoresis for detection of DNA fragmentation, the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-fluorescein nick end labeling method for in situ detection of DNA strand breaks, and electron microscopy for ultrastructural morphologic studies. PRRSV infection resulted in widespread apoptosis in the lungs and lymphoid tissues of infected pigs. Virus infection-induced apoptotic cells were more abundant than PRRSV-infected cells in all tissues. DNA laddering was detected in lung and lymphoid tissues. However, double-labeling experiments demonstrated that the majority of apoptotic cells did not colocalize with PRRSV-infected cells. Our findings suggest the presence of an indirect mechanism in the induction of apoptosis for PRRSV.
Collapse
Affiliation(s)
- J H Sur
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, USA
| | | | | |
Collapse
|
47
|
Abstract
In 1987, porcine reproductive and respiratory syndrome (PRRS) was recognized in the USA as a new disease of swine causing late-term reproductive failure and severe pneumonia in neonatal pigs. The syndrome is caused by an RNA virus referred to as PRRS virus (PRRSV), which is classified in the family Arteriviridae. Swine macrophages are the only indigenous cell type known to support PRRSV replication. Direct contact between infected and naive pigs is the predominant route of PRRSV transmission. Exposure of a mucosal surface to PRRSV leads to virus replication in regional macrophages, a prolonged viremia and systemic distribution of virus to other macrophage populations. Reproductive failure induced by PRRSV infection in late-gestation sows is characterized by premature farrowing of stillborn, partially autolyzed, and mummified fetuses. Pneumonia caused by PRRSV infection is more severe in young pigs compared to adults and may be complicated by concurrent bacterial infections. Gross lung lesions associated with PRRSV infection vary from none to diffuse consolidation. In addition, multiple lymph nodes may be markedly enlarged. Microscopically, PRRSV-pneumonia is characterized by multifocal, interstitial thickening by macrophages and necrotic cell debris in alveoli. Other less common microscopic lesions of PRRSV infection include myocarditis, vasculitis, encephalitis, and lymphoid hypertrophy and hyperplasia. In acute or subacute PRRSV infections, serum and lung are the best specimens for diagnosis. Persistent PRRSV infections can be produced by transplacental or intranasal infection. Persistent PRRSV infections are an important factor for virus survival and transmission within a swine herd and will complicate control programs.
Collapse
Affiliation(s)
- K D Rossow
- South Dakota Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings 57007-1396, USA.
| |
Collapse
|
48
|
Sur JH, Doster AR, Christian JS, Galeota JA, Wills RW, Zimmerman JJ, Osorio FA. Porcine reproductive and respiratory syndrome virus replicates in testicular germ cells, alters spermatogenesis, and induces germ cell death by apoptosis. J Virol 1997; 71:9170-9. [PMID: 9371575 PMCID: PMC230219 DOI: 10.1128/jvi.71.12.9170-9179.1997] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Like other arteriviruses, porcine reproductive and respiratory syndrome virus (PRRSV) is shed in semen, a feature that is critical for the venereal transmission of this group of viruses. In spite of its epidemiological importance, little is known of the association of PRRSV or other arteriviruses with gonadal tissues. We experimentally infected a group of boars with PRRSV 12068-96, a virulent field strain. By combined use of in situ hybridization and immunohistochemistry, we detected infection by PRRSV in the testes of these boars. The PRRSV testicular replication in testis centers on two types of cells: (i) epithelial germ cells of the seminiferous tubules, primarily spermatids and spermatocytes, and (ii) macrophages, which are located in the interstitium of the testis. Histopathologically, hypospermatogenesis, formation of multinucleated giant cells (MGCs), and abundant germ cell depletion and death were observed. We obtained evidence that such germ cell death occurs by apoptosis, as determined by a characteristic histologic pattern and evidence of massive DNA fragmentation detected in situ (TUNEL [terminal deoxynucleotidyltransferase-mediated digoxigenin-UTP nick end labeling] assay). Simultaneously with these testicular alterations, we observed that there is a significant increase in the number of immature sperm cells (mainly MGCs, spermatids, and spermatocytes) in the ejaculates of the PRRSV-inoculated boars and that these cells are infected with PRRSV. Our results indicate that PRRSV may infect target cells other than macrophages, that these infected cells can be primarily responsible for the excretion of infectious PRRSV in semen, and that PRRSV induces apoptosis in these germ cells in vivo.
Collapse
Affiliation(s)
- J H Sur
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, 68583-0905, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Chowdhury SI, Lee BJ, Mosier D, Sur JH, Osorio FA, Kennedy G, Weiss ML. Neuropathology of bovine herpesvirus type 5 (BHV-5) meningo-encephalitis in a rabbit seizure model. J Comp Pathol 1997; 117:295-310. [PMID: 9502267 DOI: 10.1016/s0021-9975(97)80078-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The suitability of a rabbit seizure model for studying the neuropathogenesis of bovine herpesvirus type 5 (BHV-5) encephalitis was evaluated. Intranasal administration of BHV-5 (strain TX89) together with intramuscular administration of dexamethasone produced seizures in 70% of rabbits tested and meningo-encephalitis in 100%. Infectious BHV-5 was consistently isolated from the following sites: olfactory bulb; anterior cortex, containing the frontal cortex, olfactory tract and anterior portion of the olfactory cortex; posterior cortex, containing the temporal, parietal, piriform, entorhinal and occipital cortices; amygdala; hippocampus. Less frequently, BHV-5 was isolated from the midbrain and diencephalon, the pons and medulla, the cerebellum, and the trigeminal ganglia. Rabbits similarly infected with the Cooper strain of bovine herpesvirus type 1 showed no neurological signs or meningo-encephalitis, and virus was not recovered from the brain. The brains of BHV-5-infected rabbits showed neuronal degeneration, leptomeningitis, gliosis and perivascular cuffing, predominantly in the olfactory cortex (piriform and entorhinal cortices), amygdala and hippocampus. Mild lymphocytic meningitis was seen in the olfactory bulb and focal lymphocytic infiltration was sometimes present in the medulla and cerebellum. BHV-5, specific antigens and nucleic acids were detected in the olfactory cortex, amygdala and hippocampus by immunohistochemical methods and in-situ hybridization. The results suggested that, after intranasal BHV-5 inoculation, the virus spread to the central nervous system via the olfactory and trigeminal pathways. The olfactory pathway was more susceptible than the trigeminal pathway to neuropathogenic effects.
Collapse
Affiliation(s)
- S I Chowdhury
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan 66506, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Cheon DS, Chae C, Lee YS. Detection of nucleic acids of porcine reproductive and respiratory syndrome virus in the lungs of naturally infected piglets as determined by in-situ hybridization. J Comp Pathol 1997; 117:157-63. [PMID: 9352440 PMCID: PMC7130319 DOI: 10.1016/s0021-9975(97)80032-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Replication of porcine reproductive and respiratory syndrome virus (PRRSV) was studied in formalin-fixed paraffin wax-embedded lung tissues from seven naturally infected piglets by in-situ hybridization with a non-radioactive digoxigenin-labelled probe. A 433 base pair cDNA probe for the viral RNA encoding the nucleocapsid proteins of a Korean PRRSV isolate was generated by the polymerase chain reaction. All seven piglets infected with PRRSV showed a distinct, positive signal, scattered throughout the alveolar septa and spaces. Positive cells typically exhibited dark brown staining deposits in the cytoplasm without background staining. In-situ hybridization demonstrated that PRRSV replicated primarily in interstitial and alveolar macrophages, and occasionally in type 2 pneumocytes. The bronchial or bronchiolar epithelium did not exhibit a hybridization signal for PRRSV nucleic acids. The anterior and middle lobes of the lung were more reliable than the caudal or accessory lobes for the detection of PRRSV nucleic acids. The in-situ hybridization technique used was rapid, specific and sensitive, and may prove useful for the diagnosis of PRRSV infection in routinely fixed and processed tissues.
Collapse
Affiliation(s)
- D S Cheon
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Kyounggi-Do, Republic of Korea
| | | | | |
Collapse
|