1
|
Silva ML, Cá B, Osório NS, Rodrigues PNS, Maceiras AR, Saraiva M. Tuberculosis caused by Mycobacterium africanum: Knowns and unknowns. PLoS Pathog 2022; 18:e1010490. [PMID: 35617217 PMCID: PMC9135246 DOI: 10.1371/journal.ppat.1010490] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tuberculosis (TB), one of the deadliest threats to human health, is mainly caused by 2 highly related and human-adapted bacteria broadly known as Mycobacterium tuberculosis and Mycobacterium africanum. Whereas M. tuberculosis is widely spread, M. africanum is restricted to West Africa, where it remains a significant cause of tuberculosis. Although several differences have been identified between these 2 pathogens, M. africanum remains a lot less studied than M. tuberculosis. Here, we discuss the genetic, phenotypic, and clinical similarities and differences between strains of M. tuberculosis and M. africanum. We also discuss our current knowledge on the immune response to M. africanum and how it possibly articulates with distinct disease progression and with the geographical restriction attributed to this pathogen. Understanding the functional impact of the diversity existing in TB-causing bacteria, as well as incorporating this diversity in TB research, will contribute to the development of better, more specific approaches to tackle TB.
Collapse
Affiliation(s)
- Marta L. Silva
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
- Doctoral Program in Molecular and Cell Biology, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Baltazar Cá
- INASA - Instituto Nacional de Saúde Pública da Guiné-Bissau, Bissau, Guinea-Bissau
- Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau
| | - Nuno S. Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro N. S. Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Ana Raquel Maceiras
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
2
|
Ofori-Anyinam B, Riley AJ, Jobarteh T, Gitteh E, Sarr B, Faal-Jawara TI, Rigouts L, Senghore M, Kehinde A, Onyejepu N, Antonio M, de Jong BC, Gehre F, Meehan CJ. Comparative genomics shows differences in the electron transport and carbon metabolic pathways of Mycobacterium africanum relative to Mycobacterium tuberculosis and suggests an adaptation to low oxygen tension. Tuberculosis (Edinb) 2020; 120:101899. [PMID: 32090860 PMCID: PMC7049902 DOI: 10.1016/j.tube.2020.101899] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/31/2019] [Accepted: 01/05/2020] [Indexed: 12/21/2022]
Abstract
The geographically restricted Mycobacterium africanum lineages (MAF) are primarily found in West Africa, where they account for a significant proportion of tuberculosis. Despite this phenomenon, little is known about the co-evolution of these ancient lineages with West Africans. MAF and M. tuberculosis sensu stricto lineages (MTB) differ in their clinical, in vitro and in vivo characteristics for reasons not fully understood. Therefore, we compared genomes of 289 MAF and 205 MTB clinical isolates from the 6 main human-adapted M. tuberculosis complex lineages, for mutations in their Electron Transport Chain and Central Carbon Metabolic pathway in order to explain these metabolic differences. Furthermore, we determined, in silico, whether each mutation could affect the function of genes encoding enzymes in these pathways. We found more mutations with the potential to affect enzymes in these pathways in MAF lineages compared to MTB lineages. We also found that similar mutations occurred in these pathways between MAF and some MTB lineages. Generally, our findings show further differences between MAF and MTB lineages that may have contributed to the MAF clinical and growth phenotype and indicate potential adaptation of MAF lineages to a distinct ecological niche, which we suggest includes areas characterized by low oxygen tension.
Collapse
Affiliation(s)
- Boatema Ofori-Anyinam
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium; Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, Gambia; Center for Global Health Security and Diplomacy, Ottawa, Canada
| | - Abi Janet Riley
- Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, Gambia
| | - Tijan Jobarteh
- Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, Gambia
| | - Ensa Gitteh
- Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, Gambia
| | - Binta Sarr
- Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, Gambia
| | | | - Leen Rigouts
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium; Department of Biomedical Sciences, Antwerp University, Antwerp, Belgium
| | - Madikay Senghore
- Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, Gambia
| | - Aderemi Kehinde
- Department of Medical Microbiology & Parasitology, University College Hospital, Ibadan, Nigeria; Department of Medical Microbiology & Parasitology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Nneka Onyejepu
- Center for Tuberculosis Research, Nigeria Institute of Medical Research, Lagos, Nigeria
| | - Martin Antonio
- Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, Gambia; Division of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom; Medical School, University of Warwick, Coventry, United Kingdom
| | - Bouke C de Jong
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Florian Gehre
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium; Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, Gambia; Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Conor J Meehan
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium; School of Chemistry and Biosciences, University of Bradford, Bradford, United Kingdom.
| |
Collapse
|
3
|
DNA markers for tuberculosis diagnosis. Tuberculosis (Edinb) 2018; 113:139-152. [PMID: 30514496 DOI: 10.1016/j.tube.2018.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis complex (MTBC), is an infectious disease with more than 10.4 million cases and 1.7 million deaths reported worldwide in 2016. The classical methods for detection and differentiation of mycobacteria are: acid-fast microscopy (Ziehl-Neelsen staining), culture, and biochemical methods. However, the microbial phenotypic characterization is time-consuming and laborious. Thus, fast, easy, and sensitive nucleic acid amplification tests (NAATs) have been developed based on specific DNA markers, which are commercially available for TB diagnosis. Despite these developments, the disease remains uncontrollable. The identification and differentiation among MTBC members with the use of NAATs remains challenging due, among other factors, to the high degree of homology within the members and mutations, which hinders the identification of specific target sequences in the genome with potential impact in the diagnosis and treatment outcomes. In silico methods provide predictive identification of many new target genes/fragments/regions that can specifically be used to identify species/strains, which have not been fully explored. This review focused on DNA markers useful for MTBC detection, species identification and antibiotic resistance determination. The use of DNA targets with new technological approaches will help to develop NAATs applicable to all levels of the health system, mainly in low resource areas, which urgently need customized methods to their specific conditions.
Collapse
|
4
|
Ates LS, Dippenaar A, Sayes F, Pawlik A, Bouchier C, Ma L, Warren RM, Sougakoff W, Majlessi L, van Heijst JWJ, Brossier F, Brosch R. Unexpected Genomic and Phenotypic Diversity of Mycobacterium africanum Lineage 5 Affects Drug Resistance, Protein Secretion, and Immunogenicity. Genome Biol Evol 2018; 10:1858-1874. [PMID: 30010947 PMCID: PMC6071665 DOI: 10.1093/gbe/evy145] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2018] [Indexed: 01/19/2023] Open
Abstract
Mycobacterium africanum consists of Lineages L5 and L6 of the Mycobacterium tuberculosis complex (MTBC) and causes human tuberculosis in specific regions of Western Africa, but is generally not transmitted in other parts of the world. Since M. africanum is evolutionarily closely placed between the globally dispersed Mycobacterium tuberculosis and animal-adapted MTBC-members, these lineages provide valuable insight into M. tuberculosis evolution. Here, we have collected 15 M. africanum L5 strains isolated in France over 4 decades. Illumina sequencing and phylogenomic analysis revealed a previously underappreciated diversity within L5, which consists of distinct sublineages. L5 strains caused relatively high levels of extrapulmonary tuberculosis and included multi- and extensively drug-resistant isolates, especially in the newly defined sublineage L5.2. The specific L5 sublineages also exhibit distinct phenotypic characteristics related to in vitro growth, protein secretion and in vivo immunogenicity. In particular, we identified a PE_PGRS and PPE-MPTR secretion defect specific for sublineage L5.2, which was independent of PPE38. Furthermore, L5 isolates were able to efficiently secrete and induce immune responses against ESX-1 substrates contrary to previous predictions. These phenotypes of Type VII protein secretion and immunogenicity provide valuable information to better link genome sequences to phenotypic traits and thereby understand the evolution of the MTBC.
Collapse
Affiliation(s)
- Louis S Ates
- Department of Genomes and Genetics, Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Anzaan Dippenaar
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Fadel Sayes
- Department of Genomes and Genetics, Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Alexandre Pawlik
- Department of Genomes and Genetics, Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Christiane Bouchier
- Department of Genomes and Genetics, Institut Pasteur, Genomics Platform, Paris, France
| | - Laurence Ma
- Department of Genomes and Genetics, Institut Pasteur, Genomics Platform, Paris, France
| | - Robin M Warren
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Wladimir Sougakoff
- Sorbonne Universités, INSERM, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Team 13 (Bacteriology), Paris, France
- Laboratoire de Bactériologie-Hygiène, Centre National de Référence des Mycobactéries (NRC MyRMA), Hôpitaux Universitaires Pitié-Salpêtrière – Charles Foix, Paris, France
| | - Laleh Majlessi
- Department of Genomes and Genetics, Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Jeroen W J van Heijst
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Florence Brossier
- Department of Genomes and Genetics, Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
- Sorbonne Universités, INSERM, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Team 13 (Bacteriology), Paris, France
- Laboratoire de Bactériologie-Hygiène, Centre National de Référence des Mycobactéries (NRC MyRMA), Hôpitaux Universitaires Pitié-Salpêtrière – Charles Foix, Paris, France
| | - Roland Brosch
- Department of Genomes and Genetics, Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| |
Collapse
|
5
|
Ofori-Anyinam B, Dolganov G, Van T, Davis JL, Walter ND, Garcia BJ, Voskuil M, Fissette K, Diels M, Driesen M, Meehan CJ, Yeboah-Manu D, Coscolla M, Gagneux S, Antonio M, Schoolnik G, Gehre F, de Jong BC. Significant under expression of the DosR regulon in M. tuberculosis complex lineage 6 in sputum. Tuberculosis (Edinb) 2017; 104:58-64. [PMID: 28454650 PMCID: PMC5421582 DOI: 10.1016/j.tube.2017.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/21/2017] [Accepted: 03/02/2017] [Indexed: 11/19/2022]
Abstract
Mycobacterium africanum lineage (L) 6 is an important pathogen in West Africa, causing up to 40% of pulmonary tuberculosis (TB). The biology underlying the clinical differences between M. africanum and M. tuberculosis sensu stricto remains poorly understood. We performed ex vivo expression of 2179 genes of the most geographically dispersed cause of human TB, M. tuberculosis L4 and the geographically restricted, M. africanum L6 directly from sputa of 11 HIV-negative TB patients from The Gambia who had not started treatment. The DosR regulon was the most significantly decreased category in L6 relative to L4. Further, we identified nonsynonymous mutations in major DosR regulon genes of 44 L6 genomes of TB patients from The Gambia and Ghana. Using Lebek's test, we assessed differences in oxygen requirements for growth. L4 grew only at the aerobic surface while L6 grew throughout the medium. In the host, the DosR regulon is critical for M. tuberculosis in adaptation to oxygen limitation. However, M. africanum L6 appears to have adapted to growth under hypoxic conditions or to different biological niches. The observed under expression of DosR in L6 fits with the genomic changes in DosR genes, microaerobic growth and the association with extrapulmonary disease.
Collapse
Affiliation(s)
- Boatema Ofori-Anyinam
- Mycobacteriology Unit, Institute of Tropical Medicine (ITM), Nationalestraat 155, 2000, Antwerp, Belgium; Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, The Gambia, Atlantic Boulevard, Fajara, P.O. Box 273, Banjul, Gambia
| | - Gregory Dolganov
- Department of Microbiology and Immunology, Stanford University, 299 Campus Drive, Stanford, CA, 94305, USA
| | - Tran Van
- Department of Microbiology and Immunology, Stanford University, 299 Campus Drive, Stanford, CA, 94305, USA
| | - J Lucian Davis
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, P.O. Box 208034, New Haven, CT, 06520-8034, USA; Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, P.O. Box 208057, 300 Cedar Street TAC - 441 South, New Haven, CT, 06520-8057, USA
| | - Nicholas D Walter
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Building 500 - 13001 E, 17th Place, Campus Box C290, Aurora, CO, 80045, USA; Pulmonary Section, Denver Veterans Affairs Medical Center, 1055 Clermont Street, Denver, CO, 80220, USA; Integrated Center for Genes, Environment, & Health, National Jewish Health, Smith Building; A647, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Benjamin J Garcia
- Integrated Center for Genes, Environment, & Health, National Jewish Health, Smith Building; A647, 1400 Jackson Street, Denver, CO, 80206, USA; Computational Bioscience Program, University of Colorado Denver, Building 500 - 13001 E, 17th Place, Campus Box C290, Aurora, CO, 80045, USA
| | - Marty Voskuil
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E. 19th Ave., Mail Stop 8333, Aurora, CO, 80045, USA
| | - Kristina Fissette
- Mycobacteriology Unit, Institute of Tropical Medicine (ITM), Nationalestraat 155, 2000, Antwerp, Belgium
| | - Maren Diels
- Mycobacteriology Unit, Institute of Tropical Medicine (ITM), Nationalestraat 155, 2000, Antwerp, Belgium
| | - Michèle Driesen
- Mycobacteriology Unit, Institute of Tropical Medicine (ITM), Nationalestraat 155, 2000, Antwerp, Belgium
| | - Conor J Meehan
- Mycobacteriology Unit, Institute of Tropical Medicine (ITM), Nationalestraat 155, 2000, Antwerp, Belgium
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Mireia Coscolla
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, P.O. Box 4002, Basel, Switzerland; University of Basel, Petersplatz 1, P.O. Box 4001, Basel, Switzerland
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, P.O. Box 4002, Basel, Switzerland; University of Basel, Petersplatz 1, P.O. Box 4001, Basel, Switzerland
| | - Martin Antonio
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, The Gambia, Atlantic Boulevard, Fajara, P.O. Box 273, Banjul, Gambia
| | - Gary Schoolnik
- Department of Microbiology and Immunology, Stanford University, 299 Campus Drive, Stanford, CA, 94305, USA
| | - Florian Gehre
- Mycobacteriology Unit, Institute of Tropical Medicine (ITM), Nationalestraat 155, 2000, Antwerp, Belgium; Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, The Gambia, Atlantic Boulevard, Fajara, P.O. Box 273, Banjul, Gambia
| | - Bouke C de Jong
- Mycobacteriology Unit, Institute of Tropical Medicine (ITM), Nationalestraat 155, 2000, Antwerp, Belgium.
| |
Collapse
|
6
|
Zumla A, Otchere ID, Mensah GI, Asante-Poku A, Gehre F, Maeurer M, Bates M, Mwaba P, Ntoumi F, Yeboah-Manu D. Learning from epidemiological, clinical, and immunological studies on Mycobacterium africanum for improving current understanding of host–pathogen interactions, and for the development and evaluation of diagnostics, host-directed therapies, and vaccines for tuberculosis. Int J Infect Dis 2017; 56:126-129. [DOI: 10.1016/j.ijid.2016.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022] Open
|
7
|
Yeboah-Manu D, de Jong BC, Gehre F. The Biology and Epidemiology of Mycobacterium africanum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:117-133. [PMID: 29116632 DOI: 10.1007/978-3-319-64371-7_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
West Africa is the only region in the world where six out of seven mycobacterial lineages of human importance are endemic. In particular, two evolutionary ancient lineages, Mycobacterium africanum West Africa 1 (MTBC Lineage 5) and M. africanum West Africa 2 (MTBC Lineage 6) are of interest as they cause up to 40% of all pulmonary TB cases in some West African countries. Although these M. africanum lineages are closely related to M. tuberculosis sensu stricto lineages, they differ significantly in respect to biology, epidemiology and in their potential to cause disease in humans. Most importantly the M. africanum lineages are exclusive to West Africa. Although the exact mechanisms underlying this geographical restriction are still not understood, it is increasingly suspected that this is due to an adaptation of the bacteria to West African host populations. In this chapter, we summarize the geographical distribution of the M. africanum lineages within the region, describe biological and clinical differences and the consequent implications for TB control in West Africa. We also try to shed light on the geographical restriction, based on recently published analyses on whole genomes of M. africanum isolates.
Collapse
Affiliation(s)
- Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | | | - Florian Gehre
- Institute for Tropical Medicine, Antwerp, Belgium
- Medical Research Council (MRC) Unit, The Gambia Serrekunda, Gambia
| |
Collapse
|
8
|
Sharma A, Bloss E, Heilig CM, Click ES. Tuberculosis Caused by Mycobacterium africanum, United States, 2004-2013. Emerg Infect Dis 2016; 22:396-403. [PMID: 26886258 PMCID: PMC4766873 DOI: 10.3201/eid2203.151505] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium africanum is endemic to West Africa and causes tuberculosis (TB). We reviewed reported cases of TB in the United States during 2004-2013 that had lineage assigned by genotype (spoligotype and mycobacterial interspersed repetitive unit variable number tandem repeats). M. africanum caused 315 (0.4%) of 73,290 TB cases with lineage assigned by genotype. TB caused by M. africanum was associated more with persons from West Africa (adjusted odds ratio [aOR] 253.8, 95% CI 59.9-1,076.1) and US-born black persons (aOR 5.7, 95% CI 1.2-25.9) than with US-born white persons. TB caused by M. africanum did not show differences in clinical characteristics when compared with TB caused by M. tuberculosis. Clustered cases defined as >2 cases in a county with identical 24-locus mycobacterial interspersed repetitive unit genotypes, were less likely for M. africanum (aOR 0.1, 95% CI 0.1-0.4), which suggests that M. africanum is not commonly transmitted in the United States.
Collapse
|
9
|
Witas HW, Donoghue HD, Kubiak D, Lewandowska M, Gładykowska-Rzeczycka JJ. Molecular studies on ancient M. tuberculosis and M. leprae: methods of pathogen and host DNA analysis. Eur J Clin Microbiol Infect Dis 2015. [PMID: 26210385 PMCID: PMC4545183 DOI: 10.1007/s10096-015-2427-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Humans have evolved alongside infectious diseases for millennia. Despite the efforts to reduce their incidence, infectious diseases still pose a tremendous threat to the world population. Fast development of molecular techniques and increasing risk of new epidemics have resulted in several studies that look to the past in order to investigate the origin and evolution of infectious diseases. Tuberculosis and leprosy have become frequent targets of such studies, owing to the persistence of their molecular biomarkers in ancient material and the characteristic skeletal lesions each disease may cause. This review examines the molecular methods used to screen for the presence of M. tuberculosis and M. leprae ancient DNA (aDNA) and their differentiation in ancient human remains. Examples of recent studies, mainly from Europe, that employ the newest techniques of molecular analysis are also described. Moreover, we present a specific approach based on assessing the likely immunological profile of historic populations, in order to further elucidate the influence of M. tuberculosis and M. leprae on historical human populations.
Collapse
Affiliation(s)
- H W Witas
- Department of Molecular Biology, Medical University of Łódź, Łódź, Poland,
| | | | | | | | | |
Collapse
|
10
|
Sales ML, Fonseca AA, Orzil L, Alencar AP, Silva MR, Issa MA, Filho PMS, Lage AP, Heinemann MB. Validation of a real-time PCR assay for the molecular identification of Mycobacterium tuberculosis. Braz J Microbiol 2015; 45:1363-9. [PMID: 25763042 PMCID: PMC4323311 DOI: 10.1590/s1517-83822014000400029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 04/17/2014] [Indexed: 12/04/2022] Open
Abstract
Mycobacterium tuberculosis is the major cause of tuberculosis in humans. This bacillus gained prominence with the occurrence of HIV, presenting itself as an important opportunistic infection associated with acquired immunodeficiency syndrome (AIDS). The current study aimed to develop a real-time PCR using Eva Green technology for molecular identification of M. tuberculosis isolates. The primers were designed to Rv1510 gene. Ninety nine samples of M. tuberculosis and sixty samples of M. bovis were tested and no sample of the bovine bacillus was detected by the qPCR. Statistical tests showed no difference between the qPCR and biochemical tests used to identify the Mycobacterium tuberculosis. The correlation between tests was perfect with Kappa index of 1.0 (p < 0.001, CI = 0.84 - 1.0). The diagnostic sensitivity and specificity were 100% (CI = 95.94% - 100%) and 100% (CI = 93.98% - 100%). This qPCR was developed with the goal of diagnosing the bacillus M. tuberculosis in samples of bacterial suspension. TB reference laboratories (health and agriculture sectors), public health programs and epidemiological studies probably may benefit from such method.
Collapse
Affiliation(s)
- Mariana L. Sales
- Laboratório Nacional Agropecuário de Minas GeraisPedro LeopoldoMGBrazilLaboratório Nacional Agropecuário de Minas Gerais, Pedro Leopoldo, MG, Brazil.
| | - Antônio Augusto Fonseca
- Laboratório Nacional Agropecuário de Minas GeraisPedro LeopoldoMGBrazilLaboratório Nacional Agropecuário de Minas Gerais, Pedro Leopoldo, MG, Brazil.
| | - Lívia Orzil
- Laboratório Nacional Agropecuário de Minas GeraisPedro LeopoldoMGBrazilLaboratório Nacional Agropecuário de Minas Gerais, Pedro Leopoldo, MG, Brazil.
| | - Andrea Padilha Alencar
- Laboratório Nacional Agropecuário de Minas GeraisPedro LeopoldoMGBrazilLaboratório Nacional Agropecuário de Minas Gerais, Pedro Leopoldo, MG, Brazil.
| | - Marcio Roberto Silva
- EMBRAPA Gado de LeiteJuiz de ForaMGBrazilEMBRAPA Gado de Leite, Juiz de Fora, MG, Brazil.
| | - Marina Azevedo Issa
- Laboratório Nacional Agropecuário de Minas GeraisPedro LeopoldoMGBrazilLaboratório Nacional Agropecuário de Minas Gerais, Pedro Leopoldo, MG, Brazil.
| | - Paulo Martins Soares Filho
- Laboratório Nacional Agropecuário de Minas GeraisPedro LeopoldoMGBrazilLaboratório Nacional Agropecuário de Minas Gerais, Pedro Leopoldo, MG, Brazil.
| | - Andrey Pereira Lage
- Escola de VeterináriaUniversidade Federal de Minas GeraisBelo HorizonteMGBrazilEscola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Marcos Bryan Heinemann
- Escola de VeterináriaUniversidade Federal de Minas GeraisBelo HorizonteMGBrazilEscola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
11
|
Mycobacterium tuberculosis is the causative agent of tuberculosis in the southern ecological zones of Cameroon, as shown by genetic analysis. BMC Infect Dis 2013; 13:431. [PMID: 24028382 PMCID: PMC3851856 DOI: 10.1186/1471-2334-13-431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/03/2013] [Indexed: 11/10/2022] Open
Abstract
Background Tuberculosis (TB) is a major cause of mortality and suffering worldwide, with over 95% of TB deaths occurring in low- and middle-income countries. In recent years, molecular typing methods have been widely used in epidemiological studies to aid the control of TB, but this usage has not been the case with many African countries, including Cameroon. The aims of the present investigation were to identify and evaluate the diversity of the Mycobacterium tuberculosis complex (MTBC) isolates circulating in two ecological zones of Cameroon, seven years after the last studies in the West Region, and after the re-organization of the National TB Control Program (NTBCP). These were expected to shed light also on the transmission of TB in the country. The study was conducted from February to July 2009. During this period, 169 patients with symptomatic disease and with sputum cultures that were positive for MTBC were randomly selected for the study from amongst 964 suspected patients in the savannah mosaic zone (West and North West regions) and the tropical rainforest zone (Central region). After culture and diagnosis, DNA was extracted from each of the MTBC isolates and transported to the BecA-ILRI Hub in Nairobi, Kenya for molecular analysis. Methods Genetic characterization was done by mycobacterial interspersed repetitive unit–variable number tandem repeat typing (MIRU-VNTR) and Spoligotyping. Results Molecular analysis showed that all TB cases reported in this study were caused by infections with Mycobacterium tuberculosis (98.8%) and Mycobacterium africanum (M. africanum) (1.2%) respectively. We did not detect any M. bovis. Comparative analyses using spoligotyping revealed that the majority of isolates belong to major clades of M. tuberculosis: Haarlem (7.6%), Latin American-Mediterranean (34.4%) and T clade (26.7%); the remaining isolates (31.3%) where distributed among the minor clades. The predominant group of isolates (34.4%) corresponded to spoligotype 61, previously described as the “Cameroon family. Further analysis based on MIRU-VNTR profiles had greater resolving power than spoligotyping and defined additional genotypes in the same spoligotype cluster. Conclusion The molecular characterization of MTBC strains from humans in two ecological regions of Cameroon has shown that M. tuberculosis sensu stricto is the predominant agent of TB cases in the zones. Three decades ago, TB was reported to be caused by M. africanum in 56.0% of cases. The present findings are consistent with a major shift in the prevalence of M. tuberculosis in Cameroon.
Collapse
|
12
|
Mycobacterial Etiology of Pulmonary Tuberculosis and Association with HIV Infection and Multidrug Resistance in Northern Nigeria. Tuberc Res Treat 2013; 2013:650561. [PMID: 23970967 PMCID: PMC3730141 DOI: 10.1155/2013/650561] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/19/2013] [Indexed: 11/24/2022] Open
Abstract
Objective. Data on pulmonary tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) complex in Nigeria are limited. We investigated species of MTB complex in TB cases from northern Nigeria. Methods. New TB suspects were enrolled, screened for HIV and their sputum samples were cultured after routine microscopy. Genotypes MTBC and MTBDRplus were used to characterize the MTB complex species and their resistance to isoniazid and rifampicin.
Results. Of the 1,603 patients enrolled, 375 (23%) had MTB complex infection: 354 (94.4%) had Mycobacterium tuberculosis; 20 (5.3%) had Mycobacterium africanum; and one had Mycobacterium bovis (0.3%). Cases were more likely to be male (AOR = 1.87, 95% CI : 1.42–2.46; P ≤ 0.001), young (AOR = 2.03, 95% CI : 1.56–2.65; P ≤ 0.001) and have HIV (AOR = 1.43, 95% CI : 1.06–1.92; P = 0.032). In 23 patients (6.1%), the mycobacterium was resistant to at least one drug, and these cases were more likely to have HIV and prior TB treatment (AOR = 3.62, 95% CI : 1.51–8.84; P = 0.004; AOR : 4.43; 95% CI : 1.71–11.45 P = 0.002 resp.), compared to cases without any resistance. Conclusion. Mycobacterium tuberculosis remained the predominant specie in TB in this setting followed by Mycobacterium africanum while Mycobacterium bovis was rare. The association of TB drug resistance with HIV has implications for TB treatment.
Collapse
|
13
|
Gomgnimbou MK, Refrégier G, Diagbouga SP, Adama S, Kaboré A, Ouiminga A, Sola C. Spoligotyping of Mycobacterium africanum, Burkina Faso. Emerg Infect Dis 2012; 18:117-9. [PMID: 22257494 PMCID: PMC3310091 DOI: 10.3201/eid1801.110275] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Using Ziehl-Neelsen–positive slides collected from tuberculosis diagnostic centers in Burkina Faso, we showed that 20% of 80 spoligotyping-positive DNA samples had a characteristic Mycobacterium africanum–specific genomic signature. This result suggests that M. africanum is still present in Burkina Faso at almost the same prevalence as 15–20 years ago.
Collapse
|
14
|
Bentley SD, Comas I, Bryant JM, Walker D, Smith NH, Harris SR, Thurston S, Gagneux S, Wood J, Antonio M, Quail MA, Gehre F, Adegbola RA, Parkhill J, de Jong BC. The genome of Mycobacterium africanum West African 2 reveals a lineage-specific locus and genome erosion common to the M. tuberculosis complex. PLoS Negl Trop Dis 2012; 6:e1552. [PMID: 22389744 PMCID: PMC3289620 DOI: 10.1371/journal.pntd.0001552] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/17/2012] [Indexed: 01/16/2023] Open
Abstract
Background M. africanum West African 2 constitutes an ancient lineage of the M. tuberculosis complex that commonly causes human tuberculosis in West Africa and has an attenuated phenotype relative to M. tuberculosis. Methodology/Principal Findings In search of candidate genes underlying these differences, the genome of M. africanum West African 2 was sequenced using classical capillary sequencing techniques. Our findings reveal a unique sequence, RD900, that was independently lost during the evolution of two important lineages within the complex: the “modern” M. tuberculosis group and the lineage leading to M. bovis. Closely related to M. bovis and other animal strains within the M. tuberculosis complex, M. africanum West African 2 shares an abundance of pseudogenes with M. bovis but also with M. africanum West African clade 1. Comparison with other strains of the M. tuberculosis complex revealed pseudogenes events in all the known lineages pointing toward ongoing genome erosion likely due to increased genetic drift and relaxed selection linked to serial transmission-bottlenecks and an intracellular lifestyle. Conclusions/Significance The genomic differences identified between M. africanum West African 2 and the other strains of the Mycobacterium tuberculosis complex may explain its attenuated phenotype, and pave the way for targeted experiments to elucidate the phenotypic characteristic of M. africanum. Moreover, availability of the whole genome data allows for verification of conservation of targets used for the next generation of diagnostics and vaccines, in order to ensure similar efficacy in West Africa. Mycobacterium africanum, a close relative of M. tuberculosis, is studied for the following reasons: M. africanum is commonly isolated from West African patients with tuberculosis yet has not spread beyond this region, it is more common in HIV infected patients, and it is less likely to lead to tuberculosis after one is exposed to an infectious case. Understanding this organism's unique biology gets a boost from the decoding of its genome, reported in this issue. For example, genome analysis reveals that M. africanum contains a region shared with “ancient” lineages in the M. tuberculosis complex and other mycobacterial species, which was lost independently from both M. tuberculosis and M. bovis. This region encodes a protein involved in transmembrane transport. Furthermore, M. africanum has lost genes, including a known virulence gene and genes for vitamin synthesis, in addition to an intact copy of a gene that may increase its susceptibility to antibiotics that are insufficiently active against M. tuberculosis. Finally, the genome sequence and analysis reported here will aid in the development of new diagnostics and vaccines against tuberculosis, which need to take into account the differences between M. africanum and other species in order to be effective worldwide.
Collapse
Affiliation(s)
- Stephen D. Bentley
- Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Iñaki Comas
- Genomics and Health Unit, Centre for Public Health Research, Valencia, Spain
- Division of Mycobacterial Research, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | - Josephine M. Bryant
- Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Danielle Walker
- Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Noel H. Smith
- TB Research Group, Veterinary Laboratories Agency (VLA), Weybridge, New Haw, Addlestone, Surrey, United Kingdom and The Centre for the Study of Evolution, University of Sussex, Brighton, United Kingdom
| | - Simon R. Harris
- Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Scott Thurston
- Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jonathan Wood
- Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Michael A. Quail
- Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Florian Gehre
- Vaccinology Theme, MRC Unit, Banjul, The Gambia
- Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Julian Parkhill
- Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Bouke C. de Jong
- Vaccinology Theme, MRC Unit, Banjul, The Gambia
- Institute of Tropical Medicine, Antwerp, Belgium
- New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Thumamo BP, Asuquo AE, Abia-Bassey LN, Lawson L, Hill V, Zozio T, Emenyonu N, Eko FO, Rastogi N. Molecular epidemiology and genetic diversity of Mycobacterium tuberculosis complex in the Cross River State, Nigeria. INFECTION GENETICS AND EVOLUTION 2011; 12:671-7. [PMID: 21878397 DOI: 10.1016/j.meegid.2011.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 01/18/2023]
Abstract
This study provides with a first insight on Mycobacterium tuberculosis complex epidemiology and genetic diversity in the Cross River State, Nigeria. Starting with 137 smear positive patients recruited over a period of 12months (June 2008 to May 2009), we obtained 97 pure mycobacterial isolates out of which 81 (83.5%) were identified as M. tuberculosis complex. Genotyping revealed a total of 27 spoligotypes patterns with 10 clusters (n=64% or 79% of clustered isolates, 2-32 isolates/cluster), with patients in the age group range 25-34 years being significantly associated with shared-type pattern SIT61 (p=0.019). Comparison with SITVIT2 database showed that with the exception of a single cluster (SIT727/H1), all other clusters observed were representative of West Africa; the two main lineages involved were LAM10-CAM (n=42/81% or 51.8%) of M. tuberculosis and AFRI_2 sublineage of Mycobacterium africanum (n=27/81% or 33.3%). Subsequent 12-loci MIRU typing resulted in a total of 13 SIT/MIT clusters (n=52 isolates, 2-9 isolates per cluster), with a resulting recent n-1 transmission rate of 48.1%. Available drug-susceptibility testing (DST) results for 58/81 clinical isolates revealed 6/58% or 10.4% cases of multiple drug-resistance (MDR); 5/6 MDR cases were caused by strains belonging to LAM10-CAM lineage (a specific cluster SIT61/MIT266 in 4/6 cases, and an orphan spoligotype pattern in 1/6 case). Additionally, MIT266 was associated with streptomycin resistance (p=0.016). All the six MDRTB isolates were concomitantly resistance to streptomycin and ethambutol; however, 4/6 MDR strains with identical MIRU patterns were characterized by consecutive strain numbers hence the possibility of laboratory cross contamination could not be excluded in 3/4 serial cases. The present preliminary study underlines the usefulness of spoligotyping and 12-loci MIRU-VNTRs to establish a baseline of circulating genotypic lineages of M. tuberculosis complex in Nigeria.
Collapse
Affiliation(s)
- Benjamin P Thumamo
- Department of Medical Laboratory Science, University of Calabar, Calabar, Nigeria
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Djelouadji Z, Raoult D, Drancourt M. Palaeogenomics of Mycobacterium tuberculosis: epidemic bursts with a degrading genome. THE LANCET. INFECTIOUS DISEASES 2011; 11:641-50. [DOI: 10.1016/s1473-3099(11)70093-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based single nucleotide polymorphism genotyping assay using iPLEX gold technology for identification of Mycobacterium tuberculosis complex species and lineages. J Clin Microbiol 2011; 49:3292-9. [PMID: 21734028 DOI: 10.1128/jcm.00744-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major goal of the present study was to investigate the potential use of a novel single nucleotide polymorphism (SNP) genotyping technology, called iPLEX Gold (Sequenom), for the simultaneous analysis of 16 SNPs that have been previously validated as useful for identification of Mycobacterium tuberculosis complex (MTBC) species and classification of MTBC isolates into distinct genetic lineages, known as principal genetic groups (PGGs) and SNP cluster groups (SCGs). In this context, we developed a 16-plex iPLEX assay based on an allele-specific-primer single-base-extension reaction using the iPLEX Gold kit (Sequenom), followed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis on the commercially available Sequenom MassARRAY platform. This assay was tested on a panel of 55 well-characterized MTBC strains that were also genotyped for the same loci using the previously reported SNaPshot assay, as well as 10 non-MTBC mycobacteria and 4 bacteria not belonging to the genus Mycobacterium. All MTBC samples were successfully analyzed with the iPLEX assay, which yielded clear allelic data for 99.9% of the SNPs (879 out of 880). No false-positive results were obtained with the negative controls. Compared to the SNaPshot assay, the newly developed 16-plex iPLEX assay produced fully concordant results that allowed reliable differentiation of MTBC species and recognition of lineages, thus demonstrating its potential value in diagnostic, epidemiological, and evolutionary applications. Compared to the SNaPshot approach, the implementation of the iPLEX technology could offer a higher throughput and could be a more flexible and cost-effective option for microbiology laboratories.
Collapse
|
18
|
Unequal distribution of resistance-conferring mutations among Mycobacterium tuberculosis and Mycobacterium africanum strains from Ghana. Int J Med Microbiol 2010. [DOI: 10.1016/j.ijmm.2010.04.019 [doi]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
de Jong BC, Antonio M, Gagneux S. Mycobacterium africanum--review of an important cause of human tuberculosis in West Africa. PLoS Negl Trop Dis 2010; 4:e744. [PMID: 20927191 PMCID: PMC2946903 DOI: 10.1371/journal.pntd.0000744] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium africanum consists of two phylogenetically distinct lineages within the Mycobacterium tuberculosis complex, known as M. africanum West African 1 and M. africanum West African 2. These lineages are restricted to West Africa, where they cause up to half of human pulmonary tuberculosis. In this review we discuss the definition of M. africanum, describe the prevalence and restricted geographical distribution of M. africanum West African 1 and 2, review the occurrence of M. africanum in animals, and summarize the phenotypic differences described thus far between M. africanum and M. tuberculosis sensu stricto.
Collapse
Affiliation(s)
- Bouke C de Jong
- MRC Laboratories, Bacterial Diseases Programme, Fajara, The Gambia.
| | | | | |
Collapse
|
20
|
Homolka S, Meyer CG, Hillemann D, Owusu-Dabo E, Adjei O, Horstmann RD, Browne ENL, Chinbuah A, Osei I, Gyapong J, Kubica T, Ruesch-Gerdes S, Niemann S. Unequal distribution of resistance-conferring mutations among Mycobacterium tuberculosis and Mycobacterium africanum strains from Ghana. Int J Med Microbiol 2010; 300:489-95. [PMID: 20538518 DOI: 10.1016/j.ijmm.2010.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/25/2010] [Accepted: 04/18/2010] [Indexed: 10/19/2022] Open
Abstract
Isoniazid (INH) and rifampicin (RMP) resistance in Mycobacterium tuberculosis complex (MTC) isolates are mainly based on mutations in a limited number of genes. However, mutation frequencies vary in different mycobacterial populations. In this work, we analyzed the distribution of resistance-associated mutations in M. tuberculosis and M. africanum strains from Ghana, West Africa. The distribution of mutations in katG, fabG1-inhA, ahpC, and rpoB was determined by DNA sequencing in 217 INH-resistant (INH(r)) and 45 multidrug-resistant (MDR) MTC strains isolated in Ghana from 2001 to 2004. A total of 247 out of 262 strains investigated (94.3%) carried a mutation in katG (72.5%), fabG1-inhA (25.1%), or ahpC (6.5%), respectively. M. tuberculosis strains mainly had katG 315 mutations (80.1%), whereas this proportion was significantly lower in M. africanum West-African 1 (WA1) strains (43.1%; p<0.05). In contrast, WA1 strains showed more mutations in the fabG1-inhA region (39.2%, p<0.05) compared to M. tuberculosis strains (20.9%). In 44 of 45 MDR strains (97.8%) mutations in the 81-bp core region of the rpoB gene could be verified. Additionally, DNA sequencing revealed that 5 RMP-susceptible strains also showed mutations in the rpoB hotspot region. In conclusion, although principally the same genes were affected in INH(r)M. tuberculosis and M. africanum strains, disequilibrium in the distribution of mutations conferring resistance was verified that might influence the efficiency of molecular tests for determination of resistance.
Collapse
Affiliation(s)
- Susanne Homolka
- Research Centre Borstel, National Reference Centre for Mycobacteria, Borstel, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Vasconcellos SEG, Huard RC, Niemann S, Kremer K, Santos AR, Suffys PN, Ho JL. Distinct genotypic profiles of the two major clades of Mycobacterium africanum. BMC Infect Dis 2010; 10:80. [PMID: 20350321 PMCID: PMC2859774 DOI: 10.1186/1471-2334-10-80] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 03/29/2010] [Indexed: 12/03/2022] Open
Abstract
Background Mycobacterium tuberculosis is the principal etiologic agent of human tuberculosis (TB) and a member of the M. tuberculosis complex (MTC). Additional MTC species that cause TB in humans and other mammals include Mycobacterium africanum and Mycobacterium bovis. One result of studies interrogating recently identified MTC phylogenetic markers has been the recognition of at least two distinct lineages of M. africanum, known as West African-1 and West African-2. Methods We screened a blinded non-random set of MTC strains isolated from TB patients in Ghana (n = 47) for known chromosomal region-of-difference (RD) loci and single nucleotide polymorphisms (SNPs). A MTC PCR-typing panel, single-target standard PCR, multi-primer PCR, PCR-restriction fragment analysis, and sequence analysis of amplified products were among the methods utilized for the comparative evaluation of targets and identification systems. The MTC distributions of novel SNPs were characterized in the both the Ghana collection and two other diverse collections of MTC strains (n = 175 in total). Results The utility of various polymorphisms as species-, lineage-, and sublineage-defining phylogenetic markers for M. africanum was determined. Novel SNPs were also identified and found to be specific to either M. africanum West African-1 (Rv1332523; n = 32) or M. africanum West African-2 (nat751; n = 27). In the final analysis, a strain identification approach that combined multi-primer PCR targeting of the RD loci RD9, RD10, and RD702 was the most simple, straight-forward, and definitive means of distinguishing the two clades of M. africanum from one another and from other MTC species. Conclusion With this study, we have organized a series of consistent phylogenetically-relevant markers for each of the distinct MTC lineages that share the M. africanum designation. A differential distribution of each M. africanum clade in Western Africa is described.
Collapse
Affiliation(s)
- Sidra E Gonçalves Vasconcellos
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
22
|
Identification and genotyping of Mycobacterium tuberculosis complex species by use of a SNaPshot Minisequencing-based assay. J Clin Microbiol 2010; 48:1758-66. [PMID: 20220173 DOI: 10.1128/jcm.02255-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of the present study was to investigate the use of the SNaPshot minisequencing method for the identification of Mycobacterium tuberculosis complex (MTBC) isolates to the species level and for further genotyping of M. tuberculosis isolates. We developed an innovative strategy based on two multiplex allele-specific minisequencing assays that allowed detection of eight species-specific and eight lineage-specific single nucleotide polymorphisms (SNPs). Each assay consisted of an eightplex PCR amplification, followed by an eightplex minisequencing reaction with the SNaPshot multiplex kit (Applied Biosystems) and, finally, analysis of the extension products by capillary electrophoresis. The whole strategy was developed with a panel of 56 MTBC strains and 15 negative controls. All MTBC strains tested except one M. africanum clinical isolate were accurately identified to the species level, and all M. tuberculosis isolates were successfully further genotyped. This two-step strategy based on SNaPshot minisequencing allows the simultaneous differentiation of closely related members of the MTBC, the distinction between principal genetic groups, and the characterization of M. tuberculosis isolates into one of the seven prominent SNP cluster groups (SCGs) and could be a useful tool for diagnostic and epidemiological purposes.
Collapse
|
23
|
|
24
|
Djelouadji Z, Raoult D, Daffé M, Drancourt M. A single-step sequencing method for the identification of Mycobacterium tuberculosis complex species. PLoS Negl Trop Dis 2008; 2:e253. [PMID: 18618024 PMCID: PMC2453075 DOI: 10.1371/journal.pntd.0000253] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 05/20/2008] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The Mycobacterium tuberculosis complex (MTC) comprises closely related species responsible for strictly human and zoonotic tuberculosis. Accurate species determination is useful for the identification of outbreaks and epidemiological links. Mycobacterium africanum and Mycobacterium canettii are typically restricted to Africa and M. bovis is a re-emerging pathogen. Identification of these species is difficult and expensive. METHODOLOGY/PRINCIPAL FINDINGS The Exact Tandem Repeat D (ETR-D; alias Mycobacterial Interspersed Repetitive Unit 4) was sequenced in MTC species type strains and 110 clinical isolates, in parallel to reference polyphasic identification based on phenotype profiling and sequencing of pncA, oxyR, hsp65, gyrB genes and the major polymorphism tandem repeat. Inclusion of M. tuberculosis isolates in the expanding, antibiotic-resistant Beijing clone was determined by Rv0927c gene sequencing. The ETR-D (780-bp) sequence unambiguously identified MTC species type strain except M. pinnipedii and M. microti thanks to six single nucleotide polymorphisms, variable numbers (1-7 copies) of the tandem repeat and two deletions/insertions. The ETR-D sequencing agreed with phenotypic identification in 107/110 clinical isolates and with reference polyphasic molecular identification in all isolates, comprising 98 M. tuberculosis, 5 M. bovis BCG type, 5 M. canettii, and 2 M. africanum. For M. tuberculosis isolates, the ETR-D sequence was not significantly associated with the Beijing clone. CONCLUSIONS/SIGNIFICANCE ETR-D sequencing allowed accurate, single-step identification of the MTC at the species level. It circumvented the current expensive, time-consuming polyphasic approach. It could be used to depict epidemiology of zoonotic and human tuberculosis, especially in African countries where several MTC species are emerging.
Collapse
Affiliation(s)
- Zoheira Djelouadji
- Unité des Rickettsies CNRS UMR6020, IFR 48, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Didier Raoult
- Unité des Rickettsies CNRS UMR6020, IFR 48, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Mamadou Daffé
- Département de Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et Biologie structurale, Toulouse, France
| | - Michel Drancourt
- Unité des Rickettsies CNRS UMR6020, IFR 48, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| |
Collapse
|
25
|
Lazzarini LCO, Huard RC, Boechat NL, Gomes HM, Oelemann MC, Kurepina N, Shashkina E, Mello FCQ, Gibson AL, Virginio MJ, Marsico AG, Butler WR, Kreiswirth BN, Suffys PN, Lapa E Silva JR, Ho JL. Discovery of a novel Mycobacterium tuberculosis lineage that is a major cause of tuberculosis in Rio de Janeiro, Brazil. J Clin Microbiol 2007; 45:3891-902. [PMID: 17898156 PMCID: PMC2168543 DOI: 10.1128/jcm.01394-07] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current study evaluated Mycobacterium tuberculosis isolates from Rio de Janeiro, Brazil, for genomic deletions. One locus in our panel of PCR targets failed to amplify in approximately 30% of strains. A single novel long sequence polymorphism (>26.3 kb) was characterized and designated RD(Rio). Homologous recombination between two similar protein-coding genes is proposed as the mechanism for deleting or modifying 10 genes, including two potentially immunogenic PPE proteins. The flanking regions of the RD(Rio) locus were identical in all strains bearing the deletion. Genetic testing by principal genetic group, spoligotyping, variable-number tandem repeats of mycobacterial interspersed repetitive units (MIRU-VNTR), and IS6110-based restriction fragment length polymorphism analysis cumulatively support the idea that RD(Rio) strains are derived from a common ancestor belonging solely to the Latin American-Mediterranean spoligotype family. The RD(Rio) lineage is therefore the predominant clade causing tuberculosis (TB) in Rio de Janeiro and, as indicated by genotypic clustering in MIRU-VNTR analysis, the most significant source of recent transmission. Limited retrospective reviews of bacteriological and patient records showed a lack of association with multidrug resistance or specific risk factors for TB. However, trends in the data did suggest that RD(Rio) strains may cause a form of TB with a distinct clinical presentation. Overall, the high prevalence of this genotype may be related to enhanced virulence, transmissibility, and/or specific adaptation to a Euro-Latin American host population. The identification of RD(Rio) strains outside of Brazil points to the ongoing intercontinental dissemination of this important genotype. Further studies are needed to determine the differential strain-specific features, pathobiology, and worldwide prevalence of RD(Rio) M. tuberculosis.
Collapse
Affiliation(s)
- Luiz Claudio Oliveira Lazzarini
- Department of Medicine, Division of International Medicine and Infectious Diseases, Cornell University, Joan and Sanford I Weill Medical College, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Huard RC, Fabre M, de Haas P, Lazzarini LCO, van Soolingen D, Cousins D, Ho JL. Novel genetic polymorphisms that further delineate the phylogeny of the Mycobacterium tuberculosis complex. J Bacteriol 2006; 188:4271-87. [PMID: 16740934 PMCID: PMC1482959 DOI: 10.1128/jb.01783-05] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a previous report, we described a PCR protocol for the differentiation of the various species of the Mycobacterium tuberculosis complex (MTC) on the basis of genomic deletions (R. C. Huard, L. C. de Oliveira Lazzarini, W. R. Butler, D. van Soolingen, and J. L. Ho, J. Clin. Microbiol. 41:1637-1650, 2003). That report also provided a broad cross-comparison of several previously identified, phylogenetically relevant, long-sequence and single-nucleotide polymorphisms (LSPs and SNPs, respectively). In the present companion report, we expand upon the previous work (i) by continuing the evaluation of known MTC phylogenetic markers in a larger collection of tubercle bacilli (n = 125), (ii) by evaluating additional recently reported MTC species-specific and interspecific polymorphisms, and (iii) by describing the identification and distribution of a number of novel LSPs and SNPs. Notably, new genomic deletions were found in various Mycobacterium tuberculosis strains, new species-specific SNPs were identified for "Mycobacterium canettii," Mycobacterium microti, and Mycobacterium pinnipedii, and, for the first time, intraspecific single-nucleotide DNA differences were discovered for the dassie bacillus, the oryx bacillus, and the two Mycobacterium africanum subtype I variants. Surprisingly, coincident polymorphisms linked one M. africanum subtype I genotype with the dassie bacillus and M. microti with M. pinnipedii, thereby suggesting closer evolutionary ties within each pair of species than had been previously thought. Overall, the presented data add to the genetic definitions of several MTC organisms as well as fine-tune current models for the evolutionary history of the MTC.
Collapse
Affiliation(s)
- Richard C Huard
- Division of International Medicine and Infectious Diseases, Department of Medicine, Joan and Sanford I. Weill Medical College, Cornell University, Room A-421, 525 East 68th St., New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Baker L, Brown T, Maiden MC, Drobniewski F. Silent nucleotide polymorphisms and a phylogeny for Mycobacterium tuberculosis. Emerg Infect Dis 2004; 10:1568-77. [PMID: 15498158 PMCID: PMC3320301 DOI: 10.3201/eid1009.040046] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Population diversity of genetically silent nucleotide polymorphisms produces a unifying phylogeny for Mycobacterium tuberculosis. Much remains unknown of the phylogeny and evolution of Mycobacterium tuberculosis, an organism that kills 2 million people annually. Using a population-based approach that analyzes multiple loci around the chromosome, we demonstrate that neutral genetic variation in genes associated with antimicrobial drug resistance has sufficient variation to construct a robust phylogenetic tree for M. tuberculosis. The data describe a clonal population with a minimum of four distinct M. tuberculosis lineages, closely related to M. bovis. The lineages are strongly geographically associated. Nucleotide substitutions proven to cause drug resistance are distributed throughout the tree, whereas nonsynonymous base substitutions unrelated to drug resistance have a restricted distribution. The phylogenetic structure is concordant with all the previously described genotypic and phenotypic groupings of M. tuberculosis strains and provides a unifying framework for both epidemiologic and evolutionary analysis of M. tuberculosis populations.
Collapse
Affiliation(s)
- Lucy Baker
- Health Protection Agency, London, United Kingdom
| | - Tim Brown
- Health Protection Agency, London, United Kingdom
| | | | | |
Collapse
|
28
|
Donoghue HD, Spigelman M, Greenblatt CL, Lev-Maor G, Bar-Gal GK, Matheson C, Vernon K, Nerlich AG, Zink AR. Tuberculosis: from prehistory to Robert Koch, as revealed by ancient DNA. THE LANCET. INFECTIOUS DISEASES 2004; 4:584-92. [PMID: 15336226 DOI: 10.1016/s1473-3099(04)01133-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During the past 10 years palaeomicrobiology, a new scientific discipline, has developed. The study of ancient pathogens by direct detection of their DNA has answered several historical questions and shown changes to pathogens over time. However, ancient DNA (aDNA) continues to be controversial and great care is needed to provide valid data. Here we review the most successful application of the technology, which is the study of tuberculosis. This has provided direct support for the current theory of Mycobacterium tuberculosis evolution, and suggests areas of investigation for the interaction of M tuberculosis with its host.
Collapse
Affiliation(s)
- Helen D Donoghue
- Centre for Infectious Diseases and International Health, University College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Desmond E, Ahmed AT, Probert WS, Ely J, Jang Y, Sanders CA, Lin SY, Flood J. Mycobacterium africanum cases, California. Emerg Infect Dis 2004; 10:921-3. [PMID: 15200832 DOI: 10.3201/eid1005.030016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Five Mycobacterium tuberculosis complex isolates in California were identified as M. africanum by spoligotyping, single nucleotide polymorphisms, a deletion mutation, and phenotypic traits, confirming it as a cause of tuberculosis in the United States. Three of the five patients from whom M. africanum was isolated had lived in Africa.
Collapse
Affiliation(s)
- Edward Desmond
- Microbial Diseases Laboratory, California Department of Health Services, Richmond, California 93804, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Koivula T, Ekman M, Leitner T, Löfdahl S, Ghebremicahel S, Mostowy S, Behr MA, Svenson SB, Källenius G. Genetic characterization of the Guinea-Bissau family of Mycobacterium tuberculosis complex strains. Microbes Infect 2004; 6:272-8. [PMID: 15026014 DOI: 10.1016/j.micinf.2003.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2003] [Accepted: 12/09/2003] [Indexed: 10/26/2022]
Abstract
In a previous study of Mycobacterium tuberculosis complex isolates from Guinea-Bissau in West Africa, we identified a unique group of strains, designated here as the Guinea-Bissau family of strains, which, although genotypically closely related, phenotypically demonstrated a considerable heterogeneity. We conducted here a detailed genotypic analysis of a subset (n = 35) of these isolates. Based on the data obtained, and by comparison of known corresponding genes in mycobacteria outside the M. tuberculosis complex, we propose that the Guinea-Bissau strains belong to a unique branch of the M. tuberculosis complex tree in between classical M. tuberculosis and classical M. bovis. These observations are discussed in their significance in M. tuberculosis complex classification.
Collapse
Affiliation(s)
- Tuija Koivula
- Swedish Institute for Infectious Disease Control, 17182 Solna, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Desmond E, Ahmed AT, Probert WS, Ely J, Jang Y, Sanders CA, Lin SY, Flood J. Mycobacterium africanumCases, California. Emerg Infect Dis 2004. [DOI: 10.3201/eid1004.030016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Edward Desmond
- California Department of Health Services, Berkeley, California
| | - Ameena T. Ahmed
- California Department of Health Services, Berkeley, California
| | | | - Janet Ely
- California Department of Health Services, Berkeley, California
| | - Yvonne Jang
- California Department of Health Services, Berkeley, California
| | | | - Shou-Yean Lin
- California Department of Health Services, Berkeley, California
| | - Jennifer Flood
- California Department of Health Services, Berkeley, California
| |
Collapse
|
32
|
Taylor GM, Stewart GR, Cooke M, Chaplin S, Ladva S, Kirkup J, Palmer S, Young DB. Koch's bacillus - a look at the first isolate of Mycobacterium tuberculosis from a modern perspective. MICROBIOLOGY-SGM 2004; 149:3213-3220. [PMID: 14600233 DOI: 10.1099/mic.0.26654-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using molecular methods the authors have studied mycobacterial DNA taken from a 19th century victim of tuberculosis. This was the case from which Robert Koch first isolated and cultured the organism responsible for tuberculosis. The mycobacteria were preserved within five glass culture tubes as abundant bacterial colonies on slopes of a gelatinous culture medium of unknown composition. Originally presented by Koch to surgical laryngologist Walter Jobson Horne in London in 1901, the relic has, since 1983, been in the care of the Royal College of Surgeons of England. Light and electron microscopy established the presence of acid-fast mycobacteria but showed that morphological preservation was generally poor. Eleven different genomic loci were successfully amplified by PCR. This series of experiments confirmed that the organisms were indeed Mycobacterium tuberculosis and further showed that the original strain was in evolutionary terms similar to 'modern' isolates, having undergone the TB D1 deletion. Attempts to determine the genotypic group of the isolate were only partially successful, due in part to the degraded nature of the DNA and possibly also to a truncation in the katG gene, which formed part of the classification scheme. Spoligotyping resulted in amplification of DR spacers consistent with M. tuberculosis but with discrepancies between independent extracts, stressing the limitations of this typing method when applied to poorly preserved material.
Collapse
Affiliation(s)
- G M Taylor
- Centre for Molecular Microbiology and Infection, Flowers Building, Armstrong Road, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - G R Stewart
- Centre for Molecular Microbiology and Infection, Flowers Building, Armstrong Road, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - M Cooke
- Museums of The Royal College of Surgeons of England, 35-43 Lincoln's Inn Fields, London WC2A 3PE, UK
| | - S Chaplin
- Museums of The Royal College of Surgeons of England, 35-43 Lincoln's Inn Fields, London WC2A 3PE, UK
| | - S Ladva
- Department of Histopathology, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - J Kirkup
- Museums of The Royal College of Surgeons of England, 35-43 Lincoln's Inn Fields, London WC2A 3PE, UK
| | - S Palmer
- TB Diagnostic Department, Veterinary Laboratory Agency, Addlestone, New Haw, Weybridge, Surrey KT15 3NB, UK
| | - D B Young
- Centre for Molecular Microbiology and Infection, Flowers Building, Armstrong Road, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
33
|
Kurabachew M, Enger Ø, Sandaa RA, Lemma E, Bjorvatn B. Amplified ribosomal DNA restriction analysis in the differentiation of related species of mycobacteria. J Microbiol Methods 2003; 55:83-90. [PMID: 14499998 DOI: 10.1016/s0167-7012(03)00119-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study explores the potential of the amplified ribosomal DNA restriction analysis (ARDRA) for intra- and interspecies identification of the genus Mycobacteria. A set of primers was used to amplify part of the 16S and 23S rDNA as well as the 16S-23S rDNA spacer from 121 isolates belonging to 13 different mycobacterial species. Restriction analysis was carried out with five different restriction enzymes, namely CfoI, HaeIII, RsaI, MspI and TaqI. Restriction digestion of the PCR product using CfoI enabled differentiation between 9 of the 13 mycobacterial species, whereas the remaining four enzymes differentiated between 7 of these 13 species. None of the five enzymes distinguished between different isolates of Mycobacterium tuberculosis or between species within the M. tuberculosis complex i.e., M. tuberculosis, M. bovis, M. bovis BCG and M. africanum. Although ARDRA analysis of the 16S-23S rDNA does not seem to have a potential for intraspecies differentiation, it has proven to be a rapid and technically relatively simple method to recognise strains belonging to the M. tuberculosis complex as well as to identify mycobacterial species outside this complex.
Collapse
Affiliation(s)
- Mekonnen Kurabachew
- Centre for International Health, University of Bergen, Armauer Hansen Building, N-5021, Bergen, Norway.
| | | | | | | | | |
Collapse
|
34
|
Niobe-Eyangoh SN, Kuaban C, Sorlin P, Cunin P, Thonnon J, Sola C, Rastogi N, Vincent V, Gutierrez MC. Genetic biodiversity of Mycobacterium tuberculosis complex strains from patients with pulmonary tuberculosis in Cameroon. J Clin Microbiol 2003; 41:2547-53. [PMID: 12791879 PMCID: PMC156567 DOI: 10.1128/jcm.41.6.2547-2553.2003] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed DNA polymorphisms in 455 Mycobacterium tuberculosis complex isolates from 455 patients to evaluate the biodiversity of tubercle bacilli in Ouest province, Cameroon. The phenotypic and genotypic identification methods gave concordant results for 99.5% of M. tuberculosis isolates (413 strains) and for 90% of Mycobacterium africanum isolates (41 strains). Mycobacterium bovis was isolated from only one patient. Analysis of regions of difference (RD4, RD9, and RD10) proved to be an accurate and rapid method of distinguishing between unusual members of the M. tuberculosis complex. Whereas M. africanum strains were the etiologic agent of tuberculosis in 56% of cases 3 decades ago, our results showed that these strains now account for just 9% of cases of tuberculosis. We identified a group of closely genetically related M. tuberculosis strains that are currently responsible for >40% of smear-positive pulmonary tuberculosis cases in this region of Cameroon. These strains shared a spoligotype lacking spacers 23, 24, and 25 and had highly related IS6110 ligation-mediated (LM) PCR patterns. They were designated the "Cameroon family." We did not find any significant association between tuberculosis-causing species or strain families and patient characteristics (sex, age, and human immunodeficiency virus status). A comparison of the spoligotypes of the Cameroon strains with an international spoligotype database (SpolDB3) containing 11,708 patterns from >90 countries, showed that the predominant spoligotype in Cameroon was limited to West African countries (Benin, Senegal, and Ivory Coast) and to the Caribbean area.
Collapse
|
35
|
Huard RC, Lazzarini LCDO, Butler WR, van Soolingen D, Ho JL. PCR-based method to differentiate the subspecies of the Mycobacterium tuberculosis complex on the basis of genomic deletions. J Clin Microbiol 2003; 41:1637-50. [PMID: 12682155 PMCID: PMC153936 DOI: 10.1128/jcm.41.4.1637-1650.2003] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The classical Mycobacterium tuberculosis complex (MtbC) subspecies include Mycobacterium tuberculosis, Mycobacterium africanum (subtypes I and II), Mycobacterium bovis (along with the attenuated M. bovis bacillus Calmette-Guérin [BCG]), and Mycobacterium microti; increasingly recognized MtbC groupings include Mycobacterium bovis subsp. caprae and "Mycobacterium tuberculosis subsp. canettii." Previous investigations have documented each MtbC subspecies as a source of animal and/or human tuberculosis. However, study of these organisms is hindered by the lack of a single protocol that quickly and easily differentiates all of the MtbC groupings. Towards this end we have developed a rapid, simple, and reliable PCR-based MtbC typing method that makes use of MtbC chromosomal region-of-difference deletion loci. Here, seven primer pairs (which amplify within the loci 16S rRNA, Rv0577, IS1561', Rv1510, Rv1970, Rv3877/8, and Rv3120) were run in separate but simultaneous reactions. Each primer pair either specifically amplified a DNA fragment of a unique size or failed, depending upon the source mycobacterial DNA. The pattern of amplification products from all of the reactions, visualized by agarose gel electrophoresis, allowed immediate identification either as MtbC composed of M. tuberculosis (or M. africanum subtype II), M. africanum subtype I, M. bovis, M. bovis BCG, M. caprae, M. microti, or "M. canettii" or as a Mycobacterium other than MtbC (MOTT). This MtbC PCR typing panel provides an advanced approach to determine the subspecies of MtbC isolates and to differentiate them from clinically important MOTT species. It has proven beneficial in the management of Mycobacterium collections and may be applied for practical clinical and epidemiological use.
Collapse
Affiliation(s)
- Richard C Huard
- Division of International Medicine and Infectious Diseases, Department of Medicine, Joan and Sanford I. Weill Medical College, Cornell University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
36
|
Sola C, Rastogi N. Is Mycobacterium africanum subtype II (Uganda I and Uganda II) a genetically well-defined subspecies of the Mycobacterium tuberculosis complex? J Clin Microbiol 2003; 41:1345-6; author reply 1346-8. [PMID: 12624085 PMCID: PMC150321 DOI: 10.1128/jcm.41.3.1345-1348.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Le Flèche P, Fabre M, Denoeud F, Koeck JL, Vergnaud G. High resolution, on-line identification of strains from the Mycobacterium tuberculosis complex based on tandem repeat typing. BMC Microbiol 2002; 2:37. [PMID: 12456266 PMCID: PMC140014 DOI: 10.1186/1471-2180-2-37] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2002] [Accepted: 11/27/2002] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Currently available reference methods for the molecular epidemiology of the Mycobacterium tuberculosis complex either lack sensitivity or are still too tedious and slow for routine application. Recently, tandem repeat typing has emerged as a potential alternative. This report contributes to the development of tandem repeat typing for M. tuberculosis by summarising the existing data, developing additional markers, and setting up a freely accessible, fast, and easy to use, internet-based service for strain identification. RESULTS A collection of 21 VNTRs incorporating 13 previously described loci and 8 newly evaluated markers was used to genotype 90 strains from the M. tuberculosis complex (M. tuberculosis (64 strains), M. bovis (9 strains including 4 BCG representatives), M. africanum (17 strains)). Eighty-four different genotypes are defined. Clustering analysis shows that the M. africanum strains fall into three main groups, one of which is closer to the M. tuberculosis strains, and an other one is closer to the M. bovis strains. The resulting data has been made freely accessible over the internet http://bacterial-genotyping.igmors.u-psud.fr/bnserver to allow direct strain identification queries. CONCLUSIONS Tandem-repeat typing is a PCR-based assay which may prove to be a powerful complement to the existing epidemiological tools for the M. tuberculosis complex. The number of markers to type depends on the identification precision which is required, so that identification can be achieved quickly at low cost in terms of consumables, technical expertise and equipment.
Collapse
Affiliation(s)
- Philippe Le Flèche
- Centre d'Etudes du Bouchet BP3, 91710 Vert le Petit, France
- GPMS, Bât. 400, Institut de Génétique et Microbiologie, Université Paris Sud, 91405 Orsay cedex, France
| | - Michel Fabre
- Laboratoire de Biologie Clinique, HIA Percy, 92141 Clamart, France
| | - France Denoeud
- GPMS, Bât. 400, Institut de Génétique et Microbiologie, Université Paris Sud, 91405 Orsay cedex, France
| | - Jean-Louis Koeck
- Département de biologie médicale, HIA Val-de-Grâce, 75230 Paris, France
| | - Gilles Vergnaud
- Centre d'Etudes du Bouchet BP3, 91710 Vert le Petit, France
- GPMS, Bât. 400, Institut de Génétique et Microbiologie, Université Paris Sud, 91405 Orsay cedex, France
| |
Collapse
|
38
|
Chanchaem W, Palittapongarnpim P. A variable number of tandem repeats result in polymorphic alpha -isopropylmalate synthase in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2002; 82:1-6. [PMID: 11914056 DOI: 10.1054/tube.2001.0314] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A locus of variable number of the tandem repeat, VNTR4155, resides in the putative leuA gene, encoding for alpha -isopropylmalate synthase (alpha -IPMS) of Mycobacterium tuberculosis, a repeat that is unique to the bacterium. The objective was to determine whether the polymorphic VNTR4155 was translated and resulted in a polymorphic protein. The putative leuA gene of the M. tuberculosis H37Rv strain was cloned by PCR and expressed in a His-tagged form in Escherichia coli. The enzymatic properties of the purified protein were studied. The protein was used as an antigen to immunize rabbits. Soluble proteins of several strains of M. tuberculosis were examined by Western blot analysis. The polymorphism of VNTR4155 was due to the presence of different copy number of the 57-bp tandem repeat. The putative alpha -IPMS of various strains of M. tuberculosis had different sizes, varying directly with the length of their VNTR4155.
Collapse
Affiliation(s)
- W Chanchaem
- Department of Microbiology, Faculty of Science, National Center for Genetic Engineering and Biotechnology, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | | |
Collapse
|
39
|
Johansson A, Göransson I, Larsson P, Sjöstedt A. Extensive allelic variation among Francisella tularensis strains in a short-sequence tandem repeat region. J Clin Microbiol 2001; 39:3140-6. [PMID: 11526142 PMCID: PMC88310 DOI: 10.1128/jcm.39.9.3140-3146.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Members of the genus Francisella and the species F. tularensis appear to be genetically very similar despite pronounced differences in virulence and geographic localization, and currently used typing methods do not allow discrimination of individual strains. Here we show that a number of short-sequence tandem repeat (SSTR) loci are present in F. tularensis genomes and that two of these loci, SSTR9 and SSTR16, are together highly discriminatory. Labeled PCR amplification products from the loci were identified by an automated DNA sequencer for size determination, and each allelic variant was sequenced. Simpson's index of diversity was 0.97 based on an analysis of 39 nonrelated F. tularensis isolates. The locus showing the highest discrimination, SSTR9, gave an index of diversity of 0.95. Thirty-two strains isolated from humans during five outbreaks of tularemia showed much less variation. For example, 11 of 12 strains isolated in the Ljusdal area, Sweden in 1995 and 1998 had identical allelic variants. Phenotypic variants of strains and extensively cultured replicates within strains did not differ, and, for example, the same allelic combination was present in 55 isolates of the live-vaccine strain of F. tularensis and another one was present in all 13 isolates of a strain passaged in animals. The analysis of short-sequence repeats of F. tularensis strains appears to be a powerful tool for discrimination of individual strains and may be useful for a detailed analysis of the epidemiology of this potent pathogen.
Collapse
Affiliation(s)
- A Johansson
- Department of Clinical Microbiology, Infectious Diseases, Umeå University, Umeå, Sweden
| | | | | | | |
Collapse
|
40
|
Rothschild BM, Martin LD, Lev G, Bercovier H, Bar-Gal GK, Greenblatt C, Donoghue H, Spigelman M, Brittain D. Mycobacterium tuberculosis complex DNA from an extinct bison dated 17,000 years before the present. Clin Infect Dis 2001; 33:305-11. [PMID: 11438894 DOI: 10.1086/321886] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2000] [Indexed: 11/03/2022] Open
Abstract
In order to assess the presence of tuberculosis in Pleistocene bison and the origin of tuberculosis in North America, 2 separate DNA extractions were performed by 2 separate laboratories on samples from the metacarpal of an extinct long-horned bison that was radiocarbon dated at 17,870+/-230 years before present and that had pathological changes suggestive of tuberculosis. Polymerase chain reaction amplification isolated fragments of tuberculosis DNA, which were sequenced, and on which spoligotyping was also performed to help determine its relationship to the various members of the Mycobacterium tuberculosis complex. Extensive precautions against contamination with modern M. tuberculosis complex DNA were employed, including analysis of paleontologic and modern specimens in 2 geographically separate laboratories.
Collapse
Affiliation(s)
- B M Rothschild
- Arthritis Center of Northeast Ohio, 5500 Market St., Youngstown, OH 44512, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sola C, Filliol I, Gutierrez MC, Mokrousov I, Vincent V, Rastogi N. Spoligotype Database ofMycobacterium tuberculosis: Biogeographic Distribution of Shared Types and Epidemiologic and Phylogenetic Perspectives. Emerg Infect Dis 2001. [DOI: 10.3201/10.3201/eid0703.0107304] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
| | - Ingrid Filliol
- Institut Pasteur de Guadeloupe, Pointe à Pitre, Guadeloupe
| | | | - Igor Mokrousov
- Institut Pasteur de Guadeloupe, Pointe à Pitre, Guadeloupe
| | - Véronique Vincent
- Centre National de Référence des Mycobactéries, Institut Pasteur, Paris, France
| | - Nalin Rastogi
- Institut Pasteur de Guadeloupe, Pointe à Pitre, Guadeloupe
| |
Collapse
|
42
|
Viana-Niero C, Gutierrez C, Sola C, Filliol I, Boulahbal F, Vincent V, Rastogi N. Genetic diversity of Mycobacterium africanum clinical isolates based on IS6110-restriction fragment length polymorphism analysis, spoligotyping, and variable number of tandem DNA repeats. J Clin Microbiol 2001; 39:57-65. [PMID: 11136749 PMCID: PMC87680 DOI: 10.1128/jcm.39.1.57-65.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A collection of 105 clinical isolates originally identified as Mycobacterium africanum were characterized using both phenotypic and genotyping methods. The phenotypic methods included routine determination of cultural properties and biochemical tests used to discriminate among the members of the M. tuberculosis complex, whereas genotypic characterization was based on IS6110-restriction fragment length polymorphism (IS6110-RFLP) analysis, IS1081-RFLP analysis, direct repeat-based spacer oligonucleotide typing (spoligotyping), variable number of tandem DNA repeats (VNTR), and the polymorphism of the oxyR, pncA, and mtp40 loci. The results obtained showed that a majority of M. africanum isolates were characterized by a specific spoligotyping pattern that was intermediate between those of M. tuberculosis and M. bovis, which do not hybridize with spacers 33 to 36 and spacers 39 to 43, respectively. A tentative M. africanum-specific spoligotyping signature appeared to be absence of spacers 8, 9, and 39. Based on spoligotyping, as well as the polymorphism of oxyR and pncA, a total of 24 isolates were excluded from the final study (19 were identified as M. tuberculosis, 2 were identified as M. canetti, and 3 were identified as M. bovis). The remaining 81 M. africanum isolates were efficiently subtyped in three distinct subtypes (A1 to A3) by IS6110-RFLP analysis and spoligotyping. The A1 and A2 subgroups were relatively more homogeneous upon spoligotyping than A3. Further analysis of the three subtypes by VNTR corroborated the highly homogeneous nature of the A2 subtype but showed significant variations for subtypes A1 and A3. A phylogenetic tree based on a selection of isolates representing the three subtypes using VNTR and spoligotyping alone or in combination confirmed the subtypes described as well as the heterogeneity of subtype A3.
Collapse
Affiliation(s)
- C Viana-Niero
- Centre National de Référence des Mycobactéries, Institut Pasteur, 75724-Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Sola C, Filliol I, Gutierrez MC, Mokrousov I, Vincent V, Rastogi N. Spoligotype database of Mycobacterium tuberculosis: biogeographic distribution of shared types and epidemiologic and phylogenetic perspectives. Emerg Infect Dis 2001; 7:390-6. [PMID: 11384514 PMCID: PMC2631784 DOI: 10.3201/eid0703.010304] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We give an update on the worldwide spoligotype database, which now contains 3,319 spoligotype patterns of Mycobacterium tuberculosis in 47 countries, with 259 shared types, i.e., identical spoligotypes shared by two or more patient isolates. The 259 shared types contained a total of 2,779 (84%) of all the isolates. Seven major genetic groups represented 37% of all clustered isolates. Two types (119 and 137) were found almost exclusively in the USA and accounted for 9% of clustered isolates. The remaining 1,517 isolates were scattered into 252 different spoligotypes. This database constitutes a tool for pattern comparison of M. tuberculosis clinical isolates for global epidemiologic studies and phylogenetic purposes.
Collapse
Affiliation(s)
- C Sola
- Institut Pasteur de Guadeloupe, Pointe poundà Pitre, Guadeloupe.
| | | | | | | | | | | |
Collapse
|
44
|
Smittipat N, Palittapongarnpim P. Identification of possible loci of variable number of tandem repeats in Mycobacterium tuberculosis. TUBERCLE AND LUNG DISEASE : THE OFFICIAL JOURNAL OF THE INTERNATIONAL UNION AGAINST TUBERCULOSIS AND LUNG DISEASE 2000; 80:69-74. [PMID: 10912281 DOI: 10.1054/tuld.2000.0236] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Three VNTR loci were previously cloned from Mycobacterium tuberculosis in our laboratory. The VNTR sequences were used as queries to search for similar sequences in the GenBank database by the BLAST program. Direct and tandem repeats were identified visually. The search revealed 45 more loci of direct and tandem repeats. Comparison of the sequences to the ones in the genome sequence database of the M. tuberculosis CDC1551 strain revealed 22 different loci. Combining these results with previously reported experimental work, at least 24 loci should be polymorphic enough to be detected by simple PCR. The repeats are present both inside coding sequences and in intergenic regions on the 5' or 3' ends of genes. M. tuberculosis contains several VNTR. Studies of their functions may be useful for understanding the differences of phenotypes between strains.
Collapse
Affiliation(s)
- N Smittipat
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
45
|
Filliol I, Ferdinand S, Negroni L, Sola C, Rastogi N. Molecular typing of Mycobacterium tuberculosis based on variable number of tandem DNA repeats used alone and in association with spoligotyping. J Clin Microbiol 2000; 38:2520-4. [PMID: 10878036 PMCID: PMC86957 DOI: 10.1128/jcm.38.7.2520-2524.2000] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fingerprinting based on variable numbers of tandem DNA repeats (VNTR), a recently described methodology, was evaluated for molecular typing of Mycobacterium tuberculosis in an insular setting. In this study, VNTR fingerprinting was used alone or as a second-line test in association with spoligotyping, double-repetitive-element PCR (DRE-PCR), and IS6110 restriction fragment length polymorphism (RFLP) analysis, and the discriminatory power for each method or the combination of methods was compared by calculating the Hunter-Gaston discriminative index (HGI). The results obtained showed that in 6 out of 12 (50%) cases, VNTR-defined clusters were further subdivided by spoligotyping, compared to 7 out of 18 (39%) cases where spoligotyping-defined clusters were further subdivided by VNTR. When used alone, VNTR was the least discriminatory method (HGI = 0.863). Although VNTR was significantly more discriminatory when used in association with spoligotyping (HGI = 0.982), the combination of spoligotyping and DRE-PCR (HGI = 0.992) was still the most efficient among rapid, PCR-based methodologies, giving results comparable to IS6110 RFLP analysis. Nonetheless, VNTR typing may provide additional phylogenetical information that may be helpful to trace the molecular evolution of tubercle bacilli.
Collapse
Affiliation(s)
- I Filliol
- Unité de la Tuberculose et des Mycobactéries, Institut Pasteur, F-97165 Pointe-à-Pitre Cedex, Guadeloupe
| | | | | | | | | |
Collapse
|
46
|
Supply P, Mazars E, Lesjean S, Vincent V, Gicquel B, Locht C. Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome. Mol Microbiol 2000; 36:762-71. [PMID: 10844663 DOI: 10.1046/j.1365-2958.2000.01905.x] [Citation(s) in RCA: 384] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mycobacterial interspersed repetitive units (MIRUs) are 40-100 bp DNA elements often found as tandem repeats and dispersed in intergenic regions of the Mycobacterium tuberculosis complex genomes. The M. tuberculosis H37Rv chromosome contains 41 MIRU loci. After polymerase chain reaction (PCR) and sequence analyses of these loci in 31 M. tuberculosis complex strains, 12 of them were found to display variations in tandem repeat copy numbers and, in most cases, sequence variations between repeat units as well. These features are reminiscent of those of certain human variable minisatellites. Of the 12 variable loci, only one was found to vary among genealogically distant BCG substrains, suggesting that these interspersed bacterial minisatellite-like structures evolve slowly in mycobacterial populations.
Collapse
Affiliation(s)
- P Supply
- Laboratoire des Mécanismes Moléculaires de la Pathogenèse Bactérienne, INSERM U447, France.
| | | | | | | | | | | |
Collapse
|
47
|
Brosch R, Gordon SV, Pym A, Eiglmeier K, Garnier T, Cole ST. Comparative genomics of the mycobacteria. Int J Med Microbiol 2000; 290:143-52. [PMID: 11045919 DOI: 10.1016/s1438-4221(00)80083-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
The genus mycobacteria includes two important human pathogens Mycobacterium tuberculosis and Mycobacterium lepra. The former is reputed to have the highest annual global mortality of all pathogens. Their slow growth, virulence for humans and particular physiology makes these organisms extremely difficult to work with. However the rapid development of mycobacterial genomics following the completion of the Mycobacterium tuberculosis genome sequence provides the basis for a powerful new approach for the understanding of these organisms. Five further genome sequencing projects of closely related mycobacterial species with differing host range, virulence for humans and physiology are underway. A comparative genomic analysis of these species has the potential to define the genetic basis of these phenotypes which will be invaluable for the development of urgently needed new vaccines and drugs. This minireview summarises the different techniques that have been employed to compare these genomes and gives an overview of the wealth of data that has already been generated by mycobacterial comparative genomics.
Collapse
Affiliation(s)
- R Brosch
- Unité de Génétique Moléculaire Bactérienne, Institut Pasteur, Paris, France.
| | | | | | | | | | | |
Collapse
|