1
|
Mai J, Nazari M, Stamminger T, Schreiner S. Daxx and HIRA go viral - How chromatin remodeling complexes affect DNA virus infection. Tumour Virus Res 2025:200317. [PMID: 40120981 DOI: 10.1016/j.tvr.2025.200317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
Daxx and HIRA are key proteins in the host response to DNA virus infections. Daxx is involved in apoptosis, transcription regulation, and stress responses. During DNA virus infections, Daxx helps modulate the immune response and viral progression. Viruses like adenoviruses and herpesviruses can exploit Daxx to evade immune detection, either by targeting it for degradation or inhibiting its function. Daxx also interacts with chromatin to regulate transcription, which viruses can manipulate to enhance their own gene expression and replication. HIRA is a histone chaperone and reported to be essential for chromatin assembly and gene regulation. It plays a critical role in maintaining chromatin structure and modulating gene accessibility. During DNA virus infection, HIRA influences chromatin remodeling, affecting both viral and host DNA accessibility, which impacts viral replication and gene expression. Additionally, the histone variant H3.3 is crucial for maintaining active chromatin states. It is incorporated into chromatin independently of DNA replication and is associated with active gene regions. During viral infections, H3.3 dynamics can be altered, affecting viral genome accessibility and replication efficiency. Overall, Daxx and HIRA are integral to orchestrating viral infection programs, maintaining latency and/or persistence, and influencing virus-induced transformation by modulating chromatin dynamics and host immune responses, making them significant targets for therapeutic strategies once fully understood. Here, we summarize various DNA viruses and their crosstalk with Daxx and HIRA.
Collapse
Affiliation(s)
- Julia Mai
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Masih Nazari
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
| | | | - Sabrina Schreiner
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany; Institute of Virology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Liang W, Stubbe M, Pleninger L, Hofferek A, Stubbe H, Mai J, Özer S, Frishman D, Schreiner S, Vincendeau M. HERV reactivation by adenovirus infection is associated with viral immune regulation. Microbes Infect 2024:105466. [PMID: 39716530 DOI: 10.1016/j.micinf.2024.105466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/08/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Human endogenous retroviruses (HERVs), which are normally silenced by methylation or mutation, can be reactivated by a variety of environmental factors, including infection with exogenous viruses. In this work, we investigated the transcriptional activity of HERVs following infection of human liver cells (HepaRG) with human adenovirus C serotype 5 (HAdV-C5). HAdV-C5 infection results in reactivation of several HERV groups as well as differentially expressed genes. Interestingly, in HAdV-C5 infection, upregulated genes that were in close chromosomal proximity to upregulated HERV loci were associated with influencing viral carcinogenesis and inflammatory signaling. We also identified an FBXO17 transcript encoding an intronic ERVK9-11 sense sequence upon HAdV-C5 infection. FBXO17 has previously been described as an important factor in the regulation of the interferon response. This suggests that specific HERV groups may have the potential to trigger gene networks and influence viral immune responses.
Collapse
Affiliation(s)
- Wen Liang
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Miona Stubbe
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lisa Pleninger
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Anna Hofferek
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hans Stubbe
- Medical Department II, University Hospital, LMU, Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, German, Germany
| | - Julia Mai
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Salih Özer
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, Technical University of Munich, 85354 Freising, Germany
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Virology, Helmholtz Zentrum München, Munich, Germany; Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany; Institute of Virology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover Medical School, Hannover, Germany.
| | - Michelle Vincendeau
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Virology, Helmholtz Zentrum München, Munich, Germany.
| |
Collapse
|
3
|
Ip WH, Fiedler M, Gornott B, Morische M, Bertzbach LD, Dobner T. Cellular SUMO-specific proteases regulate HAdV-C5 E1B-55K SUMOylation and virus-induced cell transformation. Front Cell Infect Microbiol 2024; 14:1484241. [PMID: 39397864 PMCID: PMC11466889 DOI: 10.3389/fcimb.2024.1484241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Various viral proteins are post-translationally modified by SUMO-conjugation during the human adenovirus (HAdV) replication cycle. This modification leads to diverse consequences for target proteins as it influences their intracellular localization or cell transformation capabilities. SUMOylated HAdV proteins include the multifunctional oncoprotein E1B-55K. Our previous research, along with that of others, has demonstrated a substantial influence of yet another adenoviral oncoprotein, E4orf6, on E1B-55K SUMOylation levels. Protein SUMOylation can be reversed by cellular sentrin/SUMO-specific proteases (SENPs). In this study, we investigated the interaction of E1B-55K with cellular SENPs to understand deSUMOylation activities and their consequences for cell transformation mediated by this adenoviral oncoprotein. We show that E1B-55K interacts with and is deSUMOylated by SENP 1, independently of E4orf6. Consistent with these results, we found that SENP 1 prevents E1A/E1B-dependent focus formation in rodent cells. We anticipate these findings to be the groundwork for future studies on adenovirus-host interactions, the mechanisms that underlie E1B-55K SUMOylation, as well as the role of this major adenoviral oncoprotein in HAdV-mediated cell transformation.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| |
Collapse
|
4
|
Hofmann K, Hofmann S, Weigl F, Mai J, Schreiner S. DMSO and Its Role in Differentiation Impact Efficacy of Human Adenovirus (HAdV) Infection in HepaRG Cells. Viruses 2024; 16:633. [PMID: 38675973 PMCID: PMC11054035 DOI: 10.3390/v16040633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Differentiated HepaRG cells are popular in vitro cell models for hepatotoxicity studies. Their differentiation is usually supported by the addition of dimethyl sulfoxide (DMSO), an amphipathic solvent widely used in biomedicine, for example, in potential novel therapeutic drugs and cryopreservation of oocytes. Recent studies have demonstrated drastic effects, especially on epigenetics and extracellular matrix composition, induced by DMSO, making its postulated inert character doubtful. In this work, the influence of DMSO and DMSO-mediated modulation of differentiation on human adenovirus (HAdV) infection of HepaRG cells was investigated. We observed an increase in infectivity of HepaRG cells by HAdVs in the presence of 1% DMSO. However, this effect was dependent on the type of medium used for cell cultivation, as cells in William's E medium showed significantly stronger effects compared with those cultivated in DMEM. Using different DMSO concentrations, we proved that the impact of DMSO on infectability was dose-dependent. Infection of cells with a replication-deficient HAdV type demonstrated that the mode of action of DMSO was based on viral entry rather than on viral replication. Taken together, these results highlight the strong influence of the used cell-culture medium on the performed experiments as well as the impact of DMSO on infectivity of HepaRG cells by HAdVs. As this solvent is widely used in cell culture, those effects must be considered, especially in screening of new antiviral compounds.
Collapse
Affiliation(s)
- Katharina Hofmann
- Institute of Virology, School of Medicine, Technical University of Munich, 80333 München, Germany
- Tissue Bank of the German Center for Infection Research (DZIF), Partner Site Heidelberg, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (K.H.)
| | - Samuel Hofmann
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
- Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Franziska Weigl
- Tissue Bank of the German Center for Infection Research (DZIF), Partner Site Heidelberg, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (K.H.)
| | - Julia Mai
- Institute of Virology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, 80333 München, Germany
- Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover Medical School, 30625 Hannover, Germany
- Institute of Virology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| |
Collapse
|
5
|
Chalabi Hagkarim N, Ip WH, Bertzbach LD, Abualfaraj T, Dobner T, Molloy DP, Stewart GS, Grand RJ. Identification of Adenovirus E1B-55K Interaction Partners through a Common Binding Motif. Viruses 2023; 15:2356. [PMID: 38140597 PMCID: PMC10747525 DOI: 10.3390/v15122356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The adenovirus C5 E1B-55K protein is crucial for viral replication and is expressed early during infection. It can interact with E4orf6 to form a complex that functions as a ubiquitin E3 ligase. This complex targets specific cellular proteins and marks them for ubiquitination and, predominantly, subsequent proteasomal degradation. E1B-55K interacts with various proteins, with p53 being the most extensively studied, although identifying binding sites has been challenging. To explain the diverse range of proteins associated with E1B-55K, we hypothesized that other binding partners might recognize the simple p53 binding motif (xWxxxPx). In silico analyses showed that many known E1B-55K binding proteins possess this amino acid sequence; therefore, we investigated whether other xWxxxPx-containing proteins also bind to E1B-55K. Our findings revealed that many cellular proteins, including ATR, CHK1, USP9, and USP34, co-immunoprecipitate with E1B-55K. During adenovirus infection, several well-characterized E1B-55K binding proteins and newly identified interactors, including CSB, CHK1, and USP9, are degraded in a cullin-dependent manner. Notably, certain binding proteins, such as ATR and USP34, remain undegraded during infection. Structural predictions indicate no conservation of structure around the proposed binding motif, suggesting that the interaction relies on the correct arrangement of tryptophan and proline residues.
Collapse
Affiliation(s)
- Nafiseh Chalabi Hagkarim
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Wing-Hang Ip
- Leibniz Institute of Virology, Department of Viral Transformation, 20251 Hamburg, Germany
| | - Luca D. Bertzbach
- Leibniz Institute of Virology, Department of Viral Transformation, 20251 Hamburg, Germany
| | - Tareq Abualfaraj
- Department of Medical Microbiology and Immunology, Taibah University, P.O. Box 344, Madinah 41477, Saudi Arabia
| | - Thomas Dobner
- Leibniz Institute of Virology, Department of Viral Transformation, 20251 Hamburg, Germany
| | - David P. Molloy
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Grant S. Stewart
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Roger J. Grand
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
6
|
Ip WH, Tatham MH, Krohne S, Gruhne J, Melling M, Meyer T, Gornott B, Bertzbach LD, Hay RT, Rodriguez E, Dobner T. Adenovirus E1B-55K controls SUMO-dependent degradation of antiviral cellular restriction factors. J Virol 2023; 97:e0079123. [PMID: 37916833 PMCID: PMC10688335 DOI: 10.1128/jvi.00791-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Human adenoviruses (HAdVs) generally cause mild and self-limiting diseases of the upper respiratory and gastrointestinal tracts but pose a serious risk to immunocompromised patients and children. Moreover, they are widely used as vectors for vaccines and vector-based gene therapy approaches. It is therefore vital to thoroughly characterize HAdV gene products and especially HAdV virulence factors. Early region 1B 55 kDa protein (E1B-55K) is a multifunctional HAdV-encoded oncoprotein involved in various viral and cellular pathways that promote viral replication and cell transformation. We analyzed the E1B-55K dependency of SUMOylation, a post-translational protein modification, in infected cells using quantitative proteomics. We found that HAdV increases overall cellular SUMOylation and that this increased SUMOylation can target antiviral cellular pathways that impact HAdV replication. Moreover, we showed that E1B-55K orchestrates the SUMO-dependent degradation of certain cellular antiviral factors. These results once more emphasize the key role of E1B-55K in the regulation of viral and cellular proteins in productive HAdV infections.
Collapse
Affiliation(s)
- Wing-Hang Ip
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Michael H. Tatham
- Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Steewen Krohne
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Julia Gruhne
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Michael Melling
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Tina Meyer
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Britta Gornott
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Ronald T. Hay
- Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Estefania Rodriguez
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| |
Collapse
|
7
|
Lettin L, Erbay B, Blair GE. Viruses and Cajal Bodies: A Critical Cellular Target in Virus Infection? Viruses 2023; 15:2311. [PMID: 38140552 PMCID: PMC10747631 DOI: 10.3390/v15122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Nuclear bodies (NBs) are dynamic structures present in eukaryotic cell nuclei. They are not bounded by membranes and are often considered biomolecular condensates, defined structurally and functionally by the localisation of core components. Nuclear architecture can be reorganised during normal cellular processes such as the cell cycle as well as in response to cellular stress. Many plant and animal viruses target their proteins to NBs, in some cases triggering their structural disruption and redistribution. Although not all such interactions have been well characterised, subversion of NBs and their functions may form a key part of the life cycle of eukaryotic viruses that require the nucleus for their replication. This review will focus on Cajal bodies (CBs) and the viruses that target them. Since CBs are dynamic structures, other NBs (principally nucleoli and promyelocytic leukaemia, PML and bodies), whose components interact with CBs, will also be considered. As well as providing important insights into key virus-host cell interactions, studies on Cajal and associated NBs may identify novel cellular targets for development of antiviral compounds.
Collapse
Affiliation(s)
- Lucy Lettin
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK (B.E.)
| | - Bilgi Erbay
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK (B.E.)
- Moleküler Biyoloji ve Genetik Bölümü, Fen Fakültesi, Van Yuzuncu Yil University, Van 65140, Türkiye
| | - G. Eric Blair
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK (B.E.)
| |
Collapse
|
8
|
Göttig L, Weiß C, Stubbe M, Hanrieder L, Hofmann S, Grodziecki A, Stadler D, Carpentier A, Protzer U, Schreiner S. Apobec3A Deamination Functions Are Involved in Antagonizing Efficient Human Adenovirus Replication and Gene Expression. mBio 2023:e0347822. [PMID: 37154747 DOI: 10.1128/mbio.03478-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Apobec3A is involved in the antiviral host defense, targeting nuclear DNA, introducing point mutations, and thereby activating DNA damage response (DDR). Here, we found a significant upregulation of Apobec3A during HAdV infection, including Apobec3A protein stabilization mediated by the viral proteins E1B-55K and E4orf6, which subsequently limited HAdV replication and most likely involved a deaminase-dependent mechanism. The transient silencing of Apobec3A enhanced adenoviral replication. HAdV triggered Apobec3A dimer formation and enhanced activity to repress the virus. Apobec3A decreased E2A SUMOylation and interfered with viral replication centers. A comparative sequence analysis revealed that HAdV types A, C, and F may have evolved a strategy to escape Apobec3A-mediated deamination via reduced frequencies of TC dinucleotides within the viral genome. Although viral components induce major changes within infected cells to support lytic life cycles, our findings demonstrate that host Apobec3A-mediated restriction limits virus replication, albeit that HAdV may have evolved to escape this restriction. This allows for novel insights into the HAdV/host-cell interplay, which broaden the current view of how a host cell can limit HAdV infection. IMPORTANCE Our data provide a novel conceptual insight into the virus/host-cell interplay, changing the current view of how a host-cell can defeat a virus infection. Thus, our study reveals a novel and general impact of cellular Apobec3A on the intervention of human adenovirus (HAdV) gene expression and replication by improving the host antiviral defense mechanisms, thereby providing a novel basis for innovative antiviral strategies in future therapeutic settings. Ongoing investigations of the cellular pathways that are modulated by HAdV are of great interest, particularly since adenovirus-based vectors actually serve as COVID vaccine vectors and also frequently serve as tools in human gene therapy and oncolytic treatment options. HAdV constitute an ideal model system by which to analyze the transforming capabilities of DNA tumor viruses as well as the underlying molecular principles of virus-induced and cellular tumorigenesis.
Collapse
Affiliation(s)
- Lilian Göttig
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christina Weiß
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Miona Stubbe
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lisa Hanrieder
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Samuel Hofmann
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover Medical School, Hannover, Germany
| | - Alessandro Grodziecki
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover Medical School, Hannover, Germany
| | - Daniela Stadler
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Munich, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover Medical School, Hannover, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
9
|
Ryabchenko B, Šroller V, Horníková L, Lovtsov A, Forstová J, Huérfano S. The interactions between PML nuclear bodies and small and medium size DNA viruses. Virol J 2023; 20:82. [PMID: 37127643 PMCID: PMC10152602 DOI: 10.1186/s12985-023-02049-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/23/2023] [Indexed: 05/03/2023] Open
Abstract
Promyelocytic leukemia nuclear bodies (PM NBs), often referred to as membraneless organelles, are dynamic macromolecular protein complexes composed of a PML protein core and other transient or permanent components. PML NBs have been shown to play a role in a wide variety of cellular processes. This review describes in detail the diverse and complex interactions between small and medium size DNA viruses and PML NBs that have been described to date. The PML NB components that interact with small and medium size DNA viruses include PML protein isoforms, ATRX/Daxx, Sp100, Sp110, HP1, and p53, among others. Interaction between viruses and components of these NBs can result in different outcomes, such as influencing viral genome expression and/or replication or impacting IFN-mediated or apoptotic cell responses to viral infection. We discuss how PML NB components abrogate the ability of adenoviruses or Hepatitis B virus to transcribe and/or replicate their genomes and how papillomaviruses use PML NBs and their components to promote their propagation. Interactions between polyomaviruses and PML NBs that are poorly understood but nevertheless suggest that the NBs can serve as scaffolds for viral replication or assembly are also presented. Furthermore, complex interactions between the HBx protein of hepadnaviruses and several PML NBs-associated proteins are also described. Finally, current but scarce information regarding the interactions of VP3/apoptin of the avian anellovirus with PML NBs is provided. Despite the considerable number of studies that have investigated the functions of the PML NBs in the context of viral infection, gaps in our understanding of the fine interactions between viruses and the very dynamic PML NBs remain. The complexity of the bodies is undoubtedly a great challenge that needs to be further addressed.
Collapse
Affiliation(s)
- Boris Ryabchenko
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Vojtěch Šroller
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Lenka Horníková
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Alexey Lovtsov
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Jitka Forstová
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Sandra Huérfano
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic.
| |
Collapse
|
10
|
Jennings MR, Parks RJ. Human Adenovirus Gene Expression and Replication Is Regulated through Dynamic Changes in Nucleoprotein Structure throughout Infection. Viruses 2023; 15:161. [PMID: 36680201 PMCID: PMC9863843 DOI: 10.3390/v15010161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Human adenovirus (HAdV) is extremely common and can rapidly spread in confined populations such as daycare centers, hospitals, and retirement homes. Although HAdV usually causes only minor illness in otherwise healthy patients, HAdV can cause significant morbidity and mortality in certain populations, such as the very young, very old, or immunocompromised individuals. During infection, the viral DNA undergoes dramatic changes in nucleoprotein structure that promote the rapid expression of viral genes, replication of the DNA, and generation of thousands of new infectious virions-each process requiring a distinct complement of virus and host-encoded proteins. In this review, we summarize our current understanding of the nucleoprotein structure of HAdV DNA during the various phases of infection, the cellular proteins implicated in mediating these changes, and the role of epigenetics in HAdV gene expression and replication.
Collapse
Affiliation(s)
- Morgan R. Jennings
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
11
|
Tejera-Hernández B, Goodman DE, Nevarez JM, Spindler KR. Mouse Adenovirus Type 1 E4orf6 Induces PKR Degradation. J Virol 2022; 96:e0206321. [PMID: 35285681 PMCID: PMC9006929 DOI: 10.1128/jvi.02063-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/12/2022] [Indexed: 11/20/2022] Open
Abstract
Protein kinase R (PKR) is a cellular kinase involved in the antiviral response. The inactivation or inhibition of this protein is a conserved activity in DNA and RNA virus infections. In contrast to human adenovirus type 5, mouse adenovirus type 1 (MAV-1) inhibits PKR activity through proteasome-dependent degradation. However, the molecular mechanism by which this process takes place is not fully understood. We investigated whether ubiquitination, MAV-1 early region 1B 55k (E1B 55k), and early region 4 orf6 (E4orf6) play a role in PKR degradation in MAV-1 infection, because the enzyme 3 (E3) ubiquitin ligase activity with these viral proteins is conserved among the Adenoviridae family. We provide evidence that E4orf6 is sufficient to induce mouse PKR degradation and that proteasome pathway inhibition blocks PKR degradation. Inhibition of neddylation of cullin, a component of E3 ubiquitin ligase complex, blocked efficient PKR degradation in MAV-1-infected cells. Finally, we demonstrated that MAV-1 degradation of PKR is specific for mouse PKR. These results indicate that counteracting PKR is mechanistically different in two species of adenoviruses. IMPORTANCE Viruses have evolved to counteract the immune system to successfully replicate in the host. Downregulation of several antiviral proteins is important for productive viral infection. Protein kinase R (PKR) is an antiviral protein that belongs to the first line of defense of the host. Because PKR senses dsRNA and blocks the cellular translation process during viral infections, it is not surprising that many viruses counteract this antiviral activity. We previously reported PKR degradation during mouse adenovirus type 1 (MAV-1) infection; however, the molecular mechanism of this activity was not fully known. This work provides evidence about the MAV-1 protein that induces PKR degradation and expands knowledge about involvement of the proteasome pathway.
Collapse
Affiliation(s)
- Berto Tejera-Hernández
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Danielle E. Goodman
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Juan M. Nevarez
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine R. Spindler
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
E1B-55K is a phosphorylation-dependent transcriptional and post-transcriptional regulator of viral gene expression in HAdV-C5 infection. J Virol 2022; 96:e0206221. [PMID: 35019711 DOI: 10.1128/jvi.02062-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multifunctional adenoviral E1B-55K phosphoprotein is a major regulator of viral replication and plays key roles in virus-mediated cell transformation. While much is known about its function in oncogenic cell transformation, underlying features and exact mechanisms that implicate E1B-55K in regulation of viral gene expression are less well understood. Therefore, this work aimed at unravelling basic intranuclear principles of E1B-55K-regulated viral mRNA biogenesis using wild type HAdV-C5 E1B-55K, a virus mutant with abrogated E1B-55K expression and a mutant that expresses a phosphomimetic E1B-55K. By subnuclear fractionation, mRNA, DNA and protein analyses as well as luciferase reporter assays, we show that (i) E1B-55K promotes efficient release of viral late mRNAs from their site of synthesis in viral replication compartments (RCs) to the surrounding nucleoplasm, that (ii) E1B-55K modulates the rate of viral gene transcription and splicing in RCs, that (iii) E1B-55K participates in the temporal regulation of viral gene expression, that (iv) E1B-55K can enhance or repress the expression of viral early and late promoters and that (v) the phosphorylation of E1B-55K regulates the temporal effect of the protein on each of these activities. Together, these data demonstrate that E1B-55K is a phosphorylation-dependent transcriptional and post-transcriptional regulator of viral genes during HAdV-C5 infection. Importance Human adenoviruses are useful models to study basic aspects of gene expression and splicing. Moreover, they are one of the most commonly used viral vectors for clinical applications. However, key aspects of the activities of essential viral proteins that are commonly modified in adenoviral vectors have not been fully described. A prominent example is the multifunctional adenoviral oncoprotein E1B-55K that is known to promote efficient viral genome replication and expression while simultaneously repressing host gene expression and antiviral host responses. Our study combined different quantitative methods to study how E1B-55K promotes viral mRNA biogenesis. The data presented here propose a novel role for E1B-55K as a phosphorylation-dependent transcriptional and post-transcriptional regulator of viral genes.
Collapse
|
13
|
Ixovex-1, a novel oncolytic E1B-mutated adenovirus. Cancer Gene Ther 2022; 29:1628-1635. [PMID: 35596069 PMCID: PMC9663300 DOI: 10.1038/s41417-022-00480-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/28/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023]
Abstract
There is a great demand for improved oncolytic viruses that selectively replicate within cancer cells while sparing normal cells. Here, we describe a novel oncolytic adenovirus, Ixovex-1, that obtains a cancer-selective replication phenotype by modulating the level of expression of the different, alternatively spliced E1B mRNA isoforms. Ixovex-1 is a recombinant adenovirus that carries a single point mutation in the E1B-93R 3' splice acceptor site that results in overexpression of the E1B-156R splice isoform. In this paper, we studied the characteristics of this novel oncolytic adenovirus by validating its in vitro behaviour in a panel of normal cells and cancer cells. We additionally studied its anti-tumour efficacy in vivo. Ixovex-1 significantly inhibited tumour growth and prolonged survival of mice in an immune-deficient lung carcinoma tumour implantation model. In complementation experiments, overexpression of E1B-156R was shown to increase the oncolytic index of both Ad5wt and ONYX-015. In contrast to prior viruses of similar type, Ixovex-1 includes a functional E3B region for better in vivo efficacy. Throughout this study, the Ixovex-1 virus has been proven to be superior in competency compared to a virus with multiple deletions.
Collapse
|
14
|
Abualfaraj T, Hagkarim NC, Hollingworth R, Grange L, Jhujh S, Stewart GS, Grand RJ. The Promotion of Genomic Instability in Human Fibroblasts by Adenovirus 12 Early Region 1B 55K Protein in the Absence of Viral Infection. Viruses 2021; 13:2444. [PMID: 34960712 PMCID: PMC8708088 DOI: 10.3390/v13122444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
The adenovirus 12 early region 1B55K (Ad12E1B55K) protein has long been known to cause non-random damage to chromosomes 1 and 17 in human cells. These sites, referred to as Ad12 modification sites, have marked similarities to classic fragile sites. In the present report we have investigated the effects of Ad12E1B55K on the cellular DNA damage response and on DNA replication, considering our increased understanding of the pathways involved. We have compared human skin fibroblasts expressing Ad12E1B55K (55K+HSF), but no other viral proteins, with the parental cells. Appreciable chromosomal damage was observed in 55K+HSFs compared to parental cells. Similarly, an increased number of micronuclei was observed in 55K+HSFs, both in cycling cells and after DNA damage. We compared DNA replication in the two cell populations; 55K+HSFs showed increased fork stalling and a decrease in fork speed. When replication stress was introduced with hydroxyurea the percentage of stalled forks and replication speeds were broadly similar, but efficiency of fork restart was significantly reduced in 55K+HSFs. After DNA damage, appreciably more foci were formed in 55K+HSFs up to 48 h post treatment. In addition, phosphorylation of ATM substrates was greater in Ad12E1B55K-expressing cells following DNA damage. Following DNA damage, 55K+HSFs showed an inability to arrest in cell cycle, probably due to the association of Ad12E1B55K with p53. To confirm that Ad12E1B55K was targeting components of the double-strand break repair pathways, co-immunoprecipitation experiments were performed which showed an association of the viral protein with ATM, MRE11, NBS1, DNA-PK, BLM, TOPBP1 and p53, as well as with components of the replisome, MCM3, MCM7, ORC1, DNA polymerase δ, TICRR and cdc45, which may account for some of the observed effects on DNA replication. We conclude that Ad12E1B55K impacts the cellular DNA damage response pathways and the replisome at multiple points through protein-protein interactions, causing genomic instability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Roger J. Grand
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK; (T.A.); (N.C.H.); (R.H.); (L.G.); (S.J.); (G.S.S.)
| |
Collapse
|
15
|
Conserved E1B-55K SUMOylation in different human adenovirus species is a potent regulator of intracellular localization. J Virol 2021; 96:e0083821. [PMID: 34787461 DOI: 10.1128/jvi.00838-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Over the past decades, studies on the biology of human adenoviruses (HAdVs) mainly focused on the HAdV prototype species C type 5 (HAdV-C5) and revealed fundamental molecular insights into mechanisms of viral replication and viral cell transformation. Recently, other HAdV species are gaining more and more attention in the field. Reports on large E1B proteins (E1B-55K) from different HAdV species showed that these multifactorial proteins possess strikingly different features along with highly conserved functions. In this work, we identified potential SUMO-conjugation motifs (SCMs) in E1B-55K proteins from HAdV species A to F. Mutational inactivation of these SCMs demonstrated that HAdV E1B-55K proteins are SUMOylated at a single lysine residue that is highly conserved among HAdV species B to E. Moreover, we provide evidence that E1B-55K SUMOylation is a potent regulator of intracellular localization and p53-mediated transcription in most HAdV species. We also identified a lysine residue at position 101 (K101), which is unique to HAdV-C5 E1B-55K and specifically regulates its SUMOylation and nucleo-cytoplasmic shuttling. Our findings reveal important new aspects on HAdV E1B-55K proteins and suggest that different E1B-55K species possess conserved SCMs while their SUMOylation has divergent cellular effects during infection. Importance E1B-55K is a multifunctional adenoviral protein and its functions are highly regulated by SUMOylation. Although functional consequences of SUMOylated HAdV-C5 E1B-55K are well studied, we lack information on the effects of SUMOylation on homologous E1B-55K proteins from other HAdV species. Here, we show that SUMOylation is a conserved post-translational modification in most of the E1B-55K proteins, similar to what we know about HAdV-C5 E1B-55K. Moreover, we identify subcellular localization and regulation of p53-dependent transcription as highly conserved SUMOylation-regulated E1B-55K functions. Thus, our results highlight how HAdV proteins might have evolved in different HAdV species with conserved domains involved in virus replication and differing alternative functions and interactions with the host cell machinery. Future research will link these differences and similarities to the diverse pathogenicity and organ tropism of the different HAdV species.
Collapse
|
16
|
Abstract
Interferons (IFNs) are one of the hallmarks of host antiviral immunity. IFNs exert their antiviral activities through the induction of IFN-stimulated genes (ISGs) and antiviral proteins; however, the mechanism by which ISGs inhibit adenovirus (Ad) replication is not clearly understood. IFNs repress Ad immediate early gene expression and, consequently, all subsequent aspects of the viral life cycle. In this study, we found that IFN-induced protein with tetratricopeptide repeats 3, IFIT3 (ISG60), restricts Ad replication. IFIT3 repressed Ad E1A immediate early gene expression but did not alter Ad genome entry into the nucleus. Expression of IFIT3 led to phosphorylation of TBK1, IRF3, and STAT1; increased expression of IFNβ and ISGs; and required IFIT1 and IFIT2 partner proteins. During RNA virus infections, it is known that IFIT3 stimulates IFN production through mitochondrial antiviral signaling (MAVS)-mediated activation of TBK1 which synergizes activation of IRF3 and NF-κB. MAVS or TBK1 depletion in cells expressing IFIT3 blocked IFN signaling and reversed the Ad replication restriction. In addition, STING depletion phenocopied the effect suggesting that IFIT3 activates the STING pathway with cross talk to the MAVS pathway. This occurs independently of viral pathogen-associated molecular patterns (PAMPs). These results demonstrate that the expression of a single ISG, IFIT3, activates IFN signaling and establishes a cellular antiviral state independent of viral PAMPs. IMPORTANCE IFITs belong to a family of IFN-induced proteins that have broad antiviral functions, primarily studied with RNA viruses leaving a gap of knowledge on the effects of these proteins on DNA viruses. In this study we show that IFIT3, with its partner proteins IFIT1 and IFIT2, specifically restricts replication of human Ad, a DNA virus, by stimulating IFNβ production via the STING and MAVS pathways. This effect enhanced the IFN response and is independent of viral PAMPs. These results reveal a novel mechanism of activation of IFN signaling to enhance cellular antiviral responses.
Collapse
|
17
|
Rajeev R, Dwivedi AP, Sinha A, Agarwaal V, Dev RR, Kar A, Khosla S. Epigenetic interaction of microbes with their mammalian hosts. J Biosci 2021. [PMID: 34728591 PMCID: PMC8550911 DOI: 10.1007/s12038-021-00215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The interaction of microbiota with its host has the ability to alter the cellular functions of both, through several mechanisms. Recent work, from many laboratories including our own, has shown that epigenetic mechanisms play an important role in the alteration of these cellular functions. Epigenetics broadly refers to change in the phenotype without a corresponding change in the DNA sequence. This change is usually brought by epigenetic modifications of the DNA itself, the histone proteins associated with the DNA in the chromatin, non-coding RNA or the modifications of the transcribed RNA. These modifications, also known as epigenetic code, do not change the DNA sequence but alter the expression level of specific genes. Microorganisms seem to have learned how to modify the host epigenetic code and modulate the host transcriptome in their favour. In this review, we explore the literature that describes the epigenetic interaction of bacteria, fungi and viruses, with their mammalian hosts.
Collapse
|
18
|
Patra U, Müller S. A Tale of Usurpation and Subversion: SUMO-Dependent Integrity of Promyelocytic Leukemia Nuclear Bodies at the Crossroad of Infection and Immunity. Front Cell Dev Biol 2021; 9:696234. [PMID: 34513832 PMCID: PMC8430037 DOI: 10.3389/fcell.2021.696234] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML NBs) are multi-protein assemblies representing distinct sub-nuclear structures. As phase-separated molecular condensates, PML NBs exhibit liquid droplet-like consistency. A key organizer of the assembly and dynamics of PML NBs is the ubiquitin-like SUMO modification system. SUMO is covalently attached to PML and other core components of PML NBs thereby exhibiting a glue-like function by providing multivalent interactions with proteins containing SUMO interacting motifs (SIMs). PML NBs serve as the catalytic center for nuclear SUMOylation and SUMO-SIM interactions are essential for protein assembly within these structures. Importantly, however, formation of SUMO chains on PML and other PML NB-associated proteins triggers ubiquitylation and proteasomal degradation which coincide with disruption of these nuclear condensates. To date, a plethora of nuclear activities such as transcriptional and post-transcriptional regulation of gene expression, apoptosis, senescence, cell cycle control, DNA damage response, and DNA replication have been associated with PML NBs. Not surprisingly, therefore, SUMO-dependent PML NB integrity has been implicated in regulating many physiological processes including tumor suppression, metabolism, drug-resistance, development, cellular stemness, and anti-pathogen immune response. The interplay between PML NBs and viral infection is multifaceted. As a part of the cellular antiviral defense strategy, PML NB components are crucial restriction factors for many viruses and a mutual positive correlation has been found to exist between PML NBs and the interferon response. Viruses, in turn, have developed counterstrategies for disarming PML NB associated immune defense measures. On the other end of the spectrum, certain viruses are known to usurp specific PML NB components for successful replication and disruption of these sub-nuclear foci has recently been linked to the stimulation rather than curtailment of antiviral gene repertoire. Importantly, the ability of invading virions to manipulate the host SUMO modification machinery is essential for this interplay between PML NB integrity and viruses. Moreover, compelling evidence is emerging in favor of bacterial pathogens to negotiate with the SUMO system thereby modulating PML NB-directed intrinsic and innate immunity. In the current context, we will present an updated account of the dynamic intricacies between cellular PML NBs as the nuclear SUMO modification hotspots and immune regulatory mechanisms in response to viral and bacterial pathogens.
Collapse
Affiliation(s)
- Upayan Patra
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
| |
Collapse
|
19
|
Dybas JM, Lum KK, Kulej K, Reyes ED, Lauman R, Charman M, Purman CE, Steinbock RT, Grams N, Price AM, Mendoza L, Garcia BA, Weitzman MD. Adenovirus Remodeling of the Host Proteome and Host Factors Associated with Viral Genomes. mSystems 2021; 6:e0046821. [PMID: 34463575 DOI: 10.1128/msystems.00468-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Viral infections are associated with extensive remodeling of the cellular proteome. Viruses encode gene products that manipulate host proteins to redirect cellular processes or subvert antiviral immune responses. Adenovirus (AdV) encodes proteins from the early E4 region which are necessary for productive infection. Some cellular antiviral proteins are known to be targeted by AdV E4 gene products, resulting in their degradation or mislocalization. However, the full repertoire of host proteome changes induced by viral E4 proteins has not been defined. To identify cellular proteins and processes manipulated by viral products, we developed a global, unbiased proteomics approach to analyze changes to the host proteome during infection with adenovirus serotype 5 (Ad5) virus. We used whole-cell proteomics to measure total protein abundances in the proteome during Ad5 infection. Since host antiviral proteins can antagonize viral infection by associating with viral genomes and inhibiting essential viral processes, we used Isolation of Proteins on Nascent DNA (iPOND) proteomics to identify proteins associated with viral genomes during infection with wild-type Ad5 or an E4 mutant virus. By integrating these proteomics data sets, we identified cellular factors that are degraded in an E4-dependent manner or are associated with the viral genome in the absence of E4 proteins. We further show that some identified proteins exert inhibitory effects on Ad5 infection. Our systems-level analysis reveals cellular processes that are manipulated during Ad5 infection and points to host factors counteracted by early viral proteins as they remodel the host proteome to promote efficient infection. IMPORTANCE Viral infections induce myriad changes to the host cell proteome. As viruses harness cellular processes and counteract host defenses, they impact abundance, post-translational modifications, interactions, or localization of cellular proteins. Elucidating the dynamic changes to the cellular proteome during viral replication is integral to understanding how virus-host interactions influence the outcome of infection. Adenovirus encodes early gene products from the E4 genomic region that are known to alter host response pathways and promote replication, but the full extent of proteome modifications they mediate is not known. We used an integrated proteomics approach to quantitate protein abundance and protein associations with viral DNA during virus infection. Systems-level analysis identifies cellular proteins and processes impacted in an E4-dependent manner, suggesting ways that adenovirus counteracts potentially inhibitory host defenses. This study provides a global view of adenovirus-mediated proteome remodeling, which can serve as a model to investigate virus-host interactions of DNA viruses.
Collapse
Affiliation(s)
- Joseph M Dybas
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Krystal K Lum
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katarzyna Kulej
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Emigdio D Reyes
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Richard Lauman
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Matthew Charman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Caitlin E Purman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Robert T Steinbock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicholas Grams
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alexander M Price
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lydia Mendoza
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Matthew D Weitzman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Differential Regulation of Cellular FAM111B by Human Adenovirus C Type 5 E1 Oncogenes. Viruses 2021; 13:v13061015. [PMID: 34071532 PMCID: PMC8227810 DOI: 10.3390/v13061015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
The adenovirus type 5 (HAdV-C5) E1 transcription unit encodes regulatory proteins that are essential for viral replication and transformation. Among these, E1A and E1B-55K act as key multifunctional HAdV-C5 proteins involved in various steps of the viral replication cycle and in virus-induced cell transformation. In this context, HAdV-C5-mediated dysregulations of cellular factors such as the tumor suppressors p53 and pRB have been intensively investigated. However, cellular components of downstream events that could affect infection and viral transformation are widely unknown. We recently observed that cellular FAM111B is highly regulated in an E1A-dependent fashion. Intriguingly, previous reports suggest that FAM111B might play roles in tumorigenesis, but its exact functions are not known to date. Here, we set out to investigate the role of FAM111B in HAdV-C5 infections. We found that (i) FAM111B levels are upregulated early and downregulated late during infection, that (ii) FAM111B expression is differentially regulated, that (iii) FAM111B expression levels depend on the presence of E1B-55K and E4orf6 and that (iv) a FAM111B knockdown increases HAdV-C5 replication. Our data indicate that FAM111B acts as an anti-adenoviral host factor that is involved in host cell defense mechanisms in productive HAdV-C5 infection. Moreover, these findings suggest that FAM111B might play an important role in the host antiviral immune response that is counteracted by HAdV-C5 E1B-55K and E4orf6 oncoproteins.
Collapse
|
21
|
Insights into the roles of histone chaperones in nucleosome assembly and disassembly in virus infection. Virus Res 2021; 297:198395. [PMID: 33737155 DOI: 10.1016/j.virusres.2021.198395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/23/2022]
Abstract
Nucleosomes are assembled or disassembled with the aid of histone chaperones in a cell. Viruses can exist either as minichromosomes/episomes or can integrate into the host genome and in both the cases the viral proteins interact and manipulate the cellular nucleosome assembly machinery to ensure their survival and propagation. Recent studies have provided insight into the mechanism and role of histone chaperones in nucleosome assembly and disassembly on the virus genome. Further, the interactions between viral proteins and histone chaperones have been implicated in the integration of the virus genome into the host genome. This review highlights the recent progress and future challenges in understanding the role of histone chaperones in viruses with DNA or RNA genome and their role in governing viral pathogenesis.
Collapse
|
22
|
Kim ET, Dybas JM, Kulej K, Reyes ED, Price AM, Akhtar LN, Orr A, Garcia BA, Boutell C, Weitzman MD. Comparative proteomics identifies Schlafen 5 (SLFN5) as a herpes simplex virus restriction factor that suppresses viral transcription. Nat Microbiol 2021; 6:234-245. [PMID: 33432153 PMCID: PMC7856100 DOI: 10.1038/s41564-020-00826-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
Intrinsic antiviral host factors confer cellular defence by limiting virus replication and are often counteracted by viral countermeasures. We reasoned that host factors that inhibit viral gene expression could be identified by determining proteins bound to viral DNA (vDNA) in the absence of key viral antagonists. Herpes simplex virus 1 (HSV-1) expresses E3 ubiquitin-protein ligase ICP0 (ICP0), which functions as an E3 ubiquitin ligase required to promote infection. Cellular substrates of ICP0 have been discovered as host barriers to infection but the mechanisms for inhibition of viral gene expression are not fully understood. To identify restriction factors antagonized by ICP0, we compared proteomes associated with vDNA during HSV-1 infection with wild-type virus and a mutant lacking functional ICP0 (ΔICP0). We identified the cellular protein Schlafen family member 5 (SLFN5) as an ICP0 target that binds vDNA during HSV-1 ΔICP0 infection. We demonstrated that ICP0 mediates ubiquitination of SLFN5, which leads to its proteasomal degradation. In the absence of ICP0, SLFN5 binds vDNA to repress HSV-1 transcription by limiting accessibility of RNA polymerase II to viral promoters. These results highlight how comparative proteomics of proteins associated with viral genomes can identify host restriction factors and reveal that viral countermeasures can overcome SLFN antiviral activity.
Collapse
Affiliation(s)
- Eui Tae Kim
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology and Immunology, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Joseph M Dybas
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Katarzyna Kulej
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Emigdio D Reyes
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alexander M Price
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lisa N Akhtar
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Infectious Diseases, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ann Orr
- MRC-University of Glasgow Center for Virus Research, Glasgow, UK
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Epigenetics Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Chris Boutell
- MRC-University of Glasgow Center for Virus Research, Glasgow, UK
| | - Matthew D Weitzman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Epigenetics Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Lee J, Oh GH, Hong JA, Choi S, Choi HJ, Song JJ. Enhanced oncolytic adenoviral production by downregulation of death-domain associated protein and overexpression of precursor terminal protein. Sci Rep 2021; 11:856. [PMID: 33441685 PMCID: PMC7807022 DOI: 10.1038/s41598-020-79998-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023] Open
Abstract
Adequate viral replication in tumor cells is the key to improving the anti-cancer effects of oncolytic adenovirus therapy. In this study, we introduced short hairpin RNAs against death-domain associated protein (Daxx), a repressor of adenoviral replication, and precursor terminal protein (pTP), an initiator of adenoviral genome replication, into adenoviral constructs to determine their contributions to viral replication. Both Daxx downregulation and pTP overexpression increased viral production in variety of human cancer cell lines, and the enhanced production of virus progeny resulted in more cell lysis in vitro, and tumor regression in vivo. We confirmed that increased virus production by Daxx silencing, or pTP overexpression, occurred using different mechanisms by analyzing levels of adenoviral protein expression and virus production. Specifically, Daxx downregulation promoted both virus replication and oncolysis in a consecutive manner by optimizing IVa2-based packaging efficiency, while pTP overexpression by increasing both infectious and total virus particles but their contribution to increased viral production may have been damaged to some extent by their another contribution to apoptosis and autophagy. Therefore, introducing both Daxx shRNA and pTP in virotherapy may be a suitable strategy to increase apoptotic tumor-cell death and to overcome poor viral replication, leading to meaningful reductions in tumor growth in vivo.
Collapse
Affiliation(s)
- Jihyun Lee
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Geun-Hyeok Oh
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Jeong A Hong
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Soojin Choi
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Hye Jin Choi
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| | - Jae J Song
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Rajeev R, Dwivedi AP, Sinha A, Agarwaal V, Dev RR, Kar A, Khosla S. Epigenetic interaction of microbes with their mammalian hosts. J Biosci 2021; 46:94. [PMID: 34728591 PMCID: PMC8550911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/20/2021] [Indexed: 02/11/2023]
Abstract
The interaction of microbiota with its host has the ability to alter the cellular functions of both, through several mechanisms. Recent work, from many laboratories including our own, has shown that epigenetic mechanisms play an important role in the alteration of these cellular functions. Epigenetics broadly refers to change in the phenotype without a corresponding change in the DNA sequence. This change is usually brought by epigenetic modifications of the DNA itself, the histone proteins associated with the DNA in the chromatin, non-coding RNA or the modifications of the transcribed RNA. These modifications, also known as epigenetic code, do not change the DNA sequence but alter the expression level of specific genes. Microorganisms seem to have learned how to modify the host epigenetic code and modulate the host transcriptome in their favour. In this review, we explore the literature that describes the epigenetic interaction of bacteria, fungi and viruses, with their mammalian hosts.
Collapse
Affiliation(s)
- Ramisetti Rajeev
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Ambey Prasad Dwivedi
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Anunay Sinha
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Viplove Agarwaal
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | | | - Anjana Kar
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Sanjeev Khosla
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Institute of Microbial Technology (IMTech), Chandigarh, India
| |
Collapse
|
25
|
Double-edged role of PML nuclear bodies during human adenovirus infection. Virus Res 2020; 295:198280. [PMID: 33370557 DOI: 10.1016/j.virusres.2020.198280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 01/31/2023]
Abstract
PML nuclear bodies are matrix-bound nuclear structures with a variety of functions in human cells. These nuclear domains are interferon regulated and play an essential role during virus infections involving accumulation of SUMO-dependent host and viral factors. PML-NBs are targeted and subsequently manipulated by adenoviral regulatory proteins, illustrating their crucial role during productive infection and virus-mediated oncogenic transformation. PML-NBs have a longstanding antiviral reputation; however, the genomes of Human Adenoviruses and initial sites of viral transcription/replication are found juxtaposed to these domains, resulting in a double-edged capacity of these nuclear multiprotein/multifunctional complexes. This enigma provides evidence that Human Adenoviruses selectively counteract antiviral responses, and simultaneously benefit from or even depend on proviral PML-NB associated components by active recruitment to PML track-like structures, that are induced during infection. Thereby, a positive microenvironment for adenoviral transcription and replication is created at these nuclear subdomains. Based on the available data, this review aims to provide a detailed overview of the current knowledge of Human Adenovirus crosstalk with nuclear PML body compartments as sites of SUMOylation processes in the host cells, evaluating the currently known principles and molecular mechanisms.
Collapse
|
26
|
Jennings MR, Parks RJ. Antiviral Effects of Curcumin on Adenovirus Replication. Microorganisms 2020; 8:microorganisms8101524. [PMID: 33020422 PMCID: PMC7599685 DOI: 10.3390/microorganisms8101524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
Human adenovirus (HAdV) is a common pathogen that can cause severe morbidity and mortality in certain populations, including pediatric, geriatric, and immunocompromised patients. Unfortunately, there are no approved therapeutics to combat HAdV infections. Curcumin, the primary curcuminoid compound found in turmeric spice, has shown broad activity as an antimicrobial agent, limiting the replication of many different bacteria and viruses. In this study, we evaluated curcumin as an anti-HAdV agent. Treatment of cells in culture with curcumin reduced HAdV replication, gene expression, and virus yield, at concentrations of curcumin that had little effect on cell viability. Thus, curcumin represents a promising class of compounds for further study as potential therapeutics to combat HAdV infection.
Collapse
Affiliation(s)
- Morgan R. Jennings
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
- Correspondence: ; Tel.: +1-613-737-8123
| |
Collapse
|
27
|
Razin SV, Gavrilov AA, Iarovaia OV. Modification of Nuclear Compartments and the 3D Genome in the Course of a Viral Infection. Acta Naturae 2020; 12:34-46. [PMID: 33456976 PMCID: PMC7800604 DOI: 10.32607/actanaturae.11041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
The review addresses the question of how the structural and functional compartmentalization of the cell nucleus and the 3D organization of the cellular genome are modified during the infection of cells with various viruses. Particular attention is paid to the role of the introduced changes in the implementation of the viral strategy to evade the antiviral defense systems and provide conditions for viral replication. The discussion focuses on viruses replicating in the cell nucleus. Cytoplasmic viruses are mentioned in cases when a significant reorganization of the nuclear compartments or the 3D genome structure occurs during an infection with these viruses.
Collapse
Affiliation(s)
- S. V. Razin
- Institute of Gene Biology Russian Academy of Sciences
| | | | | |
Collapse
|
28
|
Bauer M, Flatt JW, Seiler D, Cardel B, Emmenlauer M, Boucke K, Suomalainen M, Hemmi S, Greber UF. The E3 Ubiquitin Ligase Mind Bomb 1 Controls Adenovirus Genome Release at the Nuclear Pore Complex. Cell Rep 2020; 29:3785-3795.e8. [PMID: 31851912 DOI: 10.1016/j.celrep.2019.11.064] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/15/2019] [Accepted: 11/14/2019] [Indexed: 01/06/2023] Open
Abstract
Adenoviruses (AdVs) cause respiratory, ocular, and gastrointestinal tract infection and inflammation in immunocompetent people and life-threatening disease upon immunosuppression. AdV vectors are widely used in gene therapy and vaccination. Incoming particles attach to nuclear pore complexes (NPCs) of post-mitotic cells, then rupture and deliver viral DNA (vDNA) to the nucleus or misdeliver to the cytosol. Our genome-wide RNAi screen in AdV-infected cells identified the RING-type E3 ubiquitin ligase Mind bomb 1 (Mib1) as a proviral host factor for AdV infection. Mib1 is implicated in Notch-Delta signaling, ciliary biogenesis, and RNA innate immunity. Mib1 depletion arrested incoming AdVs at NPCs. Induced expression of full-length but not ligase-defective Mib1 in knockout cells triggered vDNA uncoating from NPC-tethered virions, nuclear import, misdelivery of vDNA, and vDNA expression. Mib1 is an essential host factor for AdV uncoating in human cells, and it provides a new concept for licensing virion DNA delivery through the NPC.
Collapse
Affiliation(s)
- Michael Bauer
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland; Life Science Zurich Graduate School, ETH and University of Zurich, 8057 Zurich, Switzerland
| | - Justin W Flatt
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland; Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; Department of Biosciences, University of Helsinki, 00790 Helsinki, Finland
| | - Daria Seiler
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Bettina Cardel
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | | | - Karin Boucke
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Maarit Suomalainen
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Silvio Hemmi
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
29
|
Kleinberger T. En Guard! The Interactions between Adenoviruses and the DNA Damage Response. Viruses 2020; 12:v12090996. [PMID: 32906746 PMCID: PMC7552057 DOI: 10.3390/v12090996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Virus–host cell interactions include several skirmishes between the virus and its host, and the DNA damage response (DDR) network is one of their important battlegrounds. Although some aspects of the DDR are exploited by adenovirus (Ad) to improve virus replication, especially at the early phase of infection, a large body of evidence demonstrates that Ad devotes many of its proteins, including E1B-55K, E4orf3, E4orf4, E4orf6, and core protein VII, and utilizes varied mechanisms to inhibit the DDR. These findings indicate that the DDR would strongly restrict Ad replication if allowed to function efficiently. Various Ad serotypes inactivate DNA damage sensors, including the Mre11-Rad50-Nbs1 (MRN) complex, DNA-dependent protein kinase (DNA-PK), and Poly (ADP-ribose) polymerase 1 (PARP-1). As a result, these viruses inhibit signaling via DDR transducers, such as the ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR) kinases, to downstream effectors. The different Ad serotypes utilize both shared and distinct mechanisms to inhibit various branches of the DDR. The aim of this review is to understand the interactions between Ad proteins and the DDR and to appreciate how these interactions contribute to viral replication.
Collapse
Affiliation(s)
- Tamar Kleinberger
- Department of Molecular Microbiology, Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron St., Bat Galim, Haifa 31096, Israel
| |
Collapse
|
30
|
Zhao Y, Xiong X, Sun Y. Cullin-RING Ligase 5: Functional characterization and its role in human cancers. Semin Cancer Biol 2020; 67:61-79. [PMID: 32334051 DOI: 10.1016/j.semcancer.2020.04.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/06/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022]
Abstract
Cullin-RING ligase 5 (CRL5) is a multi-protein complex and consists of a scaffold protien cullin 5, a RING protein RBX2 (also known as ROC2 or SAG), adaptor proteins Elongin B/C, and a substrate receptor protein SOCS. Through targeting a variety of substrates for proteasomal degradation or modulating various protein-protein interactions, CRL5 is involved in regulation of many biological processes, such as cytokine signal transduction, inflammation, viral infection, and oncogenesis. As many substrates of CRL5 are well-known oncoproteins or tumor suppressors, abnormal regulation of CRL5 is commonly found in human cancers. In this review, we first briefly introduce each of CRL5 components, and then discuss the biological processes regulated by four members of SOCS-box-containing substrate receptor family through substrate degradation. We next describe how CRL5 is hijacked by a variety of viral proteins to degrade host anti-viral proteins, which facilitates virus infection. We further discuss the regulation of CUL5 and its various roles in human cancers, acting as either a tumor suppressor or an oncoprotein in a context-dependent manner. Finally, we propose novel insights for future perspectives on the validation of cullin5 and other CRL5 components as potential targets, and possible targeting strategies to discover CRL5 inhibitors for anti-cancer and anti-virus therapies.
Collapse
Affiliation(s)
- Yongchao Zhao
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China; Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Sun
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China; Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
31
|
Hofmann S, Mai J, Masser S, Groitl P, Herrmann A, Sternsdorf T, Brack‐Werner R, Schreiner S. ATO (Arsenic Trioxide) Effects on Promyelocytic Leukemia Nuclear Bodies Reveals Antiviral Intervention Capacity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902130. [PMID: 32328411 PMCID: PMC7175289 DOI: 10.1002/advs.201902130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/12/2019] [Indexed: 05/04/2023]
Abstract
Human adenoviruses (HAdV) are associated with clinical symptoms such as gastroenteritis, keratoconjunctivitis, pneumonia, hepatitis, and encephalitis. In the absence of protective immunity, as in allogeneic bone marrow transplant patients, HAdV infections can become lethal. Alarmingly, various outbreaks of highly pathogenic, pneumotropic HAdV types have been recently reported, causing severe and lethal respiratory diseases. Effective drugs for treatment of HAdV infections are still lacking. The repurposing of drugs approved for other indications is a valuable alternative for the development of new antiviral therapies and is less risky and costly than de novo development. Arsenic trioxide (ATO) is approved for treatment of acute promyelocytic leukemia. Here, it is shown that ATO is a potent inhibitor of HAdV. ATO treatment blocks virus expression and replication by reducing the number and integrity of promyelocytic leukemia (PML) nuclear bodies, important subnuclear structures for HAdV replication. Modification of HAdV proteins with small ubiquitin-like modifiers (SUMO) is also key to HAdV replication. ATO reduces levels of viral SUMO-E2A protein, while increasing SUMO-PML, suggesting that ATO interferes with SUMOylation of proteins crucial for HAdV replication. It is concluded that ATO targets cellular processes key to HAdV replication and is relevant for the development of antiviral intervention strategies.
Collapse
Affiliation(s)
- Samuel Hofmann
- Institute of VirologySchool of MedicineTechnical University of Munich85764MunichGermany
| | - Julia Mai
- Institute of VirologySchool of MedicineTechnical University of Munich85764MunichGermany
| | - Sawinee Masser
- Institute of VirologySchool of MedicineTechnical University of Munich85764MunichGermany
| | - Peter Groitl
- Institute of VirologySchool of MedicineTechnical University of Munich85764MunichGermany
| | | | - Thomas Sternsdorf
- Research Institute Children's Cancer Center Hamburg20251HamburgGermany
| | | | - Sabrina Schreiner
- Institute of VirologySchool of MedicineTechnical University of Munich85764MunichGermany
- Institute of Virology Helmholtz Zentrum München85764MunichGermany
| |
Collapse
|
32
|
Viral DNA Binding Protein SUMOylation Promotes PML Nuclear Body Localization Next to Viral Replication Centers. mBio 2020; 11:mBio.00049-20. [PMID: 32184235 PMCID: PMC7078464 DOI: 10.1128/mbio.00049-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human adenoviruses (HAdVs) have developed mechanisms to manipulate cellular antiviral measures to ensure proper DNA replication, with detailed processes far from being understood. Host cells repress incoming viral genomes through a network of transcriptional regulators that normally control cellular homeostasis. The nuclear domains involved are promyelocytic leukemia protein nuclear bodies (PML-NBs), interferon-inducible, dot-like nuclear structures and hot spots of SUMO posttranslational modification (PTM). In HAdV-infected cells, such SUMO factories are found in close proximity to newly established viral replication centers (RCs) marked by the adenoviral DNA binding protein (DBP) E2A. Here, we show that E2A is a novel target of host SUMOylation, leading to PTMs supporting E2A function in promoting productive infection. Our data show that SUMOylated E2A interacts with PML. Decreasing SUMO-E2A protein levels by generating HAdV variants mutated in the three main SUMO conjugation motifs (SCMs) led to lower numbers of viral RCs and PML-NBs, and these two structures were no longer next to each other. Our data further indicate that SUMOylated E2A binds the host transcription factor Sp100A, promoting HAdV gene expression, and represents the molecular bridge between PML tracks and adjacent viral RCs. Consequently, E2A SCM mutations repressed late viral gene expression and progeny production. These data highlight a novel mechanism used by the virus to benefit from host antiviral responses by exploiting the cellular SUMO conjugation machinery.IMPORTANCE PML nuclear bodies (PML-NBs) are implicated in general antiviral defense based on recruiting host restriction factors; however, it is not understood so far why viruses would establish viral replication centers (RCs) juxtaposed to such "antiviral" compartments. To understand this enigma, we investigate the cross talk between PML-NB components and viral RCs to find the missing link connecting both compartments to promote efficient viral replication and gene expression. Taken together, the current concept is more intricate than originally believed, since viruses apparently take advantage of several specific PML-NB-associated proteins to promote productive infection. Simultaneously, they efficiently inhibit antiviral measures to maintain the viral infectious program. Our data provide evidence that SUMOylation of the viral RC marker protein E2A represents the basis of this virus-host interface and regulates various downstream events to support HAdV productive infection. These results are the basis of our current attempts to generate and screen for specific E2A SUMOylation inhibitors to constitute novel therapeutic approaches to limit and prevent HAdV-mediated diseases and mortality of immunosuppressed patients.
Collapse
|
33
|
Replication Compartments of DNA Viruses in the Nucleus: Location, Location, Location. Viruses 2020; 12:v12020151. [PMID: 32013091 PMCID: PMC7077188 DOI: 10.3390/v12020151] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 02/08/2023] Open
Abstract
DNA viruses that replicate in the nucleus encompass a range of ubiquitous and clinically important viruses, from acute pathogens to persistent tumor viruses. These viruses must co-opt nuclear processes for the benefit of the virus, whilst evading host processes that would otherwise attenuate viral replication. Accordingly, DNA viruses induce the formation of membraneless assemblies termed viral replication compartments (VRCs). These compartments facilitate the spatial organization of viral processes and regulate virus–host interactions. Here, we review advances in our understanding of VRCs. We cover their initiation and formation, their function as the sites of viral processes, and aspects of their composition and organization. In doing so, we highlight ongoing and emerging areas of research highly pertinent to our understanding of nuclear-replicating DNA viruses.
Collapse
|
34
|
Charman M, Herrmann C, Weitzman MD. Viral and cellular interactions during adenovirus DNA replication. FEBS Lett 2019; 593:3531-3550. [PMID: 31764999 DOI: 10.1002/1873-3468.13695] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/30/2022]
Abstract
Adenoviruses represent ubiquitous and clinically significant human pathogens, gene-delivery vectors, and oncolytic agents. The study of adenovirus-infected cells has long been used as an excellent model to investigate fundamental aspects of both DNA virus infection and cellular biology. While many key details supporting a well-established model of adenovirus replication have been elucidated over a period spanning several decades, more recent findings suggest that we have only started to appreciate the complex interplay between viral genome replication and cellular processes. Here, we present a concise overview of adenovirus DNA replication, including the biochemical process of replication, the spatial organization of replication within the host cell nucleus, and insights into the complex plethora of virus-host interactions that influence viral genome replication. Finally, we identify emerging areas of research relating to the replication of adenovirus genomes.
Collapse
Affiliation(s)
- Matthew Charman
- Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christin Herrmann
- Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Matthew D Weitzman
- Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
35
|
Lynch KL, Gooding LR, Garnett-Benson C, Ornelles DA, Avgousti DC. Epigenetics and the dynamics of chromatin during adenovirus infections. FEBS Lett 2019; 593:3551-3570. [PMID: 31769503 DOI: 10.1002/1873-3468.13697] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 12/26/2022]
Abstract
The DNA genome of eukaryotic cells is compacted by histone proteins within the nucleus to form chromatin. Nuclear-replicating viruses such as adenovirus have evolved mechanisms of chromatin manipulation to promote infection and subvert host defenses. Epigenetic factors may also regulate persistent adenovirus infection and reactivation in lymphoid tissues. In this review, we discuss the viral proteins E1A and protein VII that interact with and alter host chromatin, as well as E4orf3, which separates host chromatin from sites of viral replication. We also highlight recent advances in chromatin technologies that offer new insights into virus-directed chromatin manipulation. Beyond the role of chromatin in the viral replication cycle, we discuss the nature of persistent viral genomes in lymphoid tissue and cell lines, and the potential contribution of epigenetic signals in maintaining adenovirus in a quiescent state. By understanding the mechanisms through which adenovirus manipulates host chromatin, we will understand new aspects of this ubiquitous virus and shed light on previously unknown aspects of chromatin biology.
Collapse
Affiliation(s)
- Kelsey L Lynch
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Linda R Gooding
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Daphne C Avgousti
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
36
|
Hidalgo P, Ip WH, Dobner T, Gonzalez RA. The biology of the adenovirus E1B 55K protein. FEBS Lett 2019; 593:3504-3517. [PMID: 31769868 DOI: 10.1002/1873-3468.13694] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022]
Abstract
The adenovirus E1B 55K (E1B) protein plays major roles in productive adenoviral infection and cellular transformation. Interest in E1B increased because of the potential of adenoviruses as therapeutic vectors, and the E1B gene is commonly deleted from adenovirus vectors for anticancer therapy. E1B activities are spatiotemporally regulated through SUMOylation and phosphorylation, and through interactions with multiple partners that occur presumably at different intracellular sites and times postinfection. E1B is implicated in the formation of viral replication compartments and regulates viral genome replication and transcription, transcriptional repression, degradation of cellular proteins, and several intranuclear steps of viral late mRNA biogenesis. Here, we review advances in our understanding of E1B during productive adenovirus replication and discuss fundamental aspects that remain unresolved.
Collapse
Affiliation(s)
- Paloma Hidalgo
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Wing Hang Ip
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ramón A Gonzalez
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
37
|
Mahmud I, Liao D. DAXX in cancer: phenomena, processes, mechanisms and regulation. Nucleic Acids Res 2019; 47:7734-7752. [PMID: 31350900 PMCID: PMC6735914 DOI: 10.1093/nar/gkz634] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022] Open
Abstract
DAXX displays complex biological functions. Remarkably, DAXX overexpression is a common feature in diverse cancers, which correlates with tumorigenesis, disease progression and treatment resistance. Structurally, DAXX is modular with an N-terminal helical bundle, a docking site for many DAXX interactors (e.g. p53 and ATRX). DAXX's central region folds with the H3.3/H4 dimer, providing a H3.3-specific chaperoning function. DAXX has two functionally critical SUMO-interacting motifs. These modules are connected by disordered regions. DAXX's structural features provide a framework for deciphering how DAXX mechanistically imparts its functions and how its activity is regulated. DAXX modulates transcription through binding to transcription factors, epigenetic modifiers, and chromatin remodelers. DAXX's localization in the PML nuclear bodies also plays roles in transcriptional regulation. DAXX-regulated genes are likely important effectors of its biological functions. Deposition of H3.3 and its interactions with epigenetic modifiers are likely key events for DAXX to regulate transcription, DNA repair, and viral infection. Interactions between DAXX and its partners directly impact apoptosis and cell signaling. DAXX's activity is regulated by posttranslational modifications and ubiquitin-dependent degradation. Notably, the tumor suppressor SPOP promotes DAXX degradation in phase-separated droplets. We summarize here our current understanding of DAXX's complex functions with a focus on how it promotes oncogenesis.
Collapse
Affiliation(s)
- Iqbal Mahmud
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, 1333 Center Drive, Gainesville, FL 32610-0235, USA
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, 1333 Center Drive, Gainesville, FL 32610-0235, USA
| |
Collapse
|
38
|
Sohn SY, Hearing P. Adenoviral strategies to overcome innate cellular responses to infection. FEBS Lett 2019; 593:3484-3495. [PMID: 31721176 PMCID: PMC6928427 DOI: 10.1002/1873-3468.13680] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023]
Abstract
Viruses alter host cell processes to optimize their replication cycle. Human adenoviruses (Ad) encode proteins that promote viral macromolecular synthesis and counteract innate and adaptive responses to infection. The focus of this review is on how Ad evades innate cellular responses to infection, including an interferon (IFN) response and a DNA damage response (DDR). Ad blocks the IFN response by inhibiting cytoplasmic signaling pathways and the activation of IFN-stimulated genes (ISGs), as well as the functions of ISG products, such as PML. Ad also inhibits DDR sensors, for instance, the Mre11-Rad50-Nbs1 complex, and DDR effectors like DNA ligase IV. These innate cellular responses impact many different viruses, and studies on Ad have provided broad insight into these areas.
Collapse
Affiliation(s)
- Sook-Young Sohn
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, NY, USA
| | - Patrick Hearing
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, NY, USA
| |
Collapse
|
39
|
Han Z, Joo Y, Lee J, Ko S, Xu R, Oh GH, Choi S, Hong JA, Choi HJ, Song JJ. High levels of Daxx due to low cellular levels of HSP25 in murine cancer cells result in inefficient adenovirus replication. Exp Mol Med 2019; 51:1-20. [PMID: 31615977 PMCID: PMC6802665 DOI: 10.1038/s12276-019-0321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 11/25/2022] Open
Abstract
When the adenoviral protein E1B55K binds death domain-associated protein (Daxx), the proteasome-dependent degradation of Daxx is initiated, and adenoviral replication is effectively maintained. Here, we show that the cellular levels of Daxx differ between human and mouse cancer cell lines. Specifically, we observed higher cellular Daxx levels and the diminished replication of oncolytic adenovirus in mouse cancer cell lines, suggesting that cellular Daxx levels limit the replication of oncolytic adenoviruses that lack E1B55K in murine cells. Indeed, the replication of oncolytic adenoviruses that lack E1B55K was significantly increased following infection with oncolytic adenovirus expressing Daxx-specific shRNA. Cellular Daxx levels were decreased in mouse cells expressing heat shock protein 25 (HSP25; homolog of human HSP27) following heat shock or stable transfection with HSP25-bearing plasmids. Furthermore, Daxx expression in murine cell lines was primarily regulated at the transcriptional level via HSP25-mediated inhibition of the nuclear translocation of the signal transducer and activator of transcription 3 (stat3) protein, which typically upregulates Daxx transcription. Conversely, human HSP27 enhanced stat3 activity to increase Daxx transcription. Interestingly, human Daxx, but not mouse Daxx, was degraded as normal by ubiquitin-dependent lysosomal degradation; however, HSP27 downregulation induced the ubiquitin-independent proteasomal degradation of Daxx. Cancer therapies that use a virus to kill tumor cells may get a boost by suppressing a common, ubiquitously expressed protein called Daxx. The relatively new field of virotherapy uses engineered adenoviruses, which usually cause fevers, coughs, or sore throats, to attack tumor cells, enabling treatment of advanced stage cancers, or those that have spread through the body. However, the immune system can attack the therapeutic virus, preventing it from replicating and reducing its effectiveness. Hye Jin Choi and Jae Song at Yonsei University, Seoul, South Korea, and coworkers have been investigating ways to maximize replication of the therapeutic virus. They found that suppressing Daxx improved viral replication; further testing showed that suppressing Daxx acted via different mechanisms in mouse and human cancer cells. These results will help develop more effective virus-based cancer therapies.
Collapse
Affiliation(s)
- Zhezhu Han
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Department of Oncology, Affiliated Hospital of Yanbian University, Yanji, Jilin Province, PR China
| | - Yeonsoo Joo
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jihyun Lee
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Suwan Ko
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Rong Xu
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea
| | - Geun-Hyeok Oh
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Soojin Choi
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong A Hong
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Jin Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | - Jae J Song
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
40
|
Tejera B, López RE, Hidalgo P, Cárdenas R, Ballesteros G, Rivillas L, French L, Amero C, Pastor N, Santiago Á, Groitl P, Dobner T, Gonzalez RA. The human adenovirus type 5 E1B 55kDa protein interacts with RNA promoting timely DNA replication and viral late mRNA metabolism. PLoS One 2019; 14:e0214882. [PMID: 30943256 PMCID: PMC6447194 DOI: 10.1371/journal.pone.0214882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/21/2019] [Indexed: 12/25/2022] Open
Abstract
The E1B 55kDa produced by human adenovirus type 5 is a multifunctional protein that participates in the regulation of several steps during the viral replication cycle. Previous studies suggest this protein plays an important role in postranscriptional regulation of viral and cellular gene expression, as it is required for the selective accumulation of maximal levels of viral late mRNA in the cytoplasm of the infected cell; however the molecular mechanisms that are altered or regulated by this protein have not been elucidated. A ribonucleoprotein motif that could implicate the direct interaction of the protein with RNA was initially predicted and tested in vitro, but the interaction with RNA could not be detected in infected cells, suggesting the interaction may be weak or transient. Here it was determined that the E1B 55kDa interacts with RNA in the context of the viral infection in non-transformed human cells, and its contribution to the adenovirus replication cycle was evaluated. Using recombinant adenoviruses with amino acid substitutions or a deletion in the ribonucleoprotein motif the interaction of E1B 55kDa with RNA was found to correlate with timely and efficient viral DNA replication and viral late mRNA accumulation and splicing.
Collapse
Affiliation(s)
- Berto Tejera
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Raúl E. López
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Paloma Hidalgo
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Reinier Cárdenas
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
- Laboratorio de Bioquímica y Resonancia Magnética Nuclear, Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Grisel Ballesteros
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Lina Rivillas
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Leidys French
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
- Laboratorio de Bioquímica y Resonancia Magnética Nuclear, Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Carlos Amero
- Laboratorio de Bioquímica y Resonancia Magnética Nuclear, Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Ángel Santiago
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Peter Groitl
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ramón A. Gonzalez
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
- * E-mail:
| |
Collapse
|
41
|
E1B-55K-Mediated Regulation of RNF4 SUMO-Targeted Ubiquitin Ligase Promotes Human Adenovirus Gene Expression. J Virol 2018; 92:JVI.00164-18. [PMID: 29695423 DOI: 10.1128/jvi.00164-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/13/2018] [Indexed: 01/26/2023] Open
Abstract
Human adenovirus (HAdV) E1B-55K is a multifunctional regulator of productive viral replication and oncogenic transformation in nonpermissive mammalian cells. These functions depend on E1B-55K's posttranslational modification with the SUMO protein and its binding to HAdV E4orf6. Both early viral proteins recruit specific host factors to form an E3 ubiquitin ligase complex that targets antiviral host substrates for proteasomal degradation. Recently, we reported that the PML-NB-associated factor Daxx represses efficient HAdV productive infection and is proteasomally degraded via a SUMO-E1B-55K-dependent, E4orf6-independent pathway, the details of which remained to be established. RNF4, a cellular SUMO-targeted ubiquitin ligase (STUbL), induces ubiquitinylation of specific SUMOylated proteins and plays an essential role during DNA repair. Here, we show that E1B-55K recruits RNF4 to the insoluble nuclear matrix fraction of the infected cell to support RNF4/Daxx association, promoting Daxx PTM and thus inhibiting this antiviral factor. Removing RNF4 from infected cells using RNA interference resulted in blocking the proper establishment of viral replication centers and significantly diminished viral gene expression. These results provide a model for how HAdV antagonize the antiviral host responses by exploiting the functional capacity of cellular STUbLs. Thus, RNF4 and its STUbL function represent a positive factor during lytic infection and a novel candidate for future therapeutic antiviral intervention strategies.IMPORTANCE Daxx is a PML-NB-associated transcription factor that was recently shown to repress efficient HAdV productive infection. To counteract this antiviral measurement during infection, Daxx is degraded via a novel pathway including viral E1B-55K and host proteasomes. This virus-mediated degradation is independent of the classical HAdV E3 ubiquitin ligase complex, which is essential during viral infection to target other host antiviral substrates. To maintain a productive viral life cycle, HAdV E1B-55K early viral protein inhibits the chromatin-remodeling factor Daxx in a SUMO-dependent manner. In addition, viral E1B-55K protein recruits the STUbL RNF4 and sequesters it into the insoluble fraction of the infected cell. E1B-55K promotes complex formation between RNF4- and E1B-55K-targeted Daxx protein, supporting Daxx posttranslational modification prior to functional inhibition. Hence, RNF4 represents a novel host factor that is beneficial for HAdV gene expression by supporting Daxx counteraction. In this regard, RNF4 and other STUbL proteins might represent novel targets for therapeutic intervention.
Collapse
|
42
|
Li Q, Wang J, Liao D, Ai J, Jin L, Gao Q. Degradation of DAXX by adenovirus type 12 E1B-55K circumvents chemoresistance of ovarian cancer to cisplatin. Virology 2018; 521:118-128. [PMID: 29906705 DOI: 10.1016/j.virol.2018.05.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 01/27/2023]
Abstract
Adenovirus E1B 55-kilodalton (E1B-55K) mediated DAXX degradation represents a potential mechanism by which E1B-55K sensitizes cancer cells to chemotherapy. Here we report the effects of E1B-55K-mediated DAXX degradation in chemoresistant ovarian cancer cells on response to chemotherapy. Cells with E1B-55K expression were more sensitive to cisplatin than cells without E1B-55K expression. In vivo C13* xenograft studies showed that the combination of cisplatin and E1B-55K was markedly more effective to slow tumor growth and to confer prolonged survival of tumor-bearing mice than either cisplatin or E1B-55K alone. Our studies show that DAXX plays an important role in cisplatin resistance in ovarian cancer, and strategies that promote DAXX degradation such as E1B-55K expression in combination with cisplatin can overcome drug resistance and improve responses to standard chemotherapy. These results also indicate that E1B-55K might be a novel agent for enhancing treatment responses for cisplatin-resistant ovarian cancer.
Collapse
Affiliation(s)
- Qiang Li
- Department of Gynecology and Obstetrics, Tongji hospital, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Junnai Wang
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450015, Henan Province, China
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610-0235, USA
| | - Jihui Ai
- Department of Gynecology and Obstetrics, Tongji hospital, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Lei Jin
- Department of Gynecology and Obstetrics, Tongji hospital, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| | - Qinglei Gao
- Department of Gynecology and Obstetrics, Tongji hospital, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
43
|
Giberson AN, Saha B, Campbell K, Christou C, Poulin KL, Parks RJ. Human adenoviral DNA association with nucleosomes containing histone variant H3.3 during the early phase of infection is not dependent on viral transcription or replication. Biochem Cell Biol 2018; 96:797-807. [PMID: 29874470 DOI: 10.1139/bcb-2018-0117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adenovirus (Ad) DNA undergoes dynamic changes in protein association as the virus progresses through its replicative cycle. Within the virion, the Ad DNA associates primarily with the virus-encoded, protamine-like protein VII. During the early phase of infection (∼6 h), the viral DNA showed declining association with VII, suggesting that VII was removed from at least some regions of the viral DNA. Within 6 h, the viral DNA was wrapped into a repeating nucleosome-like array containing the histone variant H3.3. Transcription elongation was not required to strip VII from the viral DNA or for deposition of H3.3. H3.1 did not associate with the viral DNA at any point during infection. During the late phase of infection (i.e., active DNA replication ∼12-24 h), association with H3 was dramatically reduced and the repeating nucleosome-like pattern was no longer evident. Thus, we have uncovered some of the changes in nucleoprotein structure that occur during lytic Ad infection.
Collapse
Affiliation(s)
- Andrea N Giberson
- a Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,b Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,c Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bratati Saha
- a Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,b Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,c Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kalisa Campbell
- a Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Carin Christou
- a Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Kathy L Poulin
- a Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Robin J Parks
- a Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,b Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,c Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,d Department of Medicine, The Ottawa Hospital and University of Ottawa, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
44
|
Radke JR, Cook JL. Human adenovirus infections: update and consideration of mechanisms of viral persistence. Curr Opin Infect Dis 2018; 31:251-256. [PMID: 29601326 PMCID: PMC6367924 DOI: 10.1097/qco.0000000000000451] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW To provide an update on recent studies of human adenoviral (HAdV) infections and to explore the mechanisms of viral persistence and the role of persistent infection in disseminated disease in immunocompromised patients. RECENT FINDINGS Human adenoviruses continue to be a problem in ophthalmology clinics and to cause periodic, limited, global outbreaks of respiratory disease. Ad14p1 remains in worldwide circulation and continues to result in miniepidemics of severe respiratory infections. New variants of Ad4 and Ad7 have emerged in both the United States and Asia. The severity of Ad4 infections in outbreaks appears to depend more on preexisting conditions in patients than on genetically determined, viral virulence factors, in contrast to limited evidence of Ad7 mutations that may convey increased viral pathogenesis. Reactivation of persistent adenovirus infection appears to be the primary source of disseminated infections in immunocompromised patients. New studies suggest that establishment of persistent infection and reactivation are related to variations in interferon-mediated control of viral replication. SUMMARY Innate immune responses can create a state of adenoviral persistence, and repression of these host defenses can result in reactivation and dissemination of infection. A better definition of the molecular mechanisms of immune-mediated control of viral replication might lead to new strategies for treatment of HAdV reactivation and dissemination.
Collapse
Affiliation(s)
- Jay R Radke
- Boise VA Hospital, Idaho Veterans Research and Education Foundation, Boise, Idaho
| | - James L Cook
- Loyola University Chicago - Stritch School of Medicine and Edward Hines, Jr. Veterans Administration Hospital, Chicago, Illinois, USA
| |
Collapse
|
45
|
Abstract
The Adenovirus (Ad) genome within the capsid is tightly associated with a virus-encoded, histone-like core protein—protein VII. Two other Ad core proteins, V and X/μ, also are located within the virion and are loosely associated with viral DNA. Core protein VII remains associated with the Ad genome during the early phase of infection. It is not known if naked Ad DNA is packaged into the capsid, as with dsDNA bacteriophage and herpesviruses, followed by the encapsidation of viral core proteins, or if a unique packaging mechanism exists with Ad where a DNA-protein complex is simultaneously packaged into the virion. The latter model would require an entirely new molecular mechanism for packaging compared to known viral packaging motors. We characterized a virus with a conditional knockout of core protein VII. Remarkably, virus particles were assembled efficiently in the absence of protein VII. No changes in protein composition were evident with VII−virus particles, including the abundance of core protein V, but changes in the proteolytic processing of some capsid proteins were evident. Virus particles that lack protein VII enter the cell, but incoming virions did not escape efficiently from endosomes. This greatly diminished all subsequent aspects of the infectious cycle. These results reveal that the Ad major core protein VII is not required to condense viral DNA within the capsid, but rather plays an unexpected role during virus maturation and the early stages of infection. These results establish a new paradigm pertaining to the Ad assembly mechanism and reveal a new and important role of protein VII in early stages of infection. The Ad major core protein VII protects the viral genome from recognition by a cellular DNA damage response during the early stages of infection and alters cellular chromatin to block innate signaling mechanisms. The packaging of the Ad genome into the capsid is thought to follow the paradigm of dsDNA bacteriophage where viral DNA is inserted into a preassembled capsid using a packaging motor. How this process occurs if Ad packages a DNA-core protein complex is unknown. We analyzed an Ad mutant that lacks core protein VII and demonstrated that virus assembly and DNA packaging takes place normally, but that the mutant is deficient in the maturation of several capsid proteins and displays a defect in the escape of virions from the endosome. These results have profound implications for the Ad assembly mechanism and for the role of protein VII during infection.
Collapse
|
46
|
Hung G, Flint SJ. Normal human cell proteins that interact with the adenovirus type 5 E1B 55kDa protein. Virology 2017; 504:12-24. [PMID: 28135605 PMCID: PMC5337154 DOI: 10.1016/j.virol.2017.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/31/2022]
Abstract
Several of the functions of the human adenovirus type 5 E1B 55kDa protein are fulfilled via the virus-specific E3 ubiquitin ligase it forms with the viral E4 Orf6 protein and several cellular proteins. Important substrates of this enzyme have not been identified, and other functions, including repression of transcription of interferon-sensitive genes, do not require the ligase. We therefore used immunoaffinity purification and liquid chromatography-mass spectrometry of lysates of normal human cells infected in parallel with HAdV-C5 and E1B 55kDa protein-null mutant viruses to identify specifically E1B 55kDa-associated proteins. The resulting set of >90 E1B-associated proteins contained the great majority identified previously, and was enriched for those associated with the ubiquitin-proteasome system, RNA metabolism and the cell cycle. We also report very severe inhibition of viral genome replication when cells were exposed to both specific or non-specific siRNAs and interferon prior to infection.
Collapse
Affiliation(s)
- George Hung
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - S J Flint
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
47
|
Abstract
Periodic outbreaks of human adenovirus infections can cause severe illness in people with no known predisposing conditions. The reasons for this increased viral pathogenicity are uncertain. Adenoviruses are constantly undergoing mutation during circulation in the human population, but related phenotypic changes of the viruses are rarely detected because of the infrequency of such outbreaks and the limited biological studies of the emergent strains. Mutations and genetic recombinations have been identified in these new strains. However, the linkage between these genetic changes and increased pathogenicity is poorly understood. It has been observed recently that differences in virus-induced immunopathogenesis can be associated with altered expression of non-mutant viral genes associated with changes in viral modulation of the host innate immune response. Initial small animal studies indicate that these changes in viral gene expression can be associated with enhanced immunopathogenesis in vivo. Available evidence suggests the hypothesis that there is a critical threshold of expression of certain viral genes that determines both the sustainability of viral transmission in the human population and the enhancement of immunopathogenesis. Studies of this possibility will require extension of the analysis of outbreak viral strains from a sequencing-based focus to biological studies of relationships between viral gene expression and pathogenic responses. Advances in this area will require increased coordination among public health organizations, diagnostic microbiology laboratories, and research laboratories to identify, catalog, and systematically study differences between prototype and emergent viral strains that explain the increased pathogenicity that can occur during clinical outbreaks.
Collapse
Affiliation(s)
- James Cook
- Division of Infectious Diseases, Department of Medicine, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | - Jay Radke
- Division of Infectious Diseases, Department of Medicine, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| |
Collapse
|
48
|
Suppression of Adenovirus Replication by Cardiotonic Steroids. J Virol 2017; 91:JVI.01623-16. [PMID: 27881644 DOI: 10.1128/jvi.01623-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022] Open
Abstract
The dependence of adenovirus on the host pre-RNA splicing machinery for expression of its complete genome potentially makes it vulnerable to modulators of RNA splicing, such as digoxin and digitoxin. Both drugs reduced the yields of four human adenoviruses (HAdV-A31, -B35, and -C5 and a species D conjunctivitis isolate) by at least 2 to 3 logs by affecting one or more steps needed for genome replication. Immediate early E1A protein levels are unaffected by the drugs, but synthesis of the delayed protein E4orf6 and the major late capsid protein hexon is compromised. Quantitative reverse transcription-PCR (qRT-PCR) analyses revealed that both drugs altered E1A RNA splicing (favoring the production of 13S over 12S RNA) early in infection and partially blocked the transition from 12S and 13S to 9S RNA at late stages of virus replication. Expression of multiple late viral protein mRNAs was lost in the presence of either drug, consistent with the observed block in viral DNA replication. The antiviral effect was dependent on the continued presence of the drug and was rapidly reversible. RIDK34, a derivative of convallotoxin, although having more potent antiviral activity, did not show an improved selectivity index. All three drugs reduced metabolic activity to some degree without evidence of cell death. By blocking adenovirus replication at one or more steps beyond the onset of E1A expression and prior to genome replication, digoxin and digitoxin show potential as antiviral agents for treatment of serious adenovirus infections. Furthermore, understanding the mechanism(s) by which digoxin and digitoxin inhibit adenovirus replication will guide the development of novel antiviral therapies. IMPORTANCE Despite human adenoviruses being a common and, in some instances, life-threating pathogen in humans, there are few well-tolerated therapies. In this report, we demonstrate that two cardiotonic steroids already in use in humans, digoxin and digitoxin, are potent inhibitors of multiple adenovirus species. A synthetic derivative of the cardiotonic steroid convallotoxin was even more potent than digoxin and digitoxin when tested with HAdV-C5. These drugs alter the cascade of adenovirus gene expression, acting after initiation of early gene expression to block viral DNA replication and synthesis of viral structural proteins. These findings validate a novel approach to treating adenovirus infections through the modulation of host cell processes.
Collapse
|
49
|
Neumann F, Czech-Sioli M, Dobner T, Grundhoff A, Schreiner S, Fischer N. Replication of Merkel cell polyomavirus induces reorganization of promyelocytic leukemia nuclear bodies. J Gen Virol 2016; 97:2926-2938. [PMID: 27580912 DOI: 10.1099/jgv.0.000593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is associated with Merkel cell carcinoma (MCC), a rare but aggressive skin cancer. The virus is highly prevalent: 60-80 % of adults are seropositive; however, cells permissive for MCPyV infection are unknown. Consequently, very little information about the MCPyV life cycle is available. Until recently, MCPyV replication could only be studied using a semi-permissive in vitro replication system (Neumann et al., 2011; Feng et al., 2011, Schowalter et al., 2011). MCPyV replication most likely depends on subnuclear structures such as promyelocytic leukemia protein nuclear bodies (PML-NBs), which are known to play regulatory roles in the infection of many DNA viruses. Here, we investigated PML-NB components as candidate host factors to control MCPyV DNA replication. We showed that PML-NBs change in number and size in cells actively replicating MCPyV proviral DNA. We observed a significant increase in PML-NBs in cells positive for MCPyV viral DNA replication. Interestingly, a significant amount of cells actively replicating MCPyV did not show any Sp100 expression. While PML and Daxx had no effect on MCPyV DNA replication, MCPyV replication was increased in cells depleted for Sp100, strongly suggesting that Sp100 is a negative regulator of MCPyV DNA replication.
Collapse
MESH Headings
- Antigens, Nuclear/genetics
- Antigens, Nuclear/metabolism
- Autoantigens/genetics
- Autoantigens/metabolism
- Carcinoma, Merkel Cell/genetics
- Carcinoma, Merkel Cell/metabolism
- Carcinoma, Merkel Cell/virology
- DNA Replication
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Humans
- Inclusion Bodies, Viral/genetics
- Inclusion Bodies, Viral/metabolism
- Inclusion Bodies, Viral/virology
- Merkel cell polyomavirus/genetics
- Merkel cell polyomavirus/physiology
- Polyomavirus Infections/genetics
- Polyomavirus Infections/metabolism
- Polyomavirus Infections/virology
- Promyelocytic Leukemia Protein/genetics
- Promyelocytic Leukemia Protein/metabolism
- Tumor Virus Infections/genetics
- Tumor Virus Infections/metabolism
- Tumor Virus Infections/virology
- Virus Replication
Collapse
Affiliation(s)
- Friederike Neumann
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manja Czech-Sioli
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Dobner
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Adam Grundhoff
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sabrina Schreiner
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
50
|
The Role of Nuclear Antiviral Factors against Invading DNA Viruses: The Immediate Fate of Incoming Viral Genomes. Viruses 2016; 8:v8100290. [PMID: 27782081 PMCID: PMC5086622 DOI: 10.3390/v8100290] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022] Open
Abstract
In recent years, it has been suggested that host cells exert intrinsic mechanisms to control nuclear replicating DNA viruses. This cellular response involves nuclear antiviral factors targeting incoming viral genomes. Herpes simplex virus-1 (HSV-1) is the best-studied model in this context, and it was shown that upon nuclear entry HSV-1 genomes are immediately targeted by components of promyelocytic leukemia nuclear bodies (PML-NBs) and the nuclear DNA sensor IFI16 (interferon gamma inducible protein 16). Based on HSV-1 studies, together with limited examples in other viral systems, these phenomena are widely believed to be a common cellular response to incoming viral genomes, although formal evidence for each virus is lacking. Indeed, recent studies suggest that the case may be different for adenovirus infection. Here we summarize the existing experimental evidence for the roles of nuclear antiviral factors against incoming viral genomes to better understand cellular responses on a virus-by-virus basis. We emphasize that cells seem to respond differently to different incoming viral genomes and discuss possible arguments for and against a unifying cellular mechanism targeting the incoming genomes of different virus families.
Collapse
|