1
|
Pham MT, Lee JY, Ritter C, Thielemann R, Meyer J, Haselmann U, Funaya C, Laketa V, Rohr K, Bartenschlager R. Endosomal egress and intercellular transmission of hepatic ApoE-containing lipoproteins and its exploitation by the hepatitis C virus. PLoS Pathog 2023; 19:e1011052. [PMID: 37506130 PMCID: PMC10411793 DOI: 10.1371/journal.ppat.1011052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 08/09/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Liver-generated plasma Apolipoprotein E (ApoE)-containing lipoproteins (LPs) (ApoE-LPs) play central roles in lipid transport and metabolism. Perturbations of ApoE can result in several metabolic disorders and ApoE genotypes have been associated with multiple diseases. ApoE is synthesized at the endoplasmic reticulum and transported to the Golgi apparatus for LP assembly; however, the ApoE-LPs transport pathway from there to the plasma membrane is largely unknown. Here, we established an integrative imaging approach based on a fully functional fluorescently tagged ApoE. We found that newly synthesized ApoE-LPs accumulate in CD63-positive endosomes of hepatocytes. In addition, we observed the co-egress of ApoE-LPs and CD63-positive intraluminal vesicles (ILVs), which are precursors of extracellular vesicles (EVs), along the late endosomal trafficking route in a microtubule-dependent manner. A fraction of ApoE-LPs associated with CD63-positive EVs appears to be co-transmitted from cell to cell. Given the important role of ApoE in viral infections, we employed as well-studied model the hepatitis C virus (HCV) and found that the viral replicase component nonstructural protein 5A (NS5A) is enriched in ApoE-containing ILVs. Interaction between NS5A and ApoE is required for the efficient release of ILVs containing HCV RNA. These vesicles are transported along the endosomal ApoE egress pathway. Taken together, our data argue for endosomal egress and transmission of hepatic ApoE-LPs, a pathway that is hijacked by HCV. Given the more general role of EV-mediated cell-to-cell communication, these insights provide new starting points for research into the pathophysiology of ApoE-related metabolic and infection-related disorders.
Collapse
Affiliation(s)
- Minh-Tu Pham
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Ji-Young Lee
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Christian Ritter
- BioQuant Center, IPMB, Biomedical Computer Vision Group, Heidelberg University, Heidelberg, Germany
| | - Roman Thielemann
- BioQuant Center, IPMB, Biomedical Computer Vision Group, Heidelberg University, Heidelberg, Germany
| | - Janis Meyer
- BioQuant Center, IPMB, Biomedical Computer Vision Group, Heidelberg University, Heidelberg, Germany
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
| | - Charlotta Funaya
- Electron Microscopy Core Facility (EMCF), Heidelberg University, Heidelberg, Germany
| | - Vibor Laketa
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Department of Infectious Diseases, Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
| | - Karl Rohr
- BioQuant Center, IPMB, Biomedical Computer Vision Group, Heidelberg University, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
2
|
Avula K, Singh B, Samantaray S, Syed GH. The Early Secretory Pathway Is Crucial for Multiple Aspects of the Hepatitis C Virus Life Cycle. J Virol 2023:e0018023. [PMID: 37338368 PMCID: PMC10373535 DOI: 10.1128/jvi.00180-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
Although most of the early events of the hepatitis C virus (HCV) life cycle are well characterized, our understanding of HCV egress is still unclear. Some reports implicate the conventional endoplasmic reticulum (ER)-Golgi route, while some propose noncanonical secretory routes. Initially, the envelopment of HCV nucleocapsid occurs by budding into the ER lumen. Subsequently, the HCV particle exit from the ER is assumed to be mediated by coat protein complex II (COPII) vesicles. COPII vesicle biogenesis also involves the recruitment of cargo to the site of vesicle biogenesis via interaction with COPII inner coat proteins. We investigated the modulation and the specific role of the individual components of the early secretory pathway in HCV egress. We observed that HCV inhibits cellular protein secretion and triggers the reorganization of the ER exit sites and ER-Golgi intermediate compartments (ERGIC). Gene-specific knockdown of the components of this pathway such as SEC16A, TFG, ERGIC-53, and COPII coat proteins demonstrated the functional significance of these components and the distinct role played by these proteins in various aspects of the HCV life cycle. SEC16A is essential for multiple steps in the HCV life cycle, whereas TFG is specifically involved in HCV egress and ERGIC-53 is crucial for HCV entry. Overall, our study establishes that the components of the early secretory pathway are essential for HCV propagation and emphasize the importance of the ER-Golgi secretory route in this process. Surprisingly, these components are also required for the early stages of the HCV life cycle due to their role in overall intracellular trafficking and homeostasis of the cellular endomembrane system. IMPORTANCE The virus life cycle involves entry into the host, replication of the genome, assembly of infectious progeny, and their subsequent release. Different aspects of the HCV life cycle, including entry, genome replication, and assembly, are well characterized; however, our understanding of the HCV release is still not clear and subject to debate due to varied findings. Here, we attempted to address this controversy and enhance our understanding of HCV egress by evaluating the role of the different components of the early secretory pathway in the HCV life cycle. To our surprise, we found that the components of the early secretory pathway are not only essential for HCV release but also contribute to many other earlier events of the HCV life cycle. This study emphasizes the importance of the early secretory pathway for the establishment of productive HCV infection in hepatocytes.
Collapse
Affiliation(s)
- Kiran Avula
- Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Delhi, India
| | - Bharati Singh
- Institute of Life Sciences, Bhubaneswar, Odisha, India
| | | | | |
Collapse
|
3
|
Casas-Deza D, Espina S, Martínez-Sapiña A, Del Moral-Bergos R, Garcia-Sobreviela MP, Lopez-Yus M, Calmarza P, Bernal-Monterde V, Arbones-Mainar JM. Triglyceride-rich lipoproteins and insulin resistance in patients with chronic hepatitis C receiving direct-acting antivirals. Atherosclerosis 2023; 375:59-66. [PMID: 37245427 DOI: 10.1016/j.atherosclerosis.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) interferes with carbohydrate and lipid metabolism causing cardiovascular disease and insulin resistance (IR). Direct-acting antivirals (DAAs) are highly effective for the eradication of HCV, with positive effects on metabolic health although paradoxically associated with increased total and LDL-cholesterol. The aims of this study were 1) to characterize dyslipidemia (lipoprotein content, number, and size) in naive HCV-infected individuals and 2) to evaluate the longitudinal association of metabolic changes and lipoparticle characteristics after DAA therapy. METHODS We conducted a prospective study with one-year follow-up. 83 naive outpatients treated with DAAs were included. Those co-infected with HBV or HIV were excluded. IR was analyzed using the HOMA index. Lipoproteins were studied by fast-protein liquid chromatography (FPLC) and Nuclear Magnetic Resonance Spectroscopy (NMR). RESULTS FPLC analysis showed that lipoprotein-borne HCV was only present in the VLDL region most enriched in APOE. There was a lack of association between HOMA and total cholesterol or cholesterol carried by LDL or HDL at baseline. Alternatively, a positive association was found between HOMA and total circulating triglycerides (TG), as well as with TG transported in VLDL, LDL, and HDL. HCV eradication with DAAs resulted in a strong and significant decrease in HOMA (-22%) and HDL-TG (-18%) after one-year follow-up. CONCLUSIONS HCV-dependent lipid abnormalities are associated with IR and DAA therapy can reverse this association. These findings may have potential clinical implications as the HDL-TG trajectory may inform the evolution of glucose tolerance and IR after HCV eradication.
Collapse
Affiliation(s)
- Diego Casas-Deza
- Gastroenterology Department, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain
| | - Silvia Espina
- Gastroenterology Department, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain
| | - Ana Martínez-Sapiña
- Clinical Microbiology Department, Miguel Servet University Hospital, 50009, Zaragoza, Spain
| | - Raquel Del Moral-Bergos
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain; Instituto Aragones de Ciencias de la Salud (IACS), 50009, Zaragoza, Spain
| | - Maria Pilar Garcia-Sobreviela
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain
| | - Marta Lopez-Yus
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto Aragones de Ciencias de la Salud (IACS), 50009, Zaragoza, Spain
| | - Pilar Calmarza
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain; Clinical Biochemistry Department, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto Salud Carlos III, 28029, Madrid, Spain
| | - Vanesa Bernal-Monterde
- Gastroenterology Department, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain.
| | - Jose M Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain; Instituto Aragones de Ciencias de la Salud (IACS), 50009, Zaragoza, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
4
|
Awadh AA. The Role of Cytosolic Lipid Droplets in Hepatitis C Virus Replication, Assembly, and Release. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5156601. [PMID: 37090186 PMCID: PMC10121354 DOI: 10.1155/2023/5156601] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 04/25/2023]
Abstract
The hepatitis C virus (HCV) causes chronic hepatitis by establishing a persistent infection. Patients with chronic hepatitis frequently develop hepatic cirrhosis, which can lead to liver cancer-the progressive liver damage results from the host's immune response to the unresolved infection. The HCV replication process, including the entry, replication, assembly, and release stages, while the virus circulates in the bloodstream, it is intricately linked to the host's lipid metabolism, including the dynamic of the cytosolic lipid droplets (cLDs). This review article depicts how this interaction regulates viral cell tropism and aids immune evasion by coining viral particle characteristics. cLDs are intracellular organelles that store most of the cytoplasmic components of neutral lipids and are assumed to play an increasingly important role in the pathophysiology of lipid metabolism and host-virus interactions. cLDs are involved in the replication of several clinically significant viruses, where viruses alter the lipidomic profiles of host cells to improve viral life cycles. cLDs are involved in almost every phase of the HCV life cycle. Indeed, pharmacological modulators of cholesterol synthesis and intracellular trafficking, lipoprotein maturation, and lipid signaling molecules inhibit the assembly of HCV virions. Likewise, small-molecule inhibitors of cLD-regulating proteins inhibit HCV replication. Thus, addressing the molecular architecture of HCV replication will aid in elucidating its pathogenesis and devising preventive interventions that impede persistent infection and prevent disease progression. This is possible via repurposing the available therapeutic agents that alter cLDs metabolism. This review highlights the role of cLD in HCV replication.
Collapse
Affiliation(s)
- Abdullah A. Awadh
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 21423, Saudi Arabia
| |
Collapse
|
5
|
Butt F, Shahid M, Hassan M, Tawakkal F, Amin I, Afzal S, Bhatti R, Nawaz R, Idrees M. A review on hepatitis C virus: role of viral and host-cellular factors in replication and existing therapeutic strategies. EGYPTIAN LIVER JOURNAL 2022. [DOI: 10.1186/s43066-022-00232-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Background
Hepatitis C virus, a member of Flaviviridae is a single-stranded positive-sense RNA virus infecting 62–79 million people around the globe. This blood-borne virus is one of the leading causes of liver diseases worldwide. This review aims to identify novel potential genes linked to cellular host factors, as well as revise the roles of each gene in hepatitis C Virus infection. This review also aims to provide a comprehensive insight into therapeutic advancements against HCV.
Methods
For this review article, 190 articles were searched via PubMed Central, Bio-One, National Academy of Science, Google Scholar, and Worldwide Science. 0ut of these 190 studies, 55 articles were selected for this review. The inclusion of articles was done on the criteria of high citation and Q1 ranking.
Results
The information gathered from previously published articles highlighted a critical link between host-cellular factors that are important for HCV infection.
Conclusion
Although many advancements in HCV treatment have been made like DAAs and HTAs, the development of a completely effective HCV therapy is still a challenge. Further research on combinations of DAAs and HTAs can help in developing a better therapeutic alternative. Keywords: Hepatitis C virus, Replication cycle, Non-structural proteins, Host-cellular factors, Treatment strategies
Collapse
|
6
|
Correlates with Vaccine Protective Capacity and COVID-19 Disease Symptoms Identified by Serum Proteomics in Vaccinated Individuals. Molecules 2022; 27:molecules27185933. [PMID: 36144669 PMCID: PMC9500703 DOI: 10.3390/molecules27185933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
In the last two years, the coronavirus disease 19 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a scientific and social challenge worldwide. Vaccines have been the most effective intervention for reducing virus transmission and disease severity. However, genetic virus variants are still circulating among vaccinated individuals with different disease symptomatology. Understanding the protective- or disease-associated mechanisms in vaccinated individuals is relevant to advances in vaccine development and implementation. To address this objective, serum-protein profiles were characterized by quantitative proteomics and data-analysis algorithms in four cohorts of uninfected and SARS-CoV-2-infected vaccinated individuals with asymptomatic, non-severe, and severe disease symptomatology. The results show that immunoglobulins were the most overrepresented proteins in infected cohorts when compared to PCR-negative individuals. The immunoglobulin profile varied between different infected cohorts and correlated with protective- or disease-associated capacity. Overrepresented immunoglobulins in PCR-positive individuals correlated with protective response against SARS-CoV-2, other viruses, and thrombosis in asymptomatic cases. In non-severe cases, correlates of protection against SARS-CoV-2 and HBV together with risk of myasthenia gravis and allergy and autoantibodies were observed. Patients with severe symptoms presented risk for allergy, chronic idiopathic thrombocytopenic purpura, and autoantibodies. The analysis of underrepresented immunoglobulins in PCR-positive compared to PCR-negative individuals identified vaccine-induced protective epitopes in various coronavirus proteins, including the spike receptor-binding domain RBD. Non-immunoglobulin proteins were associated with COVID-19 symptoms and biological processes. These results evidence host-associated differences in response to vaccination and the possibility of improving vaccine efficacy against SARS-CoV-2.
Collapse
|
7
|
Bunz M, Ritter M, Schindler M. HCV egress - unconventional secretion of assembled viral particles. Trends Microbiol 2021; 30:364-378. [PMID: 34483048 DOI: 10.1016/j.tim.2021.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022]
Abstract
It is believed that hepatitis C virus (HCV) particles are released through the canonical secretory route: from the endoplasmic reticulum (ER), via the Golgi, to the plasma membrane. While the Golgi is important for HCV release per se, its direct involvement in the trafficking of assembled virions has not yet been established. In fact, data from studies analyzing HCV egress are compatible with several potential pathways of HCV secretion. Here, we summarize and discuss the current knowledge related to the HCV export pathway. Apart from the prototypical anterograde transport, possible routes of HCV release include ER-to-endosomal transport, secretory autophagy, and poorly described mechanisms of unconventional protein secretion. Studying HCV egress promises to shed light on unconventional cellular trafficking and secretory routes.
Collapse
Affiliation(s)
- Maximilian Bunz
- Section Molecular Virology, Institute for Medical Virology and Epidemiology, University Hospital Tübingen, Tübingen, Germany
| | - Michael Ritter
- Section Molecular Virology, Institute for Medical Virology and Epidemiology, University Hospital Tübingen, Tübingen, Germany
| | - Michael Schindler
- Section Molecular Virology, Institute for Medical Virology and Epidemiology, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
8
|
Nascimento JCR, Pereira LC, Rêgo JMC, Dias RP, Silva PGB, Sobrinho SAC, Coelho GR, Brasil IRC, Oliveira-Filho EF, Owen JS, Toniutto P, Oriá RB. Apolipoprotein E polymorphism influences orthotopic liver transplantation outcomes in patients with hepatitis C virus-induced liver cirrhosis. World J Gastroenterol 2021; 27:1064-1075. [PMID: 33776373 PMCID: PMC7985730 DOI: 10.3748/wjg.v27.i11.1064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/19/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) infection is responsible for a chronic liver inflammation, which may cause end-stage liver disease and hepatocellular carcinoma. Apolipoprotein E (protein: ApoE, gene: APOE), a key player in cholesterol metabolism, is mainly synthesized in the liver and APOE polymorphisms may influence HCV-induced liver damage.
AIM To determine whether APOE alleles affect outcomes in HCV-infected patients with liver cirrhosis following orthotopic liver transplantation (OLT).
METHODS This was a cohort study in which 179 patients, both genders and aged 34-70 years, were included before or after (up to 10 years follow-up) OLT. Liver injury severity was assessed using different criteria, including METAVIR and models for end-stage liver disease. APOE polymorphisms were analyzed by quantitative real-time polymerase chain reaction.
RESULTS The APOE3 allele was the most common (67.3%). In inflammation severity of biopsies from 89 OLT explants and 2 patients in pre-transplant, the degree of severe inflammation (A3F4, 0.0%) was significantly less frequent than in patients with minimal and moderate degree of inflammation (≤ A2F4, 16.2%) P = 0.048, in patients carrying the APOE4 allele when compared to non-APOE4. In addition, a significant difference was also found (≤ A2F4, 64.4% vs A3F4, 0.0%; P = 0.043) and (A1F4, 57.4% vs A3F4, 0.0%; P = 0.024) in APOE4 patients when compared to APOE3 carriers. The fibrosis degree of the liver graft in 8 of 91 patients and the lack of the E4 allele was associated with more moderate fibrosis (F2) (P = 0.006).
CONCLUSION Our results suggest that the E4 allele protects against progression of liver fibrosis and degree of inflammation in HCV-infected patients.
Collapse
Affiliation(s)
- José Carlos Rodrigues Nascimento
- Department of Anesthesia and Surgery Liver Transplantation, Fortaleza General Hospital, Fortaleza 60150-160, CE, Brazil
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza 60430-270, CE, Brazil
| | - Lianna C Pereira
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza 60430-270, CE, Brazil
| | - Juliana Magalhães C Rêgo
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza 60430-270, CE, Brazil
| | - Ronaldo P Dias
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza 60430-270, CE, Brazil
| | | | - Silvio Alencar C Sobrinho
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza 60430-270, CE, Brazil
| | - Gustavo R Coelho
- Department of Surgery, Liver Transplant Unit of Federal University of Ceará, Fortaleza 60430-270, CE, Brazil
| | | | | | - James S Owen
- UCL Medical School, Royal Free Campus, London NW3 2PF, United Kingdom
| | - Pierluigi Toniutto
- Department of Specialized Medicine, Hepatology Liver Transplantation Unit, Azienda Sanitaria Universitaria Integrata of Udine, Udine I-33100, Italy
| | - Reinaldo B Oriá
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza 60430-270, CE, Brazil
| |
Collapse
|
9
|
Erickson MA, Rhea EM, Knopp RC, Banks WA. Interactions of SARS-CoV-2 with the Blood-Brain Barrier. Int J Mol Sci 2021; 22:2681. [PMID: 33800954 PMCID: PMC7961671 DOI: 10.3390/ijms22052681] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/08/2023] Open
Abstract
Emerging data indicate that neurological complications occur as a consequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The blood-brain barrier (BBB) is a critical interface that regulates entry of circulating molecules into the CNS, and is regulated by signals that arise from the brain and blood compartments. In this review, we discuss mechanisms by which SARS-CoV-2 interactions with the BBB may contribute to neurological dysfunction associated with coronavirus disease of 2019 (COVID-19), which is caused by SARS-CoV-2. We consider aspects of peripheral disease, such as hypoxia and systemic inflammatory response syndrome/cytokine storm, as well as CNS infection and mechanisms of viral entry into the brain. We also discuss the contribution of risk factors for developing severe COVID-19 to BBB dysfunction that could increase viral entry or otherwise damage the brain.
Collapse
Affiliation(s)
- Michelle A. Erickson
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Elizabeth M. Rhea
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Rachel C. Knopp
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - William A. Banks
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| |
Collapse
|
10
|
Nascimento JCR, Matos GA, Pereira LC, Mourão AECCB, Sampaio AM, Oriá RB, Toniutto P. Impact of apolipoprotein E genetic polymorphisms on liver disease: An essential review. Ann Hepatol 2021; 19:24-30. [PMID: 31548169 DOI: 10.1016/j.aohep.2019.07.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/04/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Cirrhosis is an advanced stage of liver disease, compromising liver function with systemic health implications and poor quality of life. Hepatitis C virus (HCV) infection and alcoholic liver disease are the main causes of this pathology. However, since genetic factors may play a large role in the progression and severity of liver disease, and as apolipoprotein E (apoE) has been recognised to be mainly synthesised in the liver, apoE polymorphism studies are important to better understand the causal mechanisms in liver diseases. In this review, we summarise up-to-date studies addressing how apoE polymorphisms influence liver cirrhosis and liver transplantation outcomes and potential protective mechanisms. Although more clinical studies are needed to support these findings, the apoE ɛ4 allele seems to be protective against the progression of liver cirrhosis in the majority of aetiologies and the postoperative serum apoE phenotype of the transplanted subject receptors was converted to that of the donor, indicating that >90% of apoE in plasma is synthesised in the hepatic system.
Collapse
Affiliation(s)
- José C R Nascimento
- Laboratory of Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil; Department of Anesthesia and Liver Transplantation, Fortaleza General Hospital, Fortaleza, CE, Brazil
| | - Gabriella A Matos
- Laboratory of Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Lianna C Pereira
- Laboratory of Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Anderson E C C B Mourão
- Department of Anesthesia and Liver Transplantation, Fortaleza General Hospital, Fortaleza, CE, Brazil
| | - Aline M Sampaio
- Department of Anesthesia and Liver Transplantation, Fortaleza General Hospital, Fortaleza, CE, Brazil
| | - Reinaldo B Oriá
- Department of Anesthesia and Liver Transplantation, Fortaleza General Hospital, Fortaleza, CE, Brazil.
| | - Pierluigi Toniutto
- Hepatology and Liver Transplantation Unit, Department of Medical Area (DAME) Academic Hospital, University of Udine, Italy
| |
Collapse
|
11
|
Shimotohno K. HCV Assembly and Egress via Modifications in Host Lipid Metabolic Systems. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a036814. [PMID: 32122916 PMCID: PMC7778218 DOI: 10.1101/cshperspect.a036814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hepatitis C virus (HCV) proliferates by hijacking the host lipid machinery. In vitro replication systems revealed many aspects of the virus life cycle; in particular, viral utilization of host lipid metabolism during HCV proliferation. HCV interacts with lipid droplets (LDs) before starting the process of virus capsid formation at the lipid-rich endoplasmic reticulum (ER) membrane compartment. HCV buds into the ER via lipoprotein assembly and secretion. Exchangeable apolipoproteins, represented by apolipoprotein E (apoE), play pivotal roles in enhancing HCV-specific infectivity. HCV virions are likely to interact with other lipoproteins circulating in blood vessels and incorporate apolipoproteins as well as lipids. This review focuses on virus assembly and egress by briefly describing the recent advances in this area.
Collapse
|
12
|
Whole Lotta Lipids-from HCV RNA Replication to the Mature Viral Particle. Int J Mol Sci 2020; 21:ijms21082888. [PMID: 32326151 PMCID: PMC7215355 DOI: 10.3390/ijms21082888] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023] Open
Abstract
Replication of the hepatitis C virus (HCV) strongly relies on various lipid metabolic processes in different steps of the viral life cycle. In general, HCV changes the cells' lipidomic profile by differentially regulating key pathways of lipid synthesis, remodeling, and utilization. In this review, we sum up the latest data mainly from the past five years, emphasizing the role of lipids in HCV RNA replication, assembly, and egress. In detail, we highlight changes in the fatty acid content as well as alterations of the membrane lipid composition during replication vesicle formation. We address the role of lipid droplets as a lipid provider during replication and as an essential hub for HCV assembly. Finally, we depict different ideas of HCV maturation and egress including lipoprotein association and potential secretory routes.
Collapse
|
13
|
Beyond the CNS: The many peripheral roles of APOE. Neurobiol Dis 2020; 138:104809. [PMID: 32087284 DOI: 10.1016/j.nbd.2020.104809] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/06/2020] [Accepted: 02/18/2020] [Indexed: 12/28/2022] Open
Abstract
Apolipoprotein E (APOE) is a multifunctional protein synthesized and secreted by multiple mammalian tissues. Although hepatocytes contribute about 75% of the peripheral pool, APOE can also be expressed in adipose tissue, the kidney, and the adrenal glands, among other tissues. High levels of APOE production also occur in the brain, where it is primarily synthesized by glia, and peripheral and brain APOE pools are thought to be distinct. In humans, APOE is polymorphic, with three major alleles (ε2, ε3, and ε4). These allelic forms dramatically alter APOE structure and function. Historically, the vast majority of research on APOE has centered on the important role it plays in modulating risk for cardiovascular disease and Alzheimer's disease. However, the established effects of this pleiotropic protein extend well beyond these two critical health challenges, with demonstrated roles across a wide spectrum of biological conditions, including adipose tissue function and obesity, metabolic syndrome and diabetes, fertility and longevity, and immune function. While the spectrum of biological systems in which APOE plays a role seems implausibly wide at first glance, there are some potential unifying mechanisms that could tie these seemingly disparate disorders together. In the current review, we aim to concisely summarize a wide breadth of APOE-associated pathologies and to analyze the influence of APOE in the development of several distinct disorders in order to provide insight into potential shared mechanisms implied in these various pathophysiological processes.
Collapse
|
14
|
Amirsardari Z, Rahmani F, Rezaei N. Cognitive impairments in HCV infection: From pathogenesis to neuroimaging. J Clin Exp Neuropsychol 2019; 41:987-1000. [PMID: 31405320 DOI: 10.1080/13803395.2019.1652728] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Extrahepatic manifestations of hepatitis C virus (HCV) infection, in particular cognitive impairments, can be present in the absence of clinical liver dysfunction. Executive memory, attention, and concentration are cognitive domains that are most frequently affected. Microstructural and functional changes in cortical gray matter and basal ganglia associate these neuropsychiatric changes in early HCV infection. No study has covered the relationship between imaging features of HCV-related cognitive impairment and HCV pathology. Herein we summarize evidence suggesting a direct pathology of HCV in microglia, astrocytes, and microvascular endothelial cells, and a neuroinflammatory response in HCV-related cognitive decline. Lipoproteins and their receptors mediate HCV infectivity in the central nervous system and confer susceptibility to HCV-related cognitive decline. Magnetic resonance spectroscopy has revealed changes compatible with reactive gliosis and microglial activation in basal ganglia, frontal and occipital white matter, in the absence of cirrhosis or hepatic encephalopathy. Similarly, diffusion imaging shows evidence of structural disintegrity in the axonal fibers of white matter tracts associated with temporal and frontal cortices. We also discuss the cognitive benefits and side-effects of the two most popular therapeutic protocols interferon-based therapy and interferon-free therapy using direct acting anti-virals. Evidences support a network-based pattern of disruption in functional connectivity in HCV patients and a common neuronal substrate for HCV-related and interferon-therapy-associated cognitive decline. These evidences might help identify patients who benefit from either interferon-based or interferon-free treatment regimen.
Collapse
Affiliation(s)
- Zahra Amirsardari
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences , Tehran , Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Farzaneh Rahmani
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences , Tehran , Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Nima Rezaei
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN) , Tehran , Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
15
|
Qiao L, Luo GG. Human apolipoprotein E promotes hepatitis B virus infection and production. PLoS Pathog 2019; 15:e1007874. [PMID: 31393946 PMCID: PMC6687101 DOI: 10.1371/journal.ppat.1007874] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/27/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) is a common cause of liver diseases, including chronic hepatitis, steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). HBV chronically infects about 240 million people worldwide, posing a major global health problem. The current standard antiviral therapy effectively inhibits HBV replication but does not eliminate the virus unlike direct-acting antivirals (DAA) for curing hepatitis C. Our previous studies have demonstrated that human apolipoprotein E (apoE) plays important roles in hepatitis C virus infection and morphogenesis. In the present study, we have found that apoE is also associated with HBV and is required for efficient HBV infection. An apoE-specific monoclonal antibody was able to capture HBV similar to anti-HBs. More importantly, apoE monoclonal antibody could effectively block HBV infection, resulting in a greater than 90% reduction of HBV infectivity. Likewise, silencing of apoE expression or knockout of apoE gene by CRISPR/Cas9 resulted in a greater than 90% reduction of HBV infection and more than 80% decrease of HBV production, which could be fully restored by ectopic apoE expression. However, apoE silencing or knockout did not significantly affect HBV DNA replication or the production of nonenveloped (naked) nucleocapsids. These findings demonstrate that human apoE promotes HBV infection and production. We speculate that apoE may also play a role in persistent HBV infection by evading host immune response similar to its role in the HCV life cycle and pathogenesis. Inhibitors interfering with apoE biogenesis, secretion, and/or binding to receptors may serve as antivirals for elimination of chronic HBV infection.
Collapse
Affiliation(s)
- Luhua Qiao
- Department of Microbiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Guangxiang George Luo
- Department of Microbiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| |
Collapse
|
16
|
The Role of ApoE in HCV Infection and Comorbidity. Int J Mol Sci 2019; 20:ijms20082037. [PMID: 31027190 PMCID: PMC6515466 DOI: 10.3390/ijms20082037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) is an RNA virus that can efficiently establish chronic infection in humans. The overlap between the HCV replication cycle and lipid metabolism is considered to be one of the primary means by which HCV efficiently develops chronic infections. In the blood, HCV is complex with lipoproteins to form heterogeneous lipo-viro-particles (LVPs). Furthermore, apolipoprotein E (ApoE), which binds to receptors during lipoprotein transport and regulates lipid metabolism, is localized on the surface of LVPs. ApoE not only participate in the attachment and entry of HCV on the cell surface but also the assembly and release of HCV viral particles from cells. Moreover, in the blood, ApoE can also alter the infectivity of HCV and be used by HCV to escape recognition by the host immune system. In addition, because ApoE can also affect the antioxidant and immunomodulatory/anti-inflammatory properties of the host organism, the long-term binding and utilization of host ApoE during chronic HCV infection not only leads to liver lipid metabolic disorders but may also lead to increased morbidity and mortality associated with systemic comorbidities.
Collapse
|
17
|
The Genetic Variability of APOE in Different Human Populations and Its Implications for Longevity. Genes (Basel) 2019; 10:genes10030222. [PMID: 30884759 PMCID: PMC6471373 DOI: 10.3390/genes10030222] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
Human longevity is a complex phenotype resulting from the combinations of context-dependent gene-environment interactions that require analysis as a dynamic process in a cohesive ecological and evolutionary framework. Genome-wide association (GWAS) and whole-genome sequencing (WGS) studies on centenarians pointed toward the inclusion of the apolipoprotein E (APOE) polymorphisms ε2 and ε4, as implicated in the attainment of extreme longevity, which refers to their effect in age-related Alzheimer's disease (AD) and cardiovascular disease (CVD). In this case, the available literature on APOE and its involvement in longevity is described according to an anthropological and population genetics perspective. This aims to highlight the evolutionary history of this gene, how its participation in several biological pathways relates to human longevity, and which evolutionary dynamics may have shaped the distribution of APOE haplotypes across the globe. Its potential adaptive role will be described along with implications for the study of longevity in different human groups. This review also presents an updated overview of the worldwide distribution of APOE alleles based on modern day data from public databases and ancient DNA samples retrieved from literature in the attempt to understand the spatial and temporal frame in which present-day patterns of APOE variation evolved.
Collapse
|
18
|
Vieyres G, Pietschmann T. HCV Pit Stop at the Lipid Droplet: Refuel Lipids and Put on a Lipoprotein Coat before Exit. Cells 2019; 8:cells8030233. [PMID: 30871009 PMCID: PMC6468556 DOI: 10.3390/cells8030233] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023] Open
Abstract
The replication cycle of the liver-tropic hepatitis C virus (HCV) is tightly connected to the host lipid metabolism, during the virus entry, replication, assembly and egress stages, but also while the virus circulates in the bloodstream. This interplay coins viral particle properties, governs viral cell tropism, and facilitates immune evasion. This review summarizes our knowledge of these interactions focusing on the late steps of the virus replication cycle. It builds on our understanding of the cell biology of lipid droplets and the biosynthesis of liver lipoproteins and attempts to explain how HCV hijacks these organelles and pathways to assemble its lipo-viro-particles. In particular, this review describes (i) the mechanisms of viral protein translocation to and from the lipid droplet surface and the orchestration of an interface between replication and assembly complexes, (ii) the importance of the triglyceride mobilization from the lipid droplets for HCV assembly, (iii) the interplay between HCV and the lipoprotein synthesis pathway including the role played by apolipoproteins in virion assembly, and finally (iv) the consequences of these complex virus–host interactions on the virion composition and its biophysical properties. The wealth of data accumulated in the past years on the role of the lipid metabolism in HCV assembly and its imprint on the virion properties will guide vaccine design efforts and reinforce our understanding of the hepatic lipid metabolism in health and disease.
Collapse
Affiliation(s)
- Gabrielle Vieyres
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), 30625 Hannover, Germany.
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), 30625 Hannover, Germany.
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| |
Collapse
|
19
|
Exploring lipid and apolipoprotein levels in chronic hepatitis C patients according to their response to antiviral treatment. Clin Biochem 2018; 60:17-23. [PMID: 30030979 DOI: 10.1016/j.clinbiochem.2018.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatitis C virus is known to be highly dependent of lipid metabolism to infect new cells and replicate. AIMS To investigate lipid and apolipoprotein profile in chronic HCV patients according to treatment response. METHODS Patients recruited from the Hepatitis Treatment Center at Niteroi (Brazil) who received interferon (IFN)-based therapies were separated into two groups, those who achieved sustained virological response (SVR) or not (non-SVR). Another group of patients treated with IFN-free direct-acting antiviral (DAA) therapies was followed from before starting the treatment until one year after therapy. Triglycerides, total cholesterol and fractions were determined by colorimetric and/or electrophoresis techniques. Lecithin cholesterol acyltransferase (LCAT) activity and serum levels of apolipoproteins A1, A2, B, C2, C3 and E were assessed by enzymatic and multiplex assays, respectively. RESULTS We studied 114 patients, and SVR was reached in 28 (39.4%) patients treated with IFN-therapy and in all (100%) patients who received DAA. Non-SVR patients (n = 43) presented altered liver parameters post-treatment. Levels of total cholesterol, LDL-C, VLDL-C and triglycerides were significant higher in SVR group. In contrast, LCAT activity and HDL-C levels were elevated in non-SVR patients. Only apolipoproteins B, C2 and C3 levels were increased in SVR group. The follow-up of SVR-DAA patients (n = 43) revealed a significant and progressive increase in serum levels of total cholesterol, LDL-C, VLDL-C and triglycerides. CONCLUSIONS After a successful treatment, chronic hepatitis C patients experienced a reestablishment of lipid metabolism. Our results suggest that the monitoring of serum lipids could be a practical and routine laboratory tool to be applied during the treatment follow-up.
Collapse
|
20
|
Wrensch F, Crouchet E, Ligat G, Zeisel MB, Keck ZY, Foung SKH, Schuster C, Baumert TF. Hepatitis C Virus (HCV)-Apolipoprotein Interactions and Immune Evasion and Their Impact on HCV Vaccine Design. Front Immunol 2018; 9:1436. [PMID: 29977246 PMCID: PMC6021501 DOI: 10.3389/fimmu.2018.01436] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022] Open
Abstract
With more than 71 million people chronically infected, hepatitis C virus (HCV) is one of the leading causes of liver disease and hepatocellular carcinoma. While efficient antiviral therapies have entered clinical standard of care, the development of a protective vaccine is still elusive. Recent studies have shown that the HCV life cycle is closely linked to lipid metabolism. HCV virions associate with hepatocyte-derived lipoproteins to form infectious hybrid particles that have been termed lipo-viro-particles. The close association with lipoproteins is not only critical for virus entry and assembly but also plays an important role during viral pathogenesis and for viral evasion from neutralizing antibodies. In this review, we summarize recent findings on the functional role of apolipoproteins for HCV entry and assembly. Furthermore, we highlight the impact of HCV-apolipoprotein interactions for evasion from neutralizing antibodies and discuss the consequences for antiviral therapy and vaccine design. Understanding these interactions offers novel strategies for the development of an urgently needed protective vaccine.
Collapse
Affiliation(s)
- Florian Wrensch
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Emilie Crouchet
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Gaetan Ligat
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Mirjam B Zeisel
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,INSERM U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), Lyon, France
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Catherine Schuster
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Thomas F Baumert
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|