1
|
Huang L, Zhong Q, Huang S, Yang K, Cai Y, Guo G. EBV enhances immunotherapy sensitivity in intrahepatic cholangiocarcinoma through cGAS-STING pathway activation. Hepatol Commun 2025; 9:e0674. [PMID: 40079734 PMCID: PMC11908760 DOI: 10.1097/hc9.0000000000000674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/16/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND The absence of representative Epstein-Barr virus-associated intrahepatic cholangiocarcinoma (EBVaICC) cell lines has limited our understanding of the molecular and immunological characteristics of this cancer subtype. METHODS We reviewed patients with metastatic cholangiocarcinoma at Sun Yat-sen University Cancer Center from January 2015 to August 2023. Among them, 22 patients with EBVaICC and 66 patients with non-EBVaICC who received anti-PD1 treatment were included. Additionally, 2 EBV-positive ICC cell lines, RBE-EBV and HuH28-EBV, were developed through cell-to-cell infection. Stable EBV infection and responsiveness to viral reactivation were confirmed. Transcriptomic and bioinformatics analyses were performed, and in vitro experiments examined the immune effects of EBV-positive ICC. Key immune-related genes and cytokines were validated by reverse transcription quantitative polymerase chain reaction and ELISA in cell lines and patient plasma samples. RESULTS In this study, we found that patients with EBVaICC showed enhanced immune responses and improved overall and progression-free survival compared to patients with non-EBVaICC. We first successfully established and validated 2 EBV-positive ICC cell lines (RBE-EBV and HuH28-EBV). These cell lines were confirmed for stable EBV infection and displayed responsiveness to viral reactivation, making them suitable for future studies. Transcriptomic analyses and in vitro studies revealed that EBV activated the cGAS-STING pathway, resulting in MHC-I upregulation and CXCL10 secretion in ICC cells, which collectively enhanced CD8+ T cell chemotaxis and cytotoxicity. Furthermore, ELISA analysis showed higher plasma levels of CXCL10 and IFN-γ in patients with EBVaICC, suggesting a potential role for EBV in enhancing immunotherapy sensitivity in this subtype. CONCLUSIONS The established EBV-positive ICC cell lines revealed enhanced immunogenicity driven by cGAS-STING pathway activation, providing valuable models for future research and insights into the mechanisms of improved immunotherapy sensitivity in EBVaICC.
Collapse
Affiliation(s)
- Lingli Huang
- VIP Department, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology, Experimental Research Department, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Silan Huang
- VIP Department, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Kejia Yang
- VIP Department, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yuchen Cai
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology, Experimental Research Department, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Guifang Guo
- VIP Department, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| |
Collapse
|
2
|
Hosseininasab SSM, Ebrahimi R, Yaghoobpoor S, Kazemi K, Khakpour Y, Hajibeygi R, Mohamadkhani A, Fathi M, Vakili K, Tavasol A, Tutunchian Z, Fazel T, Fathi M, Hajiesmaeili M. Alzheimer's disease and infectious agents: a comprehensive review of pathogenic mechanisms and microRNA roles. Front Neurosci 2025; 18:1513095. [PMID: 39840010 PMCID: PMC11747386 DOI: 10.3389/fnins.2024.1513095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Alzheimer's Disease (AD) is the most prevalent type of dementia and is characterized by the presence of senile plaques and neurofibrillary tangles. There are various theories concerning the causes of AD, but the connection between viral and bacterial infections and their potential role in the pathogenesis of AD has become a fascinating area of research for the field. Various viruses such as Herpes simplex virus 1 (HSV-1), Epstein-Barr virus (EBV), Cytomegalovirus (CMV), influenza viruses, and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), as well as bacteria such as Chlamydia pneumoniae (CP), Helicobacter pylori (HP), Porphyromonas gingivalis (P. gingivalis), Spirochetes and eukaryotic unicellular parasites (e.g., Toxoplasma gondii), have been linked to AD due to their ability to activate the immune system, induce inflammation and increase oxidative stress, thereby leading to cognitive decline and AD. In addition, microRNAs (miRNAs) might play a crucial role in the pathogenesis mechanisms of these pathogens since they are utilized to target various protein-coding genes, allowing for immune evasion, maintaining latency, and suppressing cellular signaling molecules. Also, they can regulate gene expression in human cells. This article provides an overview of the association between AD and various infectious agents, with a focus on the mechanisms by which these pathogens may be related to the pathogenesis of AD. These findings suggest important areas for further research to be explored in future studies.
Collapse
Affiliation(s)
- Seyyed Sam Mehdi Hosseininasab
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiarash Kazemi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Khakpour
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramtin Hajibeygi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Tavasol
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Tutunchian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tara Fazel
- Student Research Committee, School of International Campus, Guilan University of Medical Sciences, Tehran, Iran
| | - Mohammad Fathi
- Department of Anesthesiology, Critical Care Quality Improvement Research Center, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Wang Y, Yu J, Pei Y. Identifying the key regulators orchestrating Epstein-Barr virus reactivation. Front Microbiol 2024; 15:1505191. [PMID: 39703703 PMCID: PMC11655498 DOI: 10.3389/fmicb.2024.1505191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024] Open
Abstract
Epstein-Barr virus (EBV) infects more than 90% of the human population worldwide and establishes lifelong infection in hosts by switching between latent and lytic infection. EBV latency can be reactivated under appropriate conditions, leading to expression of the viral lytic genes and production of infectious progeny viruses. EBV reactivation involves crosstalk between various factors and signaling pathways, and the subsequent complicated virus-host interplays determine whether EBV continues to propagate. However, the detailed mechanisms underlying these processes remain unclear. In this review, we summarize the critical factors regulating EBV reactivation and the associated mechanisms. This encompasses the transcription and post-transcriptional regulation of immediate-early (IE) genes, the functions of viral factors on viral DNA replication and progeny virus production, the mechanisms through which viral proteins disrupt and inhibit the host's innate immune response, and the host factors that modulate EBV reactivation. Finally, we explore the potential applications of novel technologies in studying EBV reactivation, providing novel insights into the investigation of mechanisms governing EBV reactivation and the development of anti-EBV therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Yonggang Pei
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Fachko DN, Goff B, Chen Y, Skalsky RL. Functional Targets for Epstein-Barr Virus BART MicroRNAs in B Cell Lymphomas. Cancers (Basel) 2024; 16:3537. [PMID: 39456631 PMCID: PMC11506495 DOI: 10.3390/cancers16203537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
MicroRNAs are key post-transcriptional regulators of gene expression and their dysregulation is often linked to cancer. Epstein-Barr virus encodes 22 BamHI A Rightward Transcript (BART) miRNAs, which are expressed in nearly all EBV-associated cancers and implicated in viral pathogenesis. To investigate biological targets for BART miRNAs in B cell lymphomas, we performed a meta-analysis of publicly available Ago-CLIP datasets from EBV-positive Burkitt lymphomas (BLs), primary effusion lymphomas (PELs), AIDS-associated diffuse large B cell lymphomas (DLBCLs), and lymphoblastoid cell lines (LCLs). Our analysis focused on comparing targets of EBV BART miRNAs across the different types of transformed B cells. Using reporter assays, we then experimentally validated over 50 functional interactions between BART miRNAs and cellular protein-coding transcripts involved in activities such as B cell differentiation (PRDM1, IRF4, and MYC), cell cycle regulation (UHMK1, CDKN1A, MDM2, and NPAT), apoptosis (MCL1), signaling and intracellular trafficking (GAB1, SOS1, MAPK1, RAB11A, CAV1, and RANBP9), and tumor suppression (CCDC6). Moreover, ectopic BART miRNA expression in several EBV-negative BL cells induced transcriptional changes that may influence molecular signatures of EBV-associated BLs. Collectively, our findings reveal novel, functional interactions for BART miRNAs in lymphomas and provide insights into their roles in these B cell cancers.
Collapse
Affiliation(s)
| | | | | | - Rebecca L. Skalsky
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| |
Collapse
|
5
|
Wang X, Zhao W. Research progress on miRNAs function in the interaction between human infectious viruses and hosts: A review. BIOMOLECULES & BIOMEDICINE 2024; 24:1452-1462. [PMID: 39101759 PMCID: PMC11496870 DOI: 10.17305/bb.2024.10821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
MicroRNAs (miRNAs) represent a class of non-coding small RNAs that are prevalent in eukaryotes, typically comprising approximately 22 nucleotides, and have the ability to post-transcriptionally regulate gene expression. miRNAs exhibit diverse types and functions, with mechanisms of action that include cell differentiation, proliferation, apoptosis, and regulation of signaling pathways. Both viruses and their hosts can encode miRNAs, which serve as crucial effector molecules in the complex interaction between viruses and host cells. Host miRNAs can either directly interact with the virus genome to inhibit virus replication or facilitate virus replication by providing necessary substances. Viral miRNAs can directly bind to host mRNAs, thereby influencing translation efficiency, suppressing the immune response, and ultimately enhancing virus replication. This article comprehensively reviews the roles of miRNAs in virus-host interactions, aiming to provide valuable insights into viral pathogenic mechanisms and potential therapeutic approaches.
Collapse
Affiliation(s)
- Xiaotong Wang
- Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
| | - Wenchang Zhao
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
6
|
Gong Z, Shi D, Yan Z, Sun L, Liu W, Luo B. Stearoyl-CoA desaturase 1 is targeted by EBV-encoded miR-BART20-5p and regulates cell autophagy, proliferation, and migration in EBV-associated gastric cancer. Virus Genes 2024; 60:464-474. [PMID: 39096336 DOI: 10.1007/s11262-024-02094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
Epstein-Barr virus (EBV) is the first human oncogenic virus known to express microRNAs (miRNAs), which are closely associated with the development of various tumors, including nasopharyngeal and gastric cancers. Stearoyl-CoA Desaturase 1 (SCD1) is a key enzyme in fatty acid synthesis, highly expressed in numerous tumors, promoting tumor growth and metastasis, making it a potential therapeutic target. In this study, we found that SCD1 expression in EBV-associated gastric cancer (EBVaGC) was significantly lower than in EBV-negative gastric cancer (EBVnGC) at both cellular and tissue levels. In addition, EBV-miR-BART20-5p targets the 3'-UTR of SCD1, downregulating its expression. Moreover, overexpression of SCD1 in EBVaGC cells promoted cell migration and proliferation while inhibiting autophagy. These results suggest that EBV-encoded miRNA-BART20-5p may contribute to EBVaGC progression by targeting SCD1.
Collapse
Affiliation(s)
- Zhiyuan Gong
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Duo Shi
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhiyong Yan
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Lingling Sun
- Department of Pathology of the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
7
|
Ni H, Zhang X, Huang J, Wang M, Cheng A, Liu M, Zhu D, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Ou X, Sun D, Tian B, Jing B, Jia R. Duck plague virus-encoded microRNA dev-miR-D28-3p inhibits viral replication via targeting UL27. Vet Microbiol 2024; 297:110202. [PMID: 39094384 DOI: 10.1016/j.vetmic.2024.110202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Herpesviruses-encoded microRNAs (miRNAs) have been discovered to be essential regulators in viral life cycle, participating in viral replication, latent or lytic infection, and immunological escape. However, the roles of miRNAs encoded by duck plague virus (DPV) are still unknown. Dev-miR-D28-3p is a miRNA uniquely encoded by DPV CHv strain. The aim of this study was to explore the effect of dev-miR-D28-3p on DPV replication and explore the potential mechanisms involved. Our findings demonstrated that transfection of dev-miR-D28-3p mimic into duck embryo fibroblasts (DEFs) effectively suppressed viral copies, viral titers and viral protein expressions during DPV infection, while the results above were reversed after transfection with dev-miR-D28-3p inhibitor. Subsequently, we further discovered that dev-miR-D28-3p specifically bound to DPV-encoded UL27 and inhibited its expression, suggesting that UL27 was the target gene of dev-miR-D28-3p. Finally, we investigated the role of UL27 in DPV replication and found the overexpression of UL27 increased viral copies, viral titers, and viral protein expressions; whereas the opposite results appear when knockdown of UL27. Our findings illustrated a novel mechanism that DPV regulated itself replication via dev-miR-D28-3p, paving the way for exploring the role of DPV-encoded miRNAs.
Collapse
Affiliation(s)
- Hui Ni
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province 611130, China
| | - Xingcui Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province 611130, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province 611130, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province 611130, China.
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province 611130, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province 611130, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province 611130, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province 611130, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province 611130, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province 611130, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province 611130, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province 611130, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province 611130, China
| | - Bo Jing
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province 611130, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Wenjiang District, Chengdu City, Sichuan Province 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province 611130, China.
| |
Collapse
|
8
|
Wang WT, Yang Y, Zhang Y, Le YN, Wu YL, Liu YY, Tu YJ. EBV-microRNAs as Potential Biomarkers in EBV-related Fever: A Narrative Review. Curr Mol Med 2024; 24:2-13. [PMID: 36411555 PMCID: PMC10825793 DOI: 10.2174/1566524023666221118122005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/31/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022]
Abstract
At present, timely and accurate diagnosis and effective treatment of Epstein- Barr Virus (EBV) infection-associated fever remain a difficult challenge. EBV encodes 44 mature microRNAs (miRNAs) that inhibit viral lysis, adjust inflammatory response, regulate cellular apoptosis, promote tumor genesis and metastasis, and regulate tumor cell metabolism. Herein, we have collected the specific expression data of EBV-miRNAs in EBV-related fevers, including infectious mononucleosis (IM), EBVassociated hemophagocytic lymphohistiocytosis (EBV-HLH), chronic active EBV infection (CAEBV), and EBV-related tumors, and proposed the potential value of EBVmiRNAs as biomarkers to assist in the identification, diagnosis, and prognosis of EBVrelated fever, as well as therapeutic targets for drug development.
Collapse
Affiliation(s)
- Wei-ting Wang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| | - Yun Yang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| | - Yang Zhang
- Information Center of Science and Technology, Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| | - Yi-ning Le
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai (200433), China
| | - Yu-lin Wu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| | - Yi-yi Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai (200032), China
| | - Yan-jie Tu
- Department of Febrile Disease, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| |
Collapse
|
9
|
Looi CK, Foong LC, Chung FFL, Khoo ASB, Loo EM, Leong CO, Mai CW. Targeting the crosstalk of epigenetic modifications and immune evasion in nasopharyngeal cancer. Cell Biol Toxicol 2023; 39:2501-2526. [PMID: 37755585 DOI: 10.1007/s10565-023-09830-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a distinct type of head and neck cancer that is highly associated with Epstein-Barr virus (EBV) infection. EBV acts as an epigenetic driver in NPC tumorigenesis, reprogramming the viral and host epigenomes to regulate viral latent gene expression, and creating an environment conducive to the malignant transformation of nasopharyngeal epithelial cells. Targeting epigenetic mechanisms in pre-clinical studies has been shown promise in eradicating tumours and overcoming immune resistance in some solid tumours. However, its efficacy in NPC remains inclusive due to the complex nature of this cancer. In this review, we provide an updated understanding of the roles of epigenetic factors in regulating EBV latent gene expression and promoting NPC progression. We also explore the crosstalk between epigenetic mechanisms and immune evasion in NPC. Particularly, we discuss the potential roles of DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors in reversing immune suppression and augmenting antitumour immunity. Furthermore, we highlight the advantages of combining epigenetic therapy and immune checkpoint inhibitor to reverse immune resistance and improve clinical outcomes. Epigenetic drugs have the potential to modulate both epigenetic mediators and immune factors involved in NPC. However, further research is needed to fully comprehend the diverse range of epigenetic modifications in NPC. A deeper understanding of the crosstalk between epigenetic mechanisms and immune evasion during NPC progression is crucial for the development of more effective treatments for this challenging disease.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Studies, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Lian-Chee Foong
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai, 200127, China
| | - Felicia Fei-Lei Chung
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Alan Soo-Beng Khoo
- School of Postgraduate Studies, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Department of Medical Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Pennsylvania, PA, 19107, USA
| | - Ee-Mun Loo
- AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Development, and Innovation (IRDI), Institute for Research, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Chun-Wai Mai
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai, 200127, China.
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Barros MHM, Alves PDS. Contribution of the Epstein-Barr virus to the oncogenesis of mature T-cell lymphoproliferative neoplasms. Front Oncol 2023; 13:1240359. [PMID: 37781191 PMCID: PMC10538126 DOI: 10.3389/fonc.2023.1240359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
EBV is a lymphotropic virus, member of the Herpesviridae family that asymptomatically infects more than 90% of the human population, establishing a latent infection in memory B cells. EBV exhibits complex survival and persistence dynamics, replicating its genome through the proliferation of infected B cells or production of the lytic virions. Many studies have documented the infection of T/NK cells by EBV in healthy individuals during and after primary infection. This feature has been confirmed in humanized mouse models. Together these results have challenged the hypothesis that the infection of T/NK cells per se by EBV could be a triggering event for lymphomagenesis. Extranodal NK/T-cell lymphoma (ENKTCL) and Epstein-Barr virus (EBV)-positive nodal T- and NK-cell lymphoma (NKTCL) are two EBV-associated lymphomas of T/NK cells. These two lymphomas display different clinical, histological and molecular features. However, they share two intriguing characteristics: the association with EBV and a geographical prevalence in East Asia and Latin America. In this review we will discuss the genetic characteristics of EBV in order to understand the possible role of this virus in the oncogenesis of ENKTCL and NKTCL. In addition, the main immunohistological, molecular, cytogenetic and epigenetic differences between ENKTCL and NKTCL will be discussed, as well as EBV differences in latency patterns and other viral molecular characteristics.
Collapse
Affiliation(s)
| | - Paula Daniela S. Alves
- Oncovirology Laboratory, Bone Marrow Transplantation Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
11
|
Pandita S, Verma A, Kumar N. Role of miRNAs in regulating virus replication. ANIMAL GENE 2023; 30:200162. [DOI: 10.1016/j.angen.2023.200162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
12
|
Ji H, Yang T, Li C, Zhu Y, Zheng Z, Zhang J, Liu Y, Gao Y, Wu H, Jiang J, Yong J, Chen M, Tang Y, Xia Q, Xue F. EBV-encoded miRNAs BHRF1-1 and BART2-5p aggravate post- transplant lymphoproliferative disorder via LZTS2-PI3K-AKT axis. Biochem Pharmacol 2023:115676. [PMID: 37419372 DOI: 10.1016/j.bcp.2023.115676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Post-transplant lymphoproliferative disorder (PTLD) is one of the most serious complications after transplantation. Epstein-Barr virus (EBV) is a key pathogenic driver of PTLD. About 80% of PTLD patients are EBV positive. However, the accuracy of preventing and diagnosing EBV-PTLD by monitoring EBV DNA load is limited. Therefore, new diagnostic molecular markers are urgently needed. EBV-encoded miRNAs can regulate a variety of EBV-associated tumors and are expected to be potential diagnostic markers and therapeutic targets. We found BHRF1-1 and BART2-5p were significantly elevated in EBV-PTLD patients, functionally promoting proliferation and inhibiting apoptosis in EBV-PTLD. Mechanistically, we first found that LZTS2 acts as a tumor suppressor gene in EBV-PTLD, and BHRF1-1 and BART2-5p can simultaneously inhibit LZTS2 and activate PI3K-AKT pathway. This study shows that BHRF1-1 and BART2-5p can simultaneously inhibit the expression of tumor suppressor LZTS2, and activate the PI3K-AKT pathway, leading to the occurrence and development of EBV-PTLD. Therefore, BHRF1-1 and BART2-5p are expected to be potential diagnostic markers and therapeutic targets for EBV-PTLD patients.
Collapse
Affiliation(s)
- Hao Ji
- Department of Liver Surgery and Liver Transplantation Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Taihua Yang
- Department of Liver Surgery and Liver Transplantation Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunlai Li
- Department of Liver Surgery and Liver Transplantation Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
| | - Youwei Zhu
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhigang Zheng
- Department of Liver Surgery and Liver Transplantation Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaxu Zhang
- Department of Liver Surgery and Liver Transplantation Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Liu
- Department of Liver Surgery and Liver Transplantation Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijin Gao
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Huimin Wu
- Department of Liver Surgery and Liver Transplantation Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinxing Jiang
- Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junekong Yong
- Department of Liver Surgery and Liver Transplantation Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengke Chen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanjia Tang
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, 2200 Lane 25 Xietu Road, Shanghai, China.
| | - Qiang Xia
- Department of Liver Surgery and Liver Transplantation Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Feng Xue
- Department of Liver Surgery and Liver Transplantation Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Liu T, Zhou X, Zhang Z, Qin Y, Wang R, Qin Y, Huang Y, Mo Y, Huang T. The role of EBV-encoded miRNA in EBV-associated gastric cancer. Front Oncol 2023; 13:1204030. [PMID: 37388232 PMCID: PMC10301731 DOI: 10.3389/fonc.2023.1204030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Epstein-Barr virus (human herpesvirus 4, EBV) is a linear double-stranded DNA virus that infects over 90% of the population worldwide. However, our understanding of EBV's contribution to tumorigenesis of EBV-associated GC (EBVaGC) remains incomplete. Recent advancements in EBVaGC research have highlighted that EBV-encoded microRNAs (miRNAs) play prominent roles in critical cellular processes such as migration, cell cycle, apoptosis, cell proliferation, immune response, and autophagy. Notably, the largest group of EBV-encoded miRNAs, known as BamHI-A rightward transcripts (BARTs), exhibit bidirectional effects in EBVaGC. For instance, they present both anti-apoptotic and pro-apoptotic functions and enhance chemosensitivity while also conferring resistance to 5-fluorouracil. Despite these findings, the comprehensive mechanisms through which miRNAs contribute to EBVaGC are yet to be fully elucidated. In this work, we summarize the current evidence of the roles of miRNA in EBVaGC, particularly with the application of multi-omic techniques. Additionally, we discuss the application of miRNA in EBVaGC in retrospective analyses and provide novel perspectives on the use of miRNA in EBVaGC in translational medicine.
Collapse
Affiliation(s)
- Ting Liu
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yutao Qin
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rensheng Wang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Yanning Qin
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yuqi Huang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yingxi Mo
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tingting Huang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
Yao Y, Kong W, Yang L, Ding Y, Cui H. Immunity and Immune Evasion Mechanisms of Epstein-Barr Virus. Viral Immunol 2023; 36:303-317. [PMID: 37285188 DOI: 10.1089/vim.2022.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Epstein-Barr virus (EBV) is the first human oncogenic virus to be identified, which evades the body's immune surveillance through multiple mechanisms that allow long-term latent infection. Under certain pathological conditions, EBVs undergo a transition from the latent phase to the lytic phase and cause targeted dysregulation of the host immune system, leading to the development of EBV-related diseases. Therefore, an in-depth understanding of the mechanism of developing an immune response to EBV and the evasion of immune recognition by EBV is important for the understanding of the pathogenesis of EBV, which is of great significance for finding strategies to prevent EBV infection, and developing a therapy to treat EBV-associated diseases. In this review, we will discuss the molecular mechanisms of host immunological responses to EBV infection and the mechanisms of EBV-mediated immune evasion during chronic active infection.
Collapse
Affiliation(s)
- Yanqing Yao
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Weijing Kong
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lijun Yang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yingxue Ding
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong Cui
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Lin M, Hu S, Zhang T, Li J, Gao F, Zhang Z, Zheng K, Li G, Ren C, Chen X, Guo F, Zhang S. Effects of Co-Culture EBV-miR-BART1-3p on Proliferation and Invasion of Gastric Cancer Cells Based on Exosomes. Cancers (Basel) 2023; 15:2841. [PMID: 37345178 DOI: 10.3390/cancers15102841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023] Open
Abstract
AIM EBV encodes at least 44 miRNAs involved in immune regulation and disease progression. Exosomes can be used as carriers of EBV-miRNA-BART intercellular transmission and affect the biological behavior of cells. We characterized exosomes and established a co-culture experiment of exosomes to explore the mechanism of miR-BART1-3p transmission through the exosome pathway and its influence on tumor cell proliferation and invasion. MATERIALS AND METHODS Exosomes of EBV-positive and EBV-negative gastric cancer cells were characterized by transmission electron microscopy. NanoSight and Western blotting, and miRNA expression profiles in exosomes were sequenced with high throughput. Exosomes with high or low expression of miR-BART1-3p were co-cultured with AGS cells to study the effects on proliferation, invasion, and migration of gastric cancer cells. The target genes of EBV-miR-BART1-3p were screened and predicted by PITA, miRanda, RNAhybrid, virBase, and DIANA-TarBase v.8 databases, and the expression of the target genes after co-culture was detected by qPCR. RESULTS The exosomes secreted by EBV-positive and negative gastric cancer cells range in diameter from 30 nm to 150 nm and express the exosomal signature proteins CD9 and CD63. Small RNA sequencing showed that exosomes expressed some human miRNAs, among which hsa-miR-23b-3p, hsa-miR-320a-3p, and hsa-miR-4521 were highly expressed in AGS-exo; hsa-miR-21-5p, hsa-miR-148a-3p, and hsa-miR-7-5p were highly expressed in SNU-719-exo. All EBV miRNAs were expressed in SNU-719 cells and their exosomes, among which EBV-miR-BART1-5p, EBV-miR-BART22, and EBV-miR-BART16 were the highest in SNU-719 cells; EBV-miR-BART1-5p, EBV-miR-BART10-3p, and EBV-miR-BART16 were the highest in SNU-719-exo. After miR-BART1-3p silencing in gastric cancer cells, the proliferation, healing, migration, and invasion of tumor cells were significantly improved. Laser confocal microscopy showed that exosomes could carry miRNA into recipient cells. After co-culture with miR-BART1-3p silenced exosomes, the proliferation, healing, migration, and invasion of gastric cancer cells were significantly improved. The target gene of miR-BART1-3p was FAM168A, MACC1, CPEB3, ANKRD28, and USP37 after screening by a targeted database. CPEB3 was not expressed in all exosome co-cultured cells, while ANKRD28, USP37, MACC1, and FAM168A were all expressed to varying degrees. USP37 and MACC1 were down-regulated after up-regulation of miR-BART1-3p, which may be the key target genes for miR-BART1-3p to regulate the proliferation of gastric cancer cells through exosomes. CONCLUSIONS miR-BART1-3p can affect the growth of tumor cells through the exosome pathway. The proliferation, healing, migration, and invasion of gastric cancer cells were significantly improved after co-culture with exosomes of miR-BART1-3p silenced expression. USP37 and MACC1 may be potential target genes of miR-BART1-3p in regulating cell proliferation.
Collapse
Affiliation(s)
- Mengyao Lin
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Shun Hu
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Tianyi Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiezhen Li
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
| | - Feng Gao
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Zhenzhen Zhang
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Ke Zheng
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Guoping Li
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Caihong Ren
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Xiangna Chen
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| | - Fang Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Sheng Zhang
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou 350212, China
| |
Collapse
|
16
|
The lytic phase of Epstein-Barr virus plays an important role in tumorigenesis. Virus Genes 2023; 59:1-12. [PMID: 36242711 DOI: 10.1007/s11262-022-01940-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/02/2022] [Indexed: 01/13/2023]
Abstract
Epstein-Barr virus (EBV) is a recognized oncogenic virus that is related to the occurrence of lymphoma, nasopharyngeal carcinoma (NPC), and approximately 10% of gastric cancer (GC). EBV is a herpesvirus, and like other herpesviruses, EBV has a biphasic infection mode made up of latent and lytic infections. It has been established that latent infection promotes tumorigenesis in previous research, but in recent years, there has been new evidence that suggests that the lytic infection mode could also promote tumorigenesis. In this review, we mainly discuss the contribution of the EBV lytic phase to tumorigenesis, and graphically illustrate their relationship in detail. In addition, we described the relationship between the lytic cycle of EBV and autophagy. Finally, we also preliminarily explored the influence of the tumorigenesis effect of the EBV lytic phase on the future treatment of EBV-associated tumors.
Collapse
|
17
|
Kim B, Kim KM. Role of Exosomes and Their Potential as Biomarkers in Epstein-Barr Virus-Associated Gastric Cancer. Cancers (Basel) 2023; 15:cancers15020469. [PMID: 36672418 PMCID: PMC9856651 DOI: 10.3390/cancers15020469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Exosomes are a subtype of extracellular vesicles ranging from 30 to 150 nm and comprising many cellular components, including DNA, RNA, proteins, and metabolites, encapsulated in a lipid bilayer. Exosomes are secreted by many cell types and play important roles in intercellular communication in cancer. Viruses can hijack the exosomal pathway to regulate viral propagation, cellular immunity, and the microenvironment. Cells infected with Epstein-Barr virus (EBV), one of the most common oncogenic viruses, have also been found to actively secrete exosomes, and studies on their roles in EBV-related malignancies are ongoing. In this review, we focus on the role of exosomes in EBV-associated gastric cancer and their clinical applicability in diagnosis and treatment.
Collapse
Affiliation(s)
- Binnari Kim
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44610, Republic of Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Center of Companion Diagnostics, Samsung Medical Center, Seoul 06351, Republic of Korea
- Correspondence: ; Tel.: +82-2-3410-2807; Fax: +82-2-3410-6396
| |
Collapse
|
18
|
Xu M, Zhang L, Feng J, Yang S, Wang Y, Wang Y, Chen M, Zhou L, Zhang J, Qin Q. Establishment and characterization of two Epstein-Barr virus-positive gastric cancer cell lines with epitheliotropic M81 strain undergoing distinct viral and altered cellular expression profiles. J Med Virol 2023; 95:e28387. [PMID: 36478267 DOI: 10.1002/jmv.28387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/09/2022]
Abstract
Epstein-Barr virus (EBV)-associated gastric cancer (EBVaGC) is a distinct subtype of gastric cancer (GC) distinguished by the presence of the EBV genome and limited viral gene expression within malignant epithelial cells. EBV infection is generally thought to be a relatively late event following atrophic gastritis in carcinogenesis, which implies the heterogeneity of EBVaGC. To facilitate the study of the role of EBV in EBVaGC, we established two EBV-positive GC cell lines (AGS-EBV and HGC27-EBV) with an epitheliotropic EBV strain M81 and characterized viral and cellular gene expression profiles in comparison to SNU719, a naturally derived EBV-positive GC cell line. Like SNU719, AGS-EBV and HGC27-EBV stably maintained their EBV genomes and expressed EBV-encoded small RNAs and nuclear antigen EBNA1. Comprehensive analysis of the expression of EBV-encoded miRNAs within the BamHI-A region rightward transcript region, and the transcripts of EBV latent and lytic genes in cell lines, as well as xenografts, reveals that AGS-EBV and HGC27-EBV cells undergo distinct viral expression profiles. A very small fraction of AGS-EBV and SNU719 cells can spontaneously produce infectious progeny virions, while HGC27-EBV does not. AGS-EBV (both M81 and Akata) cells largely mimic SNU719 cells in viral gene expression profiles, and altered cellular functions and pathways perturbed by EBV infection. Phylogenetic analysis of the EBV genome shows both M81 and Akata EBV strains are closely related to clinical EBVaGC isolates. Taken together, these two newly established EBV-positive GC cell lines can serve as models to further investigate the role of EBV in different contexts of gastric carcinogenesis and identify novel therapeutics against EBVaGC.
Collapse
Affiliation(s)
- Mingqian Xu
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
| | - Liang Zhang
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jinfu Feng
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
| | - Shuaibing Yang
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yixuan Wang
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yuyi Wang
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
| | - Meiyang Chen
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
| | - Li Zhou
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Junjie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, China
| | - Qingsong Qin
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, Guangdong, China
- Center of Pathogen Biology and Immunology, Institute of Basic Medical Research, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
19
|
Herb S, Zeleznjak J, Hennig T, L'Hernault A, Lodha M, Jürges C, Trsan T, Juranic Lisnic V, Jonjic S, Erhard F, Krmpotic A, Dölken L. Two murine cytomegalovirus microRNAs target the major viral immediate early 3 gene. J Gen Virol 2022; 103. [DOI: 10.1099/jgv.0.001804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Human cytomegalovirus is responsible for morbidity and mortality in immune compromised patients and is the leading viral cause of congenital infection. Virus-encoded microRNAs (miRNAs) represent interesting targets for novel antiviral agents. While many cellular targets that augment productive infection have been identified in recent years, regulation of viral genes such as the major viral immediate early protein 72 (IE72) by hcmv-miR-UL112-1 may contribute to both the establishment and the maintenance of latent infection. We employed photoactivated ribonucleotide-enhanced individual nucleotide resolution crosslinking (PAR-iCLIP) to identify murine cytomegalovirus (MCMV) miRNA targets during lytic infection. While the PAR-iCLIP data were of insufficient quality to obtain a comprehensive list of cellular and viral miRNA targets, the most prominent PAR-iCLIP peak in the MCMV genome mapped to the 3′ untranslated region of the major viral immediate early 3 (ie3) transcript. We show that this results from two closely positioned binding sites for the abundant MCMV miRNAs miR-M23-2-3p and miR-m01-2-3p. Their pre-expression significantly impaired viral plaque formation. However, mutation of the respective binding sites did not alter viral fitness during acute or subacute infection in vivo. Furthermore, no differences in the induction of virus-specific CD8+ T cells were observed. Future studies will probably need to go beyond studying immunocompetent laboratory mice housed in pathogen-free conditions to reveal the functional relevance of viral miRNA-mediated regulation of key viral immediate early genes.
Collapse
Affiliation(s)
- Stefanie Herb
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacherstr. 7, 97078, Würzburg, Germany
| | - Jelena Zeleznjak
- Department of Histology and Embryology/Center for Proteomics, Faculty of Medicine, University of Rijeka, B. Branchetta 20, 51 000 Rijeka, Croatia
| | - Thomas Hennig
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacherstr. 7, 97078, Würzburg, Germany
| | - Anne L'Hernault
- Department of Medicine, University of Cambridge, Box 157, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Manivel Lodha
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacherstr. 7, 97078, Würzburg, Germany
| | - Christopher Jürges
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacherstr. 7, 97078, Würzburg, Germany
| | - Tihana Trsan
- Department of Histology and Embryology/Center for Proteomics, Faculty of Medicine, University of Rijeka, B. Branchetta 20, 51 000 Rijeka, Croatia
| | - Vanda Juranic Lisnic
- Department of Histology and Embryology/Center for Proteomics, Faculty of Medicine, University of Rijeka, B. Branchetta 20, 51 000 Rijeka, Croatia
| | - Stipan Jonjic
- Department of Histology and Embryology/Center for Proteomics, Faculty of Medicine, University of Rijeka, B. Branchetta 20, 51 000 Rijeka, Croatia
| | - Florian Erhard
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacherstr. 7, 97078, Würzburg, Germany
| | - Astrid Krmpotic
- Department of Histology and Embryology/Center for Proteomics, Faculty of Medicine, University of Rijeka, B. Branchetta 20, 51 000 Rijeka, Croatia
| | - Lars Dölken
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), 97080 Würzburg, Germany
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacherstr. 7, 97078, Würzburg, Germany
- Department of Medicine, University of Cambridge, Box 157, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
20
|
Damania B, Kenney SC, Raab-Traub N. Epstein-Barr virus: Biology and clinical disease. Cell 2022; 185:3652-3670. [PMID: 36113467 PMCID: PMC9529843 DOI: 10.1016/j.cell.2022.08.026] [Citation(s) in RCA: 197] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 01/26/2023]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous, oncogenic virus that is associated with a number of different human malignancies as well as autoimmune disorders. The expression of EBV viral proteins and non-coding RNAs contribute to EBV-mediated disease pathologies. The virus establishes life-long latency in the human host and is adept at evading host innate and adaptive immune responses. In this review, we discuss the life cycle of EBV, the various functions of EBV-encoded proteins and RNAs, the ability of the virus to activate and evade immune responses, as well as the neoplastic and autoimmune diseases that are associated with EBV infection in the human population.
Collapse
Affiliation(s)
- Blossom Damania
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Shannon C Kenney
- Department of Oncology, McArdle Laboratory for Cancer Research, and Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Nancy Raab-Traub
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
21
|
Takahashi T, Ichikawa H, Okayama Y, Seki M, Hijikata T. SV40 miR-S1 and Cellular miR-1266 Sequester Each Other from Their Targets, Enhancing Telomerase Activity and Viral Replication. Noncoding RNA 2022; 8:ncrna8040057. [PMID: 36005825 PMCID: PMC9413689 DOI: 10.3390/ncrna8040057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Virus-encoded microRNAs (miRNAs) target viral and host mRNAs to repress protein production from viral and host genes, and regulate viral persistence, cell transformation, and evasion of the immune system. The present study demonstrated that simian virus 40 (SV40)-encoded miRNA miR-S1 targets a cellular miRNA miR-1266 to derepress their respective target proteins, namely, T antigens (Tags) and telomerase reverse transcriptase (TERT). An in silico search for cellular miRNAs to interact with viral miR-S1 yielded nine potential miRNAs, five of which, including miR-1266, were found to interact with miR-S1 in dual-luciferase tests employing reporter plasmids containing the miRNA sequences with miR-S1. Intracellular bindings of miR-1266 to miR-S1 were also verified by the pull-down assay. These miRNAs were recruited into the Ago2-associated RNA-induced silencing complex. Intracellular coexpression of miR-S1 with miR-1266 abrogated the downregulation of TERT and decrease in telomerase activity induced by miR-1266. These effects of miR-S1 were also observed in miR-1266-expressing A549 cells infected with SV40. Moreover, the infected cells contained more Tag, replicated more viral DNA, and released more viral particles than control A549 cells infected with SV40, indicating that miR-S1-induced Tag downregulation was antagonized by miR-1266. Collectively, the present results revealed an interplay of viral and cellular miRNAs to sequester each other from their respective targets. This is a novel mechanism for viruses to manipulate the expression of viral and cellular proteins, contributing to not only viral lytic and latent replication but also cell transformation observed in viral infectious diseases including oncogenesis.
Collapse
|
22
|
Viral Encoded miRNAs in Tumorigenesis: Theranostic Opportunities in Precision Oncology. Microorganisms 2022; 10:microorganisms10071448. [PMID: 35889167 PMCID: PMC9321719 DOI: 10.3390/microorganisms10071448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
About 15% of all human cancers have a viral etiology. Although progress has been made, understanding the viral oncogenesis and associated molecular mechanisms remain complex. The discovery of cellular miRNAs has led to major breakthroughs. Interestingly, viruses have also been discovered to encode their own miRNAs. These viral, small, non-coding miRNAs are also known as viral-miRNAs (v-miRNAs). Although the function of v-miRNAs largely remains to be elucidated, their role in tumorigenesis cannot be ignored. V-miRNAs have also been shown to exploit the cellular machinery to benefit viral replication and survival. Although the discovery of Hepatitis C virus (HCV), and its viral miRNAs, is a work in progress, the existence of HPV-, EBV-, HBV-, MCPyV- and KSHV-encoded miRNA has been documented. V-miRNAs have been shown to target host factors to advance tumorigenesis, evade and suppress the immune system, and deregulate both the cell cycle and the apoptotic machinery. Although the exact mechanisms of v-miRNAs-induced tumorigenesis are still unclear, v-miRNAs are active role-players in tumorigenesis, viral latency and cell transformation. Furthermore, v-miRNAs can function as posttranscriptional gene regulators of both viral and host genes. Thus, it has been proposed that v-miRNAs may serve as diagnostic biomarkers and therapeutic targets for cancers with a viral etiology. Although significant challenges exist in their clinical application, emerging reports demonstrate their potent role in precision medicine. This review will focus on the roles of HPV-, HCV-, EBV-, HBV-, MCPyV-, and KSHV-produced v-miRNAs in tumorigenesis, as effectors in immune evasion, as diagnostic biomarkers and as novel anti-cancer therapeutic targets. Finally, it will discuss the challenges and opportunities associated with v-miRNAs theranostics in precision oncology.
Collapse
|
23
|
MicroRNA Regulation of Human Herpesvirus Latency. Viruses 2022; 14:v14061215. [PMID: 35746686 PMCID: PMC9231095 DOI: 10.3390/v14061215] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Herpesviruses are ubiquitous human pathogens. After productive (lytic) infection, all human herpesviruses are able to establish life-long latent infection and reactivate from it. Latent infection entails suppression of viral replication, maintenance of the viral genome in infected cells, and the ability to reactivate. Most human herpesviruses encode microRNAs (miRNAs) that regulate these processes during latency. Meanwhile, cellular miRNAs are hijacked by herpesviruses to participate in these processes. The viral or cellular miRNAs either directly target viral transcripts or indirectly affect viral infection through host pathways. These findings shed light on the molecular determinants that control the lytic-latent switch and may lead to novel therapeutics targeting latent infection. We discuss the multiple mechanisms by which miRNAs regulate herpesvirus latency, focusing on the patterns in these mechanisms.
Collapse
|
24
|
Epstein-Barr virus miR-BHRF1-3 targets the BZLF1 3'UTR and regulates the lytic cycle. J Virol 2021; 96:e0149521. [PMID: 34878852 DOI: 10.1128/jvi.01495-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Suppression of lytic viral gene expression is a key aspect of the Epstein-Barr virus (EBV) life cycle to facilitate the establishment of latent infection. Molecular mechanisms regulating transitions between EBV lytic replication and latency are not fully understood. Here, we investigated the impact of viral microRNAs on the EBV lytic cycle. Through functional assays, we found that miR-BHRF1-3 attenuates EBV lytic gene expression following reactivation. To understand the miRNA targets contributing to this activity, we performed Ago PAR-CLIP analysis on EBV-positive, reactivated Burkitt's lymphoma cells and identified multiple miR-BHRF1-3 interactions with viral transcripts. Using luciferase reporter assays, we confirmed a miRNA interaction site within the 3'UTR of BZLF1 which encodes the essential immediate early (IE) transactivator Zta. Comparison of >850 published EBV genomes identified sequence polymorphisms within the miR-BHRF1-3 locus that deleteriously affect miRNA expression and function. Molecular interactions between the homologous viral miRNA, miR-rL1-17, and IE transcripts encoded by rhesus lymphocryptovirus were further identified. Our data demonstrate that regulation of IE gene expression by a BHRF1 miRNA is conserved amongst lymphocryptoviruses, and further reveal virally-encoded genetic elements that orchestrate viral antigen expression during the lytic cycle. Importance Epstein-Barr virus infection is predominantly latent in healthy individuals, while periodic cycles of reactivation are thought to facilitate persistent lifelong infection. Lytic infection has been linked to development of certain EBV-associated diseases. Here, we demonstrate that EBV miR-BHRF1-3 can suppress lytic replication by directly inhibiting Zta expression. Moreover, we identify nucleotide variants that impact the function of miR-BHRF1-3, which may contribute to specific EBV pathologies.
Collapse
|
25
|
Zhao S, Kong X, Wu X. RNAi-based immunity in insects against baculoviruses and the strategies of baculoviruses involved in siRNA and miRNA pathways to weaken the defense. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104116. [PMID: 33991532 DOI: 10.1016/j.dci.2021.104116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Protection against viral infection in hosts concerns diverse cellular and molecular mechanisms, among which RNA interference (RNAi) response is a vital one. Small interfering RNAs (siRNAs), microRNAs (miRNAs) and PIWI interacting RNAs (piRNAs) are primary categories of small RNAs involved in RNAi response, playing significant roles in restraining viral invasion. However, during a long-term coevolution, viruses have gained the ability to evade, avoid, or suppress antiviral immunity to ensure efficient replication and transmission. Baculoviruses are enveloped, insect-pathogenic viruses with double-stranded circular DNA genomes, which encode suppressors of siRNA pathway and miRNAs targeting immune-related genes to mask the antiviral activity of their hosts. This review summarized recent findings for the RNAi-based antiviral immunity in insects as well as the strategies that baculoviruses exploit to break the shield of host siRNA pathway, and hijack cellular miRNAs or encode their own miRNAs that regulate both viral and cellular gene expression to create a favorable environment for viral infection.
Collapse
Affiliation(s)
- Shudi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xiangshuo Kong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
26
|
Kimura H, Okuno Y, Sato Y, Watanabe T, Murata T. Deletion of Viral microRNAs in the Oncogenesis of Epstein-Barr Virus-Associated Lymphoma. Front Microbiol 2021; 12:667968. [PMID: 34305835 PMCID: PMC8297563 DOI: 10.3389/fmicb.2021.667968] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/08/2021] [Indexed: 12/26/2022] Open
Abstract
Epstein–Barr virus (EBV), which encodes >80 genes and nearly 50 non-coding RNAs, is a double-stranded DNA virus. EBV is associated with various types of lymphomas and lymphoproliferative disorders not only of B-cell but also T/NK-cell origin. However, the oncogenic mechanism remains poorly understood, including the EBV receptors expressed on T/NK cells, relationship of EBV with host genes, and epigenetic regulation of EBV and host genes. The roles of host and viral non-coding RNAs during tumorigenesis have been elucidated. EBV encodes at least 49 mature microRNAs (miRNAs), of which 44 are located in BamHI-A rightward transcripts (BARTs) region, and the remaining five are located in BamHI-H rightward fragment 1. BART miRNAs modulate cell differentiation, proliferation, apoptosis, and the cell cycle, and they are considered positive regulators of oncogenesis. We and others have recently reported that EBV-positive lymphomas frequently possess large deletions in BART miRNA clusters, suggesting that some viral miRNAs have suppressive effects on oncogenesis, and that deletion of these miRNAs may aid lymphoma formation.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Takahiro Watanabe
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
27
|
Münz C. Immune Escape by Non-coding RNAs of the Epstein Barr Virus. Front Microbiol 2021; 12:657387. [PMID: 34234755 PMCID: PMC8257079 DOI: 10.3389/fmicb.2021.657387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/28/2021] [Indexed: 01/20/2023] Open
Abstract
Epstein Barr virus (EBV) is one of the most successful pathogens of humans, persistently colonizing more than 95% of the adult human population. At the same time EBV encodes oncogenes that can readily transform human B cells in culture and threaten healthy virus carriers with lymphomagenesis. Cytotoxic lymphocytes have been identified in experimental models and by primary immunodeficiencies as the main protective immune compartments controlling EBV. EBV has reached a stalemate with these cytotoxic T and innate lymphocytes to ensure persistence in most infected humans. Recent evidence suggests that the non-coding RNAs of the virus contribute to viral immune escape to prevent immune eradication. This knowledge might be used in the future to attenuate EBV for vaccine development against this human tumor virus that was discovered more than 55 years ago.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Li W, Yi W, Yang D, Li G. Epstein -Barr virus -encoded microRNAs involve in tumorigenesis and development. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:300-308. [PMID: 33927078 PMCID: PMC10929937 DOI: 10.11817/j.issn.1672-7347.2021.190744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 11/03/2022]
Abstract
Epstein-Barr virus (EBV), a definite tumorigenic virus, is closely related to the development of nasopharyngeal cancer, gastric cancer, lymphoma and other tumors. EBV encodes a total of 44 mature microRNAs, which can regulate the expression of virus and host genes. EBV-encoded microRNAs and their regulated target molecules participate in the biological functions of tumor apoptosis, proliferation, invasion, and metastasis during tumorigenesis and development, and play an important role in the development of tumor.
Collapse
Affiliation(s)
- Weiming Li
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen Guangdong 518000.
- Institute of Cancer Research, Central South University, Changsha 410078, China.
| | - Weihong Yi
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen Guangdong 518000
| | - Dazhi Yang
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen Guangdong 518000
| | - Guiyuan Li
- Institute of Cancer Research, Central South University, Changsha 410078, China.
| |
Collapse
|
29
|
Abstract
Herpesviruses infect virtually all humans and establish lifelong latency and reactivate to infect other humans. Latency requires multiple functions: maintaining the herpesvirus genome in the nuclei of cells; partitioning the viral genome to daughter cells in dividing cells; avoiding recognition by the immune system by limiting protein expression; producing noncoding viral RNAs (including microRNAs) to suppress lytic gene expression or regulate cellular protein expression that could otherwise eliminate virus-infected cells; modulating the epigenetic state of the viral genome to regulate viral gene expression; and reactivating to infect other hosts. Licensed antivirals inhibit virus replication, but do not affect latency. Understanding of the mechanisms of latency is leading to novel approaches to destroy latently infected cells or inhibit reactivation from latency.
Collapse
|
30
|
Zebardast A, Tehrani SS, Latifi T, Sadeghi F. Critical review of Epstein-Barr virus microRNAs relation with EBV-associated gastric cancer. J Cell Physiol 2021; 236:6136-6153. [PMID: 33507558 DOI: 10.1002/jcp.30297] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 12/24/2022]
Abstract
Epstein-Barr virus (EBV)-associated gastric cancer (EBVaGC) is regarded as the most prevalent malignant tumor triggered by EBV infection. In recent years, increasing attention has been considered to recognize more about the disease process's exact mechanisms. There is accumulating evidence that showing epigenetic modifications play critical roles in the EBVaGC pathogenesis. MicroRNAs (miRNAs), as critical epigenetic modulators, are single-strand short noncoding RNA (length ~ <200 bp), which regulate gene expression through binding to the 3'-untranslated region (3'-UTR) of target RNA transcripts and either degrade or repress their activities. In the latest research on EBV, it was found that this virus could encode miRNAs. Mechanistically, EBV-encoded miRNAs are involved in carcinogenesis and the progression of EBV-associated malignancies. Moreover, these miRNAs implicated in immune evasion, identification of pattern recognition receptors, regulation of lymphocyte activation and lethality, modulation of infected host cell antigen, maintain of EBV infection status, promotion of cell proliferation, invasion and migration, and reduction of apoptosis. As good news, not only has recent data demonstrated the crucial function of EBV-encoded miRNAs in the pathogenesis of EBVaGC, but it has also been revealed that aberrant expression of exosomal miRNAs in EBVaGC has made them biomarkers for detection of EBVaGC. Regarding these substantial characterizes, the critical role of EBV-encoded miRNAs has been a hot topic in research. In this review, we will focus on the multiple mechanisms involved in EBVaGC caused by EBV-encoded miRNAs and briefly discuss their potential application in the clinic as a diagnostic biomarker.
Collapse
Affiliation(s)
- Arghavan Zebardast
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadra S Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Microbiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzin Sadeghi
- Department of Microbiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
31
|
Hutcheson RL, Chakravorty A, Sugden B. Burkitt Lymphomas Evolve to Escape Dependencies on Epstein-Barr Virus. Front Cell Infect Microbiol 2021; 10:606412. [PMID: 33505922 PMCID: PMC7829347 DOI: 10.3389/fcimb.2020.606412] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/27/2020] [Indexed: 01/25/2023] Open
Abstract
Epstein-Barr Virus (EBV) can transform B cells and contributes to the development of Burkitt lymphoma and other cancers. Through decades of study, we now recognize that many of the viral genes required to transform cells are not expressed in EBV-positive Burkitt lymphoma (BL) tumors, likely due to the immune pressure exerted on infected cells. This recognition has led to the hypothesis that the loss of expression of these viral genes must be compensated through some mechanisms. Recent progress in genome-wide mutational analysis of tumors provides a wealth of data about the cellular mutations found in EBV-positive BLs. Here, we review common cellular mutations found in these tumors and consider how they may compensate for the viral genes that are no longer expressed. Understanding these mutations and how they may substitute for EBV's genes and contribute to lymphomagenesis can serve as a launchpad for more mechanistic studies, which will help us navigate the sea of genomic data available today, and direct the discoveries necessary to improve the treatment of EBV-positive BLs.
Collapse
|
32
|
Caetano BFR, Jorge BAS, Müller-Coan BG, Elgui de Oliveira D. Epstein-Barr virus microRNAs in the pathogenesis of human cancers. Cancer Lett 2020; 499:14-23. [PMID: 33248209 DOI: 10.1016/j.canlet.2020.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/29/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022]
Abstract
The Epstein-Barr Virus (EBV) is a gamma-herpesvirus involved with a variety of human cancers, notably the endemic Burkitt lymphoma and nasopharyngeal carcinoma. In 2004, EBV was described as one the first known human oncoviruses to encode viral microRNAs (miRNAs), and these molecules were found to interact with viral and host targets. EBV miRNAs modulate biological processes that are critical for carcinogenesis, contributing to cell transformation and tumor progression of EBV-associated cancers. Herein we review and discuss EBV miRNAs as modulators of viral biology and carcinogenesis, as well as their usefulness as putative markers to monitor the onset, progression, and recurrence of cancers associated with the EBV infection.
Collapse
Affiliation(s)
- Brunno Felipe R Caetano
- São Paulo State University (UNESP), Medical School of Botucatu Av. Prof. Mário Rubens Guimarães Montenegro, s/n. CEP 18618-687, Botucatu, SP, Brazil; São Paulo State University (UNESP), Institute of Biotechnology (IBTEC) Alameda das Tecomarias, s/n. CEP 18607-440, Botucatu, SP, Brazil
| | - Beatrice Adrianne S Jorge
- São Paulo State University (UNESP), Institute of Biosciences of Botucatu R. Prof. Dr. Antônio Celso Wagner Zanin, 250. CEP 18618-689, Botucatu, SP, Brazil; São Paulo State University (UNESP), Institute of Biotechnology (IBTEC) Alameda das Tecomarias, s/n. CEP 18607-440, Botucatu, SP, Brazil
| | - Bárbara Grasiele Müller-Coan
- São Paulo State University (UNESP), Medical School of Botucatu Av. Prof. Mário Rubens Guimarães Montenegro, s/n. CEP 18618-687, Botucatu, SP, Brazil; São Paulo State University (UNESP), Institute of Biotechnology (IBTEC) Alameda das Tecomarias, s/n. CEP 18607-440, Botucatu, SP, Brazil
| | - Deilson Elgui de Oliveira
- São Paulo State University (UNESP), Medical School of Botucatu Av. Prof. Mário Rubens Guimarães Montenegro, s/n. CEP 18618-687, Botucatu, SP, Brazil; São Paulo State University (UNESP), Institute of Biotechnology (IBTEC) Alameda das Tecomarias, s/n. CEP 18607-440, Botucatu, SP, Brazil.
| |
Collapse
|
33
|
Wang H, Liu W, Luo B. The roles of miRNAs and lncRNAs in Epstein-Barr virus associated epithelial cell tumors. Virus Res 2020; 291:198217. [PMID: 33137402 DOI: 10.1016/j.virusres.2020.198217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) infection is highly prevalent in the population and is known to be associated with a variety of human tumors, such as nasopharyngeal carcinoma, gastric cancer, and lymphoma; however, the mechanisms of EBV carcinogenesis remain unclear. Recent studies have revealed that many non-coding RNAs participate in the regulation of proliferation, migration, invasion, and other processes in EBV-associated tumor, and the interaction between ncRNAs and the potential target genes has gradually become a research hotspot. Therefore, here, we discuss the expression and roles of ncRNAs in EBV-associated epithelial tumors.
Collapse
Affiliation(s)
- Hanqing Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Shandong, 266021, China.
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Shandong, 266021, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Shandong, 266021, China.
| |
Collapse
|
34
|
Wu Y, Wang D, Wei F, Xiong F, Zhang S, Gong Z, Shi L, Li X, Xiang B, Ma J, Deng H, He Y, Liao Q, Zhang W, Li X, Li Y, Guo C, Zeng Z, Li G, Xiong W. EBV-miR-BART12 accelerates migration and invasion in EBV-associated cancer cells by targeting tubulin polymerization-promoting protein 1. FASEB J 2020; 34:16205-16223. [PMID: 33094864 DOI: 10.1096/fj.202001508r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/26/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022]
Abstract
Epstein-Barr virus (EBV) infection leads to cancers with an epithelial origin, such as nasopharyngeal cancer and gastric cancer, as well as multiple blood cell-based malignant tumors, such as lymphoma. Interestingly, EBV is also the first virus found to carry genes encoding miRNAs. EBV encodes 25 types of pre-miRNAs which are finally processed into 44 mature miRNAs. Most EBV-encoded miRNAs were found to be involved in the occurrence and development of EBV-related tumors. However, the function of EBV-miR-BART12 remains unclear. The findings of the current study revealed that EBV-miR-BART12 binds to the 3'UTR region of Tubulin Polymerization-Promoting Protein 1 (TPPP1) mRNA and downregulates TPPP1, thereby promoting the invasion and migration of EBV-related cancers, such as nasopharyngeal cancer and gastric cancer. The mechanism underlying this process was found to be the inhibition of TPPP1 by EBV-miRNA-BART12, which, in turn, inhibits the acetylation of α-tubulin, and promotes the dynamic assembly of microtubules, remodels the cytoskeleton, and enhances the acetylation of β-catenin. β-catenin activates epithelial to mesenchymal transition (EMT). These two processes synergistically promote the invasion and metastasis of tumor cells. To the best of our knowledge, this is the first study to reveal the role of EBV-miRNA-BART12 in the development of EBV-related tumors as well as the mechanism underlying this process, and suggests potential targets and strategies for the treatment of EBV-related tumors.
Collapse
Affiliation(s)
- Yingfen Wu
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Dan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Fang Wei
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Jian Ma
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Hao Deng
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi He
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenling Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
35
|
Lung RWM, Tong JHM, Ip LM, Lam KH, Chan AWH, Chak WP, Chung LY, Yeung WW, Hau PM, Chau SL, Tsao SW, Lau KM, Lo KW, To KF. EBV-encoded miRNAs can sensitize nasopharyngeal carcinoma to chemotherapeutic drugs by targeting BRCA1. J Cell Mol Med 2020; 24:13523-13535. [PMID: 33074587 PMCID: PMC7701581 DOI: 10.1111/jcmm.16007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an Epstein‐Barr virus (EBV)‐associated epithelial malignancy. The high expression of BART‐miRNAs (miR‐BARTs) during latent EBV infection in NPC strongly supports their pathological importance in cancer progression. Recently, we found that several BART‐miRNAs work co‐operatively to modulate the DNA damage response (DDR) by reducing Ataxia‐telangiectasia‐mutated (ATM) activity. In this study, we further investigated the role of miR‐BARTs on DDR. The immunohistochemical study showed that the DNA repair gene, BRCA1, is consistently down‐regulated in primary NPCs. Using computer prediction programs and a series of reporter assays, we subsequently identified the negative regulatory role of BART2‐3p, BART12, BART17‐5p and BART19‐3p in BRCA1 expression. The ectopic expression of these four miR‐BARTs suppressed endogenous BRCA1 expression in EBV‐negative epithelial cell lines, whereas BRCA1 expression was enhanced by repressing endogenous miR‐BARTs activities in C666‐1 cells. More importantly, suppressing BRCA1 expression in nasopharyngeal epithelial cell lines using miR‐BART17‐5p and miR‐BART19‐3p mimics reduced the DNA repair capability and increased the cell sensitivity to the DNA‐damaging chemotherapeutic drugs, cisplatin and doxorubicin. Our findings suggest that miR‐BARTs play a novel role in DDR and may facilitate the development of effective NPC therapies.
Collapse
Affiliation(s)
- Raymond Wai-Ming Lung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Joanna Hung-Man Tong
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Lok-Man Ip
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka-Hei Lam
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Anthony Wing-Hung Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Po Chak
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Lau-Ying Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Walter Wai Yeung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Pok-Man Hau
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuk-Ling Chau
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Sai-Wah Tsao
- Department of Biomedical Sciences and Center of Nasopharyngeal Carcinoma Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China
| | - Kin-Mang Lau
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
36
|
De Re V, Caggiari L, De Zorzi M, Fanotto V, Miolo G, Puglisi F, Cannizzaro R, Canzonieri V, Steffan A, Farruggia P, Lopci E, d'Amore ESG, Burnelli R, Mussolin L, Mascarin M. Epstein-Barr virus BART microRNAs in EBV- associated Hodgkin lymphoma and gastric cancer. Infect Agent Cancer 2020; 15:42. [PMID: 32582365 PMCID: PMC7310352 DOI: 10.1186/s13027-020-00307-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Background EBV produces miRNAs with important functions in cancer growth, tumor invasion and host immune surveillance. The discovery of EBV miR-BARTs is recent, and most of their functions are still unknown. Nonetheless, some new studies underline their key roles in EBV-associated malignancies. Main body In EBV-associated tumors, the expression profile of miR-BARTs varies according to the cell type, autophagic process and signals received from the tumor microenvironment. By the same way of interest is the interaction between tumor cells and the tumor environment by the release of selected EBV miR-BARTs in addition to the tumor proteins trough tumor exosomes. Conclusion In this review, we discuss new findings regarding EBV miR-BARTs in Hodgkin lymphoma and gastric cancer. The recent discovery that miRNAs are released by exosomes, including miR-BARTs, highlights the importance of tumor and microenvironment interplay with more specific effects on the host immune response.
Collapse
Affiliation(s)
- Valli De Re
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, PN Italy
| | - Laura Caggiari
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, PN Italy
| | - Mariangela De Zorzi
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, PN Italy
| | - Valentina Fanotto
- Medical Oncology and Cancer Prevention, Department of Medical Oncology, IRCCS, Centro di Riferimento Oncologico di Aviano (CRO), Aviano, PN Italy
| | - Gianmaria Miolo
- Medical Oncology and Cancer Prevention, Department of Medical Oncology, IRCCS, Centro di Riferimento Oncologico di Aviano (CRO), Aviano, PN Italy
| | - Fabio Puglisi
- Medical Oncology and Cancer Prevention, Department of Medical Oncology, IRCCS, Centro di Riferimento Oncologico di Aviano (CRO), Aviano, PN Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - Renato Cannizzaro
- Gastroenterology, Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, PN Italy.,Pathology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), Aviano, PN Italy
| | - Vincenzo Canzonieri
- Department of Medical, Surgical and Health Sciences, University of Trieste Medical School, Trieste, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, PN Italy
| | - Piero Farruggia
- Pediatric Hematology and Oncology Unit, Oncology, Department, A.R.N.A.S. Ospedali Civico Di Cristina e Benfratelli, Palermo, PN Italy
| | - Egesta Lopci
- Nuclear Medicine Department, Humanitas Clinical and Research Hospital, Via Manzoni 56, 20089 Rozzano, MI Italy
| | | | - Roberta Burnelli
- Pediatric Hematology-Oncology, Azienda Ospedaliera Universitaria, Ospedale Sant'Anna, Ferrara, FE Italy
| | - Lara Mussolin
- Pediatric Hemato-Oncology Clinic, Department of Women's and Children's Health, University of Padua, Institute of Paediatric Research Fondazione Città della Speranza, Padua, PD Italy
| | - Maurizio Mascarin
- Pediatric Radiotherapy Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, PN Italy
| |
Collapse
|
37
|
Iizasa H, Kim H, Kartika AV, Kanehiro Y, Yoshiyama H. Role of Viral and Host microRNAs in Immune Regulation of Epstein-Barr Virus-Associated Diseases. Front Immunol 2020; 11:367. [PMID: 32194570 PMCID: PMC7062708 DOI: 10.3389/fimmu.2020.00367] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic human herpes virus that was discovered in 1964. Viral non-coding RNAs, such as BamHI-A rightward fragment-derived microRNAs (BART miRNAs) or BamHI-H rightward fragment 1-derived miRNAs (BHRF1 miRNA) in EBV-infected cells have been recently reported. Host miRNAs are also upregulated upon EBV infection. Viral and host miRNAs are important in maintaining viral infection and evasion of host immunity. Although miRNAs in EBV-infected cells often promote cell proliferation by targeting apoptosis or cell cycle, this review focuses on the regulation of the recognition of the host immune system. This review firstly describes the location and organization of two clusters of viral miRNAs, then describes evasion from host immune surveillance systems by modulating viral gene expression or inhibiting innate and acquired immunity by viral miRNAs as well as host miRNAs. Another topic is the enigmatic depletion of viral miRNAs in several types of EBV-infected tumor cells. Finally, this review introduces the strong correlation of nasopharyngeal cancer cases with a newly identified single nucleotide polymorphism that enhances BART miRNA promoter activity.
Collapse
Affiliation(s)
- Hisashi Iizasa
- Department of Microbiology, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Hyoji Kim
- Department of Microbiology, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Andy Visi Kartika
- Department of Microbiology, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Yuichi Kanehiro
- Department of Microbiology, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Hironori Yoshiyama
- Department of Microbiology, Faculty of Medicine, Shimane University, Shimane, Japan
| |
Collapse
|
38
|
Liu W, Luo B. The impact of EBV on the epigenetics of gastric carcinoma. Future Virol 2020. [DOI: 10.2217/fvl-2019-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
EBV is an important human tumor virus and is closely related to the occurrence of a variety of tumors, involving 10% of gastric cancer. In EBV-associated gastric carcinoma (EBVaGC), EBV expresses restrict viral genes including EBV nuclear antigen 1, EBV encoded small RNAs, Bam HI-A rightward transcripts, latent membrane protein 2A and miRNAs. The role of EBV in gastric carcinogenesis has received increasing attention and is considered to be another pathogenic factor in addition to Helicobacter pylori. A typical characteristic of EBVaGC is the extensive methylation of viral and host genome. Combined with other epigenetic mechanisms, EBV infection acts as an epigenetic driver of EBVaGC oncogenesis. In this review we discuss recent findings of EBV effect on host epigenetic alterations in EBVaGC and its role in oncogenic process.
Collapse
Affiliation(s)
- Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, PR China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, PR China
| |
Collapse
|
39
|
Yoon JH, Min K, Lee SK. Epstein-Barr Virus miR-BART17-5p Promotes Migration and Anchorage-Independent Growth by Targeting Kruppel-Like Factor 2 in Gastric Cancer. Microorganisms 2020; 8:microorganisms8020258. [PMID: 32075248 PMCID: PMC7074886 DOI: 10.3390/microorganisms8020258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/24/2022] Open
Abstract
Epstein-Barr virus (EBV) infects more than 90% of the global population and is associated with a variety of tumors including nasopharyngeal carcinoma, Hodgkin lymphoma, natural killer/T lymphoma, and gastric carcinoma. In EBV-associated gastric cancer (EBVaGC), highly expressed EBV BamHI A rightward transcripts (BART) miRNAs may contribute to tumorigenesis with limited viral antigens. Despite previous studies on the targets of BART miRNAs, the functions of all 44 BART miRNAs have not been fully clarified. Here, we used RNA sequencing data from the Cancer Genome Atlas to find genes with decreased expression in EBVaGC. Furthermore, we used AGS cells infected with EBV to determine whether expression was reduced by BART miRNA. We showed that the expression of Kruppel-like factor 2 (KLF2) is lower in AGS-EBV cells than in the AGS control. Using bioinformatics analysis, four BART miRNAs were selected to check whether they suppress KLF2 expression. We found that only miR-BART17-5p directly down-regulated KLF2 and promoted gastric carcinoma cell migration and anchorage-independent growth. Our data suggest that KLF2 functions as a tumor suppressor in EBVaGC and that miR-BART17-5p may be a valuable target for effective EBVaGC treatment.
Collapse
Affiliation(s)
| | | | - Suk Kyeong Lee
- Correspondence: ; Tel.: +82-2-2258-7480; Fax: +82-504-201-2396
| |
Collapse
|
40
|
Mishra R, Kumar A, Ingle H, Kumar H. The Interplay Between Viral-Derived miRNAs and Host Immunity During Infection. Front Immunol 2020; 10:3079. [PMID: 32038626 PMCID: PMC6989438 DOI: 10.3389/fimmu.2019.03079] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/17/2019] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs are short non-coding RNAs that play a crucial role in the regulation of gene expression during cellular processes. The host-encoded miRNAs are known to modulate the antiviral defense during viral infection. In the last decade, multiple DNA and RNA viruses have been shown to produce miRNAs known as viral miRNAs (v-miRNAs) so as to evade the host immune response. In this review, we highlight the origin and biogenesis of viral miRNAs during the viral lifecycle. We also explore the role of viral miRNAs in immune evasion and hence in maintaining chronic infection and disease. Finally, we offer insights into the underexplored role of viral miRNAs as potential targets for developing therapeutics for treating complex viral diseases.
Collapse
Affiliation(s)
- Richa Mishra
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Ashish Kumar
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Harshad Ingle
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Himanshu Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- Laboratory of Host Defense, WPI Immunology, Frontier Research Centre, Osaka University, Osaka, Japan
| |
Collapse
|
41
|
Tsang CM, Lui VWY, Bruce JP, Pugh TJ, Lo KW. Translational genomics of nasopharyngeal cancer. Semin Cancer Biol 2019; 61:84-100. [PMID: 31521748 DOI: 10.1016/j.semcancer.2019.09.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022]
Abstract
Nasopharyngeal carcinoma (NPC), also named the Cantonese cancer, is a unique cancer with strong etiological association with infection of the Epstein-Barr virus (EBV). With particularly high prevalence in Southeast Asia, the involvement of EBV and genetic aberrations contributive to NPC tumorigenesis have remained unclear for decades. Recently, genomic analysis of NPC has defined it as a genetically homogeneous cancer, driven largely by NF-κB signaling caused by either somatic aberrations of NF-κB negative regulators or by overexpression of the latent membrane protein 1 (LMP1), an EBV viral oncoprotein. This represents a landmark finding of the NPC genome. Exome and RNA sequencing data from new EBV-positive NPC models also highlight the importance of PI3K pathway aberrations in NPC. We also realize for the first time that NPC mutational burden, mutational signatures, MAPK/PI3K aberrations, and MHC Class I gene aberrations, are prognostic for patient outcome. Together, these multiple genomic discoveries begin to shape the focus of NPC therapy development. Given the challenge of NF-κB targeting in human cancers, more innovative drug discovery approaches should be explored to target the unique atypical NF-κB activation feature of NPC. Our next decade of NPC research should focus on further identification of the -omic landscapes of recurrent and metastatic NPC, development of gene-based precision medicines, as well as large-scale drug screening with the newly developed and well-characterized EBV-positive NPC models. Focused preclinical and clinical investigations on these major directions may identify new and effective targeting strategies to further improve survival of NPC patients.
Collapse
Affiliation(s)
- Chi Man Tsang
- Department of Anatomical and cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Jeffrey P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada; Ontario Institute for Cancer Research, Toronto, ON, M5G 1L7, Canada
| | - Kwok Wai Lo
- Department of Anatomical and cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
42
|
Münz C. Latency and lytic replication in Epstein-Barr virus-associated oncogenesis. Nat Rev Microbiol 2019; 17:691-700. [PMID: 31477887 DOI: 10.1038/s41579-019-0249-7] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/19/2022]
Abstract
Epstein-Barr virus (EBV) was the first tumour virus identified in humans. The virus is primarily associated with lymphomas and epithelial cell cancers. These tumours express latent EBV antigens and the oncogenic potential of individual latent EBV proteins has been extensively explored. Nevertheless, it was presumed that the pro-proliferative and anti-apoptotic functions of these oncogenes allow the virus to persist in humans; however, recent evidence suggests that cellular transformation is not required for virus maintenance. Vice versa, lytic EBV replication was assumed to destroy latently infected cells and thereby inhibit tumorigenesis, but at least the initiation of the lytic cycle has now been shown to support EBV-driven malignancies. In addition to these changes in the roles of latent and lytic EBV proteins during tumorigenesis, the function of non-coding RNAs has become clearer, suggesting that they might mainly mediate immune escape rather than cellular transformation. In this Review, these recent findings will be discussed with respect to the role of EBV-encoded oncogenes in viral persistence and the contributions of lytic replication as well as non-coding RNAs in virus-driven tumour formation. Accordingly, early lytic EBV antigens and attenuated viruses without oncogenes and microRNAs could be harnessed for immunotherapies and vaccination.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
43
|
Bullard WL, Kara M, Gay LA, Sethuraman S, Wang Y, Nirmalan S, Esemenli A, Feswick A, Hoffman BA, Renne R, Tibbetts SA. Identification of murine gammaherpesvirus 68 miRNA-mRNA hybrids reveals miRNA target conservation among gammaherpesviruses including host translation and protein modification machinery. PLoS Pathog 2019; 15:e1007843. [PMID: 31393953 PMCID: PMC6687095 DOI: 10.1371/journal.ppat.1007843] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023] Open
Abstract
Gammaherpesviruses, including the human pathogens Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), establish lifelong latent infection in B cells and are associated with a variety of tumors. In addition to protein coding genes, these viruses encode numerous microRNAs (miRNAs) within their genomes. While putative host targets of EBV and KSHV miRNAs have been previously identified, the specific functions of these miRNAs during in vivo infection are largely unknown. Murine gammaherpesvirus 68 (MHV68) is a natural pathogen of rodents that is genetically related to both EBV and KSHV, and thus serves as an excellent model for the study of EBV and KSHV genetic elements such as miRNAs in the context of infection and disease. However, the specific targets of MHV68 miRNAs remain completely unknown. Using a technique known as qCLASH (quick crosslinking, ligation, and sequencing of hybrids), we have now identified thousands of Ago-associated, direct miRNA-mRNA interactions during lytic infection, latent infection and reactivation from latency. Validating this approach, detailed molecular analyses of specific interactions demonstrated repression of numerous host mRNA targets of MHV68 miRNAs, including Arid1a, Ctsl, Ifitm3 and Phc3. Notably, of the 1,505 MHV68 miRNA-host mRNA targets identified in B cells, 86% were shared with either EBV or KSHV, and 64% were shared among all three viruses, demonstrating significant conservation of gammaherpesvirus miRNA targeting. Pathway analysis of MHV68 miRNA targets further revealed enrichment of cellular pathways involved in protein synthesis and protein modification, including eIF2 Signaling, mTOR signaling and protein ubiquitination, pathways also enriched for targets of EBV and KSHV miRNAs. These findings provide substantial new information about specific targets of MHV68 miRNAs and shed important light on likely conserved functions of gammaherpesvirus miRNAs. Gammaherpesviruses, including the human pathogens Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), establish lifelong infections and are associated with a variety of tumors. These viruses encode numerous molecules called microRNAs (miRNAs) within their genomes, which target and suppress the products of specific genes within infected host cells. However, the function of these miRNAs during in vivo infection is largely unknown. Murine gammaherpesvirus 68 (MHV68) is a natural pathogen of rodents that is genetically related to both EBV and KSHV, and thus serves as an excellent model for the study of EBV and KSHV. Here, we describe the identification and validation of thousands of new MHV68 miRNA targets. Notably, 86% of the MHV68 miRNA targets identified were shared with either EBV or KSHV, and 64% were shared among all three viruses. Further analyses revealed enrichment of cellular pathways involved in protein synthesis and protein modification, including pathways also enriched for targets of EBV and KSHV miRNAs. These findings provide substantial new information about specific targets of MHV68 miRNAs and shed important light on likely conserved functions of gammaherpesvirus miRNAs.
Collapse
Affiliation(s)
- Whitney L. Bullard
- Dept. of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Mehmet Kara
- Dept. of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Lauren A. Gay
- Dept. of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Sunantha Sethuraman
- Dept. of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Yiping Wang
- Dept. of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Shreya Nirmalan
- Dept. of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Alim Esemenli
- Dept. of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - April Feswick
- Dept. of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Brett A. Hoffman
- Dept. of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Rolf Renne
- Dept. of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Scott A. Tibbetts
- Dept. of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
44
|
Weed DJ, Damania B. Pathogenesis of Human Gammaherpesviruses: Recent Advances. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 6:166-174. [PMID: 33134035 PMCID: PMC7597832 DOI: 10.1007/s40588-019-00127-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF THIS REVIEW Human gammaherpesviruses have complex lifecycles that drive their pathogenesis. KSHV and EBV are the etiological agents of multiple cancers worldwide. There is no FDA-approved vaccine for either KSHV or EBV. This review will describe recent progress in understanding EBV and KSHV lifecycles during infection. RECENT FINDINGS Determining how latency is established, particularly how non-coding RNAs influence latent and lytic infection, is a rapidly growing area of investigation into how gammaherpesviruses successfully persist in the human population. Many factors have been identified as restrictors of reactivation from latency, especially innate immune antagonism. Finally, new host proteins that play a role in lytic replication have been identified. SUMMARY In this review we discuss recent findings over the last 5 years on both host and viral factors that are involved in EBV and KSHV pathogenesis.
Collapse
Affiliation(s)
- Darin J Weed
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| |
Collapse
|
45
|
Gao L, Han H, Wang H, Cao L, Feng WH. IL-10 knockdown with siRNA enhances the efficacy of Doxorubicin chemotherapy in EBV-positive tumors by inducing lytic cycle via PI3K/p38 MAPK/NF-kB pathway. Cancer Lett 2019; 462:12-22. [PMID: 31352079 DOI: 10.1016/j.canlet.2019.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/02/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022]
Abstract
High levels of IL-10 expression in Epstein-Barr virus (EBV) associated tumors have been reported and it is likely to be important for maintaining EBV latency and EBV-associated tumors. The switch from the latent form of EBV to the lytic form in tumor cells can lead to tumor cell lysis. Here, we found that knockdown of IL-10 induced EBV lytic replication. Subsequently, we demonstrated that IL-10 knockdown activated BZLF1 promoter through PI3K-p38 MAPK-NF-κB signaling pathway. Interestingly, we verified that VEGF-A was required for IL-10 knockdown to activate PI3K signaling and the accompanying EBV lytic induction. Exogenous recombinant human VEGF-A induced PI3K activation and EBV lytic infection, and inhibition of VEGF-A signaling prevented the PI3K/AKT phosphorylation and EBV reactivation responded to IL-10 knockdown. Most importantly, IL-10 knockdown synergized with chemotherapeutic agent Doxorubicin to kill EBV associated tumor cells in vitro and repress EBV-positive tumor growth in vivo. Our results suggest that inhibition of IL-10 has the potential to serve as a new supplemental strategy for the treatment of EBV-associated tumors.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Agrobiotechnology, Beijing, 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China; China Academy of Medicine Sciences, Peking Union Medical College, Institute of Medicinal Plant Development, Beijing, 100193, China
| | - Haige Han
- State Key Laboratory of Agrobiotechnology, Beijing, 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Honglei Wang
- State Key Laboratory of Agrobiotechnology, Beijing, 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Li Cao
- China Academy of Medicine Sciences, Peking Union Medical College, Institute of Medicinal Plant Development, Beijing, 100193, China
| | - Wen-Hai Feng
- State Key Laboratory of Agrobiotechnology, Beijing, 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
46
|
Hancock MH, Skalsky RL. Roles of Non-coding RNAs During Herpesvirus Infection. Curr Top Microbiol Immunol 2019; 419:243-280. [PMID: 28674945 DOI: 10.1007/82_2017_31] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Non-coding RNAs (ncRNAs) play essential roles in multiple aspects of the life cycles of herpesviruses and contribute to lifelong persistence of herpesviruses within their respective hosts. In this chapter, we discuss the types of ncRNAs produced by the different herpesvirus families during infection, some of the cellular ncRNAs manipulated by these viruses, and the overall contributions of ncRNAs to the viral life cycle, influence on the host environment, and pathogenesis.
Collapse
Affiliation(s)
- Meaghan H Hancock
- Vaccine and Gene Therapy Institute at Oregon Health and Science University, Beaverton, OR, USA
| | - Rebecca L Skalsky
- Vaccine and Gene Therapy Institute at Oregon Health and Science University, Beaverton, OR, USA.
| |
Collapse
|
47
|
Song H, Lim Y, Im H, Bae JM, Kang GH, Ahn J, Baek D, Kim TY, Yoon SS, Koh Y. Interpretation of EBV infection in pan-cancer genome considering viral life cycle: LiEB (Life cycle of Epstein-Barr virus). Sci Rep 2019; 9:3465. [PMID: 30837539 PMCID: PMC6401378 DOI: 10.1038/s41598-019-39706-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
We report a novel transcriptomic analysis workflow called LiEB (Life cycle of Epstein-Barr virus) to characterize distributions of oncogenic virus, Epstein-Barr virus (EBV) infection in human tumors. We analyzed 851 The Cancer Genome Atlas whole-transcriptome sequencing (WTS) data to investigate EBV infection by life cycle information using three-step LiEB workflow: 1) characterize virus infection generally; 2) align transcriptome sequences against a hybrid human-EBV genome, and 3) quantify EBV gene expression. Our results agreed with EBV infection status of public cell line data. Analysis in stomach adenocarcinoma identified EBV-positive cases involving PIK3CA mutations and/or CDKN2A silencing with biologically more determination, compared to previous reports. In this study, we found that a small number of colorectal adenocarcinoma cases involved with EBV lytic gene expression. Expression of EBV lytic genes was also observed in 3% of external colon cancer cohort upon WTS analysis. Gene set enrichment analysis showed elevated expression of genes related to E2F targeting and interferon-gamma responses in EBV-associated tumors. Finally, we suggest that interpretation of EBV life cycle is essential when analyzing its infection in tumors, and LiEB provides high capability of detecting EBV-positive tumors. Observation of EBV lytic gene expression in a subset of colon cancers warrants further research.
Collapse
Affiliation(s)
- Hyojin Song
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoojoo Lim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hogune Im
- Genome Opinion, Ansan, Gyeonggi-do, Republic of Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Junhak Ahn
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Daehyun Baek
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tae-You Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sung-Soo Yoon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Youngil Koh
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea. .,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
48
|
Dong M, Chen JN, Huang JT, Gong LP, Shao CK. The roles of EBV-encoded microRNAs in EBV-associated tumors. Crit Rev Oncol Hematol 2019; 135:30-38. [PMID: 30819444 DOI: 10.1016/j.critrevonc.2019.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022] Open
Abstract
Epstein-Barr virus (EBV) is believed to be a pathogen causing a number of human cancers, but the pathogenic mechanisms remain unclear. An increasing number of studies have indicated that EBV-encoded microRNAs (EBV miRNAs) are expressed in a latency type- and tumor type-dependent manner, playing important roles in the development and progression of EBV-associated tumors. By targeting one or more genes of the virus and the host, EBV miRNAs are responsible for the deregulation of a variety of viral and host cell biological processes, including viral replication, latency maintenance, immune evasion, cell apoptosis and metabolism, and tumor proliferation and metastasis. In addition, some EBV miRNAs can be used as excellent diagnostic, prognostic and treatment efficacy predictive biomarkers for EBV-associated tumors. More importantly, EBV miRNA-targeting therapeutics have emerged and have been developing rapidly, which may open a new era in the treatment of EBV-associated tumors in the near future.
Collapse
Affiliation(s)
- Min Dong
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jian-Ning Chen
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jun-Ting Huang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Li-Ping Gong
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chun-Kui Shao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
49
|
Wang J, Zheng X, Qin Z, Wei L, Lu Y, Peng Q, Gao Y, Zhang X, Zhang X, Li Z, Fu Y, Liu P, Liu C, Yan Q, Xiong W, Li G, Lu J, Ma J. Epstein-Barr virus miR-BART3-3p promotes tumorigenesis by regulating the senescence pathway in gastric cancer. J Biol Chem 2019; 294:4854-4866. [PMID: 30674552 DOI: 10.1074/jbc.ra118.006853] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/14/2019] [Indexed: 12/25/2022] Open
Abstract
Epstein-Barr virus-associated gastric cancer (EBVaGC) accounts for about 10% of all gastric cancer cases and has unique pathological and molecular characteristics. EBV encodes a large number of microRNAs, which actively participate in the development of EBV-related tumors. Here, we report that EBV-miR-BART3-3p (BART3-3p) promotes gastric cancer cell growth in vitro and in vivo Moreover, BART3-3p inhibits the senescence of gastric cancer cells induced by an oncogene (RASG12V) or chemotherapy (irinotecan). LMP1 and EBNA3C encoded by EBV have also been reported to have antisenescence effects; however, in EBVaGC specimens, LMP1 expression is very low, and EBNA3C is not expressed. BART3-3p inhibits senescence of gastric cancer cells in a nude mouse model and inhibits the infiltration of natural killer cells and macrophages in tumor by altering the senescence-associated secretory phenotype (SASP). Mechanistically, BART3-3p directly targeted the tumor suppressor gene TP53 and caused down-regulation of p53's downstream target, p21. Analysis from clinical EBVaGC samples also showed a negative correlation between BART3-3p and TP53 expression. It is well known that mutant oncogene RASG12V or chemotherapeutic drugs can induce senescence, and here we show that both RASG12V and a chemotherapy drug also can induce BART3-3p expression in EBV-positive gastric cancer cells, forming a feedback loop that keeps the EBVaGC senescence at a low level. Our results suggest that, although TP53 is seldom mutated in EBVaGC, its expression is finely regulated such that EBV-encoded BART3-3p may play an important role by inhibiting the senescence of gastric cancer cells.
Collapse
Affiliation(s)
- Jia Wang
- From the Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.,Cancer Research Institute, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China.,Department of Immunology, Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Xiang Zheng
- Cancer Research Institute, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Translational Radiation Oncology, Changsha 410013, China
| | - Zailong Qin
- Cancer Research Institute, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Changsha 410013, China
| | - Lingyu Wei
- Cancer Research Institute, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China.,National Health Commission Key Laboratory of Carcinogenesis (Central South University), Changsha 410078, China
| | - Yuanjun Lu
- Cancer Research Institute, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha 410078, China, and
| | - Qiu Peng
- Cancer Research Institute, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Yingxue Gao
- Cancer Research Institute, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Xuemei Zhang
- Cancer Research Institute, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Xiaoyue Zhang
- Cancer Research Institute, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Zhengshuo Li
- Cancer Research Institute, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Yuxin Fu
- Cancer Research Institute, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Peishan Liu
- Cancer Research Institute, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Can Liu
- Cancer Research Institute, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Xiong
- Cancer Research Institute, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China.,National Health Commission Key Laboratory of Carcinogenesis (Central South University), Changsha 410078, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha 410078, China, and
| | - Guiyuan Li
- Cancer Research Institute, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China.,National Health Commission Key Laboratory of Carcinogenesis (Central South University), Changsha 410078, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha 410078, China, and
| | - Jianhong Lu
- Cancer Research Institute, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China,
| | - Jian Ma
- From the Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China, .,Cancer Research Institute, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Changsha 410013, China.,National Health Commission Key Laboratory of Carcinogenesis (Central South University), Changsha 410078, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha 410078, China, and
| |
Collapse
|
50
|
Defective Epstein-Barr virus in chronic active infection and haematological malignancy. Nat Microbiol 2019; 4:404-413. [PMID: 30664667 DOI: 10.1038/s41564-018-0334-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023]
Abstract
Epstein-Barr virus (EBV) infection is highly prevalent in humans and is implicated in various diseases, including cancer1,2. Chronic active EBV infection (CAEBV) is an intractable disease classified as a lymphoproliferative disorder in the 2016 World Health Organization lymphoma classification1,2. CAEBV is characterized by EBV-infected T/natural killer (NK) cells and recurrent/persistent infectious mononucleosis-like symptoms3. Here, we show that CAEBV originates from an EBV-infected lymphoid progenitor that acquires DDX3X and other mutations, causing clonal evolution comprising multiple cell lineages. Conspicuously, the EBV genome in CAEBV patients harboured frequent intragenic deletions (27/77) that were also common in various EBV-associated neoplastic disorders (28/61), including extranodal NK/T-cell lymphoma and EBV-positive diffuse large B-cell lymphoma, but were not detected in infectious mononucleosis or post-transplant lymphoproliferative disorders (0/47), which suggests a unique role of these mutations in neoplastic proliferation of EBV-infected cells. These deletions frequently affected BamHI A rightward transcript microRNA clusters (31 cases) and several genes that are essential for producing viral particles (20 cases). The deletions observed in our study are thought to reactivate the lytic cycle by upregulating the expression of two immediate early genes, BZLF1 and BRLF14-7, while averting viral production and subsequent cell lysis. In fact, the deletion of one of the essential genes, BALF5, resulted in upregulation of the lytic cycle and the promotion of lymphomagenesis in a xenograft model. Our findings highlight a pathogenic link between intragenic EBV deletions and EBV-associated neoplastic proliferations.
Collapse
|