1
|
Emralino FL, Satoh S, Sakai N, Takami M, Takeuchi F, Yan N, Rutsch F, Fujita T, Kato H. Double-Stranded RNA Induces Mortality in an MDA5-Mediated Type I Interferonopathy Model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2093-2103. [PMID: 36426976 DOI: 10.4049/jimmunol.2200367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/22/2022] [Indexed: 01/04/2023]
Abstract
Gain-of-function mutations in the viral dsRNA sensor melanoma differentiation-associated protein 5 (MDA5) lead to autoimmune IFNopathies, including Singleton-Merten syndrome (SMS) and Aicardi-Goutières syndrome. However, much remains unclear regarding the mechanism of disease progression and how external factors such as infection or immune stimulation with vaccination can affect the immune response. With this aim, we generated mice with human MDA5 bearing the SMS-associated mutation R822Q (hM-R822Q). hM-R822Q transgenic (Tg) mice developed SMS-like heart fibrosis, aortic valve enlargement, and aortic calcification with a systemic IFN-stimulated gene signature resulting in the activation of the adaptive immune response. Although administration of the viral dsRNA mimic polyinosinic-polycytidylic acid [poly(I:C)] did not have remarkable effects on the cardiac phenotype, dramatic inflammation was observed in the intestines where IFN production was most elevated. Poly(I:C)-injected hM-R822Q Tg mice also developed lethal hypercytokinemia marked by massive IL-6 levels in the serum. Interrupting the IFN signaling through mitochondrial antiviral signaling protein or IFN-α/β receptor alleviated hM-R822Q-induced inflammation. Furthermore, inhibition of JAK signaling with tofacitinib reduced cytokine production and ameliorated mucosal damage, enabling the survival of poly(I:C)-injected hM-R822Q Tg mice. These findings demonstrate that the MDA5 R822Q mutant introduces a critical risk factor for uncontrollable inflammation on viral infection or vaccination.
Collapse
Affiliation(s)
- Francine Lianne Emralino
- Laboratory of Molecular and Cellular Immunology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, Kyoto University, Kyoto, Japan
| | - Saya Satoh
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Nobuhiro Sakai
- Department of Pharmacology, School of Dentistry, Showa University, Tokyo, Japan
| | - Masamichi Takami
- Department of Pharmacology, School of Dentistry, Showa University, Tokyo, Japan
| | - Fumihiko Takeuchi
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, Kyoto University, Kyoto, Japan
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern, Medical Center, Dallas, TX.,Department of Microbiology, University of Texas Southwestern, Medical Center, Dallas, TX; and
| | - Frank Rutsch
- Department of General Pediatrics, Muenster University Children's Hospital, Albert-Schweitzer Campus 1, Muenster, Germany
| | - Takashi Fujita
- Laboratory of Molecular and Cellular Immunology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, Kyoto University, Kyoto, Japan.,Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Hiroki Kato
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, Kyoto University, Kyoto, Japan.,Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Kirsebom F, Michalaki C, Agueda-Oyarzabal M, Johansson C. Neutrophils do not impact viral load or the peak of disease severity during RSV infection. Sci Rep 2020; 10:1110. [PMID: 31980667 PMCID: PMC6981203 DOI: 10.1038/s41598-020-57969-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 01/07/2020] [Indexed: 11/30/2022] Open
Abstract
Lung and airway neutrophils are a hallmark of severe disease in infants with respiratory syncytial virus (RSV)-induced lower respiratory tract infections. Despite their abundance in the lungs during RSV infection of both mice and man, the role of neutrophils in viral control and in immune pathology is not clear. Here, antibody mediated neutrophil depletion was used to investigate the degree to which neutrophils impact the lung immune environment, the control of viral replication and the peak severity of disease after RSV infection of mice. Neutrophil depletion did not substantially affect the levels of inflammatory mediators such as type I interferons, IL-6, TNF-α or IL-1β in response to RSV. In addition, the lack of neutrophils did not change the viral load during RSV infection. Neither neutrophil depletion nor the enhancement of lung neutrophils by administration of the chemoattractant CXCL1 during RSV infection affected disease severity as measured by weight loss. Therefore, in this model of RSV infection, lung neutrophils do not offer obvious benefits to the host in terms of increasing anti-viral inflammatory responses or restricting viral replication and neutrophils do not contribute to disease severity.
Collapse
Affiliation(s)
- Freja Kirsebom
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | - Cecilia Johansson
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
3
|
Kumawat K, Geerdink RJ, Hennus MP, Roda MA, van Ark I, Leusink-Muis T, Folkerts G, van Oort-Jansen A, Mazharian A, Watson SP, Coenjaerts FE, Bont L, Meyaard L. LAIR-1 Limits Neutrophilic Airway Inflammation. Front Immunol 2019; 10:842. [PMID: 31080449 PMCID: PMC6497752 DOI: 10.3389/fimmu.2019.00842] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022] Open
Abstract
Neutrophils are crucial to antimicrobial defense, but excessive neutrophilic inflammation induces immune pathology. The mechanisms by which neutrophils are regulated to prevent injury and preserve tissue homeostasis are not completely understood. We recently identified the collagen receptor leukocyte-associated immunoglobulin-like receptor (LAIR)-1 as a functional inhibitory receptor on airway-infiltrated neutrophils in viral bronchiolitis patients. In the current study, we sought to examine the role of LAIR-1 in regulating airway neutrophil responses in vivo. LAIR-1-deficient (Lair1-/-) and wild-type mice were infected with respiratory syncytial virus (RSV) or exposed to cigarette smoke as commonly accepted models of neutrophil-driven lung inflammation. Mice were monitored for cellular airway influx, weight loss, cytokine production, and viral loads. After RSV infection, Lair1-/- mice show enhanced airway inflammation accompanied by increased neutrophil and lymphocyte recruitment to the airways, without effects on viral loads or cytokine production. LAIR-1-Fc administration in wild type mice, which blocks ligand induced LAIR-1 activation, augmented airway inflammation recapitulating the observations in Lair1-/- mice. Likewise, in the smoke-exposure model, LAIR-1 deficiency enhanced neutrophil recruitment to the airways and worsened disease severity. Intranasal CXCL1-mediated neutrophil recruitment to the airways was enhanced in mice lacking LAIR-1, supporting an intrinsic function of LAIR-1 on neutrophils. In conclusion, the immune inhibitory receptor LAIR-1 suppresses neutrophil tissue migration and acts as a negative regulator of neutrophil-driven airway inflammation during lung diseases. Following our recent observations in humans, this study provides crucial in-vivo evidence that LAIR-1 is a promising target for pharmacological intervention in such pathologies.
Collapse
Affiliation(s)
- Kuldeep Kumawat
- Laboratory for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ruben J. Geerdink
- Laboratory for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marije P. Hennus
- Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mojtaba Abdul Roda
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ingrid van Ark
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Thea Leusink-Muis
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Anita van Oort-Jansen
- Laboratory for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Alexandra Mazharian
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Steve P. Watson
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Birmingham, United Kingdom
| | - Frank E. Coenjaerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Louis Bont
- Laboratory for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Linde Meyaard
- Laboratory for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
4
|
Memory CD8 T cells mediate severe immunopathology following respiratory syncytial virus infection. PLoS Pathog 2018; 14:e1006810. [PMID: 29293660 PMCID: PMC5766251 DOI: 10.1371/journal.ppat.1006810] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 01/12/2018] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
Abstract
Memory CD8 T cells can provide protection from re-infection by respiratory viruses such as influenza and SARS. However, the relative contribution of memory CD8 T cells in providing protection against respiratory syncytial virus (RSV) infection is currently unclear. To address this knowledge gap, we utilized a prime-boost immunization approach to induce robust memory CD8 T cell responses in the absence of RSV-specific CD4 T cells and antibodies. Unexpectedly, RSV infection of mice with pre-existing CD8 T cell memory led to exacerbated weight loss, pulmonary disease, and lethal immunopathology. The exacerbated disease in immunized mice was not epitope-dependent and occurred despite a significant reduction in RSV viral titers. In addition, the lethal immunopathology was unique to the context of an RSV infection as mice were protected from a normally lethal challenge with a recombinant influenza virus expressing an RSV epitope. Memory CD8 T cells rapidly produced IFN-γ following RSV infection resulting in elevated protein levels in the lung and periphery. Neutralization of IFN-γ in the respiratory tract reduced morbidity and prevented mortality. These results demonstrate that in contrast to other respiratory viruses, RSV-specific memory CD8 T cells can induce lethal immunopathology despite mediating enhanced viral clearance. Memory CD8 T cells have been shown to provide protection against many respiratory viruses. However, the ability of memory CD8 T cells to provide protection against RSV has not been extensively examined. Unexpectedly, mice with pre-existing CD8 T cell memory, in the absence of memory CD4 T cells and antibodies, exhibited exacerbated morbidity and mortality following RSV infection. We demonstrate that the immunopathology is the result of early and excessive production of IFN-γ by memory CD8 T cells in the lung. Our research provides important new insight into the mechanisms of how memory T cells induce immunopathology. In addition, our findings serve as an important cautionary tale against the use of epitope-based T cell vaccines against RSV.
Collapse
|
5
|
Salas A, Pardo-Seco J, Cebey-López M, Gómez-Carballa A, Obando-Pacheco P, Rivero-Calle I, Currás-Tuala MJ, Amigo J, Gómez-Rial J, Martinón-Torres F. Whole Exome Sequencing reveals new candidate genes in host genomic susceptibility to Respiratory Syncytial Virus Disease. Sci Rep 2017; 7:15888. [PMID: 29162850 PMCID: PMC5698448 DOI: 10.1038/s41598-017-15752-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 11/01/2017] [Indexed: 01/09/2023] Open
Abstract
Respiratory syncytial virus (RSV) is an important cause of serious lower respiratory tract disease in infants. Several studies have shown evidence pointing to the genome of the host as an important factor determining susceptibility to respiratory disease caused by RSV. We sequenced the complete exomes of 54 patients infected by RSV that needed hospitalization due to development of severe bronchiolitis. The Iberian sample (IBS) from The 1000 Genomes Project (1000G) was used as control group; all the association results were pseudo-replicated using other 1000G-European controls and Spanish controls. The study points to SNP rs199665292 in the olfactory receptor (OR) gene OR13C5 as the best candidate variant (P-value = 1.16 × 10-12; OR = 5.56). Genetic variants at HLA genes (HLA-DQA1, HLA-DPB1), and in the mucin 4 gene (MUC4) also emerge as susceptibility candidates. By collapsing rare variants in genes and weighing by pathogenicity, we obtained confirmatory signals of association in the OR gene OR8U1/OR8U8, the taste receptor TAS2R19, and another mucin gene (MUC6). Overall, we identified new predisposition variants and genes related to RSV infection. Of special interest is the association of RSV to olfactory and taste receptors; this finding is in line with recent evidence pointing to their role in viral infectious diseases.
Collapse
Affiliation(s)
- Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela(USC), Galicia, Spain.
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain.
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain.
- GENVIP Research Group (www.genvip.org), Instituto de Investigación Sanitaria de Santiago, Galicia, Spain.
| | - Jacobo Pardo-Seco
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela(USC), Galicia, Spain
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- GENVIP Research Group (www.genvip.org), Instituto de Investigación Sanitaria de Santiago, Galicia, Spain
| | - Miriam Cebey-López
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- GENVIP Research Group (www.genvip.org), Instituto de Investigación Sanitaria de Santiago, Galicia, Spain
| | - Alberto Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela(USC), Galicia, Spain
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- GENVIP Research Group (www.genvip.org), Instituto de Investigación Sanitaria de Santiago, Galicia, Spain
| | - Pablo Obando-Pacheco
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- GENVIP Research Group (www.genvip.org), Instituto de Investigación Sanitaria de Santiago, Galicia, Spain
| | - Irene Rivero-Calle
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- GENVIP Research Group (www.genvip.org), Instituto de Investigación Sanitaria de Santiago, Galicia, Spain
| | - María-José Currás-Tuala
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela(USC), Galicia, Spain
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- GENVIP Research Group (www.genvip.org), Instituto de Investigación Sanitaria de Santiago, Galicia, Spain
| | - Jorge Amigo
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela(USC), Galicia, Spain
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- GENVIP Research Group (www.genvip.org), Instituto de Investigación Sanitaria de Santiago, Galicia, Spain
| | - José Gómez-Rial
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- GENVIP Research Group (www.genvip.org), Instituto de Investigación Sanitaria de Santiago, Galicia, Spain
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- GENVIP Research Group (www.genvip.org), Instituto de Investigación Sanitaria de Santiago, Galicia, Spain
| |
Collapse
|
6
|
Abstract
Green Fluorescent protein (GFP), used as a cellular tag, provides researchers with a valuable method of measuring gene expression and cell tracking. However, there is evidence to suggest that the immunogenicity and cytotoxicity of GFP potentially confounds the interpretation of in vivo experimental data. Studies have shown that GFP expression can deteriorate over time as GFP tagged cells are prone to death. Therefore, the cells that were originally marked with GFP do not survive and cannot be accurately traced over time. This review will present current evidence for the immunogenicity and cytotoxicity of GFP in in vivo studies by characterizing these responses.
Collapse
|
7
|
Host genetics play a critical role in controlling CD8 T cell function and lethal immunopathology during chronic viral infection. PLoS Pathog 2017; 13:e1006498. [PMID: 28715493 PMCID: PMC5531689 DOI: 10.1371/journal.ppat.1006498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/27/2017] [Accepted: 06/28/2017] [Indexed: 11/19/2022] Open
Abstract
Effective CD8 T cell responses are vital for the control of chronic viral infections. Many factors of the host immune response contribute to the maintenance of effector CD8 T cell responses versus CD8 T cell exhaustion during chronic infection. Specific MHC alleles and the degree of MHC heterogeneity are associated with enhanced CD8 T cell function and viral control during human chronic infection. However, it is currently unclear to what extent host genetics influences the establishment of chronic viral infection. In order to examine the impact of MHC heterogeneity versus non-MHC host genetics on the development of chronic viral infection, an F1 cross of B10.D2 x B6 (D2B6F1) and BALB.B x BALB/c (BCF1) mice were infected with the clone-13 (Cl-13) strain of lymphocytic choriomeningitis virus (LCMV). Following chronic Cl-13 infection both H-2bxd D2B6F1 and BCF1 mice demonstrated increased viral control compared to homozygous mice. Strikingly, H-2bxd D2B6F1 mice on a C57BL genetic background exhibited mortality following Cl-13 infection. CD8 T cell depletion prevented mortality in Cl-13-infected D2B6F1 mice indicating that mortality was CD8 T-cell-dependent. D2B6F1 mice maintained more CD8 T cell effector cytokine production and exhibited reduced expression of the T cell exhaustion marker PD-1. In addition, D2B6F1 mice also induced a larger Th1 response than BCF1 mice and Cl-13-induced mortality in D2B6F1 mice was also dependent on CD4 T-cell-mediated IFN-γ production. Thus, following a chronic viral infection, increased functionality of the CD8 T cell response allowed for more rapid viral clearance at the cost of enhanced immunopathology dependent on both MHC diversity and the genetic background of the host. Chronic viral infections pose a serious healthcare concern resulting in substantial mortality worldwide. Chronic viral infections result from the inability of the immune system to eliminate the virus from the infected individual. The immune system’s inability to eradicate the invading pathogen is partially due to excessive regulation of the T cell response. However, host genetics have been associated with enhanced T cell function and viral control during chronic infection. Therefore, we sought to investigate the role of host genetic diversity on the T cell response during chronic viral infection in a murine model. We found that increasing MHC heterogeneity resulted in an increased T cell response and enhanced viral control. In addition, host genetic background differences allowed for induction of a distinct CD4 T cell subset, which was associated with reduced suppression of the CD8 T cell response and enhanced viral control. Thus, specific features of the host genetic background contribute to the size and quality of the T cell response and resulting viral control. This study identifies components of the T cell response that may provide a therapeutic target to enhance T-cell-mediated viral control during chronic infection.
Collapse
|
8
|
Isakova-Sivak IN, Korenkov DA, Fedorova EA, Tretiak TS, Matyushenko VA, Smolonogina TA, Rudenko LG. Analysis of Immune Epitopes of Respiratory Syncytial Virus for Designing of Vectored Vaccines Based on Influenza Virus Platform. Bull Exp Biol Med 2016; 161:533-7. [PMID: 27590768 DOI: 10.1007/s10517-016-3454-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 01/06/2023]
Abstract
The immunoepitope database was used for analysis of experimentally detected epitopes of the respiratory syncytial virus (RSV) proteins and for selection of the epitope combinations for subsequent designing of recombinant vectored anti-RSV vaccines based on attenuated influenza viruses. Three cassettes containing the most promising B- and T-cell RSV epitopes were selected: peptide F (243-294) supporting the formation of humoral immunity in animals; fragment M2-1 (70-101+114-146) containing two MHC I epitopes (82-90 and 127-135); and MHC II-epitope (51-66). The selected constructions contained no neoepitopes causing undesirable effects of vaccination, such as immunotolerance or autoimmunity.
Collapse
Affiliation(s)
- I N Isakova-Sivak
- A. A. Smorodintsev Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia.
| | - D A Korenkov
- A. A. Smorodintsev Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - E A Fedorova
- A. A. Smorodintsev Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - T S Tretiak
- A. A. Smorodintsev Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - V A Matyushenko
- A. A. Smorodintsev Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - T A Smolonogina
- A. A. Smorodintsev Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - L G Rudenko
- A. A. Smorodintsev Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia
| |
Collapse
|
9
|
Burbulla D, Günther PS, Peper JK, Jahn G, Dennehy KM. Human CD8(+) T Cells Target Multiple Epitopes in Respiratory Syncytial Virus Polymerase. Viral Immunol 2016; 29:307-14. [PMID: 27070377 DOI: 10.1089/vim.2015.0091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection is a serious health problem in young children, immunocompromised patients, and the elderly. The development of novel prevention strategies, such as a vaccine to RSV, is a high priority. One strategy is to design a peptide-based vaccine that activates appropriate CD8(+) T-cell responses. However, this approach is limited by the low number of RSV peptide epitopes defined to date that activate CD8(+) T cells. We aimed to identify peptide epitopes that are presented by common human leukocyte antigen types (HLA-A*01, -A*02, and -B*07). We identify one novel HLA-A*02-restricted and two novel HLA-A*01-restricted peptide epitopes from RSV polymerase. Peptide-HLA multimer staining of specific T cells from healthy donor peripheral blood mononuclear cell, the memory phenotype of such peptide-specific T cells ex vivo, and functional IFNγ responses in short-term stimulation assays suggest that these peptides are recognized during RSV infection. Such peptides are candidates for inclusion into a peptide-based RSV vaccine designed to stimulate defined CD8(+) T-cell responses.
Collapse
Affiliation(s)
- Daniel Burbulla
- 1 Institute for Medical Virology, University Hospital Tübingen , Tübingen, Germany
| | - Patrick S Günther
- 1 Institute for Medical Virology, University Hospital Tübingen , Tübingen, Germany
| | - Janet K Peper
- 2 Department of Immunology, University of Tübingen , Tübingen, Germany
| | - Gerhard Jahn
- 1 Institute for Medical Virology, University Hospital Tübingen , Tübingen, Germany
| | - Kevin M Dennehy
- 1 Institute for Medical Virology, University Hospital Tübingen , Tübingen, Germany
| |
Collapse
|
10
|
Lee JS, Cho MK, Hwang HS, Ko EJ, Lee YN, Kwon YM, Kim MC, Kim KH, Lee YT, Jung YJ, Kang SM. Ginseng diminishes lung disease in mice immunized with formalin-inactivated respiratory syncytial virus after challenge by modulating host immune responses. J Interferon Cytokine Res 2014; 34:902-14. [PMID: 25051168 PMCID: PMC4217040 DOI: 10.1089/jir.2013.0093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 04/29/2014] [Indexed: 12/30/2022] Open
Abstract
Formalin-inactivated respiratory syncytial virus (FI-RSV) immunization is known to cause severe pulmonary inflammatory disease after subsequent RSV infection. Ginseng has been used in humans for thousands of years due to its potential health benefits. We investigated whether ginseng would have immune modulating effects on RSV infection in mice previously immunized with FI-RSV. Oral administration of mice with ginseng increased IgG2a isotype antibody responses to FI-RSV immunization, indicating T-helper type 1 (Th1) immune responses. Ginseng-treated mice that were nonimmunized or previously immunized with FI-RSV showed improved protection against RSV challenge compared with control mice without ginseng treatment. Ginseng-mediated improved clinical outcomes after live RSV infection were evidenced by diminished weight losses, decreased interleukin-4 cytokine production but increased interferon-γ production, modulation of CD3 T-cell populations toward a Th1 response, and reduced inflammatory response. Ginseng-mediated protective host immune modulation against RSV pulmonary inflammation was observed in different strains of wild-type and mutant mice. These results indicate that ginseng can modulate host immune responses to FI-RSV immunization and RSV infection, resulting in protective effects against pulmonary inflammatory disease.
Collapse
Affiliation(s)
- Jong Seok Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
- Department of Medicinal and Industrial Crops, Korea National College of Agriculture and Fisheries, Hwaseong, Korea
| | - Min Kyoung Cho
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
- Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, Korea
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Yu-Jin Jung
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| |
Collapse
|
11
|
Abstract
Respiratory syncytial virus (RSV) is amongst the most important pathogenic infections of childhood and is associated with significant morbidity and mortality. Although there have been extensive studies of epidemiology, clinical manifestations, diagnostic techniques, animal models and the immunobiology of infection, there is not yet a convincing and safe vaccine available. The major histopathologic characteristics of RSV infection are acute bronchiolitis, mucosal and submucosal edema, and luminal occlusion by cellular debris of sloughed epithelial cells mixed with macrophages, strands of fibrin, and some mucin. There is a single RSV serotype with two major antigenic subgroups, A and B. Strains of both subtypes often co-circulate, but usually one subtype predominates. In temperate climates, RSV infections reflect a distinct seasonality with onset in late fall or early winter. It is believed that most children will experience at least one RSV infection by the age of 2 years. There are several key animal models of RSV. These include a model in mice and, more importantly, a bovine model; the latter reflects distinct similarity to the human disease. Importantly, the prevalence of asthma is significantly higher amongst children who are hospitalized with RSV in infancy or early childhood. However, there have been only limited investigations of candidate genes that have the potential to explain this increase in susceptibility. An atopic predisposition appears to predispose to subsequent development of asthma and it is likely that subsequent development of asthma is secondary to the pathogenic inflammatory response involving cytokines, chemokines and their cognate receptors. Numerous approaches to the development of RSV vaccines are being evaluated, as are the use of newer antiviral agents to mitigate disease. There is also significant attention being placed on the potential impact of co-infection and defining the natural history of RSV. Clearly, more research is required to define the relationships between RSV bronchiolitis, other viral induced inflammatory responses, and asthma.
Collapse
Affiliation(s)
- Andrea T. Borchers
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6501, Davis, CA 95616 USA
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6501, Davis, CA 95616 USA
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6501, Davis, CA 95616 USA
| | - Laurel J. Gershwin
- Department of Pathology, Microbiology and Immunology, University of California, Davis, School of Veterinary Medicine, Davis, CA USA
| |
Collapse
|
12
|
Human genetics and respiratory syncytial virus disease: current findings and future approaches. Curr Top Microbiol Immunol 2013; 372:121-37. [PMID: 24362687 DOI: 10.1007/978-3-642-38919-1_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Infection with respiratory syncytial virus (RSV) can result in a wide spectrum of pulmonary manifestations, from mild upper respiratory symptoms to severe bronchiolitis and pneumonia. Although there are several known risk factors for severe RSV disease, namely, premature birth, chronic lung disease, congenital heart disease, and T cell immunodeficiency, the majority of young children who develop severe RSV disease are otherwise healthy children. Genetic susceptibility to RSV infection is emerging as a complex trait, in which many different host genetic variants contribute to risk for distinct disease manifestations. Initially, host genetic studies focused on severe RSV disease using the candidate gene approach to interrogate common single nucleotide polymorphisms (SNPs). Many studies have reported genetic associations between severe RSV bronchiolitis and SNPs in genes within plausible biological pathways, such as in innate host defense genes (SPA, SPD, TLR4, and VDR), cytokine or chemokine response genes (CCR5, IFN, IL6, IL10, TGFB1), and altered Th1/Th2 immune responses (IL4, IL13). Due to the complexity of RSV susceptibility, genome studies done on a larger scale, such as genome-wide association studies have certainly identified more of the host factors that contribute to the development of severe RSV bronchiolitis or excessive pathology. Furthermore, whole-genome approaches can reveal robust associations between genetic markers and RSV disease susceptibility. Recent introduction of 'exome' genotyping or sequencing, which specifically analyzes the majority of coding variants, should be fruitful in sufficiently large, well-powered studies. The advent of new genomic technologies together with improved computational tools offer the promise of interrogating the host genome in search of genetic factors, rare, uncommon, or common that should give new insights into the underlying biology of susceptibility to or protection from severe RSV infection. Careful assessment of novel pathways and further identification of specific genes could identify new approaches for vaccine development and perhaps lead to effective risk modeling.
Collapse
|
13
|
Functional avidity: a measure to predict the efficacy of effector T cells? Clin Dev Immunol 2012; 2012:153863. [PMID: 23227083 PMCID: PMC3511839 DOI: 10.1155/2012/153863] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/22/2012] [Indexed: 01/30/2023]
Abstract
The functional avidity is determined by exposing T-cell populations in vitro to different amounts of cognate antigen. T-cells with high functional avidity respond to low antigen doses. This in vitro measure is thought to correlate well with the in vivo effector capacity of T-cells. We here present the multifaceted factors determining and influencing the functional avidity of T-cells. We outline how changes in the functional avidity can occur over the course of an infection. This process, known as avidity maturation, can occur despite the fact that T-cells express a fixed TCR. Furthermore, examples are provided illustrating the importance of generating T-cell populations that exhibit a high functional avidity when responding to an infection or tumors. Furthermore, we discuss whether criteria based on which we evaluate an effective T-cell response to acute infections can also be applied to chronic infections such as HIV. Finally, we also focus on observations that high-avidity T-cells show higher signs of exhaustion and facilitate the emergence of virus escape variants. The review summarizes our current understanding of how this may occur as well as how T-cells of different functional avidity contribute to antiviral and anti-tumor immunity. Enhancing our knowledge in this field is relevant for tumor immunotherapy and vaccines design.
Collapse
|
14
|
Specific dietary oligosaccharides increase Th1 responses in a mouse respiratory syncytial virus infection model. J Virol 2012; 86:11472-82. [PMID: 22896622 DOI: 10.1128/jvi.06708-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Breast feeding reduces the risk of developing severe respiratory syncytial virus (RSV) infections in infants. In addition to maternal antibodies, other immune-modulating factors in human milk contribute to this protection. Specific dietary prebiotic oligosaccharides, similar to oligosaccharides present in human milk, were evaluated in a C57BL/6 mouse RSV infection model. During primary RSV infection, increased numbers of RSV-specific CD4(+) T cells producing gamma interferon (IFN-γ) were found in the lungs at days 8 to 10 postinfection in mice receiving diet containing short-chain galactooligosacharides, long-chain fructooligosaccharides, and pectin-derived acidic oligosaccharides (termed scGOS/lcFOS/pAOS). In a Th2-skewed formalin-inactivated (FI)-RSV vaccination model, the prebiotic diet reduced RSV-specific Th2 cytokine (interleukin-4 [IL-4], IL-5, and IL-13)-producing CD4(+) T cells in the lung and the magnitude of airway eosinophilia at day 4 and 6 after infection. This was accompanied by a decreased influx of inflammatory dendritic cells (CD11b(+)/CD11c(+)) and increased numbers of IFN-γ-producing CD4(+) and CD8(+) T cells at day 8 after viral challenge. These findings suggest that specific dietary oligosaccharides can influence trafficking and/or effector functions of innate immune, CD4(+), and CD8(+) T cell subsets in the lungs of RSV-infected mice. In our models, scGOS/lcFOS/pAOS had no effect on weight but increased viral clearance in FI-RSV-vaccinated mice 8 days after infection. The increased systemic Th1 responses potentiated by scGOS/lcFOS/pAOS might contribute to an accelerated Th1/Th2 shift of the neonatal immune system, which might favor protective immunity against viral infections with a high attack rate in early infancy, such as RSV.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Hemophagocytic lymphohistiocytosis (HLH) is an immune dysregulatory syndrome that is associated with underlying defects of perforin-dependent cytotoxic function. This review seeks to update readers on new scientific insights and evolving clinical concepts related to this rare but fatal disorder. RECENT FINDINGS Clinically, HLH is defined by severe inflammation and potentially fatal damage to a variety of organ systems including the bone marrow, liver, or brain. Recent preclinical studies have increasingly defined HLH as a syndrome of abnormal and excessive T-cell activation, which leads to toxic activation of macrophages and other innate immune cells. Although macrophages have long been suspected to be important for disease development, recent studies have for the first time demonstrated their central role in the development of inflammation-associated cytopenias. In addition to defining new therapeutic targets, these scientific insights suggest significant overlap between HLH and severe inflammation in a variety of clinical contexts. Recent clinical observations are also changing how HLH is conceptualized. Increased recognition of HLH in older children and adults, sometimes in association with classic disease-associated mutations, is challenging the traditional view of HLH as either a distinctly familial or a sporadic disorder. SUMMARY Recent scientific and clinical insights are expanding understanding and recognition of HLH, driving an evolution in how it is defined, and suggesting future directions for improving therapy of this disorder.
Collapse
|