1
|
Das Sarma J. Murine β-coronavirus spike protein: A major determinant of neuropathogenic properties. Virology 2025; 606:110499. [PMID: 40120171 DOI: 10.1016/j.virol.2025.110499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Coronaviruses have emerged as a significant challenge to human health. While earlier outbreaks of coronaviruses such as SARS-CoV and MERS-CoV posed serious threats, the recent SARS-CoV-2 pandemic has heightened interest in coronavirus research due to its pulmonary pathology, in addition to its neurological manifestations. In addition, the patients who have recovered from SARS-CoV-2 infection show long-term symptoms such as anosmia, brain fog and long COVID. A major hurdle in studying these viruses is the limited availability of specialized research facilities, emphasizing the need for prototype virus-based models to investigate the pathophysiology. The mouse hepatitis virus (MHV), a member of the β-coronavirus family, serves as an excellent model to unravel the mechanisms underlying virus-induced pathogenesis. This review highlights two decades of research efforts aimed at understanding the pathophysiological mechanism of coronavirus-induced diseases, focusing on the development of targeted recombinant strains to identify the minimal essential motif of the spike protein responsible for fusogenicity and neuropathogenicity. By synthesizing findings from these studies, the review identifies the most promising therapeutic targets against coronaviruses, paving the way for the development of pan-coronavirus antivirals.
Collapse
Affiliation(s)
- Jayasri Das Sarma
- Department of Biological Science, Indian Institute of Science Education and Research, Kolkata, India; Department of Ophthalmology, University of Pennsylvania, USA.
| |
Collapse
|
2
|
Hickson SE, Brekke E, Schwerk J, Saluhke I, Zaver S, Woodward J, Savan R, Hyde JL. Sequence Diversity in the 3' Untranslated Region of Alphavirus Modulates IFIT2-Dependent Restriction in a Cell Type-Dependent Manner. J Interferon Cytokine Res 2025; 45:133-149. [PMID: 40079162 DOI: 10.1089/jir.2024.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Alphaviruses (family Togaviridae) are a diverse group of positive-sense RNA (+ssRNA) viruses that are transmitted by arthropods and are the causative agent of several significant human and veterinary diseases. Interferon (IFN)-induced proteins with tetratricopeptide repeats (IFITs) are a family of RNA-binding IFN-stimulated genes (ISGs) that are highly upregulated following viral infection and have been identified as potential restrictors of alphaviruses. The mechanism by which IFIT1 restricts RNA viruses is dependent on self and non-self-discrimination of RNA, and alphaviruses evade this recognition via their 5' untranslated region (UTR). However, the role of IFIT2 during alphavirus replication and the mechanism of viral replication inhibition is unclear. In this study, we identify IFIT2 as a restriction factor for Venezuelan equine encephalitis virus (VEEV) and show that IFIT2 binds the 3' 3'UTR of the virus. We investigated the potential role of variability in the 3'UTR of the virus affecting IFIT2 antiviral activity by studying infection with VEEV. Comparison of recombinant VEEV clones containing 3'UTR sequences derived from epizootic and enzootic isolates exhibited differential sensitivity to IFIT2 restriction in vitro infection studies, suggesting that the alphavirus 3'UTR sequence may function in part to evade IFIT2 restriction. In vitro binding assays demonstrate that IFIT2 binds to the VEEV 3'UTR; however, in contrast to previous studies, VEEV restriction did not appear to be dependent on the ability of IFIT2 to inhibit translation of viral RNA, suggesting a novel mechanism of IFIT2 restriction. Our study demonstrates that IFIT2 is a restriction factor for alphaviruses and variability in the 3'UTR of VEEV can modulate viral restriction by IFIT2. Ongoing studies are exploring the biological consequences of IFIT2-VEEV RNA interaction in viral pathogenesis and defining sequence and structural features of RNAs that regulate IFIT2 recognition.
Collapse
Affiliation(s)
- Sarah E Hickson
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Eden Brekke
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Johannes Schwerk
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Indraneel Saluhke
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Shivam Zaver
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Joshua Woodward
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Ram Savan
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jennifer L Hyde
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Glasner DR, Todd C, Cook B, D’Urso A, Khosla S, Estrada E, Wagner JD, Bartels MD, Ford P, Prych J, Hatch K, Yee BA, Ego KM, Liang Q, Holland SR, Case JB, Corbett KD, Diamond MS, Yeo GW, Herzik MA, Van Nostrand EL, Daugherty MD. Short 5' UTRs serve as a marker for viral mRNA translation inhibition by the IFIT2-IFIT3 antiviral complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637299. [PMID: 39990370 PMCID: PMC11844544 DOI: 10.1101/2025.02.11.637299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Recognition of "non-self" nucleic acids, including cytoplasmic dsDNA, dsRNA, or mRNAs lacking proper 5' cap structures, is critical for the innate immune response to viruses. Here, we demonstrate that short 5' untranslated regions (UTRs), a characteristic of many viral mRNAs, can also serve as a molecular pattern for innate immune recognition via the interferon-induced proteins IFIT2 and IFIT3. The IFIT2-IFIT3 heterodimer, formed through an intricate domain swap structure resolved by cryo-EM, mediates viral mRNA 5' end recognition, translation inhibition, and ultimately antiviral activity. Critically, 5' UTR lengths <50 nucleotides are necessary and sufficient to sensitize an mRNA to translation inhibition by the IFIT2-IFIT3 complex. Accordingly, diverse viruses whose mRNAs contain short 5' UTRs, such as vesicular stomatitis virus and parainfluenza virus 3, are sensitive to IFIT2-IFIT3-mediated antiviral activity. Our work thus reveals a pattern of antiviral nucleic acid immune recognition that takes advantage of the inherent constraints on viral genome size.
Collapse
Affiliation(s)
- Dustin R. Glasner
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Candace Todd
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Brian Cook
- Department of Chemistry and Biochemistry, University of California, San Diego, CA USA
| | - Agustina D’Urso
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Shivani Khosla
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Elena Estrada
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Jaxon D. Wagner
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Mason D. Bartels
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, Texas, USA
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Pierce Ford
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Jordan Prych
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Katie Hatch
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Brian A. Yee
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA USA
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA
| | - Kaori M. Ego
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA USA
| | - Qishan Liang
- Department of Chemistry and Biochemistry, University of California, San Diego, CA USA
| | - Sarah R. Holland
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - James Brett Case
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin D. Corbett
- School of Biological Sciences, University of California, San Diego, CA, USA
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA USA
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA
- Sanford Laboratories for Innovative Medicines, La Jolla, CA, USA
| | - Mark A. Herzik
- Department of Chemistry and Biochemistry, University of California, San Diego, CA USA
| | - Eric L. Van Nostrand
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, Texas, USA
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
4
|
Holmes CM, Babasyan S, Eady N, Schnabel CL, Wagner B. Immune horses rapidly increase antileukoproteinase and lack type I interferon secretion during mucosal innate immune responses against equine herpesvirus type 1. Microbiol Spectr 2024; 12:e0109224. [PMID: 39162558 PMCID: PMC11448092 DOI: 10.1128/spectrum.01092-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/25/2024] [Indexed: 08/21/2024] Open
Abstract
Equine herpesvirus type 1 (EHV-1) is one of the most prevalent respiratory pathogens in horses with a high impact on animal health worldwide. Entry of the virus into epithelial cells of the upper respiratory tract and rapid local viral replication is followed by infection of local lymphoid tissues leading to cell-associated viremia and disease progression. Pre-existing mucosal immunity has previously been shown to reduce viral shedding and prevent viremia, consequently limiting severe disease manifestations. Here, nasopharyngeal transcriptomic profiling was used to identify differentially expressed genes following EHV-1 challenge in horses with different EHV-1 immune statuses. Immune horses (n = 4) did neither develop clinical disease nor viremia and did not shed virus after experimental infection, while non-immune horses (n = 4) did all the above. RNA sequencing was performed on nasopharyngeal samples pre- and 24 hours post-infection (24hpi). At 24hpi, 109 and 44 genes were upregulated in immune horses and non-immune horses, respectively, and three genes were explored in further detail. Antileukoproteinase (SLPI) gene expression increased 2.1-fold within 24 hours in immune horses in concert with protein secretion. Interferon (IFN)-induced proteins with tetratricopeptide repeats 2 (IFIT2) and 3 (IFIT3) were upregulated in non-immune horses, corresponding with nasal IFN-α secretion and viral replication. By contrast, neither IFIT expression nor IFN-α secretion was induced by EHV-1 infection of immune horses. Transcriptomic profiling offered a tool to identify, for the first time, the role of SLPI in innate immunity against EHV-1, and further emphasized the central role of the type I IFN response in the anti-viral defense of non-immune horses. IMPORTANCE Equine herpesvirus type 1 (EHV-1) remains a considerable concern in the equine industry, with yearly outbreaks resulting in morbidity, mortality, and economic losses. In addition to its importance in equine health, EHV-1 is a respiratory pathogen and an alphaherpesvirus, and it may serve as a model for other viruses with similar pathogenicity or phylogeny. Large animal models allow the collection of high-volume samples longitudinally, permitting in-depth investigation of immunological processes. This study was performed on bio-banked nasopharyngeal samples from an EHV-1 infection experiment, where clinical outcomes had previously been determined. Matched nucleic acid and protein samples throughout infection permitted longitudinal quantification of the protein or related proteins of selected differentially expressed genes detected during the transcriptomic screen. The results of this manuscript identified novel innate immune pathways of the upper respiratory tract during the first 24 hours of EHV-1 infection, offering a first look at the components of early mucosal immunity that are indicative of protection.
Collapse
Affiliation(s)
- Camille M. Holmes
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Naya Eady
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | | | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Poddar D, Sharma N, Ogino T, Qi X, Kessler PM, Mendries H, Dutta R, Sen GC. The interferon-induced protein, IFIT2, requires RNA-binding activity and neuronal expression to protect mice from intranasal vesicular stomatitis virus infection. mBio 2024; 15:e0056824. [PMID: 38888342 PMCID: PMC11253605 DOI: 10.1128/mbio.00568-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/09/2024] [Indexed: 06/20/2024] Open
Abstract
The interferon (IFN) system protects mammals from diseases caused by virus infections. IFN synthesis is induced by pattern recognition receptor signaling pathways activated by virus infection. IFN is secreted from the infected cells and acts upon neighboring cells by binding cell surface receptors and triggering induction of hundreds of IFN-stimulated genes and proteins, many of which block different steps of virus replication. The IFN-induced tetratricopeptide repeat proteins (IFIT) are a family of RNA-binding proteins. We and others have previously reported that IFIT2 protects mice from many neurotropic RNA viruses; indeed, Ifit2-/- mice are very susceptible to intranasal or subcutaneous infections with vesicular stomatitis virus (VSV). Here, using a newly generated conditional knockout mouse, we report that ablation of Ifit2 expression only in neuronal cells was sufficient to render mice susceptible to neuropathogenesis caused by intranasal, but not subcutaneous, infection of VSV. Another genetically modified mouse line, expressing a mutant IFIT2 that cannot bind RNA, was as susceptible to VSV infection as Ifit2-/- mice. These results demonstrated that IFIT2 RNA-binding activity is essential for protecting mice against neurological diseases caused by intranasal infection of VSV.IMPORTANCEInterferon's (IFN's) antiviral effects are mediated by the proteins encoded by the interferon-stimulated genes. IFN-stimulated genes (IFIT2) is one such protein, which inhibits replication of many RNA viruses in the mouse brain and the resultant neuropathology. Our study sheds light on how IFIT2 works. By ablating Ifit2 expression only in neuronal cells, using a newly generated conditional knockout mouse line, we showed that Ifit2 induction in the neurons of the infected mouse was necessary for antiviral function of interferon. IFIT2 has no known enzyme activity; instead, it functions by binding to cellular or viral proteins or RNAs. We engineered a new mouse line that expressed a mutant IFIT2 that cannot bind RNA. These mice were very susceptible to infection with vesicular stomatitis virus indicating that the RNA-binding property of IFIT2 was essential for its antiviral function in vivo.
Collapse
Affiliation(s)
- Darshana Poddar
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nikhil Sharma
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tomoaki Ogino
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio, USA
| | - Xu Qi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Patricia M. Kessler
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hiran Mendries
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ranjan Dutta
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ganes C. Sen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Tang Z, Han Y, Meng Y, Li J, Qiu X, Bajinka O, Wu G, Tan Y. A bioinformatics approach to systematically analyze the molecular patterns of monkeypox virus-host cell interactions. Heliyon 2024; 10:e30483. [PMID: 38737277 PMCID: PMC11088324 DOI: 10.1016/j.heliyon.2024.e30483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/20/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024] Open
Abstract
Monkeypox has been spreading worldwide since May 2022, when the World Health Organization (WHO) declared the outbreak a "public health emergency of international concern." The spread of monkeypox has posed a serious threat to the health of people around the world, but few studies have been conducted, and the molecular mechanism of monkeypox after infection remains unclear. We therefore implemented a transcriptome analysis to identify signaling pathways and biomarkers in monkeypox-infected cells to help understand monkeypox-host cell interactions. In this study, datasets GSE36854 and GSE11234 were obtained from GEO. Of these, 84 significantly different genes were identified in the dataset GSE36854, followed by KEGG, GO analysis protein-protein interaction (PPI) construction, and Hub gene extraction. We also analyzed the expression regulation of hub genes and screened for drugs targeting hub genes. The results showed that monkeypox-infected cells significantly activated the cellular immune response. The top 10 hub genes are IER3, IFIT2, IL11, ZC3H12A, EREG, IER2, NFKBIE, FST, IFIT1 and AREG. AP-26113 and itraconazole can be used to counteract the inhibitory effect of monkeypox on IFIT1 and IFIT2 and serve as candidate drugs for the treatment of monkeypox virus infection. IRF1 may also be a transcription factor of IFIT. Our results provide a new entry point for understanding how monkeypox virus interacts with its host.
Collapse
Affiliation(s)
- Zhongxiang Tang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Ying Han
- Department of Stomatology, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuting Meng
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Jiani Li
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Xiangjie Qiu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Ousman Bajinka
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
- China-Africa Research Center for Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Guojun Wu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
- China-Africa Research Center for Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
- China-Africa Research Center for Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| |
Collapse
|
7
|
Sharma N, Kessler P, Sen GC. Cell-type-specific need of Ddx3 and PACT for interferon induction by RNA viruses. J Virol 2023; 97:e0130423. [PMID: 37982645 PMCID: PMC10734550 DOI: 10.1128/jvi.01304-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE Interferon-stimulated genes (ISGs) are induced in response to interferon expression due to viral infections. Role of these ISGs can be variable in different cells or organs. Our study highlights such cell-specific role of an ISG, Ddx3, which regulates the translation of mRNAs essential for interferon induction (PACT) and interferon signaling (STAT1) in a cell-specific manner. Our study also highlights the role of PACT in RNA virus-induced RLR signaling. Our study depicts how Ddx3 regulates innate immune signaling pathways in an indirect manner. Such cell-specific behavior of ISGs helps us to better understand viral pathogenesis and highlights the complexities of viral tropism and innate immune responses.
Collapse
Affiliation(s)
- Nikhil Sharma
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Patricia Kessler
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ganes C. Sen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
8
|
Boylan BT, Hwang M, Bergmann CC. The Impact of Innate Components on Viral Pathogenesis in the Neurotropic Coronavirus Encephalomyelitis Mouse Model. Viruses 2023; 15:2400. [PMID: 38140641 PMCID: PMC10747027 DOI: 10.3390/v15122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Recognition of viruses invading the central nervous system (CNS) by pattern recognition receptors (PRRs) is crucial to elicit early innate responses that stem dissemination. These innate responses comprise both type I interferon (IFN-I)-mediated defenses as well as signals recruiting leukocytes to control the infection. Focusing on insights from the neurotropic mouse CoV model, this review discusses how early IFN-I, fibroblast, and myeloid signals can influence protective anti-viral adaptive responses. Emphasis is placed on three main areas: the importance of coordinating the distinct capacities of resident CNS cells to induce and respond to IFN-I, the effects of select IFN-stimulated genes (ISGs) on host immune responses versus viral control, and the contribution of fibroblast activation and myeloid cells in aiding the access of T cells to the parenchyma. By unraveling how the dysregulation of early innate components influences adaptive immunity and viral control, this review illustrates the combined effort of resident CNS cells to achieve viral control.
Collapse
Affiliation(s)
- Brendan T. Boylan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; (B.T.B.); (M.H.)
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mihyun Hwang
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; (B.T.B.); (M.H.)
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Cornelia C. Bergmann
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; (B.T.B.); (M.H.)
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
- School of Biological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
9
|
Fortova A, Barkhash AV, Pychova M, Krbkova L, Palus M, Salat J, Ruzek D. Genetic polymorphisms in innate immunity genes influence predisposition to tick-borne encephalitis. J Neurovirol 2023; 29:699-705. [PMID: 37898570 PMCID: PMC10794283 DOI: 10.1007/s13365-023-01182-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/30/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Tick-borne encephalitis (TBE) is a neuroviral disease that ranges in severity from a mild febrile illness to a severe and life-threatening meningoencephalitis or encephalomyelitis. There is increasing evidence that susceptibility to tick-borne encephalitis virus (TBEV)-induced disease and its severity are largely influenced by host genetic factors, in addition to other virus- and host-related factors. In this study, we investigated the contribution of selected single nucleotide polymorphisms (SNPs) in innate immunity genes to predisposition to TBE in humans. More specifically, we investigated a possible association between SNPs rs304478 and rs303212 in the gene Interferon Induced Protein With Tetratricopeptide Repeats 1 (IFIT1), rs7070001 and rs4934470 in the gene Interferon Induced Protein With Tetratricopeptide Repeats 2 (IFIT2), and RIG-I (Retinoic acid-inducible gene I) encoding gene DDX58 rs311795343, rs10813831, rs17217280 and rs3739674 SNPs with predisposition to TBE in population of the Czech Republic, where TBEV is highly endemic. Genotypic and allelic frequencies for these SNPs were analyzed in 247 nonimmunized TBE patients and compared with 204 control subjects. The analysis showed an association of IFIT1 rs304478 SNP and DDX58 rs3739674 and rs17217280 SNPs with predisposition to TBE in the Czech population indicating novel risk factors for clinical TBE but not for disease severity. These results also highlight the role of innate immunity genes in TBE pathogenesis.
Collapse
Affiliation(s)
- Andrea Fortova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, CZ-62100, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500, Brno, Czechia
| | - Andrey V Barkhash
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 10 Lavrentyeva Ave, Novosibirsk, 630090, Russia
| | - Martina Pychova
- Department of Infectious Diseases, University Hospital Brno and Faculty of Medicine, Masaryk University, CZ-62500, Brno, Czechia
| | - Lenka Krbkova
- Department of Children's Infectious Disease, Faculty of Medicine and University Hospital, Masaryk University, CZ-61300, Brno, Czechia
| | - Martin Palus
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, CZ-62100, Brno, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005, Ceske Budejovice, Czechia
| | - Jiri Salat
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, CZ-62100, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500, Brno, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005, Ceske Budejovice, Czechia
| | - Daniel Ruzek
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, CZ-62100, Brno, Czechia.
- Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500, Brno, Czechia.
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005, Ceske Budejovice, Czechia.
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi City, Japan.
| |
Collapse
|
10
|
Zhu Z, Yang X, Huang C, Liu L. The Interferon-Induced Protein with Tetratricopeptide Repeats Repress Influenza Virus Infection by Inhibiting Viral RNA Synthesis. Viruses 2023; 15:1412. [PMID: 37515100 PMCID: PMC10384122 DOI: 10.3390/v15071412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Influenza A virus (IAV) is an eight-segment negative-sense RNA virus and is subjected to gene recombination between strains to form novel strains, which may lead to influenza pandemics. Seasonal influenza occurs annually and causes great losses in public healthcare. In this study, we examined the role of interferon-induced protein with tetratricopeptide repeats 1 and 2 (IFIT1 and IFIT2) in influenza virus infection. Knockdown of IFIT1 or IFIT2 using a lentiviral shRNA increased viral nucleoprotein (NP) and nonstructural protein 1 (NS1) protein levels, as well as progeny virus production in A/Puerto Rico/8/34 H1N1 (PR/8)-infected lung epithelial A549 cells. Overexpression of IFIT1 or IFIT2 reduced viral NP and NS1 RNA and protein levels in PR/8-infected HEK293 cells. Overexpression of IFIT1 or IFIT2 also inhibited influenza virus infection of various H1N1 strains, including PR/8, A/WSN/1933, A/California/07/2009 and A/Oklahoma/3052/2009, as determined by a viral reporter luciferase assay. Furthermore, knockdown of IFIT1 or IFIT2 increased while overexpression of IFIT1 or IFIT2 decreased viral RNA, complementary RNA, and mRNA levels of NP and NS1, as well as viral polymerase activities. Taken together, our results support that both IFIT1 and -2 have anti-influenza virus activities by inhibiting viral RNA synthesis.
Collapse
Affiliation(s)
- Zhengyu Zhu
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (Z.Z.); (X.Y.); (C.H.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiaoyun Yang
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (Z.Z.); (X.Y.); (C.H.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA
| | - Chaoqun Huang
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (Z.Z.); (X.Y.); (C.H.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA
| | - Lin Liu
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (Z.Z.); (X.Y.); (C.H.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
11
|
How Different Pathologies Are Affected by IFIT Expression. Viruses 2023; 15:v15020342. [PMID: 36851555 PMCID: PMC9963598 DOI: 10.3390/v15020342] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
The type-I interferon (IFN) system represents the first line of defense against viral pathogens. Recognition of the virus initiates complex signaling pathways that result in the transcriptional induction of IFNs, which are then secreted. Secreted IFNs stimulate nearby cells and result in the production of numerous proinflammatory cytokines and antiviral factors. Of particular note, IFN-induced tetratricopeptide repeat (IFIT) proteins have been thoroughly studied because of their antiviral activity against different viral pathogens. Although classically studied as an antiviral protein, IFIT expression has recently been investigated in the context of nonviral pathologies, such as cancer and sepsis. In oral squamous cell carcinoma (OSCC), IFIT1 and IFIT3 promote metastasis, while IFIT2 exhibits the opposite effect. The role of IFIT proteins during bacterial/fungal sepsis is still under investigation, with studies showing conflicting roles for IFIT2 in disease severity. In the setting of viral sepsis, IFIT proteins play a key role in clearing viral infection. As a result, many viral pathogens, such as SARS-CoV-2, employ mechanisms to inhibit the type-I IFN system and promote viral replication. In cancers that are characterized by upregulated IFIT proteins, medications that decrease IFIT expression may reduce metastasis and improve survival rates. Likewise, in cases of viral sepsis, therapeutics that increase IFIT expression may improve viral clearance and reduce the risk of septic shock. By understanding the effect of IFIT proteins in different pathologies, novel therapeutics can be developed to halt disease progression.
Collapse
|
12
|
Lang R, Li H, Luo X, Liu C, Zhang Y, Guo S, Xu J, Bao C, Dong W, Yu Y. Expression and mechanisms of interferon-stimulated genes in viral infection of the central nervous system (CNS) and neurological diseases. Front Immunol 2022; 13:1008072. [PMID: 36325336 PMCID: PMC9618809 DOI: 10.3389/fimmu.2022.1008072] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/28/2022] [Indexed: 09/16/2023] Open
Abstract
Interferons (IFNs) bind to cell surface receptors and activate the expression of interferon-stimulated genes (ISGs) through intracellular signaling cascades. ISGs and their expression products have various biological functions, such as antiviral and immunomodulatory effects, and are essential effector molecules for IFN function. ISGs limit the invasion and replication of the virus in a cell-specific and region-specific manner in the central nervous system (CNS). In addition to participating in natural immunity against viral infections, studies have shown that ISGs are essential in the pathogenesis of CNS disorders such as neuroinflammation and neurodegenerative diseases. The aim of this review is to present a macroscopic overview of the characteristics of ISGs that restrict viral neural invasion and the expression of the ISGs underlying viral infection of CNS cells. Furthermore, we elucidate the characteristics of ISGs expression in neurological inflammation, neuropsychiatric disorders such as depression as well as neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Finally, we summarize several ISGs (ISG15, IFIT2, IFITM3) that have been studied more in recent years for their antiviral infection in the CNS and their research progress in neurological diseases.
Collapse
Affiliation(s)
- Rui Lang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huiting Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xiaoqin Luo
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Cencen Liu
- Department of Pathology, People’s Hospital of Zhongjiang County, DeYang, China
| | - Yiwen Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - ShunYu Guo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jingyi Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Changshun Bao
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Neurological diseases and brain function laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yang Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Vazquez C, Jurado KA. Neurotropic RNA Virus Modulation of Immune Responses within the Central Nervous System. Int J Mol Sci 2022; 23:ijms23074018. [PMID: 35409387 PMCID: PMC8999457 DOI: 10.3390/ijms23074018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
The central nervous system (CNS) necessitates intricately coordinated immune responses to prevent neurological disease. However, the emergence of viruses capable of entering the CNS and infecting neurons threatens this delicate balance. Our CNS is protected from foreign invaders and excess solutes by a semipermeable barrier of endothelial cells called the blood–brain barrier. Thereby, viruses have implemented several strategies to bypass this protective layer and modulate immune responses within the CNS. In this review, we outline these immune regulatory mechanisms and provide perspectives on future questions in this rapidly expanding field.
Collapse
|
14
|
Shiftless inhibits flavivirus replication in vitro and is neuroprotective in a mouse model of Zika virus pathogenesis. Proc Natl Acad Sci U S A 2021; 118:2111266118. [PMID: 34873063 DOI: 10.1073/pnas.2111266118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 12/15/2022] Open
Abstract
Flaviviruses such as Zika virus and West Nile virus have the potential to cause severe neuropathology if they invade the central nervous system. The type I interferon response is well characterized as contributing to control of flavivirus-induced neuropathogenesis. However, the interferon-stimulated gene (ISG) effectors that confer these neuroprotective effects are less well studied. Here, we used an ISG expression screen to identify Shiftless (SHFL, C19orf66) as a potent inhibitor of diverse positive-stranded RNA viruses, including multiple members of the Flaviviridae (Zika, West Nile, dengue, yellow fever, and hepatitis C viruses). In cultured cells, SHFL functions as a viral RNA-binding protein that inhibits viral replication at a step after primary translation of the incoming genome. The murine ortholog, Shfl, is expressed constitutively in multiple tissues, including the central nervous system. In a mouse model of Zika virus infection, Shfl -/- knockout mice exhibit reduced survival, exacerbated neuropathological outcomes, and increased viral replication in the brain and spinal cord. These studies demonstrate that Shfl is an important antiviral effector that contributes to host protection from Zika virus infection and virus-induced neuropathological disease.
Collapse
|
15
|
Chai B, Tian D, Zhou M, Tian B, Yuan Y, Sui B, Wang K, Pei J, Huang F, Wu Q, Lv L, Yang Y, Wang C, Fu Z, Zhao L. Murine Ifit3 restricts the replication of Rabies virus both in vitro and in vivo. J Gen Virol 2021; 102. [PMID: 34269675 DOI: 10.1099/jgv.0.001619] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rabies virus (RABV) infection can initiate the host immune defence response and induce an antiviral state characterized by the expression of interferon (IFN)-stimulated genes (ISGs), among which the family of genes of IFN-induced protein with tetratricopeptide repeats (Ifits) are prominent representatives. Herein, we demonstrated that the mRNA and protein levels of Ifit1, Ifit2 and Ifit3 were highly increased in cultured cells and mouse brains after RABV infection. Recombinant RABV expressing Ifit3, designated rRABV-Ifit3, displayed a lower pathogenicity than the parent RABV in C57BL/6 mice after intramuscular administration, and Ifit3-deficient mice exhibited higher susceptibility to RABV infection and higher mortality during RABV infection. Moreover, compared with their individual expressions, co-expression of Ifit2 and Ifit3 could more effectively inhibit RABV replication in vitro. These results indicate that murine Ifit3 plays an essential role in restricting the replication and reducing the pathogenicity of RABV. Ifit3 acts synergistically with Ifit2 to inhibit RABV replication, providing further insight into the function and complexity of the Ifit family.
Collapse
Affiliation(s)
- Benjie Chai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dayong Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Bin Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Baokun Sui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ke Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jie Pei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Fei Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Qiong Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lei Lv
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yaping Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Caiqian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhenfang Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
16
|
Zhou A, Dong X, Liu M, Tang B. Comprehensive Transcriptomic Analysis Identifies Novel Antiviral Factors Against Influenza A Virus Infection. Front Immunol 2021; 12:632798. [PMID: 34367124 PMCID: PMC8337049 DOI: 10.3389/fimmu.2021.632798] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
Influenza A virus (IAV) has a higher genetic variation, leading to the poor efficiency of traditional vaccine and antiviral strategies targeting viral proteins. Therefore, developing broad-spectrum antiviral treatments is particularly important. Host responses to IAV infection provide a promising approach to identify antiviral factors involved in virus infection as potential molecular drug targets. In this study, in order to better illustrate the molecular mechanism of host responses to IAV and develop broad-spectrum antiviral drugs, we systematically analyzed mRNA expression profiles of host genes in a variety of human cells, including transformed and primary epithelial cells infected with different subtypes of IAV by mining 35 microarray datasets from the GEO database. The transcriptomic results showed that IAV infection resulted in the difference in expression of amounts of host genes in all cell types, especially those genes participating in immune defense and antiviral response. In addition, following the criteria of P<0.05 and |logFC|≥1.5, we found that some difference expression genes were overlapped in different cell types under IAV infection via integrative gene network analysis. IFI6, IFIT2, ISG15, HERC5, RSAD2, GBP1, IFIT3, IFITM1, LAMP3, USP18, and CXCL10 might act as key antiviral factors in alveolar basal epithelial cells against IAV infection, while BATF2, CXCL10, IFI44L, IL6, and OAS2 played important roles in airway epithelial cells in response to different subtypes of IAV infection. Additionally, we also revealed that some overlaps (BATF2, IFI44L, IFI44, HERC5, CXCL10, OAS2, IFIT3, USP18, OAS1, IFIT2) were commonly upregulated in human primary epithelial cells infected with high or low pathogenicity IAV. Moreover, there were similar defense responses activated by IAV infection, including the interferon-regulated signaling pathway in different phagocyte types, although the differentially expressed genes in different phagocyte types showed a great difference. Taken together, our findings will help better understand the fundamental patterns of molecular responses induced by highly or lowly pathogenic IAV, and the overlapped genes upregulated by IAV in different cell types may act as early detection markers or broad-spectrum antiviral targets.
Collapse
Affiliation(s)
- Ao Zhou
- College of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China.,Basic Medical College, Southwest Medical University, Luzhou, China
| | - Xia Dong
- College of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Mengyun Liu
- College of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Bin Tang
- Basic Medical College, Southwest Medical University, Luzhou, China.,Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, Yibin, China
| |
Collapse
|
17
|
Mendez OA, Flores Machado E, Lu J, Koshy AA. Injection with Toxoplasma gondii protein affects neuron health and survival. eLife 2021; 10:e67681. [PMID: 34106047 PMCID: PMC8270641 DOI: 10.7554/elife.67681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/09/2021] [Indexed: 01/22/2023] Open
Abstract
Toxoplasma gondii is an intracellular parasite that causes a long-term latent infection of neurons. Using a custom MATLAB-based mapping program in combination with a mouse model that allows us to permanently mark neurons injected with parasite proteins, we found that Toxoplasma-injected neurons (TINs) are heterogeneously distributed in the brain, primarily localizing to the cortex followed by the striatum. In addition, we determined that cortical TINs are commonly (>50%) excitatory neurons (FoxP2+) and that striatal TINs are often (>65%) medium spiny neurons (MSNs) (FoxP2+). By performing single neuron patch clamping on striatal TINs and neighboring uninfected MSNs, we discovered that TINs have highly aberrant electrophysiology. As approximately 90% of TINs will die by 8 weeks post-infection, this abnormal physiology suggests that injection with Toxoplasma protein-either directly or indirectly-affects neuronal health and survival. Collectively, these data offer the first insights into which neurons interact with Toxoplasma and how these interactions alter neuron physiology in vivo.
Collapse
Affiliation(s)
- Oscar A Mendez
- Graduate Interdisciplinary Program in Neuroscience, University of ArizonaTucsonUnited States
| | | | - Jing Lu
- College of Nursing, University of ArizonaTucsonUnited States
| | - Anita A Koshy
- BIO5 Institute, University of ArizonaTucsonUnited States
- Department of Immunobiology, University of ArizonaTucsonUnited States
- Department of Neurology, University of ArizonaTucsonUnited States
| |
Collapse
|
18
|
Horibata S, Teramoto T, Vijayarangan N, Kuhn S, Padmanabhan R, Vasudevan S, Gottesman M, Padmanabhan R. Host gene expression modulated by Zika virus infection of human-293 cells. Virology 2021; 552:32-42. [PMID: 33059318 PMCID: PMC8383823 DOI: 10.1016/j.virol.2020.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 11/26/2022]
Abstract
The HEK-293 cell line was created in 1977 by transformation of primary human embryonic kidney cells with sheared adenovirus type 5 DNA. A previous study determined that the HEK-293 cells have neuronal markers rather than kidney markers. In this study, we tested the hypothesis whether Zika virus (ZIKV), a neurotropic virus, is able to infect and replicate in the HEK-293 cells. We show that the HEK-293 cells infected with ZIKV support viral replication as shown by indirect immunofluorescence (IFA) and quantitative reverse transcriptase-PCR (qRT-PCR). We performed RNA-seq analysis on the ZIKV-infected and the control uninfected HEK-293 cells and find 659 genes that are differentially transcribed in ZIKV-infected HEK-293 cells as compared to uninfected cells. The results show that the top 10 differentially transcribed and upregulated genes are involved in antiviral and inflammatory responses. Seven upregulated genes, IFNL1, DDX58, CXCL10, ISG15, KCNJ15, IFNIH1, and IFIT2, were validated by qRT-PCR. Altogether, our findings show that ZIKV infection alters host gene expression by affecting their antiviral and inflammatory responses.
Collapse
Affiliation(s)
- Sachi Horibata
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Tadahisa Teramoto
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC, United States
| | - Navin Vijayarangan
- Department of Biochemistry, Molecular and Cell Biology, Georgetown University Medical Center, Washington D.C, 20057, United States
| | - Skyler Kuhn
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Raji Padmanabhan
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Sona Vasudevan
- Department of Biochemistry, Molecular and Cell Biology, Georgetown University Medical Center, Washington D.C, 20057, United States
| | - Michael Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Radhakrishnan Padmanabhan
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC, United States.
| |
Collapse
|
19
|
Das Sarma J, Burrows A, Rayman P, Hwang MH, Kundu S, Sharma N, Bergmann C, Sen GC. Ifit2 deficiency restricts microglial activation and leukocyte migration following murine coronavirus (m-CoV) CNS infection. PLoS Pathog 2020; 16:e1009034. [PMID: 33253295 PMCID: PMC7738193 DOI: 10.1371/journal.ppat.1009034] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/15/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
The interferon-induced tetratricopeptide repeat protein (Ifit2) protects mice from lethal neurotropic viruses. Neurotropic coronavirus MHV-RSA59 infection of Ifit2-/- mice caused pronounced morbidity and mortality accompanied by rampant virus replication and spread throughout the brain. In spite of the higher virus load, induction of many cytokines and chemokines in the brains of infected Ifit2-/- mice were similar to that in wild-type mice. In contrast, infected Ifit2-/- mice revealed significantly impaired microglial activation as well as reduced recruitment of NK1.1 T cells and CD4 T cells to the brain, possibly contributing to the lack of viral clearance. These two deficiencies were associated with a lower level of microglial expression of CX3CR1, the receptor of the CX3CL1 (Fractalkine) chemokine, which plays a critical role in both microglial activation and leukocyte recruitment. The above results uncovered a new potential role of an interferon-induced protein in immune protection. Interferons (IFNs) are known to protect from virus dissemination and pathogenesis. Several IFN stimulated genes (ISG) regulate neuropathogenesis but the mechanisms underlying the antiviral effects are not clearly understood. IFN induced tetratricopeptide repeats (Ifit) are a class of ISGs. Among the Ifits, Ifit2 is known to play a beneficial role in restricting neurotropic viral replication. To provide better cellular insights into the protective mechanisms of Ifit2 functions, using a neurotropic coronavirus infection in Ifit2 depleted mice we report that in the absence of Ifit2, viral replication is dramatically increased and mice develop severe clinical signs and symptoms of neurological deficit. Despite the enormous viral load, Ifit2 deficient mice are impaired in microglial activation and recruitment of peripheral leukocytes into the CNS. This impaired leuocyte infiltration in Ifit2 deficient mice was also associated with reduced expression of a novel chemokine receptor CX3CR1,which is important for viral induced microglial activation and maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Jayasri Das Sarma
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Ohio, United States of America
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
- * E-mail:
| | - Amy Burrows
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Ohio, United States of America
| | - Patricia Rayman
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Ohio, United States of America
| | - Mi-Hyun Hwang
- Department of Neurosciences, Cleveland Clinic, Ohio, United States of America
| | - Soumya Kundu
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Nikhil Sharma
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Ohio, United States of America
| | - Cornelia Bergmann
- Department of Neurosciences, Cleveland Clinic, Ohio, United States of America
| | - Ganes C. Sen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Ohio, United States of America
| |
Collapse
|
20
|
Tabari D, Scholl C, Steffens M, Weickhardt S, Elgner F, Bender D, Herrlein ML, Sabino C, Semkova V, Peitz M, Till A, Brüstle O, Hildt E, Stingl J. Impact of Zika Virus Infection on Human Neural Stem Cell MicroRNA Signatures. Viruses 2020; 12:E1219. [PMID: 33121145 PMCID: PMC7693339 DOI: 10.3390/v12111219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne virus, which can cause brain abnormalities in newborns, including microcephaly. MicroRNAs (miRNAs) are small non-coding RNAs, which post- transcriptionally regulate gene expression. They are involved in various processes including neurological development and host responses to viral infection, but their potential role in ZIKV pathogenesis remains poorly understood. MiRNAs can be incorporated into extracellular vesicles (EVs) and mediate cell-to-cell communication. While it is well known that in viral infections EVs carrying miRNAs can play a crucial role in disease pathogenesis, ZIKV effects on EV-delivered miRNAs and their contribution to ZIKV pathogenesis have not been elucidated. In the present study, we profiled intracellular and EV-derived miRNAs by next generation sequencing and analyzed the host mRNA transcriptome of neural stem cells during infection with ZIKV Uganda and French Polynesia strains. We identified numerous miRNAs, including miR-4792, which were dysregulated at the intracellular level and had altered levels in EVs during ZIKV infection. Integrated analyses of differentially expressed genes and miRNAs showed that ZIKV infection had an impact on processes associated with neurodevelopment and oxidative stress. Our results provide insights into the roles of intracellular and EV-associated host miRNAs in ZIKV pathogenesis.
Collapse
Affiliation(s)
- Denna Tabari
- Research Division, Federal Institute for Drugs and Medical Devices, 53175 Bonn, Germany; (D.T.); (M.S.); (S.W.)
| | - Catharina Scholl
- Research Division, Federal Institute for Drugs and Medical Devices, 53175 Bonn, Germany; (D.T.); (M.S.); (S.W.)
| | - Michael Steffens
- Research Division, Federal Institute for Drugs and Medical Devices, 53175 Bonn, Germany; (D.T.); (M.S.); (S.W.)
| | - Sandra Weickhardt
- Research Division, Federal Institute for Drugs and Medical Devices, 53175 Bonn, Germany; (D.T.); (M.S.); (S.W.)
| | - Fabian Elgner
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (F.E.); (D.B.); (M.-L.H.); (C.S.); (E.H.)
| | - Daniela Bender
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (F.E.); (D.B.); (M.-L.H.); (C.S.); (E.H.)
| | - Marie-Luise Herrlein
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (F.E.); (D.B.); (M.-L.H.); (C.S.); (E.H.)
| | - Catarina Sabino
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (F.E.); (D.B.); (M.-L.H.); (C.S.); (E.H.)
| | - Vesselina Semkova
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany; (V.S.); (M.P.); (A.T.); (O.B.)
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany; (V.S.); (M.P.); (A.T.); (O.B.)
- Cell Programming Core Facility, Medical Faculty, University of Bonn, 53172 Bonn, Germany
| | - Andreas Till
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany; (V.S.); (M.P.); (A.T.); (O.B.)
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany; (V.S.); (M.P.); (A.T.); (O.B.)
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (F.E.); (D.B.); (M.-L.H.); (C.S.); (E.H.)
| | - Julia Stingl
- Department of Clinical Pharmacology, University Hospital, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
21
|
Tran V, Ledwith MP, Thamamongood T, Higgins CA, Tripathi S, Chang MW, Benner C, García-Sastre A, Schwemmle M, Boon ACM, Diamond MS, Mehle A. Influenza virus repurposes the antiviral protein IFIT2 to promote translation of viral mRNAs. Nat Microbiol 2020; 5:1490-1503. [PMID: 32839537 PMCID: PMC7677226 DOI: 10.1038/s41564-020-0778-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/21/2020] [Indexed: 12/26/2022]
Abstract
Cells infected by influenza virus mount a large-scale antiviral response and most cells ultimately initiate cell-death pathways in an attempt to suppress viral replication. We performed a CRISPR-Cas9-knockout selection designed to identify host factors required for replication after viral entry. We identified a large class of presumptive antiviral factors that unexpectedly act as important proviral enhancers during influenza virus infection. One of these, IFIT2, is an interferon-stimulated gene with well-established antiviral activity but limited mechanistic understanding. As opposed to suppressing infection, we show in the present study that IFIT2 is instead repurposed by influenza virus to promote viral gene expression. CLIP-seq demonstrated that IFIT2 binds directly to viral and cellular messenger RNAs in AU-rich regions, with bound cellular transcripts enriched in interferon-stimulated mRNAs. Polysome and ribosome profiling revealed that IFIT2 prevents ribosome pausing on bound mRNAs. Together, the data link IFIT2 binding to enhanced translational efficiency for viral and cellular mRNAs and ultimately viral replication. Our findings establish a model for the normal function of IFIT2 as a protein that increases translation of cellular mRNAs to support antiviral responses and explain how influenza virus uses this same activity to redirect a classically antiviral protein into a proviral effector.
Collapse
Affiliation(s)
- Vy Tran
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA
| | - Mitchell P Ledwith
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA
| | - Thiprampai Thamamongood
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Christina A Higgins
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA
| | - Shashank Tripathi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Max W Chang
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Christopher Benner
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Schwemmle
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Adrianus C M Boon
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew Mehle
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA.
| |
Collapse
|
22
|
Modelling Neurotropic Flavivirus Infection in Human Induced Pluripotent Stem Cell-Derived Systems. Int J Mol Sci 2019; 20:ijms20215404. [PMID: 31671583 PMCID: PMC6862117 DOI: 10.3390/ijms20215404] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
Generation of human induced pluripotent stem cells (hiPSCs) and their differentiation into a variety of cells and organoids have allowed setting up versatile, non-invasive, ethically sustainable, and patient-specific models for the investigation of the mechanisms of human diseases, including viral infections and host–pathogen interactions. In this study, we investigated and compared the infectivity and replication kinetics in hiPSCs, hiPSC-derived neural stem cells (NSCs) and undifferentiated neurons, and the effect of viral infection on host innate antiviral responses of representative flaviviruses associated with diverse neurological diseases, i.e., Zika virus (ZIKV), West Nile virus (WNV), and dengue virus (DENV). In addition, we exploited hiPSCs to model ZIKV infection in the embryo and during neurogenesis. The results of this study confirmed the tropism of ZIKV for NSCs, but showed that WNV replicated in these cells with much higher efficiency than ZIKV and DENV, inducing massive cell death. Although with lower efficiency, all flaviviruses could also infect pluripotent stem cells and neurons, inducing similar patterns of antiviral innate immune response gene expression. While showing the usefulness of hiPSC-based infection models, these findings suggest that additional virus-specific mechanisms, beyond neural tropism, are responsible for the peculiarities of disease phenotype in humans.
Collapse
|
23
|
McCarthy RR, Everett HE, Graham SP, Steinbach F, Crooke HR. Head Start Immunity: Characterizing the Early Protection of C Strain Vaccine Against Subsequent Classical Swine Fever Virus Infection. Front Immunol 2019; 10:1584. [PMID: 31396205 PMCID: PMC6663987 DOI: 10.3389/fimmu.2019.01584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/25/2019] [Indexed: 01/18/2023] Open
Abstract
Classical Swine Fever Virus (CSFV) is an ongoing threat to the pig industry due to the high transmission and mortality rates associated with infection. Live attenuated vaccines such as the CSFV C strain vaccine are capable of protecting against infection within 5 days of vaccination, but the molecular mechanisms through which this early protection is mediated have yet to be established. In this study, we compared the response of pigs vaccinated with the C strain to non-vaccinated pigs both challenged with a pathogenic strain of CSFV. Analysis of transcriptomic data from the tonsils of these animals during the early stages after vaccination and challenge reveals a set of regulated genes that appear throughout the analysis. Many of these are linked to the ISG15 antiviral pathway suggesting it may play a role in the rapid and early protection conferred by C strain vaccination.
Collapse
Affiliation(s)
- Ronan R McCarthy
- Virology Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Helen E Everett
- Virology Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Simon P Graham
- Virology Department, Animal and Plant Health Agency, Addlestone, United Kingdom.,School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom.,The Pirbright Institute, Pirbright, United Kingdom
| | - Falko Steinbach
- Virology Department, Animal and Plant Health Agency, Addlestone, United Kingdom.,School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Helen R Crooke
- Virology Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| |
Collapse
|
24
|
Koch S, Damas M, Freise A, Hage E, Dhingra A, Rückert J, Gallo A, Kremmer E, Tegge W, Brönstrup M, Brune W, Schulz TF. Kaposi's sarcoma-associated herpesvirus vIRF2 protein utilizes an IFN-dependent pathway to regulate viral early gene expression. PLoS Pathog 2019; 15:e1007743. [PMID: 31059555 PMCID: PMC6522069 DOI: 10.1371/journal.ppat.1007743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 05/16/2019] [Accepted: 03/31/2019] [Indexed: 12/14/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) belongs to the subfamily of Gammaherpesvirinae and is the etiological agent of Kaposi’s sarcoma as well as of two lymphoproliferative diseases: primary effusion lymphoma and multicentric Castleman disease. The KSHV life cycle is divided into a latent and a lytic phase and is highly regulated by viral immunomodulatory proteins which control the host antiviral immune response. Among them is a group of proteins with homology to cellular interferon regulatory factors, the viral interferon regulatory factors 1–4. The KSHV vIRFs are known as inhibitors of cellular interferon signaling and are involved in different oncogenic pathways. Here we characterized the role of the second vIRF protein, vIRF2, during the KSHV life cycle. We found the vIRF2 protein to be expressed in different KSHV positive cells with early lytic kinetics. Importantly, we observed that vIRF2 suppresses the expression of viral early lytic genes in both newly infected and reactivated persistently infected endothelial cells. This vIRF2-dependent regulation of the KSHV life cycle might involve the increased expression of cellular interferon-induced genes such as the IFIT proteins 1, 2 and 3, which antagonize the expression of early KSHV lytic proteins. Our findings suggest a model in which the viral protein vIRF2 allows KSHV to harness an IFN-dependent pathway to regulate KSHV early gene expression. The life cycle of Kaposi Sarcoma herpesvirus involves both persistence in a latent form and productive replication to generate new viral particles. How the virus switches between latency and productive (‘lytic’) replication is only partially understood. Here we show that a viral homologue of interferon regulatory factors, vIRF2, antagonizes lytic protein expression in endothelial cells. It does this by inducing the expression of cellular interferon-regulated genes such as IFIT 1–3, which in turn dampens early viral gene expression. This observation suggests that vIRF2 allows KSHV to harness the interferon pathway to regulate early viral gene expression in endothelial cells.
Collapse
Affiliation(s)
- Sandra Koch
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Modester Damas
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Anika Freise
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Elias Hage
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Akshay Dhingra
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Jessica Rückert
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Antonio Gallo
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Centre for Infection Research, Hamburg Site, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Centre Munich, German Research Center for Environmental Health, Munich, Germany
| | - Werner Tegge
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mark Brönstrup
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wolfram Brune
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Centre for Infection Research, Hamburg Site, Germany
| | - Thomas F. Schulz
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
- * E-mail:
| |
Collapse
|
25
|
Interferon regulatory factor 3 plays a role in macrophage responses to interferon-γ. Immunobiology 2019; 224:565-574. [PMID: 31072630 DOI: 10.1016/j.imbio.2019.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022]
Abstract
IFN-γ produced during viral infections activates the IFN-γ receptor (IFNGR) complex for STAT1 transcriptional activity leading to expression of Interferon Regulatory Factors (IRF). Simultaneous activation of TBK/IKKε via TLR3 during viral infections activates the transcription factor IRF3. Together these transcription factors contributes to expression of intracellular proteins (e.g. ISG49, ISG54) and secreted proteins (e.g. IFN-β, IP-10, IL-15) that are essential to innate antiviral immunity. Here we examined the role of IRF3 in expression of innate anti-viral proteins produced in response to IFN-γ plus TLR3 agonist. Wild-type (WT) and IRF3KO RAW264.7 cells, each with ISG54-promoter-luciferase reporter vectors, were stimulated with IFN-γ, poly I:C, or both together. ISG54 promoter activity was significantly reduced in IRF3KO RAW264.7 cells responding to IFN-γ, poly I:C, or IFN-γ plus poly I:C, compared with WT RAW264.7 cells. These data were confirmed with western blot and qRT-PCR. Primary macrophages and dendritic cells (DCs) from IRF3KO mice also showed decreased ISG54 in response to IFN-γ, poly I:C, or IFN-γ plus poly I:C compared with those from WT mice. Moreover, pharmacological inhibition of TBK/IKKε significantly reduced ISG54 promoter activity in response to IFN-γ, poly I:C, or IFN-γ plus poly I:C. Similarly, expression of ISG49 and IL-15, but not IP-10, was impaired in IRF3KO RAW264.7 cells responding to IFN-γ or poly I:C, which also had impaired STAT1 phosphorylation and IRF1 expression. These data show that IRF3 contributes to IFN-γ/IFNGR signaling for expression of innate anti-viral proteins in macrophages.
Collapse
|
26
|
Pingale KD, Kanade GD, Karpe YA. Hepatitis E virus polymerase binds to IFIT1 to protect the viral RNA from IFIT1-mediated translation inhibition. J Gen Virol 2019; 100:471-483. [PMID: 30702423 DOI: 10.1099/jgv.0.001229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatitis E virus (HEV) induces interferons and regulates the induction of interferon-stimulated genes (ISGs) in the host cell. HEV infection has been shown to promote the expression of different ISGs, such as ISG15, IFIT1, MX1, RSAD2/Viperin and CxCL10, in cell culture and animal models. Interferon-induced protein with tetratricopeptide repeat 1 (IFIT1) is an ISG-encoded protein that inhibits the translation of viral RNA, having 5'-triphosphate or the mRNA lacking 2'-O-methylation on the 5'cap. In this study, we found that IFIT1 binds to HEV RNA to inhibit its translation. HEV replication is also restricted in hepatoma cells with overexpressed IFIT1. However, despite this binding of IFIT1 to HEV RNA, HEV successfully replicates in hepatoma cells in the infection scenario. In an effort to identify the underlying mechanism, we found that HEV RNA-dependent RNA polymerase (RdRp) binds to IFIT1, thereby protecting the viral RNA from IFIT1-mediated translation inhibition. RdRp sequesters IFIT1, resulting in the successful progression of viral replication in the infected cells. Thus, we discovered a distinct pro-viral role of HEV RdRp that is crucial for successful infection in the host, and propose a unique mechanism developed by HEV to overcome IFIT1-mediated host immune response.
Collapse
Affiliation(s)
- Kunal D Pingale
- 1Agharkar Research Institute, Nanobioscience Group, G. G. Agarkar Road, Pune 411004, India.,2Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Gayatri D Kanade
- 1Agharkar Research Institute, Nanobioscience Group, G. G. Agarkar Road, Pune 411004, India.,2Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Yogesh A Karpe
- 1Agharkar Research Institute, Nanobioscience Group, G. G. Agarkar Road, Pune 411004, India.,2Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| |
Collapse
|
27
|
Garcia M, Alout H, Diop F, Damour A, Bengue M, Weill M, Missé D, Lévêque N, Bodet C. Innate Immune Response of Primary Human Keratinocytes to West Nile Virus Infection and Its Modulation by Mosquito Saliva. Front Cell Infect Microbiol 2018; 8:387. [PMID: 30450338 PMCID: PMC6224356 DOI: 10.3389/fcimb.2018.00387] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
West Nile Virus (WNV) is a flavivirus involved in many human infections worldwide. This arthropod-borne virus is directly co-inoculated with mosquito saliva through the epidermis and the dermis during blood meal. WNV starts replicating in the skin before migrating to the draining lymph node, leading to widespread viremia and in some cases to neurological symptoms. Skin is a complex organ composed of different cell types that together perform essential functions such as pathogen sensing, barrier maintenance and immunity. Keratinocytes, which represent 90% of the cells of the epidermis, are the organism's first line of defense, initiating innate immune response by recognizing pathogens through their pattern recognition receptors. Although WNV was previously known to replicate in human primary keratinocytes, the induced inflammatory response remains unknown. The aim of this study was first to characterize the inflammatory response of human primary keratinocytes to WNV infection and then, to assess the potential role of co-inoculated mosquito saliva on the keratinocyte immune response and viral replication. A type I and III interferon inflammatory response associated with an increase of IRF7 but not IRF3 mRNA expression, and dependent on infectious dose, was observed during keratinocyte infection with WNV. Expression of several interferon-stimulated gene mRNA was also increased at 24 h post-infection (p.i.); they included CXCL10 and interferon-induced proteins with tetratricopeptide repeats (IFIT)-2 sustained up until 48 h p.i. Moreover, WNV infection of keratinocyte resulted in a significant increase of pro-inflammatory cytokines (TNFα, IL-6) and various chemokines (CXCL1, CXCL2, CXCL8 and CCL20) expression. The addition of Aedes aegypti or Culex quinquefasciatus mosquito saliva, two vectors of WNV infection, to infected keratinocytes led to a decrease of inflammatory response at 24 h p.i. However, only Ae. Aegypti saliva adjunction induced modulation of viral replication. In conclusion, this work describes for the first time the inflammatory response of human primary keratinocytes to WNV infection and its modulation in presence of vector mosquito saliva. The effects of mosquito saliva assessed in this work could be involved in the early steps of WNV replication in skin promoting viral spread through the body.
Collapse
Affiliation(s)
- Magali Garcia
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, EA 4331, Université de Poitiers, Poitiers, France
| | - Haoues Alout
- Institut des Sciences de l'Evolution, Université de Montpellier, Montpellier, France
| | - Fodé Diop
- MIVEGEC UMR 224, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Alexia Damour
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, EA 4331, Université de Poitiers, Poitiers, France
| | - Michèle Bengue
- MIVEGEC UMR 224, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Mylène Weill
- Institut des Sciences de l'Evolution, Université de Montpellier, Montpellier, France
| | - Dorothée Missé
- MIVEGEC UMR 224, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Nicolas Lévêque
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, EA 4331, Université de Poitiers, Poitiers, France
| | - Charles Bodet
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, EA 4331, Université de Poitiers, Poitiers, France
| |
Collapse
|
28
|
A haplotype variant of porcine IFIT2 increases poly(I:C)-induced activation of NF-κB and ISRE-binding factors. Mol Biol Rep 2018; 45:2167-2173. [PMID: 30298349 DOI: 10.1007/s11033-018-4376-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/11/2018] [Indexed: 12/28/2022]
Abstract
Interferon-induced protein with tetratricopeptide repeats (IFIT) 2 is associated with various viral infections and pathogenesis in humans and mice. However, there are few reports on IFIT2 in pigs and the polymorphic information remains unclear. Here, by using a direct PCR sequencing method, we identified four single nucleotide polymorphisms (SNPs), c.259G>A (p.Gly87Ser), c.520T>G (p.Phe174Val), c.571C>T (p.Pro191Ser), and c.879A>G (p.Glu293Glu), for the first time in the coding sequence of the porcine (p) IFIT2 gene from a Chinese local breed (Hebao pig), Western commercial pig breeds (Yorkshire and Landrace), and a Chinese developed breed (Beijing Black pig). SNP c.520T>G (p.Phe174Val) leads to the addition of a tetratricopeptide repeat motif, characteristic structure of the IFIT family. SNPs c.259G>A and c.520T>G are medium polymorphic loci (0.25 < polymorphic information content < 0.5) and distributed differently in Western pig breeds and the Chinese local pig, Hebao, which is well known for its strong resistance to disease. Additionally, they are completely linked. The four SNPs constituted five haplotypes with GTCA and AGCA as dominant. The haplotype variant AGCA, which is mainly present in Hebao pigs, significantly synergized the poly(I:C)-induced activation of transcription factors, including NF-κB and IFN-stimulated response element (ISRE)-binding factors, and the expression of interferon β, indicating that the variant contributes to the induction or magnitude of the immune response upon viral infection. The data showed that variant AGCA might be useful in improving the resistance of pigs to viruses through marker-assisted selection.
Collapse
|
29
|
Mears HV, Sweeney TR. Better together: the role of IFIT protein-protein interactions in the antiviral response. J Gen Virol 2018; 99:1463-1477. [PMID: 30234477 DOI: 10.1099/jgv.0.001149] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The interferon-induced proteins with tetratricopeptide repeats (IFITs) are a family of antiviral proteins conserved throughout all vertebrates. IFIT1 binds tightly to non-self RNA, particularly capped transcripts lacking methylation on the first cap-proximal nucleotide, and inhibits their translation by out-competing the cellular translation initiation apparatus. This exerts immense selection pressure on cytoplasmic RNA viruses to maintain mechanisms that protect their messenger RNA from IFIT1 recognition. However, it is becoming increasingly clear that protein-protein interactions are necessary for optimal IFIT function. Recently, IFIT1, IFIT2 and IFIT3 have been shown to form a functional complex in which IFIT3 serves as a central scaffold to regulate and/or enhance the antiviral functions of the other two components. Moreover, IFITs interact with other cellular proteins to expand their contribution to regulation of the host antiviral response by modulating innate immune signalling and apoptosis. Here, we summarize recent advances in our understanding of the IFIT complex and review how this impacts on the greater role of IFIT proteins in the innate antiviral response.
Collapse
Affiliation(s)
- Harriet V Mears
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Trevor R Sweeney
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| |
Collapse
|
30
|
Manet C, Roth C, Tawfik A, Cantaert T, Sakuntabhai A, Montagutelli X. Host genetic control of mosquito-borne Flavivirus infections. Mamm Genome 2018; 29:384-407. [PMID: 30167843 PMCID: PMC7614898 DOI: 10.1007/s00335-018-9775-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Flaviviruses are arthropod-borne viruses, several of which represent emerging or re-emerging pathogens responsible for widespread infections with consequences ranging from asymptomatic seroconversion to severe clinical diseases and congenital developmental deficits. This variability is due to multiple factors including host genetic determinants, the role of which has been investigated in mouse models and human genetic studies. In this review, we provide an overview of the host genes and variants which modify susceptibility or resistance to major mosquito-borne flaviviruses infections in mice and humans.
Collapse
Affiliation(s)
- Caroline Manet
- Mouse Genetics Laboratory, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Claude Roth
- Functional Genetics of Infectious Diseases Unit, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- CNRS, UMR 2000-Génomique Evolutive, Modélisation et Santé, Institut Pasteur, 75015, Paris, France
| | - Ahmed Tawfik
- Functional Genetics of Infectious Diseases Unit, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- CNRS, UMR 2000-Génomique Evolutive, Modélisation et Santé, Institut Pasteur, 75015, Paris, France
| | - Tineke Cantaert
- Immunology Group, Institut Pasteur du Cambodge, International Network of Pasteur Institutes, Phnom Penh, 12201, Cambodia
| | - Anavaj Sakuntabhai
- Functional Genetics of Infectious Diseases Unit, Department of Genomes and Genetics, Institut Pasteur, Paris, France.
- CNRS, UMR 2000-Génomique Evolutive, Modélisation et Santé, Institut Pasteur, 75015, Paris, France.
| | - Xavier Montagutelli
- Mouse Genetics Laboratory, Department of Genomes and Genetics, Institut Pasteur, Paris, France.
| |
Collapse
|
31
|
Mendez OA, Potter CJ, Valdez M, Bello T, Trouard TP, Koshy AA. Semi-automated quantification and neuroanatomical mapping of heterogeneous cell populations. J Neurosci Methods 2018; 305:98-104. [PMID: 29782884 DOI: 10.1016/j.jneumeth.2018.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/13/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
Abstract
BACKGROUND Our group studies the interactions between cells of the brain and the neurotropic parasite Toxoplasma gondii. Using an in vivo system that allows us to permanently mark and identify brain cells injected with Toxoplasma protein, we have identified that Toxoplasma-injected neurons (TINs) are heterogeneously distributed throughout the brain. Unfortunately, standard methods to quantify and map heterogeneous cell populations onto a reference brain atlas are time consuming and prone to user bias. NEW METHOD We developed a novel MATLAB-based semi-automated quantification and mapping program to allow the rapid and consistent mapping of heterogeneously distributed cells on to the Allen Institute Mouse Brain Atlas. The system uses two-threshold background subtraction to identify and quantify cells of interest. RESULTS We demonstrate that we reliably quantify and neuroanatomically localize TINs with low intra- or inter-observer variability. In a follow up experiment, we show that specific regions of the mouse brain are enriched with TINs. COMPARISON WITH EXISTING METHODS The procedure we use takes advantage of simple immunohistochemistry labeling techniques, use of a standard microscope with a motorized stage, and low cost computing that can be readily obtained at a research institute. To our knowledge there is no other program that uses such readily available techniques and equipment for mapping heterogeneous populations of cells across the whole mouse brain. CONCLUSION The quantification method described here allows reliable visualization, quantification, and mapping of heterogeneous cell populations in immunolabeled sections across whole mouse brains.
Collapse
Affiliation(s)
- Oscar A Mendez
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, Arizona, United States; BIO5 Institute, University of Arizona, Tucson, Arizona, United States
| | - Colin J Potter
- Neuroscience and Cognitive Science Undergraduate Program, University of Arizona, Tucson, Arizona, United States
| | - Michael Valdez
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, United States
| | - Thomas Bello
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States
| | - Theodore P Trouard
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, United States; BIO5 Institute, University of Arizona, Tucson, Arizona, United States; Department of Medical Imaging, University of Arizona, Tucson, Arizona, United States
| | - Anita A Koshy
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States; Department of Immunobiology, University of Arizona, Tucson, Arizona, United States; Department of Neurology, University of Arizona, Tucson, Arizona, United States.
| |
Collapse
|
32
|
Yang X, Jing X, Song Y, Zhang C, Liu D. Molecular identification and transcriptional regulation of porcine IFIT2 gene. Mol Biol Rep 2018; 45:433-443. [PMID: 29623507 PMCID: PMC7088635 DOI: 10.1007/s11033-018-4179-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 04/02/2018] [Indexed: 11/26/2022]
Abstract
IFN-induced protein with tetratricopeptide repeats 2 (IFIT2) plays important roles in host defense against viral infection as revealed by studies in humans and mice. However, little is known on porcine IFIT2 (pIFIT2). Here, we performed molecular cloning, expression profile, and transcriptional regulation analysis of pIFIT2. pIFIT2 gene, located on chromosome 14, is composed of two exons and have a complete coding sequence of 1407 bp. The encoded polypeptide, 468 aa in length, has three tetratricopeptide repeat motifs. pIFIT2 gene was unevenly distributed in all eleven tissues studied with the most abundance in spleen. Poly(I:C) treatment notably strongly upregulated the mRNA level and promoter activity of pIFIT2 gene. Upstream sequence of 1759 bp from the start codon which was assigned +1 here has promoter activity, and deltaEF1 acts as transcription repressor through binding to sequences at position - 1774 to - 1764. Minimal promoter region exists within nucleotide position - 162 and - 126. Two adjacent interferon-stimulated response elements (ISREs) and two nuclear factor (NF)-κB binding sites were identified within position - 310 and - 126. The ISRE elements act alone and in synergy with the one closer to start codon having more strength, so do the NF-κB binding sites. Synergistic effect was also found between the ISRE and NF-κB binding sites. Additionally, a third ISRE element was identified within position - 1661 to - 1579. These findings will contribute to clarifying the antiviral effect and underlying mechanisms of pIFIT2.
Collapse
Affiliation(s)
- Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 China
| | - Xiaoyan Jing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 China
| | - Yanfang Song
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 China
| | - Caixia Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 China
| | - Di Liu
- Agricultural Academy of Heilongjiang Province, Harbin, 150086 China
| |
Collapse
|
33
|
Abstract
West Nile virus (WNV), a mosquito-borne flavivirus, has been a significant public health concern in the United States for nearly two decades. The virus has been linked to acute viral encephalitis, neurological sequelae, and chronic kidney diseases. Neither antiviral drugs nor vaccines are currently available for humans. In vitro cell culture and experimental animal models have been used to study WNV infection in humans. In this review, we will focus on recent findings and provide new insights into WNV host immunity and viral pathogenesis.
Collapse
Affiliation(s)
- Huanle Luo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, USA
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, USA.,Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, USA
| |
Collapse
|
34
|
Lindqvist R, Kurhade C, Gilthorpe JD, Överby AK. Cell-type- and region-specific restriction of neurotropic flavivirus infection by viperin. J Neuroinflammation 2018; 15:80. [PMID: 29544502 PMCID: PMC5856362 DOI: 10.1186/s12974-018-1119-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/07/2018] [Indexed: 11/10/2022] Open
Abstract
Background Flaviviruses are a group of diverse and emerging arboviruses and an immense global health problem. A number of flaviviruses are neurotropic, causing severe encephalitis and even death. Type I interferons (IFNs) are the first line of defense of the innate immune system against flavivirus infection. IFNs elicit the concerted action of numerous interferon-stimulated genes (ISGs) to restrict both virus infection and replication. Viperin (virus-inhibitory protein, endoplasmic reticulum-associated, IFN-inducible) is an ISG with broad-spectrum antiviral activity against multiple flaviviruses in vitro. Its activity in vivo restricts neurotropic infections to specific regions of the central nervous system (CNS). However, the cell types in which viperin activity is required are unknown. Here we have examined both the regional and cell-type specificity of viperin in the defense against infection by several model neurotropic flaviviruses. Methods Viral burden and IFN induction were analyzed in vivo in wild-type and viperin−/− mice infected with Langat virus (LGTV). The effects of IFN pretreatment were tested in vitro in primary neural cultures from different brain regions in response to infection with tick-borne encephalitis virus (TBEV), West Nile virus (WNV), and Zika virus (ZIKV). Results Viperin activity restricted nonlethal LGTV infection in the spleen and the olfactory bulb following infection via a peripheral route. Viperin activity was also necessary to restrict LGTV replication in the olfactory bulb and the cerebrum following CNS infection, but not in the cerebellum. In vitro, viperin could restrict TBEV replication in primary cortical neurons, but not in the cerebellar granule cell neurons. Interferon-induced viperin was also very important in primary cortical neurons to control TBEV, WNV, and ZIKV. Conclusions Our findings show that viperin restricts replication of neurotropic flaviviruses in the CNS in a region- and cell-type-specific manner. The most important sites of activity are the olfactory bulb and cerebrum. Activity within the cerebrum is required in the cortical neurons in order to restrict spread. This study exemplifies cell type and regional diversity of the IFN response within the CNS and shows the importance of a potent broad-spectrum antiviral ISG. Electronic supplementary material The online version of this article (10.1186/s12974-018-1119-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Richard Lindqvist
- Department of Clinical Microbiology, Virology, Umeå University, 90185, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
| | - Chaitanya Kurhade
- Department of Clinical Microbiology, Virology, Umeå University, 90185, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
| | - Jonathan D Gilthorpe
- Department of Pharmacology and Clinical Neurosciences, Umeå University, 90187, Umeå, Sweden
| | - Anna K Överby
- Department of Clinical Microbiology, Virology, Umeå University, 90185, Umeå, Sweden. .,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden.
| |
Collapse
|
35
|
AXL promotes Zika virus infection in astrocytes by antagonizing type I interferon signalling. Nat Microbiol 2018; 3:302-309. [PMID: 29379210 DOI: 10.1038/s41564-017-0092-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 12/05/2017] [Indexed: 02/08/2023]
Abstract
Zika virus (ZIKV) is associated with neonatal microcephaly and Guillain-Barré syndrome1,2. While progress has been made in understanding the causal link between ZIKV infection and microcephaly3-9, the life cycle and pathogenesis of ZIKV are less well understood. In particular, there are conflicting reports on the role of AXL, a TAM family kinase receptor that was initially described as the entry receptor for ZIKV10-22. Here, we show that while genetic ablation of AXL protected primary human astrocytes and astrocytoma cell lines from ZIKV infection, AXL knockout did not block the entry of ZIKV. We found, instead, that the presence of AXL attenuated the ZIKV-induced activation of type I interferon (IFN) signalling genes, including several type I IFNs and IFN-stimulating genes. Knocking out type I IFN receptor α chain (IFNAR1) restored the vulnerability of AXL knockout astrocytes to ZIKV infection. Further experiments suggested that AXL regulates the expression of SOCS1, a known type I IFN signalling suppressor, in a STAT1/STAT2-dependent manner. Collectively, our results demonstrate that AXL is unlikely to function as an entry receptor for ZIKV and may instead promote ZIKV infection in human astrocytes by antagonizing type I IFN signalling.
Collapse
|
36
|
Kozak RA, Majer A, Biondi MJ, Medina SJ, Goneau LW, Sajesh BV, Slota JA, Zubach V, Severini A, Safronetz D, Hiebert SL, Beniac DR, Booth TF, Booth SA, Kobinger GP. MicroRNA and mRNA Dysregulation in Astrocytes Infected with Zika Virus. Viruses 2017; 9:v9100297. [PMID: 29036922 PMCID: PMC5691648 DOI: 10.3390/v9100297] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/30/2017] [Accepted: 10/10/2017] [Indexed: 12/31/2022] Open
Abstract
The Zika virus (ZIKV) epidemic is an ongoing public health concern. ZIKV is a flavivirus reported to be associated with microcephaly, and recent work in animal models demonstrates the ability of the virus to cross the placenta and affect fetal brain development. Recent findings suggest that the virus preferentially infects neural stem cells and thereby deregulates gene expression, cell cycle progression, and increases cell death. However, neuronal stem cells are not the only brain cells that are susceptible to ZIKV and infection of other brain cells may contribute to disease progression. Herein, we characterized ZIKV replication in astrocytes, and profiled temporal changes in host microRNAs (miRNAs) and transcriptomes during infection. We observed the deregulation of numerous processes known to be involved in flavivirus infection, including genes involved in the unfolded protein response pathway. Moreover, a number of miRNAs were upregulated, including miR-30e-3p, miR-30e-5p, and, miR-17-5p, which have been associated with other flavivirus infections. This study highlights potential miRNAs that may be of importance in ZIKV pathogenesis.
Collapse
Affiliation(s)
- Robert A Kozak
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Anna Majer
- Molecular Patho Biology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Mia J Biondi
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada; Winnipeg, MB R3E 3R2, Canada, .
| | - Sarah J Medina
- Molecular Patho Biology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Lee W Goneau
- Medical Microbiology, Public Health Ontario Laboratory, Toronto, ON M5G 1M1, Canada.
| | - Babu V Sajesh
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Jessy A Slota
- Molecular Patho Biology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Vanessa Zubach
- Viral Exanthemata and STD, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Alberto Severini
- Viral Exanthemata and STD, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - David Safronetz
- Viral Zoonoses, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Shannon L Hiebert
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Daniel R Beniac
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Timothy F Booth
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Stephanie A Booth
- Molecular Patho Biology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Gary P Kobinger
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
- Infectious Diseases Research Centre, Université Laval, Quebec, QC G1V 4G2, Canada.
| |
Collapse
|
37
|
Abstract
Understanding the interactions between rabies virus (RABV) and individual host cell proteins is critical for the development of targeted therapies. Here we report that interferon-induced protein with tetratricopeptide repeats 2 (Ifit2), an interferon-stimulated gene (ISG) with possible RNA-binding capacity, is an important restriction factor for rabies virus. When Ifit2 was depleted, RABV grew more quickly in mouse neuroblastoma cells in vitro This effect was replicated in vivo, where Ifit2 knockout mice displayed a dramatically more severe disease phenotype than wild-type mice after intranasal inoculation of RABV. This increase in pathogenicity correlated to an increase in RABV mRNA and live viral load in the brain, as well as to an accelerated spread to brain regions normally affected by this RABV model. These results suggest that Ifit2 exerts its antiviral effect mainly at the level of viral replication, as opposed to functioning as a mechanism that restricts viral entry/egress or transports RABV particles through axons.IMPORTANCE Rabies is a fatal zoonotic disease with a nearly 100% case fatality rate. Although there are effective vaccines for rabies, this disease still takes the lives of about 50,000 people each year. Victims tend to be children living in regions without comprehensive medical infrastructure who present to health care workers too late for postexposure prophylaxis. The protein discussed in our report, Ifit2, is found to be an important restriction factor for rabies virus, acting directly or indirectly against viral replication. A more nuanced understanding of this interaction may reveal a step of a pathway or site at which the system could be exploited for the development of a targeted therapy.
Collapse
|
38
|
IRAV ( FLJ11286), an Interferon-Stimulated Gene with Antiviral Activity against Dengue Virus, Interacts with MOV10. J Virol 2017; 91:JVI.01606-16. [PMID: 27974568 PMCID: PMC5309953 DOI: 10.1128/jvi.01606-16] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/05/2016] [Indexed: 12/23/2022] Open
Abstract
Dengue virus (DENV) is a member of the genus Flavivirus and can cause severe febrile illness. Here, we show that FLJ11286, which we refer to as IRAV, is induced by DENV in an interferon-dependent manner, displays antiviral activity against DENV, and localizes to the DENV replication complex. IRAV is an RNA binding protein and localizes to cytoplasmic processing bodies (P bodies) in uninfected cells, where it interacts with the MOV10 RISC complex RNA helicase, suggesting a role for IRAV in the processing of viral RNA. After DENV infection, IRAV, along with MOV10 and Xrn1, localizes to the DENV replication complex and associates with DENV proteins. Depletion of IRAV or MOV10 results in an increase in viral RNA. These data serve to characterize an interferon-stimulated gene with antiviral activity against DENV, as well as to propose a mechanism of activity involving the processing of viral RNA.
IMPORTANCE Dengue virus, a member of the family Flaviviridae, can result in a life-threatening illness and has a significant impact on global health. Dengue virus has been shown to be particularly sensitive to the effects of type I interferon; however, little is known about the mechanisms by which interferon-stimulated genes function to inhibit viral replication. A better understanding of the interferon-mediated antiviral response to dengue virus may aid in the development of novel therapeutics. Here, we examine the influence of the interferon-stimulated gene IRAV (FLJ11286) on dengue virus replication. We show that IRAV associates with P bodies in uninfected cells and with the dengue virus replication complex after infection. IRAV also interacts with MOV10, depletion of which is associated with increased viral replication. Our results provide insight into a newly identified antiviral gene, as well as broadening our understanding of the innate immune response to dengue virus infection.
Collapse
|
39
|
Lindqvist R, Mundt F, Gilthorpe JD, Wölfel S, Gekara NO, Kröger A, Överby AK. Fast type I interferon response protects astrocytes from flavivirus infection and virus-induced cytopathic effects. J Neuroinflammation 2016; 13:277. [PMID: 27776548 PMCID: PMC5078952 DOI: 10.1186/s12974-016-0748-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/16/2016] [Indexed: 02/07/2023] Open
Abstract
Background Neurotropic flaviviruses such as tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV), West Nile virus (WNV), and Zika virus (ZIKV) are causative agents of severe brain-related diseases including meningitis, encephalitis, and microcephaly. We have previously shown that local type I interferon response within the central nervous system (CNS) is involved in the protection of mice against tick-borne flavivirus infection. However, the cells responsible for mounting this protective response are not defined. Methods Primary astrocytes were isolated from wild-type (WT) and interferon alpha receptor knock out (IFNAR−/−) mice and infected with neurotropic flaviviruses. Viral replication and spread, IFN induction and response, and cellular viability were analyzed. Transcriptional levels in primary astrocytes treated with interferon or supernatant from virus-infected cells were analyzed by RNA sequencing and evaluated by different bioinformatics tools. Results Here, we show that astrocytes control viral replication of different TBEV strains, JEV, WNV, and ZIKV. In contrast to fibroblast, astrocytes mount a rapid interferon response and restrict viral spread. Furthermore, basal expression levels of key interferon-stimulated genes are high in astrocytes compared to mouse embryonic fibroblasts. Bioinformatic analysis of RNA-sequencing data reveals that astrocytes have established a basal antiviral state which contributes to the rapid viral recognition and upregulation of interferons. The most highly upregulated pathways in neighboring cells were linked to type I interferon response and innate immunity. The restriction in viral growth was dependent on interferon signaling, since loss of the interferon receptor, or its blockade in wild-type cells, resulted in high viral replication and virus-induced cytopathic effects. Astrocyte supernatant from TBEV-infected cells can restrict TBEV growth in astrocytes already 6 h post infection, the effect on neurons is highly reinforced, and astrocyte supernatant from 3 h post infection is already protective. Conclusions These findings suggest that the combination of an intrinsic constitutive antiviral response and the fast induction of type I IFN production by astrocytes play an important role in self-protection of astrocytes and suppression of flavivirus replication in the CNS. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0748-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Richard Lindqvist
- Department of Clinical Microbiology, Virology, Umeå University, 90185, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), 90187, Umeå, Sweden
| | - Filip Mundt
- The Broad Institute of MIT and Harvard, Proteomics and Biomarkers, 415 Main Street, #5033-A, Cambridge, MA, 02142, USA
| | - Jonathan D Gilthorpe
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden
| | - Silke Wölfel
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Nelson O Gekara
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden
| | - Andrea Kröger
- Innate Immunity and Infection, Helmholtz Centre for Infection Research, Inhoffen Str 7, 38124, Braunschweig, Germany.,Institute of Medical Microbiology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Anna K Överby
- Department of Clinical Microbiology, Virology, Umeå University, 90185, Umeå, Sweden. .,The Laboratory for Molecular Infection Medicine Sweden (MIMS), 90187, Umeå, Sweden.
| |
Collapse
|
40
|
Paul AM, Acharya D, Le L, Wang P, Stokic DS, Leis AA, Alexopoulou L, Town T, Flavell RA, Fikrig E, Bai F. TLR8 Couples SOCS-1 and Restrains TLR7-Mediated Antiviral Immunity, Exacerbating West Nile Virus Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2016; 197:4425-4435. [PMID: 27798161 DOI: 10.4049/jimmunol.1600902] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/29/2016] [Indexed: 12/11/2022]
Abstract
West Nile virus (WNV) is a neurotropic ssRNA flavivirus that can cause encephalitis, meningitis, and death in humans and mice. Human TLR7 and TLR8 and mouse TLR7 recognize viral ssRNA motifs and induce antiviral immunity. However, the role of mouse TLR8 in antiviral immunity is poorly understood. In this article, we report that TLR8-deficient (Tlr8-/-) mice were resistant to WNV infection compared with wild-type controls. Efficient WNV clearance and moderate susceptibility to WNV-mediated neuronal death in Tlr8-/- mice were attributed to overexpression of Tlr7 and IFN-stimulated gene-56 expression, whereas reduced expression of the proapoptotic gene coding Bcl2-associated X protein was observed. Interestingly, suppressor of cytokine signaling (SOCS)-1 directly associated with TLR8, but not with TLR7, indicating a novel role for TLR8 regulation of SOCS-1 function, whereas selective small interfering RNA knockdown of Socs-1 resulted in induced IFN-stimulated gene-56 and Tlr7 expression following WNV infection. Collectively, we report that TLR8 coupling with SOCS-1 inhibits TLR7-mediated antiviral immunity during WNV infection in mice.
Collapse
Affiliation(s)
- Amber M Paul
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406
| | - Dhiraj Acharya
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406
| | - Linda Le
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406
| | - Penghua Wang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520.,Department of Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595
| | - Dobrivoje S Stokic
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS 39216
| | - A Arturo Leis
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS 39216
| | - Lena Alexopoulou
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, INSERM, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Terrence Town
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; and.,Howard Hughes Medical Institute, New Haven, CT 06520
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520.,Howard Hughes Medical Institute, New Haven, CT 06520
| | - Fengwei Bai
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406;
| |
Collapse
|
41
|
Montgomery RR. Age-related alterations in immune responses to West Nile virus infection. Clin Exp Immunol 2016; 187:26-34. [PMID: 27612657 DOI: 10.1111/cei.12863] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 12/25/2022] Open
Abstract
West Nile virus (WNV) is the most important causative agent of viral encephalitis worldwide and an important public health concern in the United States due to its high prevalence, severe disease, and the absence of effective treatments. Infection with WNV is mainly asymptomatic, but some individuals develop severe, possibly fatal, neurological disease. Individual host factors play a role in susceptibility to WNV infection, including genetic polymorphisms in key anti-viral immune genes, but age is the most well-defined risk factor for susceptibility to severe disease. Ageing is associated with distinct changes in immune cells and a decline in immune function leading to increased susceptibility to infection and reduced responses to vaccination. WNV is detected by pathogen recognition receptors including Toll-like receptors (TLRs), which show reduced expression and function in ageing. Neutrophils, monocyte/macrophages and dendritic cells, which first recognize and respond to infection, show age-related impairment of many functions relevant to anti-viral responses. Natural killer cells control many viral infections and show age-related changes in phenotype and functional responses. A role for the regulatory receptors Mertk and Axl in blood-brain barrier permeability and in facilitating viral uptake through phospholipid binding may be relevant for susceptibility to WNV, and age-related up-regulation of Axl has been noted previously in human dendritic cells. Understanding the specific immune parameters and mechanisms that influence susceptibility to symptomatic WNV may lead to a better understanding of increased susceptibility in elderly individuals and identify potential avenues for therapeutic approaches: an especially relevant goal, as the world's populating is ageing.
Collapse
Affiliation(s)
- R R Montgomery
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
42
|
The Interferon-Stimulated Gene Ifitm3 Restricts West Nile Virus Infection and Pathogenesis. J Virol 2016; 90:8212-25. [PMID: 27384652 DOI: 10.1128/jvi.00581-16] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/28/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The interferon-induced transmembrane protein (IFITM) family of proteins inhibit infection of several different enveloped viruses in cell culture by virtue of their ability to restrict entry and fusion from late endosomes. As few studies have evaluated the importance of Ifitm3 in vivo in restricting viral pathogenesis, we investigated its significance as an antiviral gene against West Nile virus (WNV), an encephalitic flavivirus, in cells and mice. Ifitm3(-/-) mice were more vulnerable to lethal WNV infection, and this was associated with greater virus accumulation in peripheral organs and central nervous system tissues. As no difference in viral burden in the brain or spinal cord was observed after direct intracranial inoculation, Ifitm3 likely functions as an antiviral protein in nonneuronal cells. Consistent with this, Ifitm3(-/-) fibroblasts but not dendritic cells resulted in higher yields of WNV in multistep growth analyses. Moreover, transcomplementation experiments showed that Ifitm3 inhibited WNV infection independently of Ifitm1, Ifitm2, Ifitm5, and Ifitm6. Beyond a direct effect on viral infection in cells, analysis of the immune response in WNV-infected Ifitm3(-/-) mice showed decreases in the total number of B cells, CD4(+) T cells, and antigen-specific CD8(+) T cells. Finally, bone marrow chimera experiments demonstrated that Ifitm3 functioned in both radioresistant and radiosensitive cells, as higher levels of WNV were observed in the brain only when Ifitm3 was absent from both compartments. Our analyses suggest that Ifitm3 restricts WNV pathogenesis likely through multiple mechanisms, including the direct control of infection in subsets of cells. IMPORTANCE As part of the mammalian host response to viral infections, hundreds of interferon-stimulated genes (ISGs) are induced. The inhibitory activity of individual ISGs varies depending on the specific cell type and viral pathogen. Among ISGs, the genes encoding interferon-induced transmembrane protein (IFITM) have been reported to inhibit multiple families of viruses in cell culture. However, few reports have evaluated the impact of IFITM genes on viral pathogenesis in vivo In this study, we characterized the antiviral activity of Ifitm3 against West Nile virus (WNV), an encephalitic flavivirus, using mice with a targeted gene deletion of Ifitm3 Based on extensive virological and immunological analyses, we determined that Ifitm3 protects mice from WNV-induced mortality by restricting virus accumulation in peripheral organs and, subsequently, in central nervous system tissues. Our data suggest that Ifitm3 restricts WNV pathogenesis by multiple mechanisms and functions in part by controlling infection in different cell types.
Collapse
|
43
|
Identification of host genes leading to West Nile virus encephalitis in mice brain using RNA-seq analysis. Sci Rep 2016; 6:26350. [PMID: 27211830 PMCID: PMC4876452 DOI: 10.1038/srep26350] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/26/2016] [Indexed: 01/23/2023] Open
Abstract
Differential host responses may be critical determinants of distinct pathologies of West Nile virus (WNV) NY99 (pathogenic) and WNV Eg101 (non-pathogenic) strains. We employed RNA-seq technology to analyze global differential gene expression in WNV-infected mice brain and to identify the host cellular factors leading to lethal encephalitis. We identified 1,400 and 278 transcripts, which were differentially expressed after WNV NY99 and WNV Eg101 infections, respectively, and 147 genes were common to infection with both the viruses. Genes that were up-regulated in infection with both the viruses were mainly associated with interferon signaling. Genes associated with inflammation and cell death/apoptosis were only expressed after WNV NY99 infection. We demonstrate that differences in the activation of key pattern recognition receptors resulted in the induction of unique innate immune profiles, which corresponded with the induction of interferon and inflammatory responses. Pathway analysis of differentially expressed genes indicated that after WNV NY99 infection, TREM-1 mediated activation of toll-like receptors leads to the high inflammatory response. In conclusion, we have identified both common and specific responses to WNV NY99 and WNV Eg101 infections as well as genes linked to potential resistance to infection that may be targets for therapeutics.
Collapse
|
44
|
Zegenhagen L, Kurhade C, Koniszewski N, Överby AK, Kröger A. Brain heterogeneity leads to differential innate immune responses and modulates pathogenesis of viral infections. Cytokine Growth Factor Rev 2016; 30:95-101. [PMID: 27009077 DOI: 10.1016/j.cytogfr.2016.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 01/28/2023]
Abstract
The central nervous system (CNS) is a highly complex organ with highly specialized cell subtypes. Viral infections often target specific structures of the brain and replicate in certain regions. Studies in mice deficient in type I Interferon (IFN) receptor or IFN-β have highlighted the importance of the type I IFN system against viral infections and non-viral autoimmune disorders in the CNS. Direct antiviral effects of type I IFNs appear to be crucial in limiting early spread of a number of viruses in CNS tissues. Increased efforts have been made to characterize IFN expression and responses in the brain. In this context, it is important to identify cells that produce IFN, decipher pathways leading to type I IFN expression and to characterize responding cells. In this review we give an overview about region specific aspects that influence local innate immune responses. The route of entry is critical, but also the susceptibility of different cell types, heterogeneity in subpopulations and micro-environmental cues play an important role in antiviral responses. Recent work has outlined the tremendous importance of type I IFNs, particularly in the limitation of viral spread within the CNS. This review will address recent advances in understanding the mechanisms of local type I IFN production and response, in the particular context of the CNS.
Collapse
Affiliation(s)
- Loreen Zegenhagen
- Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute of Medical Microbiology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Chaitanya Kurhade
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Nikolaus Koniszewski
- Institute of Medical Microbiology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Anna K Överby
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Andrea Kröger
- Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute of Medical Microbiology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
| |
Collapse
|
45
|
Abstract
West Nile virus (WNV), a neurotropic single-stranded flavivirus has been the leading cause of arboviral encephalitis worldwide. Up to 50% of WNV convalescent patients in the United States were reported to have long-term neurological sequelae. Neither antiviral drugs nor vaccines are available for humans. Animal models have been used to investigate WNV pathogenesis and host immune response in humans. In this review, we will discuss recent findings from studies in animal models of WNV infection, and provide new insights on WNV pathogenesis and WNV-induced host immunity in the central nervous system.
Collapse
Affiliation(s)
- Evandro R Winkelmann
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Huanle Luo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, 77555, USA; Department of Pathology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| |
Collapse
|
46
|
Immune Responses to Viruses in the CNS. ENCYCLOPEDIA OF IMMUNOBIOLOGY 2016. [PMCID: PMC7151986 DOI: 10.1016/b978-0-12-374279-7.14022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For recovery from infection, the immune response in the central nervous system (CNS) must eliminate or control virus replication without destroying nonrenewable, essential cells. Thus, upon intracellular virus detection, the infected cell must initiate clearance pathways without triggering neuronal cell death. As a result, the inflammatory response must be tightly regulated and unique mechanisms contribute to the immune response in the CNS. Early restriction of virus replication is accomplished by the innate immune response upon activation of pattern recognition receptors in resident cells. Infiltrating immune cells enter from the periphery to clear virus. Antibodies and interferon-γ are primary contributors to noncytolytic clearance of virus in the CNS. Lymphocytes are retained in the CNS after the acute phase of infection presumably to block reactivation of virus replication.
Collapse
|
47
|
Reiss CS. Innate Immunity in Viral Encephalitis. NEUROTROPIC VIRAL INFECTIONS 2016. [PMCID: PMC7153449 DOI: 10.1007/978-3-319-33189-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Carol Shoshkes Reiss
- Departments of Biology and Neural Science, New York University, New York, New York USA
| |
Collapse
|
48
|
Lucas TM, Richner JM, Diamond MS. The Interferon-Stimulated Gene Ifi27l2a Restricts West Nile Virus Infection and Pathogenesis in a Cell-Type- and Region-Specific Manner. J Virol 2015; 90:2600-15. [PMID: 26699642 PMCID: PMC4810731 DOI: 10.1128/jvi.02463-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/15/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The mammalian host responds to viral infections by inducing expression of hundreds of interferon-stimulated genes (ISGs). While the functional significance of many ISGs has yet to be determined, their cell type and temporal nature of expression suggest unique activities against specific pathogens. Using a combination of ectopic expression and gene silencing approaches in cell culture, we previously identified Ifi27l2a as a candidate antiviral ISG within neuronal subsets of the central nervous system (CNS) that restricts infection by West Nile virus (WNV), an encephalitic flavivirus of global concern. To investigate the physiological relevance of Ifi27l2a in the context of viral infection, we generated Ifi27l2a(-/-) mice. Although adult mice lacking Ifi27l2a were more vulnerable to lethal WNV infection, the viral burden was greater only within the CNS, particularly in the brain stem, cerebellum, and spinal cord. Within neurons of the cerebellum and brain stem, in the context of WNV infection, a deficiency of Ifi27l2a was associated with less cell death, which likely contributed to sustained viral replication and higher titers in these regions. Infection studies in a primary cell culture revealed that Ifi27l2a(-/-) cerebellar granule cell neurons and macrophages but not cerebral cortical neurons, embryonic fibroblasts, or dendritic cells sustained higher levels of WNV infection than wild-type cells and that this difference was greater under conditions of beta interferon (IFN-β) pretreatment. Collectively, these findings suggest that Ifi27l2a has an antiviral phenotype in subsets of cells and that at least some ISGs have specific inhibitory functions in restricted tissues. IMPORTANCE The interferon-stimulated Ifi27l2a gene is expressed differentially within the central nervous system upon interferon stimulation or viral infection. Prior studies in cell culture suggested an antiviral role for Ifi27l2a during infection by West Nile virus (WNV). To characterize its antiviral activity in vivo, we generated mice with a targeted gene deletion of Ifi27l2a. Based on extensive virological analyses, we determined that Ifi27l2a protects mice from WNV-induced mortality by contributing to the control of infection of the hindbrain and spinal cord, possibly by regulating cell death of neurons. This antiviral activity was validated in granule cell neurons derived from the cerebellum and in macrophages but was not observed in other cell types. Collectively, these data suggest that Ifi27l2a contributes to innate immune restriction of WNV in a cell-type- and tissue-specific manner.
Collapse
Affiliation(s)
- Tiffany M Lucas
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Justin M Richner
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
49
|
Abstract
The interferon system protects mammals against virus infections. There are several types of interferons, which are characterized by their ability to inhibit virus replication and resultant pathogenesis by triggering both innate and cell-mediated immune responses. Virus infection is sensed by a variety of cellular pattern-recognition receptors and triggers the synthesis of interferons, which are secreted by the infected cells. In uninfected cells, cell surface receptors recognize the secreted interferons and activate intracellular signaling pathways that induce the expression of interferon-stimulated genes; the proteins encoded by these genes inhibit different stages of virus replication. To avoid extinction, almost all viruses have evolved mechanisms to defend themselves against the interferon system. Consequently, a dynamic equilibrium of survival is established between the virus and its host, an equilibrium that can be shifted to the host's favor by the use of exogenous interferon as a therapeutic antiviral agent.
Collapse
Affiliation(s)
- Volker Fensterl
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195;
| | - Saurabh Chattopadhyay
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195;
| | - Ganes C Sen
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195;
| |
Collapse
|
50
|
Bardina SV, Michlmayr D, Hoffman KW, Obara CJ, Sum J, Charo IF, Lu W, Pletnev AG, Lim JK. Differential Roles of Chemokines CCL2 and CCL7 in Monocytosis and Leukocyte Migration during West Nile Virus Infection. THE JOURNAL OF IMMUNOLOGY 2015; 195:4306-18. [PMID: 26401006 DOI: 10.4049/jimmunol.1500352] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 08/18/2015] [Indexed: 12/24/2022]
Abstract
West Nile virus (WNV) is a re-emerging pathogen and the leading cause of epidemic encephalitis in the United States. Inflammatory monocytes are a critical component of the cellular infiltrate found in the CNS during WNV encephalitis, although the molecular cues involved in their migration are not fully understood. In mice, we previously showed that WNV infection induces a CCR2-dependent monocytosis that precedes monocyte migration into the CNS. Currently, the relative contribution of the CCR2 ligands, chemokines CCL2 and CCL7, in directing monocyte mobilization and leukocyte migration into the CNS is unclear. In this study, we demonstrate that, although both CCL2 and CCL7 are required for efficient monocytosis and monocyte accumulation in the CNS, only CCL7 deficiency resulted in increased viral burden in the brain and enhanced mortality. The enhanced susceptibility in the absence of CCL7 was associated with the delayed migration of neutrophils and CD8(+) T cells into the CNS compared with WT or Ccl2(-/-) mice. To determine whether CCL7 reconstitution could therapeutically alter the survival outcome of WNV infection, we administered exogenous CCL7 i.v. to WNV-infected Ccl7(-/-) mice and observed a significant increase in monocytes and neutrophils, but not CD8(+) T cells, within the CNS, as well as an enhancement in survival compared with Ccl7(-/-) mice treated with a linear CCL7 control peptide. Our experiments suggest that CCL7 is an important protective signal involved in leukocyte trafficking during WNV infection, and it may have therapeutic potential for the treatment of acute viral infections of the CNS.
Collapse
Affiliation(s)
- Susana V Bardina
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Daniela Michlmayr
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kevin W Hoffman
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Christopher J Obara
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Janet Sum
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Israel F Charo
- Cardiovascular Research Institute, Department of Medicine, University of California San Francisco, San Francisco, CA 94549
| | - Wuyuan Lu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Alexander G Pletnev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
| |
Collapse
|