1
|
Rahlf CR, Tarakanova VL. Role of Interferon Regulatory Factor 1 in acute and chronic virus infections. Virology 2025; 603:110386. [PMID: 39754861 PMCID: PMC11788042 DOI: 10.1016/j.virol.2024.110386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/15/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Decades of research have defined the function of interferon regulatory factors (IRFs) in the antiviral immune response. Interferon regulatory factor-1 (IRF-1) is the founding member of the IRF family, with recognized antiviral effects across diverse virus infections. While most antiviral activities of IRF-1 were defined in vitro, fewer studies examined the role of IRF-1 during viral infection of an intact host. Taking advantage of mouse models of global or cell type-specific IRF-1 deficiency, recent studies demonstrate intriguing virus- and cell type-specific functions of IRF-1 during in vivo infection, underlining the complexity of this ancient transcription factor. Here, we review the role of IRF-1 during acute and chronic viral infections of an intact host, with particular focus on relating observations found in mouse models to those observed in a recent study of pediatric patients with IRF-1 insufficiency. By appreciating the complexity of IRF-1 in the immune response, we highlight several virus- and cell type-specific functions of IRF-1 in contributing to host antiviral immunity.
Collapse
Affiliation(s)
- Cade R Rahlf
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
2
|
Gomes MTR, Guimarães ES, Oliveira SC. ZBP1 senses Brucella abortus DNA triggering type I interferon signaling pathway and unfolded protein response activation. Front Immunol 2025; 15:1511949. [PMID: 39850894 PMCID: PMC11754416 DOI: 10.3389/fimmu.2024.1511949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025] Open
Abstract
The innate immune system promptly detects and responds to invading pathogens, with a key role played by the recognition of bacterial-derived DNA through pattern recognition receptors. The Z-DNA binding protein 1 (ZBP1) functions as a DNA sensor inducing type I interferon (IFN) production, innate immune responses and also inflammatory cell death. ZBP1 interacts with cytosolic DNA via its DNA-binding domains, crucial for its activation. Brucella abortus is the etiologic agent of brucellosis in livestock and humans, leading to significant economic losses and public health impact. Despite other innate immune sensors that recognize B. abortus DNA, including Toll-like receptor 9 and the Stimulator of interferon genes (STING), here we evaluated the ZBP1 participation as a cytosolic receptor sensing Brucella infection. Using macrophages derived from ZBP1 knockout (KO) mice we demonstrated that ZBP1 partially contributes to IFN-β expression upon B. abortus infection or Brucella DNA transfection. The knockdown of STING by siRNA decreased the residual IFN-β signal elicited by B. abortus infection, demonstrating the presence of a redundant cytosolic DNA-sensing mechanism driving type I IFN production. Furthermore, ZBP1 is involved in type I IFN signaling inducing IRF-1 expression. Additionally, ZBP1 also contributes to Unfolded Protein Response (UPR) activation during infection. However, ZBP1 does not influence the production of proinflammatory mediators, inflammasome activation and it is dispensable to control bacterial infection in mice or replication in macrophages. This study highlights the complex interactions of Brucella components with innate immune receptors and identifies ZBP1 as a sensor for B. abortus DNA-induced IFN-β response.
Collapse
Affiliation(s)
- Marco Túlio R. Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Erika S. Guimarães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sergio C. Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Institut Pasteur de São Paulo, São Paulo, Brazil
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Hogan CH, Owens SM, Reynoso GV, Liao Y, Meyer TJ, Zelazowska MA, Liu B, Li X, Grosskopf AK, Khairallah C, Kirillov V, Reich NC, Sheridan BS, McBride KM, Gewurz BE, Hickman HD, Forrest JC, Krug LT. Multifaceted roles for STAT3 in gammaherpesvirus latency revealed through in vivo B cell knockout models. mBio 2024; 15:e0299823. [PMID: 38170993 PMCID: PMC10870824 DOI: 10.1128/mbio.02998-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Cancers associated with the oncogenic gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus, are notable for their constitutive activation of the transcription factor signal transducer and activator of transcription 3 (STAT3). To better understand the role of STAT3 during gammaherpesvirus latency and the B cell response to infection, we used the model pathogen murine gammaherpesvirus 68 (MHV68). Genetic deletion of STAT3 in B cells of CD19cre/+Stat3f/f mice reduced peak MHV68 latency approximately sevenfold. However, infected CD19cre/+Stat3f/f mice exhibited disordered germinal centers and heightened virus-specific CD8 T cell responses compared to wild-type (WT) littermates. To circumvent the systemic immune alterations observed in the B cell-STAT3 knockout mice and more directly evaluate intrinsic roles for STAT3, we generated mixed bone marrow chimeric mice consisting of WT and STAT3 knockout B cells. We discovered a dramatic reduction in latency in STAT3 knockout B cells compared to their WT B cell counterparts in the same lymphoid organ. RNA sequencing of sorted germinal center B cells revealed that MHV68 infection shifts the gene signature toward proliferation and away from type I and type II IFN responses. Loss of STAT3 largely reversed the virus-driven transcriptional shift without impacting the viral gene expression program. STAT3 promoted B cell processes of the germinal center, including IL-21-stimulated downregulation of surface CD23 on B cells infected with MHV68 or EBV. Together, our data provide mechanistic insights into the role of STAT3 as a latency determinant in B cells for oncogenic gammaherpesviruses.IMPORTANCEThere are no directed therapies to the latency program of the human gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus. Activated host factor signal transducer and activator of transcription 3 (STAT3) is a hallmark of cancers caused by these viruses. We applied the murine gammaherpesvirus pathogen system to explore STAT3 function upon primary B cell infection in the host. Since STAT3 deletion in all CD19+ B cells of infected mice led to altered B and T cell responses, we generated chimeric mice with both normal and STAT3-deleted B cells. B cells lacking STAT3 failed to support virus latency compared to normal B cells from the same infected animal. Loss of STAT3 impaired B cell proliferation and differentiation and led to a striking upregulation of interferon-stimulated genes. These findings expand our understanding of STAT3-dependent processes that are key to its function as a pro-viral latency determinant for oncogenic gammaherpesviruses in B cells and may provide novel therapeutic targets.
Collapse
Affiliation(s)
- Chad H. Hogan
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, USA
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Shana M. Owens
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Glennys V. Reynoso
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Yifei Liao
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Monika A. Zelazowska
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaofan Li
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Anna K. Grosskopf
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Nancy C. Reich
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Kevin M. McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Benjamin E. Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - J. Craig Forrest
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laurie T. Krug
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
5
|
Rex V, Zargari R, Stempel M, Halle S, Brinkmann MM. The innate and T-cell mediated immune response during acute and chronic gammaherpesvirus infection. Front Cell Infect Microbiol 2023; 13:1146381. [PMID: 37065193 PMCID: PMC10102517 DOI: 10.3389/fcimb.2023.1146381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Immediately after entry into host cells, viruses are sensed by the innate immune system, leading to the activation of innate antiviral effector mechanisms including the type I interferon (IFN) response and natural killer (NK) cells. This innate immune response helps to shape an effective adaptive T cell immune response mediated by cytotoxic T cells and CD4+ T helper cells and is also critical for the maintenance of protective T cells during chronic infection. The human gammaherpesvirus Epstein-Barr virus (EBV) is a highly prevalent lymphotropic oncovirus that establishes chronic lifelong infections in the vast majority of the adult population. Although acute EBV infection is controlled in an immunocompetent host, chronic EBV infection can lead to severe complications in immunosuppressed patients. Given that EBV is strictly host-specific, its murine homolog murid herpesvirus 4 or MHV68 is a widely used model to obtain in vivo insights into the interaction between gammaherpesviruses and their host. Despite the fact that EBV and MHV68 have developed strategies to evade the innate and adaptive immune response, innate antiviral effector mechanisms still play a vital role in not only controlling the acute infection but also shaping an efficient long-lasting adaptive immune response. Here, we summarize the current knowledge about the innate immune response mediated by the type I IFN system and NK cells, and the adaptive T cell-mediated response during EBV and MHV68 infection. Investigating the fine-tuned interplay between the innate immune and T cell response will provide valuable insights which may be exploited to design better therapeutic strategies to vanquish chronic herpesviral infection.
Collapse
Affiliation(s)
- Viktoria Rex
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Razieh Zargari
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Stempel
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephan Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
- *Correspondence: Stephan Halle, ; Melanie M. Brinkmann,
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- *Correspondence: Stephan Halle, ; Melanie M. Brinkmann,
| |
Collapse
|
6
|
Hogan CH, Owens SM, Reynoso GV, Kirillov V, Meyer TJ, Zelazowska MA, Liu B, Li X, Chikhalya A, Dong Q, Khairallah C, Reich NC, Sheridan B, McBride KM, Hearing P, Hickman HD, Forrest JC, Krug LT. B cell-intrinsic STAT3-mediated support of latency and interferon suppression during murine gammaherpesvirus 68 infection revealed through an in vivo competition model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533727. [PMID: 36993230 PMCID: PMC10055336 DOI: 10.1101/2023.03.22.533727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cancers associated with the oncogenic gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus, are notable for their constitutive activation of the transcription factor STAT3. To better understand the role of STAT3 during gammaherpesvirus latency and immune control, we utilized murine gammaherpesvirus 68 (MHV68) infection. Genetic deletion of STAT3 in B cells of CD19cre/+Stat3f/f mice reduced peak latency approximately 7-fold. However, infected CD19cre/+Stat3f/f mice exhibited disordered germinal centers and heightened virus-specific CD8 T cell responses compared to WT littermates. To circumvent the systemic immune alterations observed in the B cell-STAT3 knockout mice and more directly evaluate intrinsic roles for STAT3, we generated mixed bone marrow chimeras consisting of WT and STAT3-knockout B cells. Using a competitive model of infection, we discovered a dramatic reduction in latency in STAT3-knockout B cells compared to their WT B cell counterparts in the same lymphoid organ. RNA sequencing of sorted germinal center B cells revealed that STAT3 promotes proliferation and B cell processes of the germinal center but does not directly regulate viral gene expression. Last, this analysis uncovered a STAT3-dependent role for dampening type I IFN responses in newly infected B cells. Together, our data provide mechanistic insight into the role of STAT3 as a latency determinant in B cells for oncogenic gammaherpesviruses.
Collapse
Affiliation(s)
- Chad H. Hogan
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, USA
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Shana M. Owens
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Glennys V. Reynoso
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Monika A. Zelazowska
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofan Li
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Aniska Chikhalya
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Qiwen Dong
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Graduate Program of Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, USA
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Nancy C. Reich
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Brian Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Kevin M. McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick Hearing
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - J. Craig Forrest
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laurie T. Krug
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
7
|
Tian H, Yu K, He L, Xu H, Han C, Zhang X, Wang X, Zhang X, Zhang L, Gao G, Deng H. RNF213 modulates γ-herpesvirus infection and reactivation via targeting the viral Replication and Transcription Activator. Proc Natl Acad Sci U S A 2023; 120:e2218825120. [PMID: 36917666 PMCID: PMC10041092 DOI: 10.1073/pnas.2218825120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/10/2023] [Indexed: 03/16/2023] Open
Abstract
Interferons (IFNs) and the products of interferon-stimulated genes (ISGs) play crucial roles in host defense against virus infections. Although many ISGs have been characterized with respect to their antiviral activity, their target specificities and mechanisms of action remain largely unknown. Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that is linked to several human malignancies. Here, we used the genetically and biologically related virus, murine gammaherpesvirus 68 (MHV-68) and screened for ISGs with anti-gammaherpesvirus activities. We found that overexpression of RNF213 dramatically inhibited MHV-68 infection, whereas knockdown of endogenous RNF213 significantly promoted MHV-68 proliferation. Importantly, RNF213 also inhibited KSHV de novo infection, and depletion of RNF213 in the latently KSHV-infected iSLK-219 cell line significantly enhanced lytic reactivation. Mechanistically, we demonstrated that RNF213 targeted the Replication and Transcription Activator (RTA) of both KSHV and MHV-68, and promoted the degradation of RTA protein through the proteasome-dependent pathway. RNF213 directly interacted with RTA and functioned as an E3 ligase to ubiquitinate RTA via K48 linkage. Taken together, we conclude that RNF213 serves as an E3 ligase and inhibits the de novo infection and lytic reactivation of gammaherpesviruses by degrading RTA through the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Huabin Tian
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Kuai Yu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Liang He
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Hongtao Xu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Chuanhui Han
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Xiaolin Zhang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Xinlu Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Xuyuan Zhang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Liguo Zhang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Guangxia Gao
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing100049, P. R. China
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Hongyu Deng
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing100049, P. R. China
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| |
Collapse
|
8
|
Rosain J, Neehus AL, Manry J, Yang R, Le Pen J, Daher W, Liu Z, Chan YH, Tahuil N, Türel Ö, Bourgey M, Ogishi M, Doisne JM, Izquierdo HM, Shirasaki T, Le Voyer T, Guérin A, Bastard P, Moncada-Vélez M, Han JE, Khan T, Rapaport F, Hong SH, Cheung A, Haake K, Mindt BC, Pérez L, Philippot Q, Lee D, Zhang P, Rinchai D, Al Ali F, Ahmad Ata MM, Rahman M, Peel JN, Heissel S, Molina H, Kendir-Demirkol Y, Bailey R, Zhao S, Bohlen J, Mancini M, Seeleuthner Y, Roelens M, Lorenzo L, Soudée C, Paz MEJ, González ML, Jeljeli M, Soulier J, Romana S, L'Honneur AS, Materna M, Martínez-Barricarte R, Pochon M, Oleaga-Quintas C, Michev A, Migaud M, Lévy R, Alyanakian MA, Rozenberg F, Croft CA, Vogt G, Emile JF, Kremer L, Ma CS, Fritz JH, Lemon SM, Spaan AN, Manel N, Abel L, MacDonald MR, Boisson-Dupuis S, Marr N, Tangye SG, Di Santo JP, Zhang Q, Zhang SY, Rice CM, Béziat V, Lachmann N, Langlais D, Casanova JL, Gros P, Bustamante J. Human IRF1 governs macrophagic IFN-γ immunity to mycobacteria. Cell 2023; 186:621-645.e33. [PMID: 36736301 PMCID: PMC9907019 DOI: 10.1016/j.cell.2022.12.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023]
Abstract
Inborn errors of human IFN-γ-dependent macrophagic immunity underlie mycobacterial diseases, whereas inborn errors of IFN-α/β-dependent intrinsic immunity underlie viral diseases. Both types of IFNs induce the transcription factor IRF1. We describe unrelated children with inherited complete IRF1 deficiency and early-onset, multiple, life-threatening diseases caused by weakly virulent mycobacteria and related intramacrophagic pathogens. These children have no history of severe viral disease, despite exposure to many viruses, including SARS-CoV-2, which is life-threatening in individuals with impaired IFN-α/β immunity. In leukocytes or fibroblasts stimulated in vitro, IRF1-dependent responses to IFN-γ are, both quantitatively and qualitatively, much stronger than those to IFN-α/β. Moreover, IRF1-deficient mononuclear phagocytes do not control mycobacteria and related pathogens normally when stimulated with IFN-γ. By contrast, IFN-α/β-dependent intrinsic immunity to nine viruses, including SARS-CoV-2, is almost normal in IRF1-deficient fibroblasts. Human IRF1 is essential for IFN-γ-dependent macrophagic immunity to mycobacteria, but largely redundant for IFN-α/β-dependent antiviral immunity.
Collapse
Affiliation(s)
- Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France.
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Jérémy Manry
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Wassim Daher
- Infectious Disease Research Institute of Montpellier (IRIM), Montpellier University, 34090 Montpellier, France; Inserm, IRIM, CNRS, UMR9004, 34090 Montpellier, France
| | - Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Yi-Hao Chan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Natalia Tahuil
- Department of Immunology, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - Özden Türel
- Department of Pediatric Infectious Disease, Bezmialem Vakif University Faculty of Medicine, 34093 İstanbul, Turkey
| | - Mathieu Bourgey
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computation Genomics, Montreal, QC H3A 0G1, Canada
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jean-Marc Doisne
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France
| | - Helena M Izquierdo
- Institut Curie, PSL Research University, Inserm U932, 75005 Paris, France
| | - Takayoshi Shirasaki
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Antoine Guérin
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | - Marcela Moncada-Vélez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Ji Eun Han
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Taushif Khan
- Department of Immunology, Sidra Medicine, Doha, Qatar
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Seon-Hui Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Andrew Cheung
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Kathrin Haake
- Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Barbara C Mindt
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada; FOCiS Centre of Excellence in Translational Immunology, McGill University, Montreal, QC H3A 0G1, Canada
| | - Laura Pérez
- Department of Immunology and Rheumatology, "J. P. Garrahan" National Hospital of Pediatrics, C1245 CABA Buenos Aires, Argentina
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Danyel Lee
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Fatima Al Ali
- Department of Immunology, Sidra Medicine, Doha, Qatar
| | | | | | - Jessica N Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Yasemin Kendir-Demirkol
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Umraniye Education and Research Hospital, Department of Pediatric Genetics, 34764 İstanbul, Turkey
| | - Rasheed Bailey
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Shuxiang Zhao
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Mathieu Mancini
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Marie Roelens
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France; Paris Cité University, 75006 Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - María Elvira Josefina Paz
- Department of Pediatric Pathology, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - María Laura González
- Central Laboratory, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - Mohamed Jeljeli
- Cochin University Hospital, Biological Immunology Unit, AP-HP, 75014 Paris, France
| | - Jean Soulier
- Inserm/CNRS U944/7212, Paris Cité University, 75006 Paris, France; Hematology Laboratory, Saint-Louis Hospital, AP-HP, 75010 Paris, France; National Reference Center for Bone Marrow Failures, Saint-Louis and Robert Debré Hospitals, 75010 Paris, France
| | - Serge Romana
- Rare Disease Genomic Medicine Department, Paris Cité University, Necker Hospital for Sick Children, 75015 Paris, France
| | | | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Rubén Martínez-Barricarte
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mathieu Pochon
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Alexandre Michev
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | | | - Flore Rozenberg
- Department of Virology, Paris Cité University, Cochin Hospital, 75014 Paris, France
| | - Carys A Croft
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France; Paris Cité University, 75006 Paris, France
| | - Guillaume Vogt
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes, Lille University, Lille Pasteur Institute, Lille University Hospital, 59000 Lille, France; Neglected Human Genetics Laboratory, Paris Cité University, 75006 Paris, France
| | - Jean-François Emile
- Pathology Department, Ambroise-Paré Hospital, AP-HP, 92100 Boulogne-Billancourt, France
| | - Laurent Kremer
- Infectious Disease Research Institute of Montpellier (IRIM), Montpellier University, 34090 Montpellier, France; Inserm, IRIM, CNRS, UMR9004, 34090 Montpellier, France
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Jörg H Fritz
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada; FOCiS Centre of Excellence in Translational Immunology, McGill University, Montreal, QC H3A 0G1, Canada; Department of Physiology, McGill University, Montreal, QC H3A 0G1, Canada
| | - Stanley M Lemon
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | - András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584CX Utrecht, the Netherlands
| | - Nicolas Manel
- Institut Curie, PSL Research University, Inserm U932, 75005 Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Nico Marr
- Department of Immunology, Sidra Medicine, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Nico Lachmann
- Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany; Department of Pediatric Pulmonology, Allergology and Neonatology and Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - David Langlais
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France; Howard Hughes Medical Institute, New York, NY 10065, USA.
| | - Philippe Gros
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 0G1, Canada
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France.
| |
Collapse
|
9
|
Jondle CN, Sylvester PA, Schmalzriedt DL, Njoya K, Tarakanova VL. The Antagonism between the Murine Gammaherpesvirus Protein Kinase and Global Interferon Regulatory Factor 1 Expression Shapes the Establishment of Chronic Infection. J Virol 2022; 96:e0126022. [PMID: 36169331 PMCID: PMC9599343 DOI: 10.1128/jvi.01260-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
Gammaherpesviruses infect most vertebrate species and are associated with B cell lymphomas. Manipulation of B cell differentiation is critical for natural infection and lymphomagenesis driven by gammaherpesviruses. Specifically, human Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68) drive differentiation of infected naive B cells into the germinal center to achieve exponential increase in the latent viral reservoir during the establishment of chronic infection. Infected germinal center B cells are also the target of viral lymphomagenesis, as most EBV-positive B cell lymphomas bear the signature of the germinal center response. All gammaherpesviruses encode a protein kinase, which, in the case of Kaposi's sarcoma-associated herpesvirus (KSHV) and MHV68, is sufficient and necessary, respectively, to drive B cell differentiation in vivo. In this study, we used the highly tractable MHV68 model of chronic gammaherpesvirus infection to unveil an antagonistic relationship between MHV68 protein kinase and interferon regulatory factor 1 (IRF-1). IRF-1 deficiency had minimal effect on the attenuated lytic replication of the kinase-null MHV68 in vivo. In contrast, the attenuated latent reservoir of the kinase-null MHV68 was partially to fully rescued in IRF-1-/- mice, along with complete rescue of the MHV68-driven germinal center response. Thus, the novel viral protein kinase-IRF-1 antagonism was largely limited to chronic infection dominated by viral latency and was less relevant for lytic replication during acute infection and in vitro. Given the conserved nature of the viral and host protein, the antagonism between the two, as defined in this study, may regulate gammaherpesvirus infection across species. IMPORTANCE Gammaherpesviruses are prevalent pathogens that manipulate physiological B cell differentiation to establish lifelong infection. This manipulation is also involved in gammaherpesvirus-driven B cell lymphomas, as differentiation of latently infected B cells through the germinal center response targets these for transformation. In this study, we define a novel antagonistic interaction between a conserved gammaherpesvirus protein kinase and a host antiviral and tumor suppressor transcription factor. The virus-host antagonism unveiled in this study was critically important to shape the magnitude of gammaherpesvirus-driven germinal center response. In contrast, the virus-host antagonism was far less relevant for lytic viral replication in vitro and during acute infection in vivo, highlighting the emerging concept that nonoverlapping mechanisms shape the parameters of acute and chronic gammaherpesvirus infection.
Collapse
Affiliation(s)
- C. N. Jondle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - P. A. Sylvester
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - D. L. Schmalzriedt
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - K. Njoya
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - V. L. Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
10
|
Alomari N, Totonchy J. Host-Level Susceptibility and IRF1 Expression Influence the Ability of IFN-γ to Inhibit KSHV Infection in B Lymphocytes. Viruses 2022; 14:2295. [PMID: 36298850 PMCID: PMC9607942 DOI: 10.3390/v14102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with vascular endothelial cell tumor, Kaposi's sarcoma (KS) and lymphoproliferative disorder, multicentric Castleman's disease (MCD), primary effusion lymphoma (PEL) and KSHV inflammatory cytokine syndrome (KICS). Dysregulation of proinflammatory cytokines is found in most KSHV associated diseases. However, little is known about the role of host microenvironment in the regulation of KSHV establishment in B cells. In the present study, we demonstrated that IFN-γ has a strong inhibitory effect on KSHV infection but only in a subset of tonsil-derived lymphocyte samples that are intrinsically more susceptible to infection, contain higher proportions of naïve B cells, and display increased levels of IRF1 and STAT1-pY701. The effect of IFN-γ in responsive samples was associated with increased frequencies of germinal center B cells (GCB) and decreased infection of plasma cells, suggesting that IFN-γ-mediated modulation of viral dynamics in GC can inhibit the establishment of KSHV infection.
Collapse
Affiliation(s)
| | - Jennifer Totonchy
- Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618, USA
| |
Collapse
|
11
|
Liu Y, Zhang X, Liu Z, Huang L, Jia W, Lian X, Weng C, Zhang G, Qi W, Chen J. Toosendanin suppresses African swine fever virus replication through upregulating interferon regulatory factor 1 in porcine alveolar macrophage cultures. Front Microbiol 2022; 13:970501. [PMID: 36110293 PMCID: PMC9468581 DOI: 10.3389/fmicb.2022.970501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
African swine fever virus (ASFV) is a highly infectious and lethal swine pathogen that causes severe socio-economic consequences in affected countries. Unfortunately, effective vaccine for combating ASF is unavailable so far, and the prevention and control strategies for ASFV are still very limited. Toosendanin (TSN), a triterpenoid saponin extracted from the medicinal herb Melia toosendan Sieb. Et Zucc, has been demonstrated to possess analgesic, anti-inflammatory, anti-botulism and anti-microbial activities, and was used clinically as an anthelmintic, while the antiviral effect of TSN on ASFV has not been reported. In this study, we revealed that TSN exhibited a potent inhibitory effect on ASFV GZ201801-38 strain in porcine alveolar macrophages (PAMs; EC50 = 0.085 μM, SI = 365) in a dose-dependent manner. TSN showed robust antiviral activity in different doses of ASFV infection and reduced the transcription and translation levels of ASFV p30 protein, viral genomic DNA quantity as well as viral titer at 24 and 48 h post-infection. In addition, TSN did not affect virion attachment and release but intervened in its internalization in PAMs. Further investigations disclosed that TSN played its antiviral role by upregulating the host IFN-stimulated gene (ISG) IRF1 rather than by directly inactivating the virus particles. Overall, our results suggest that TSN is an effective antiviral agent against ASFV replication in vitro and may have the potential for clinical use.
Collapse
Affiliation(s)
- Yuanjia Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinheng Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zexin Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Li Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Weixin Jia
- African Swine Fever Regional Laboratory of China (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinlei Lian
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guihong Zhang
- African Swine Fever Regional Laboratory of China (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- *Correspondence: Guihong Zhang,
| | - Wenbao Qi
- African Swine Fever Regional Laboratory of China (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Wenbao Qi,
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Jianxin Chen,
| |
Collapse
|
12
|
Wang Y, Tibbetts SA, Krug LT. Conquering the Host: Determinants of Pathogenesis Learned from Murine Gammaherpesvirus 68. Annu Rev Virol 2021; 8:349-371. [PMID: 34586873 PMCID: PMC9153731 DOI: 10.1146/annurev-virology-011921-082615] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Gammaherpesviruses are an important class of oncogenic pathogens that are exquisitely evolved to their respective hosts. As such, the human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi sarcoma herpesvirus (KSHV) do not naturally infect nonhuman primates or rodents. There is a clear need to fully explore mechanisms of gammaherpesvirus pathogenesis, host control, and immune evasion in the host. A gammaherpesvirus pathogen isolated from murid rodents was first reported in 1980; 40 years later, murine gammaherpesvirus 68 (MHV68, MuHV-4, γHV68) infection of laboratory mice is a well-established pathogenesis system recognized for its utility in applying state-of-the-art approaches to investigate virus-host interactions ranging from the whole host to the individual cell. Here, we highlight recent advancements in our understanding of the processes by which MHV68 colonizes the host and drives disease. Lessons that inform KSHV and EBV pathogenesis and provide future avenues for novel interventions against infection and virus-associated cancers are emphasized.
Collapse
Affiliation(s)
- Yiping Wang
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Scott A Tibbetts
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Laurie T Krug
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA;
| |
Collapse
|
13
|
T cell-intrinsic Interferon Regulatory Factor-1 expression suppresses differentiation of CD4 + T cell populations that support chronic gammaherpesvirus infection. J Virol 2021; 95:e0072621. [PMID: 34346769 DOI: 10.1128/jvi.00726-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish life-long infection and are associated with B cell lymphomas. To establish chronic infection, these viruses usurp B cell differentiation and drive a robust germinal center response to expand the latent viral reservoir and gain access to memory B cells. Germinal center B cells, while important for the establishment of latent infection, are also thought to be the target of viral transformation. The host and viral factors that impact the gammaherpesvirus-driven germinal center response are not clearly defined. We showed that global expression of the antiviral and tumor-suppressor interferon regulatory factor 1 (IRF-1) selectively attenuates the murine gammaherpesvirus 68 (MHV68)-driven germinal center response and restricts expansion of the latent viral reservoir. In this study we found that T cell intrinsic IRF-1 expression recapitulates some aspects of antiviral state imposed by IRF-1 during chronic MHV68 infection, including attenuation of the germinal center response and viral latency in the spleen. We also discovered that global and T cell-intrinsic IRF-1 deficiency leads to unhindered rise of IL-17A-expressing and follicular helper T cell populations, two CD4+ T cell subsets that support chronic MHV68 infection. Thus, this study unveils a novel aspect of antiviral activity of IRF-1 by demonstrating IRF-1-mediated suppression of specific CD4+ T cell subsets that support chronic gammaherpesvirus infection. Importance Gammaherpesviruses infect over 95% of the adult population, last the lifetime of the host, and are associated with multiple cancers. These viruses usurp the germinal center response to establish lifelong infection in memory B cells. This manipulation of B cell differentiation by the virus is thought to contribute to lymphomagenesis, though exactly how the virus precipitates malignant transformation in vivo is unclear. IRF-1, a host transcription factor and a known tumor suppressor, restricts the MHV68-driven germinal center response in a B cell-extrinsic manner. We found that T cell intrinsic IRF-1 expression attenuates the MHV68-driven germinal center response by restricting the CD4+ T follicular helper population. Further, our study identified IRF-1 as a novel negative regulator of IL-17-driven immune responses, highlighting the multifaceted role of IRF-1 in gammaherpesvirus infection.
Collapse
|
14
|
Interferon Regulatory Factor 3 Supports the Establishment of Chronic Gammaherpesvirus Infection in a Route- and Dose-Dependent Manner. J Virol 2021; 95:JVI.02208-20. [PMID: 33597211 DOI: 10.1128/jvi.02208-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections and are associated with several malignancies, including B cell lymphomas. Uniquely, these viruses manipulate B cell differentiation to establish long-term latency in memory B cells. This study focuses on the interaction between gammaherpesviruses and interferon regulatory factor 3 (IRF-3), a ubiquitously expressed transcription factor with multiple direct target genes, including beta interferon (IFN-β), a type I IFN. IRF-3 attenuates acute replication of a plethora of viruses, including gammaherpesvirus. Furthermore, IRF-3-driven IFN-β expression is antagonized by the conserved gammaherpesvirus protein kinase during lytic virus replication in vitro In this study, we have uncovered an unexpected proviral role of IRF-3 during chronic gammaherpesvirus infection. In contrast to the antiviral activity of IRF-3 during acute infection, IRF-3 facilitated establishment of latent gammaherpesvirus infection in B cells, particularly, germinal center and activated B cells, the cell types critical for both natural infection and viral lymphomagenesis. This proviral role of IRF-3 was further modified by the route of infection and viral dose. Furthermore, using a combination of viral and host genetics, we show that IRF-3 deficiency does not rescue attenuated chronic infection of a protein kinase null gammaherpesvirus mutant, highlighting the multifunctional nature of the conserved gammaherpesvirus protein kinases in vivo In summary, this study unveils an unexpected proviral nature of the classical innate immune factor, IRF-3, during chronic virus infection.IMPORTANCE Interferon regulatory factor 3 (IRF-3) is a critical component of the innate immune response, in part due to its transactivation of beta interferon (IFN-β) expression. Similar to that observed in all acute virus infections examined to date, IRF-3 suppresses lytic viral replication during acute gammaherpesvirus infection. Because gammaherpesviruses establish lifelong infection, this study aimed to define the antiviral activity of IRF-3 during chronic infection. Surprisingly, we found that, in contrast to acute infection, IRF-3 supported the establishment of gammaherpesvirus latency in splenic B cells, revealing an unexpected proviral nature of this classical innate immune host factor.
Collapse
|
15
|
Abstract
Gammaherpesviruses establish lifelong infections in a majority of humans and are associated with B cell lymphomas. IL-17A is a host cytokine that plays a well-established role in the clearance of bacterial and fungal infections; however, the role of IL-17A in viral infections is poorly understood. Gammaherpesviruses establish lifelong infection and are associated with a variety of cancers, including B cell lymphomas. These viruses manipulate the B cell differentiation process to establish lifelong infection in memory B cells. Specifically, gammaherpesviruses infect naive B cells and promote entry of both infected and uninfected naive B cells into germinal centers, where the virus usurps rapid proliferation of germinal center B cells to exponentially increase its cellular latent reservoir. In addition to facilitating the establishment of latent infection, germinal center B cells are thought to be the target of viral transformation. In this study, we have uncovered a novel proviral role of host interleukin 17A (IL-17A), a well-established antibacterial and antifungal factor. Loss of IL-17A signaling attenuated the establishment of chronic gammaherpesvirus infection and gammaherpesvirus-driven germinal center response in a route of inoculation-dependent manner. Further, IL-17A treatment directly supported gammaherpesvirus reactivation and de novo lytic infection. This study is the first demonstration of a multifaceted proviral role of IL-17 signaling.
Collapse
|
16
|
Vonderhaar EP, Barnekow NS, McAllister D, McOlash L, Eid MA, Riese MJ, Tarakanova VL, Johnson BD, Dwinell MB. STING Activated Tumor-Intrinsic Type I Interferon Signaling Promotes CXCR3 Dependent Antitumor Immunity in Pancreatic Cancer. Cell Mol Gastroenterol Hepatol 2021; 12:41-58. [PMID: 33548597 PMCID: PMC8081932 DOI: 10.1016/j.jcmgh.2021.01.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDA) is a lethal chemoresistant cancer that exhibits early metastatic spread. The highly immunosuppressive PDA tumor microenvironment renders patients resistant to emerging immune-targeted therapies. Building from our prior work, we evaluated stimulator of interferon genes (STING) agonist activation of PDA cell interferon-α/β-receptor (IFNAR) signaling in systemic antitumor immune responses. METHODS PDA cells were implanted subcutaneously to wild-type, IFNAR-, or CXCR3-knockout mice. Tumor growth was monitored, and immune responses were comprehensively profiled. RESULTS Human and mouse STING agonist ADU-S100 reduced local and distal tumor burden and activated systemic antitumor immune responses in PDA-bearing mice. Effector T-cell infiltration and inflammatory cytokine and chemokine production, including IFN-dependent CXCR3-agonist chemokines, were elevated, whereas suppressive immune populations were decreased in treated tumors. Intratumoral STING agonist treatment also generated inflammation in distal noninjected tumors and peripheral immune tissues. STING agonist treatment of type I IFN-responsive PDA tumors engrafted to IFNAR-/- recipient mice was sufficient to contract tumors and stimulate local and systemic T-cell activation. Tumor regression and CD8+ T-cell infiltration were abolished in PDA engrafted to CXCR3-/- mice treated with STING agonist. CONCLUSIONS These data indicate that STING agonists promote T-cell infiltration and counteract immune suppression in locally treated and distant tumors. Tumor-intrinsic type I IFN signaling initiated systemic STING-mediated antitumor inflammation and required CXCR3 expression. STING-mediated induction of systemic immune responses provides an approach to harness the immune system to treat primary and disseminated pancreatic cancers.
Collapse
Affiliation(s)
- Emily P Vonderhaar
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nicholas S Barnekow
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Donna McAllister
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Laura McOlash
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mahmoud Abu Eid
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Matthew J Riese
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Versiti Blood Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bryon D Johnson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael B Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
17
|
Feng H, Zhang YB, Gui JF, Lemon SM, Yamane D. Interferon regulatory factor 1 (IRF1) and anti-pathogen innate immune responses. PLoS Pathog 2021; 17:e1009220. [PMID: 33476326 PMCID: PMC7819612 DOI: 10.1371/journal.ppat.1009220] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The eponymous member of the interferon regulatory factor (IRF) family, IRF1, was originally identified as a nuclear factor that binds and activates the promoters of type I interferon genes. However, subsequent studies using genetic knockouts or RNAi-mediated depletion of IRF1 provide a much broader view, linking IRF1 to a wide range of functions in protection against invading pathogens. Conserved throughout vertebrate evolution, IRF1 has been shown in recent years to mediate constitutive as well as inducible host defenses against a variety of viruses. Fine-tuning of these ancient IRF1-mediated host defenses, and countering strategies by pathogens to disarm IRF1, play crucial roles in pathogenesis and determining the outcome of infection.
Collapse
Affiliation(s)
- Hui Feng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Hebei Province Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, Hebei, China
| | - Yi-Bing Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Stanley M. Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (SML); (DY)
| | - Daisuke Yamane
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
- * E-mail: (SML); (DY)
| |
Collapse
|
18
|
Interferon Regulatory Factor 7 Attenuates Chronic Gammaherpesvirus Infection. J Virol 2020; 94:JVI.01554-20. [PMID: 32967960 DOI: 10.1128/jvi.01554-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/15/2020] [Indexed: 01/02/2023] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections and are associated with a variety of malignancies, including lymphomas. Interferon regulatory factor 7 (IRF-7) is an innate immune transcription factor that restricts acute replication of diverse viruses, including murine gammaherpesvirus 68 (MHV68). Importantly, very little is known about the role of IRF-7 during chronic virus infections. In this study, we demonstrate that IRF-7 attenuates chronic infection by restricting establishment of gammaherpesvirus latency in the peritoneal cavity and, to a lesser extent, viral reactivation in the spleen. Despite the classical role of IRF-7 as a stimulator of type I interferon (IFN) transcription, there were no global effects on the expression of IFN-induced genes (ISGs) in the absence of IRF-7, with only a few ISGs showing attenuated expression in IRF-7-deficient peritoneal cells. Further, IRF-7 expression was dispensable for the induction of a virus-specific CD8 T cell response. In contrast, IRF-7 expression restricted latent gammaherpesvirus infection in the peritoneal cavity under conditions where the viral latent reservoir is predominantly hosted by peritoneal B cells. This report is the first demonstration of the antiviral role of IRF-7 during the chronic stage of gammaherpesvirus infection.IMPORTANCE The innate immune system of the host is critical for the restriction of acute viral infections. In contrast, the role of the innate immune network during chronic herpesvirus infection remains poorly defined. Interferon regulatory factor 7 (IRF-7) is a transcription factor with many target genes, including type I interferons (IFNs). In this study, we show that the antiviral role of IRF-7 continues into the chronic phase of gammaherpesvirus infection, wherein IRF-7 restricts the establishment of viral latency and viral reactivation. This study is, to our knowledge, the first to define the role of IRF-7 in chronic virus infection.
Collapse
|
19
|
Neuronal Ablation of Alpha/Beta Interferon (IFN-α/β) Signaling Exacerbates Central Nervous System Viral Dissemination and Impairs IFN-γ Responsiveness in Microglia/Macrophages. J Virol 2020; 94:JVI.00422-20. [PMID: 32796063 DOI: 10.1128/jvi.00422-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/02/2020] [Indexed: 11/20/2022] Open
Abstract
Alpha/beta interferon (IFN-α/β) signaling through the IFN-α/β receptor (IFNAR) is essential to limit virus dissemination throughout the central nervous system (CNS) following many neurotropic virus infections. However, the distinct expression patterns of factors associated with the IFN-α/β pathway in different CNS resident cell populations implicate complex cooperative pathways in IFN-α/β induction and responsiveness. Here we show that mice devoid of IFNAR1 signaling in calcium/calmodulin-dependent protein kinase II alpha (CaMKIIα) expressing neurons (CaMKIIcre:IFNARfl/fl mice) infected with a mildly pathogenic neurotropic coronavirus (mouse hepatitis virus A59 strain [MHV-A59]) developed severe encephalomyelitis with hind-limb paralysis and succumbed within 7 days. Increased virus spread in CaMKIIcre:IFNARfl/fl mice compared to IFNARfl/fl mice affected neurons not only in the forebrain but also in the mid-hind brain and spinal cords but excluded the cerebellum. Infection was also increased in glia. The lack of viral control in CaMKIIcre:IFNARfl/fl relative to control mice coincided with sustained Cxcl1 and Ccl2 mRNAs but a decrease in mRNA levels of IFNα/β pathway genes as well as Il6, Tnf, and Il1β between days 4 and 6 postinfection (p.i.). T cell accumulation and IFN-γ production, an essential component of virus control, were not altered. However, IFN-γ responsiveness was impaired in microglia/macrophages irrespective of similar pSTAT1 nuclear translocation as in infected controls. The results reveal how perturbation of IFN-α/β signaling in neurons can worsen disease course and disrupt complex interactions between the IFN-α/β and IFN-γ pathways in achieving optimal antiviral responses.IMPORTANCE IFN-α/β induction limits CNS viral spread by establishing an antiviral state, but also promotes blood brain barrier integrity, adaptive immunity, and activation of microglia/macrophages. However, the extent to which glial or neuronal signaling contributes to these diverse IFN-α/β functions is poorly understood. Using a neurotropic mouse hepatitis virus encephalomyelitis model, this study demonstrated an essential role of IFN-α/β receptor 1 (IFNAR1) specifically in neurons to control virus spread, regulate IFN-γ signaling, and prevent acute mortality. The results support the notion that effective neuronal IFNAR1 signaling compensates for their low basal expression of genes in the IFN-α/β pathway compared to glia. The data further highlight the importance of tightly regulated communication between the IFN-α/β and IFN-γ signaling pathways to optimize antiviral IFN-γ activity.
Collapse
|
20
|
LXR Alpha Restricts Gammaherpesvirus Reactivation from Latently Infected Peritoneal Cells. J Virol 2019; 93:JVI.02071-18. [PMID: 30602604 DOI: 10.1128/jvi.02071-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/19/2018] [Indexed: 12/28/2022] Open
Abstract
Gammaherpesviruses are ubiquitous viruses that establish lifelong infections. Importantly, these viruses are associated with numerous cancers and lymphoproliferative diseases. While risk factors for developing gammaherpesvirus-driven cancers are poorly understood, it is clear that elevated viral reactivation from latency often precedes oncogenesis. Here, we demonstrate that the liver X receptor alpha isoform (LXRα) restricts gammaherpesvirus reactivation in an anatomic-site-specific manner. We have previously demonstrated that deficiency of both LXR isoforms (α and β) leads to an increase in fatty acid and cholesterol synthesis in primary macrophage cultures, with a corresponding increase in gammaherpesvirus replication. Interestingly, expression of fatty acid synthesis genes was not derepressed in LXRα-deficient hosts, indicating that the antiviral effects of LXRα are independent of lipogenesis. Additionally, the critical host defenses against gammaherpesvirus reactivation, virus-specific CD8+ T cells and interferon (IFN) signaling, remained intact in the absence of LXRα. Remarkably, using a murine gammaherpesvirus 68 (MHV68) reporter virus, we discovered that LXRα expression dictates the cellular tropism of MHV68 in the peritoneal cavity. Specifically, LXRα-/- mice exhibit reduced latency within the peritoneal B cell compartment and elevated latency within F4/80+ cells. Thus, LXRα restricts gammaherpesvirus reactivation through a novel mechanism that is independent of the known CD8+ T cell-based antiviral responses or changes in lipid synthesis and likely involves changes in the tropism of MHV68 in the peritoneal cavity.IMPORTANCE Liver X receptors (LXRs) are nuclear receptors that mediate cholesterol and fatty acid homeostasis. Importantly, as ligand-activated transcription factors, LXRs represent potential targets for the treatment of hypercholesterolemia and atherosclerosis. Here, we demonstrate that LXRα, one of the two LXR isoforms, restricts reactivation of latent gammaherpesvirus from peritoneal cells. As gammaherpesviruses are ubiquitous oncogenic agents, LXRs may represent a targetable host factor for the treatment of poorly controlled gammaherpesvirus infection and associated lymphomagenesis.
Collapse
|
21
|
Stoltz KP, Jondle CN, Pulakanti K, Sylvester PA, Urrutia R, Rao S, Tarakanova VL. Tumor suppressor Interferon Regulatory Factor 1 selectively blocks expression of endogenous retrovirus. Virology 2019; 526:52-60. [PMID: 30342302 PMCID: PMC6875439 DOI: 10.1016/j.virol.2018.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 01/23/2023]
Abstract
Endogenous retroviruses (ERVs) comprise 10% of the genome, with many of these transcriptionally silenced post early embryogenesis. Several stimuli, including exogenous virus infection and cellular transformation can reactivate ERV expression via a poorly understood mechanism. We identified Interferon Regulatory Factor 1 (IRF-1), a tumor suppressor and an antiviral host factor, as a suppressor of ERV expression. IRF-1 decreased expression of a specific mouse ERV in vitro and in vivo. IRF-3, but not IRF-7, also decreased expression of distinct ERV families, suggesting that suppression of ERVs is a relevant biological function of the IRF family. Given the emerging appreciation of the physiological relevance of ERV expression in cancer, IRF-1-mediated suppression of specific ERVs may contribute to the overall tumor suppressor activity of this host factor.
Collapse
Affiliation(s)
- K P Stoltz
- Microbiology and Immunology Department, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - C N Jondle
- Microbiology and Immunology Department, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - K Pulakanti
- Blood Research Institute, BloodCenter of Wisconsin, a Part of Versiti, 8727 West Watertown Plank Road, Milwaukee, WI 53226, United States
| | - P A Sylvester
- Microbiology and Immunology Department, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - R Urrutia
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States; Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - S Rao
- Blood Research Institute, BloodCenter of Wisconsin, a Part of Versiti, 8727 West Watertown Plank Road, Milwaukee, WI 53226, United States.
| | - V L Tarakanova
- Microbiology and Immunology Department, Medical College of Wisconsin, Milwaukee, Wisconsin, United States; Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States.
| |
Collapse
|
22
|
Lv DW, Zhang K, Li R. Interferon regulatory factor 8 regulates caspase-1 expression to facilitate Epstein-Barr virus reactivation in response to B cell receptor stimulation and chemical induction. PLoS Pathog 2018; 14:e1006868. [PMID: 29357389 PMCID: PMC5794192 DOI: 10.1371/journal.ppat.1006868] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/01/2018] [Accepted: 01/09/2018] [Indexed: 12/30/2022] Open
Abstract
Interferon regulatory factor 8 (IRF8), also known as interferon consensus sequence-binding protein (ICSBP), is a transcription factor of the IRF family. IRF8 plays a key role in normal B cell differentiation, a cellular process that is intrinsically associated with Epstein-Barr virus (EBV) reactivation. However, whether IRF8 regulates EBV lytic replication remains unknown. In this study, we utilized a CRISPR/Cas9 genomic editing approach to deplete IRF8 and found that IRF8 depletion dramatically inhibits the reactivation of EBV upon lytic induction. We demonstrated that IRF8 depletion suppresses the expression of a group of genes involved in apoptosis and thus inhibits apoptosis induction upon lytic induction by B cell receptor (BCR) stimulation or chemical induction. The protein levels of caspase-1, caspase-3 and caspase-8 all dramatically decreased in IRF8-depleted cells, which led to reduced caspase activation and the stabilization of KAP1, PAX5 and DNMT3A upon BCR stimulation. Interestingly, caspase inhibition blocked the degradation of KAP1, PAX5 and DNMT3A, suppressed EBV lytic gene expression and viral DNA replication upon lytic induction, suggesting that the reduced caspase expression in IRF8-depleted cells contributes to the suppression of EBV lytic replication. We further demonstrated that IRF8 directly regulates CASP1 (caspase-1) gene expression through targeting its gene promoter and knockdown of caspase-1 abrogates EBV reactivation upon lytic induction, partially through the stabilization of KAP1. Together our study suggested that, by modulating the activation of caspases and the subsequent cleavage of KAP1 upon lytic induction, IRF8 plays a critical role in EBV lytic reactivation. Infection with Epstein-Barr virus (EBV) is closely associated with human cancers of both B cell and epithelial cell origin. The EBV life cycle is tightly regulated by both viral and cellular factors. Here, we demonstrate that interferon regulatory factor 8 (IRF8) is required for EBV lytic replication. Mechanistically, IRF8 directly regulates caspase-1 expression and hence caspase activation upon B cell receptor (BCR) stimulation and chemical induction, which leads to the cleavage and de-stabilization of several host factors suppressing lytic replication, including KAP1. Caspase-1 depletion blocks EBV reactivation while KAP1 depletion facilitates reactivation in caspase-1 depleted cells. These results together establish a IRF8/caspase-1/KAP1 axis important for EBV reactivation.
Collapse
Affiliation(s)
- Dong-Wen Lv
- Department of Oral and Craniofacial Molecular Biology and Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kun Zhang
- Department of Oral and Craniofacial Molecular Biology and Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Renfeng Li
- Department of Oral and Craniofacial Molecular Biology and Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
23
|
Darrah EJ, Stoltz KP, Ledwith M, Tarakanova VL. ATM supports gammaherpesvirus replication by attenuating type I interferon pathway. Virology 2017; 510:137-146. [PMID: 28732227 DOI: 10.1016/j.virol.2017.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/21/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022]
Abstract
Ataxia-Telangiectasia mutated (ATM) kinase participates in multiple networks, including DNA damage response, oxidative stress, and mitophagy. ATM also supports replication of diverse DNA and RNA viruses. Gammaherpesviruses are prevalent cancer-associated viruses that benefit from ATM expression during replication. This proviral role of ATM had been ascribed to its signaling within the DNA damage response network; other functions of ATM have not been considered. In this study increased type I interferon (IFN) responses were observed in ATM deficient gammaherpesvirus-infected macrophages. Using a mouse model that combines ATM and type I IFN receptor deficiencies we show that increased type I IFN response in the absence of ATM fully accounts for the proviral role of ATM during gammaherpesvirus replication. Further, increased type I IFN response rendered ATM deficient macrophages more susceptible to antiviral effects of type II IFN. This study identifies attenuation of type I IFN responses as the primary mechanism underlying proviral function of ATM during gammaherpesvirus infection.
Collapse
Affiliation(s)
- Eric J Darrah
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Kyle P Stoltz
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Mitchell Ledwith
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| |
Collapse
|