1
|
Prochasson L, Mghezzi-Habellah M, Roisin A, Palma M, Robin JP, de Bossoreille S, Cluet D, Mouelhi M, Decimo D, Desrames A, Chaze T, Matondo M, Dutartre H, Thoulouze MI, Lejeune F, Jalinot P, Rety S, Mocquet V. Retroviral adapters hijack the RNA helicase UPF1 in a CRM1/XPO1-dependent manner and reveal proviral roles of UPF1. Nucleic Acids Res 2025; 53:gkaf434. [PMID: 40396490 DOI: 10.1093/nar/gkaf434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/27/2025] [Accepted: 05/12/2025] [Indexed: 05/22/2025] Open
Abstract
The hijacking of CRM1 export is an important step of the retroviral replication cycle. Here, we investigated the consequences of this hijacking for the host. During HTLV-1 infection, we identified that this hijacking by the viral protein Rex favours the association between CRM1 and the RNA helicase UPF1, leading to a decreased affinity of UPF1 for cellular RNA and its nuclear retention. As a consequence, we found that the nonsense-mediated mRNA decay (NMD), known to have an antiviral function, was inhibited. Corroborating these results, we described a similar process with Rev, the functional homolog of Rex from HIV-1. Unexpectedly, we also found that, for HTLV-1, this process is coupled with the specific loading of UPF1 onto vRNA, independently of NMD. In this latter context, UPF1 positively regulates several steps of the viral replication cycle, from the nuclear export of vRNA to the production of mature viral particles.
Collapse
Affiliation(s)
- Léa Prochasson
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Inserm U1293, CNRS UMR5239, F-69364 Lyon, France
| | - Makram Mghezzi-Habellah
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Inserm U1293, CNRS UMR5239, F-69364 Lyon, France
| | - Armelle Roisin
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Inserm U1293, CNRS UMR5239, F-69364 Lyon, France
| | - Martine Palma
- Université de Lille, CNRS, Inserm, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Jean-Philippe Robin
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Inserm U1293, CNRS UMR5239, F-69364 Lyon, France
| | - Stève de Bossoreille
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Inserm U1293, CNRS UMR5239, F-69364 Lyon, France
| | - David Cluet
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Inserm U1293, CNRS UMR5239, F-69364 Lyon, France
| | - Malèke Mouelhi
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Inserm U1293, CNRS UMR5239, F-69364 Lyon, France
| | - Didier Decimo
- Centre International de Recherche en Infectiologie (CIRI), Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon, Inserm U1111, CNRS UMR5308, F-69364 Lyon, France
| | - Alexandra Desrames
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Biofilm and Viral Transmission team, Structural Virology Unit, F-75724 Paris, France
| | - Thibault Chaze
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology Unit, F-75015 Paris, France
| | - Mariette Matondo
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology Unit, F-75015 Paris, France
| | - Hélène Dutartre
- Centre International de Recherche en Infectiologie (CIRI), Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon, Inserm U1111, CNRS UMR5308, F-69364 Lyon, France
| | - Maria-Isabel Thoulouze
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Biofilm and Viral Transmission team, Structural Virology Unit, F-75724 Paris, France
| | - Fabrice Lejeune
- Université de Lille, CNRS, Inserm, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Pierre Jalinot
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Inserm U1293, CNRS UMR5239, F-69364 Lyon, France
| | - Stephane Rety
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Inserm U1293, CNRS UMR5239, F-69364 Lyon, France
| | - Vincent Mocquet
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Inserm U1293, CNRS UMR5239, F-69364 Lyon, France
| |
Collapse
|
2
|
Heym S, Krebs P, Ott K, Donhauser N, Kemeter LM, Simon F, Millen S, Thoma-Kress AK. A Novel Tax-Responsive Reporter T-Cell Line to Analyze Infection of HTLV-1. Pathogens 2024; 13:1015. [PMID: 39599568 PMCID: PMC11597676 DOI: 10.3390/pathogens13111015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) infects CD4+ T-cells through close cell-cell contacts. The viral Tax-1 (Tax) protein regulates transcription by transactivating the HTLV-1 U3R promoter in the 5' long terminal repeat of the integrated provirus. Here, we generated a clonal Tax-responsive T-cell line to track HTLV-1 infection at the single-cell level using flow cytometry, bypassing intracellular viral protein staining. Jurkat T-cells stably transduced with the SMPU vector carrying green fluorescent protein (GFP) under control of 18 × 21 bp Tax-responsive element repeats of the U3R were evaluated. Among 40 clones analyzed for Tax responsiveness, the top two were characterized. Upon overexpression of Tax, over 40% of the cells showed GFP positivity, and approximately 90% of the Tax-positive cells were GFP-positive, indicating efficient reporter activity. However, with CREB-deficient Tax mutant M47, both total GFP-positive cell counts and those within the Tax-positive group significantly decreased. Co-culture with chronically HTLV-1-infected MT-2 or C91-PL cells led to an average of 0.9% or 2.4% GFP-positive cells, respectively, confirming the suitability to monitor HTLV-1 transmission and that HTLV-1 infection is very low. Thus, the novel Tax-responsive reporter T-cell line is a suitable tool to monitor infection of HTLV-1 on the single-cell level.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andrea K. Thoma-Kress
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.H.); (K.O.); (N.D.); (L.M.K.); (F.S.)
| |
Collapse
|
3
|
Carcone A, Mortreux F, Alais S, Mathieu C, Journo C, Dutartre H. Peculiar transcriptional reprogramming with functional impairment of dendritic cells upon exposure to transformed HTLV-1-infected cells. PLoS Pathog 2024; 20:e1012555. [PMID: 39283919 PMCID: PMC11426526 DOI: 10.1371/journal.ppat.1012555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/26/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
Manipulation of immune cell functions, independently of direct infection of these cells, emerges as a key process in viral pathophysiology. Chronic infection by Human T-cell Leukemia Virus type 1 (HTLV-1) is associated with immune dysfunctions, including misdirected responses of dendritic cells (DCs). Here, we interrogate the ability of transformed HTLV-1-infected T cells to manipulate human DC functions. We show that exposure to transformed HTLV-1-infected T cells induces a biased and peculiar transcriptional signature in monocyte-derived DCs, associated with an inefficient maturation and a poor responsiveness to subsequent stimulation by a TLR4 agonist. This poor responsiveness is also associated with a unique transcriptional landscape characterized by a set of genes whose expression is either conferred, impaired or abolished by HTLV-1 pre-exposure. Induction of this functional impairment requires several hours of coculture with transformed HTLV-1-infected cells, and associated mechanisms driven by viral capture, cell-cell contacts, and soluble mediators. Altogether, this cross-talk between infected T cells and DCs illustrate how HTLV-1 might co-opt communications between cells to induce a unique local tolerogenic immune microenvironment suitable for its own persistence.
Collapse
Affiliation(s)
- Auriane Carcone
- Centre International de Recherche en Infectiologie, Retroviral Oncogenesis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| | - Franck Mortreux
- Laboratory of Biology and Modelling of the Cell, University of Lyon, ENS de Lyon, University Claude Bernard, CNRS UMR 5239, Inserm U1210, Lyon, France
| | - Sandrine Alais
- Centre International de Recherche en Infectiologie, Retroviral Oncogenesis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| | - Cyrille Mathieu
- Centre International de Recherche en Infectiologie, équipe Neuro-Invasion, TROpism and VIRal Encephalitis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| | - Chloé Journo
- Centre International de Recherche en Infectiologie, Retroviral Oncogenesis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| | - Hélène Dutartre
- Centre International de Recherche en Infectiologie, Retroviral Oncogenesis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| |
Collapse
|
4
|
Kalemera MD, Maher AK, Dominguez-Villar M, Maertens GN. Cell Culture Evaluation Hints Widely Available HIV Drugs Are Primed for Success if Repurposed for HTLV-1 Prevention. Pharmaceuticals (Basel) 2024; 17:730. [PMID: 38931397 PMCID: PMC11206710 DOI: 10.3390/ph17060730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
With an estimated 10 million people infected, the deltaretrovirus human T-cell lymphotropic virus type 1 (HTLV-1) is the second most prevalent pathogenic retrovirus in humans after HIV-1. Like HIV-1, HTLV-1 overwhelmingly persists in a host via a reservoir of latently infected CD4+ T cells. Although most patients are asymptomatic, HTLV-1-associated pathologies are often debilitating and include adult T-cell leukaemia/lymphoma (ATLL), which presents in mature adulthood and is associated with poor prognosis with short overall survival despite treatment. Curiously, the strongest indicator for the development of ATLL is the acquisition of HTLV-1 through breastfeeding. There are no therapeutic or preventative regimens for HTLV-1. However, antiretrovirals (ARVs), which target the essential retrovirus enzymes, have been developed for and transformed HIV therapy. As the architectures of retroviral enzyme active sites are highly conserved, some HIV-specific compounds are active against HTLV-1. Here, we expand on our work, which showed that integrase strand transfer inhibitors (INSTIs) and some nucleoside reverse transcriptase inhibitors (NRTIs) block HTLV-1 transmission in cell culture. Specifically, we find that dolutegravir, the INSTI currently recommended as the basis of all new combination antiretroviral therapy prescriptions, and the latest prodrug formula of the NRTI tenofovir, tenofovir alafenamide, also potently inhibit HTLV-1 infection. Our results, if replicated in a clinical setting, could see transmission rates of HTLV-1 and future caseloads of HTLV-1-associated pathologies like ATLL dramatically cut via the simple repurposing of already widely available HIV pills in HTLV-1 endemic areas. Considering our findings with the old medical saying "it is better to prevent than cure", we highly recommend the inclusion of INSTIs and tenofovir prodrugs in upcoming HTLV-1 clinical trials as potential prophylactics.
Collapse
Affiliation(s)
| | | | | | - Goedele N. Maertens
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK; (M.D.K.); (A.K.M.); (M.D.-V.)
| |
Collapse
|
5
|
Nagata K, Tezuka K, Kuramitsu M, Fuchi N, Hasegawa Y, Hamaguchi I, Miura K. Establishment of a novel human T-cell leukemia virus type 1 infection model using cell-free virus. J Virol 2024; 98:e0186223. [PMID: 38294250 PMCID: PMC10878273 DOI: 10.1128/jvi.01862-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The primary mode of infection by human T-cell leukemia virus type 1 (HTLV-1) is cell-to-cell transmission during contact between infected cells and target cells. Cell-free HTLV-1 infections are known to be less efficient than infections with other retroviruses, and transmission of free HTLV-1 is considered not to occur in vivo. However, it has been demonstrated that cell-free HTLV-1 virions can infect primary lymphocytes and dendritic cells in vitro, and that virions embedded in biofilms on cell membranes can contribute to transmission. The establishment of an efficient cell-free HTLV-1 infection model would be a useful tool for analyzing the replication process of HTLV-1 and the clonal expansion of infected cells. We first succeeded in obtaining supernatants with high-titer cell-free HTLV-1 using a highly efficient virus-producing cell line. The HTLV-1 virions retained the structural characteristics of retroviruses. Using this cell-free infection model, we confirmed that a variety of cell lines and primary cultured cells can be infected with HTLV-1 and demonstrated that the provirus was randomly integrated into all chromosomes in the target cells. The provirus-integrated cell lines were HTLV-1-productive. Furthermore, we demonstrated for the first time that cell-free HTLV-1 is infectious in vivo using a humanized mouse model. These results indicate that this cell-free infection model recapitulates the HTLV-1 life cycle, including entry, reverse transcription, integration into the host genome, viral replication, and secondary infection. The new cell-free HTLV-1 infection model is promising as a practical resource for studying HTLV-1 infection.IMPORTANCECo-culture of infected and target cells is frequently used for studying HTLV-1 infection. Although this method efficiently infects HTLV-1, the cell mixture is complex, and it is extremely difficult to distinguish donor infected cells from target cells. In contrast, cell-free HTLV-1 infection models allow for more strict experimental conditions. In this study, we established a novel and efficient cell-free HTLV-1 infection model. Using this model, we successfully evaluated the infectivity titers of cell-free HTLV-1 as proviral loads (copies per 100 cells) in various cell lines, primary cultured cells, and a humanized mouse model. Interestingly, the HTLV-1-associated viral biofilms played an important role in enhancing the infectivity of the cell-free infection model. This cell-free HTLV-1 infection model reproduces the replication cycle of HTLV-1 and provides a simple, powerful, and alternative tool for researching HTLV-1 infection.
Collapse
Affiliation(s)
- Koh Nagata
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenta Tezuka
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Madoka Kuramitsu
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Fuchi
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuri Hasegawa
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Isao Hamaguchi
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kiyonori Miura
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
6
|
Arone C, Martial S, Burlaud-Gaillard J, Thoulouze MI, Roingeard P, Dutartre H, Muriaux D. HTLV-1 biofilm polarization maintained by tetraspanin CD82 is required for efficient viral transmission. mBio 2023; 14:e0132623. [PMID: 37889017 PMCID: PMC10746275 DOI: 10.1128/mbio.01326-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE In the early stages of infection, human T-lymphotropic virus type 1 (HTLV-1) dissemination within its host is believed to rely mostly on cell-to-cell contacts. Past studies unveiled a novel mechanism of HTLV-1 intercellular transmission based on the remodeling of the host-cell extracellular matrix and the generation of cell-surface viral assemblies whose structure, composition, and function resemble bacterial biofilms. These polarized aggregates of infectious virions, identified as viral biofilms, allow the bulk delivery of viruses to target cells and may help to protect virions from immune attacks. However, viral biofilms' molecular and functional description is still in its infancy, although it is crucial to fully decipher retrovirus pathogenesis. Here, we explore the function of cellular tetraspanins (CD9, CD81, CD82) that we detect inside HTLV-1 particles within biofilms. Our results demonstrate specific roles for CD82 in the cell-surface distribution and intercellular transmission of HTLV-1 biofilms, which we document as two essential parameters for efficient viral transmission. At last, our findings indicate that N-glycosylation of cell-surface molecules, including CD82, is required for the polarization of HTLV-1 biofilms and for the efficient transmission of HTLV-1 between T-lymphocytes.
Collapse
Affiliation(s)
- Coline Arone
- Infectious Disease Research Institute of Montpellier (IRIM), UMR CNRS, Montpellier, France
| | - Samuel Martial
- Center for International Research on Infectiology (CIRI), UMR Inserm, Lyon, France
| | | | | | - Philippe Roingeard
- IBiSA Electron Microscopy Platform of Tours University, UMR Inserm, Tours, France
| | - Hélène Dutartre
- Center for International Research on Infectiology (CIRI), UMR Inserm, Lyon, France
| | - Delphine Muriaux
- Infectious Disease Research Institute of Montpellier (IRIM), UMR CNRS, Montpellier, France
| |
Collapse
|
7
|
Rojo-Romanos T, Karpinski J, Millen S, Beschorner N, Simon F, Paszkowski-Rogacz M, Lansing F, Schneider PM, Sonntag J, Hauber J, Thoma-Kress AK, Buchholz F. Precise excision of HTLV-1 provirus with a designer-recombinase. Mol Ther 2023; 31:2266-2285. [PMID: 36934299 PMCID: PMC10362392 DOI: 10.1016/j.ymthe.2023.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 02/06/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
The human T cell leukemia virus type 1 (HTLV-1) is a pathogenic retrovirus that persists as a provirus in the genome of infected cells and can lead to adult T cell leukemia (ATL). Worldwide, more than 10 million people are infected and approximately 5% of these individuals will develop ATL, a highly aggressive cancer that is currently incurable. In the last years, genome editing tools have emerged as promising antiviral agents. In this proof-of-concept study, we use substrate-linked directed evolution (SLiDE) to engineer Cre-derived site-specific recombinases to excise the HTLV-1 proviral genome from infected cells. We identified a conserved loxP-like sequence (loxHTLV) present in the long terminal repeats of the majority of virus isolates. After 181 cycles of SLiDE, we isolated a designer-recombinase (designated RecHTLV), which efficiently recombines the loxHTLV sequence in bacteria and human cells with high specificity. Expression of RecHTLV in human Jurkat T cells resulted in antiviral activity when challenged with an HTLV-1 infection. Moreover, expression of RecHTLV in chronically infected SP cells led to the excision of HTLV-1 proviral DNA. Our data suggest that recombinase-mediated excision of the HTLV-1 provirus represents a promising approach to reduce proviral load in HTLV-1-infected individuals, potentially preventing the development of HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Teresa Rojo-Romanos
- Medical Systems Biology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Janet Karpinski
- Medical Systems Biology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Sebastian Millen
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Niklas Beschorner
- PROVIREX Genome Editing Therapies GmbH, Luruper Hauptstrasse 1, 22547 Hamburg, Germany
| | - Florian Simon
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Maciej Paszkowski-Rogacz
- Medical Systems Biology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Felix Lansing
- Medical Systems Biology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Paul Martin Schneider
- Medical Systems Biology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Jan Sonntag
- Medical Systems Biology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Joachim Hauber
- PROVIREX Genome Editing Therapies GmbH, Luruper Hauptstrasse 1, 22547 Hamburg, Germany
| | - Andrea K Thoma-Kress
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Frank Buchholz
- Medical Systems Biology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany.
| |
Collapse
|
8
|
Mohanty S, Harhaj EW. Mechanisms of Innate Immune Sensing of HTLV-1 and Viral Immune Evasion. Pathogens 2023; 12:735. [PMID: 37242405 PMCID: PMC10221045 DOI: 10.3390/pathogens12050735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Human T lymphotropic virus-1 (HTLV-1) was the first identified oncoretrovirus, which infects and establishes a persistent infection in approximately 10-20 million people worldwide. Although only ~5% of infected individuals develop pathologies such as adult T-cell leukemia/lymphoma (ATLL) or a neuroinflammatory disorder termed HTLV-1-asssociated myelopathy/tropical spastic paraparesis (HAM/TSP), asymptomatic carriers are more susceptible to opportunistic infections. Furthermore, ATLL patients are severely immunosuppressed and prone to other malignancies and other infections. The HTLV-1 replication cycle provides ligands, mainly nucleic acids (RNA, RNA/DNA intermediates, ssDNA intermediates, and dsDNA), that are sensed by different pattern recognition receptors (PRRs) to trigger immune responses. However, the mechanisms of innate immune detection and immune responses to HTLV-1 infection are not well understood. In this review, we highlight the functional roles of different immune sensors in recognizing HTLV-1 infection in multiple cell types and the antiviral roles of host restriction factors in limiting persistent infection of HTLV-1. We also provide a comprehensive overview of intricate strategies employed by HTLV-1 to subvert the host innate immune response that may contribute to the development of HTLV-1-associated diseases. A more detailed understanding of HTLV-1-host pathogen interactions may inform novel strategies for HTLV-1 antivirals, vaccines, and treatments for ATLL or HAM/TSP.
Collapse
Affiliation(s)
- Suchitra Mohanty
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA;
| | | |
Collapse
|
9
|
Jahantigh HR, Shahbazi B, Gouklai H, Van der Weken H, Gharibi Z, Rezaei Z, Habibi M, Ahmadi K. Design peptide and multi-epitope protein vaccine candidates against monkeypox virus using reverse vaccinology approach: an in-silico study. J Biomol Struct Dyn 2023; 41:14398-14418. [PMID: 37154825 DOI: 10.1080/07391102.2023.2201850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/11/2023] [Indexed: 05/10/2023]
Abstract
Monkeypox is a zoonotic virus that has recently affected different countries worldwide. On July 23, 2022, the WHO declared the outbreak of monkeypox as a public health emergency of international concern. Surveillance studies conducted in Central Africa in the 1980s and later during outbreaks in the same region showed smallpox vaccines to be clinically somewhat effective against Monkeypox virus. However, there is no specific vaccine against this virus. This research used bioinformatics techniques to establish a novel multi-epitope vaccine candidate against Monkeypox that can induce a strong immune response. Five well-known antigenic proteins (E8L, A30L, A35R, A29L, and B21R) of the virus were picked and assessed as possible immunogenic peptides. Two suitable peptide candidates were selected according to bio-informatics analysis. Based upon in silico evaluation, two multi-epitope vaccine candidates (ALALAR and ALAL) were built with rich-epitope domains consisting of high-ranking T and B-cell epitopes. After predicting and evaluating the 3D structure of the protein candidates, the most efficient 3D models were considered for docking studies with Toll-like receptor 4 (TLR4) and the HLA-A * 11:01, HLA-A*01:01, HLA-A*02:01, HLA-A*03:01, HLA-A*07:02, HLA-A*15:01, HLA-A*30:01 receptors. Subsequently, molecular dynamics (MD) simulation of up to 150 nanoseconds was employed to assess the durability of the interaction of the vaccine candidates with immune receptors. MD studies showed that M5-HLA-A*11:01, ALAL-TLR4, and ALALAR-TLR4 complexes were stable during simulation. Analysis of the in silico outcomes indicates that the M5 peptide and ALAL and ALALAR proteins may be suitable vaccine candidates against the Monkeypox virus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hamid Reza Jahantigh
- Interdisciplinary Department of Medicine - Section of Occupational Medicine, University of Bari, Bari, Italy
- Animal Health and Zoonosis PhD Course, Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Behzad Shahbazi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamed Gouklai
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hans Van der Weken
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Zahra Gharibi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Rezaei
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran, Iran
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
10
|
Upregulation of host genes during disease progression in bovine leukemia virus infection is independent of overexpression of viral transcriptional regulators in vitro. Arch Virol 2023; 168:98. [PMID: 36871085 DOI: 10.1007/s00705-023-05713-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/04/2023] [Indexed: 03/06/2023]
Abstract
Bovine leukemia virus (BLV) is a member of the genus Deltaretrovirus within the family Retroviridae that infects bovine B cells, causing persistent lymphocytosis and enzootic bovine leukosis (EBL) in a small fraction of infected cattle. As changes in the transcriptome of infected cells are important for BLV disease progression, comprehensive analysis of gene expression in different disease states is required. In this study, we performed an RNA-seq analysis using samples from non-EBL cattle with and without BLV infection. Subsequently, a transcriptome analysis was conducted in combination with previously obtained RNA-seq data from EBL cattle. We found several differentially expressed genes (DEGs) between the three groups. After screening and confirmation of target DEGs using real-time reverse transcription polymerase chain reaction, we found that 12 target genes were significantly upregulated in EBL cattle compared to BLV-infected cattle without lymphoma. In addition, the expression levels of B4GALT6, ZBTB32, EPB4L1, RUNX1T1, HLTF, MKI67, and TOP2A were significantly and positively correlated with the proviral load in BLV-infected cattle. Overexpression experiments revealed that these changes were independent of BLV tax or BLV AS1-S expression in vitro. Our study provides additional information on host gene expression during BLV infection and EBL development, which may be helpful for understanding the complexity of transcriptome profiles during disease progression.
Collapse
|
11
|
STLV-1 Commonly Targets Neurons in the Brain of Asymptomatic Non-Human Primates. mBio 2023; 14:e0352622. [PMID: 36802226 PMCID: PMC10128043 DOI: 10.1128/mbio.03526-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The human T-cell leukemia virus (HTLV)-1 is responsible for an aggressive neurodegenerative disease (HAM/TSP) and multiple neurological alterations. The capacity of HTLV-1 to infect central nervous system (CNS) resident cells, together with the neuroimmune-driven response, has not been well-established. Here, we combined the use of human induced pluripotent stem cells (hiPSC) and of naturally STLV-1-infected nonhuman primates (NHP) as models with which to investigate HTLV-1 neurotropism. Hence, neuronal cells obtained after hiPSC differentiation in neural polycultures were the main cell population infected by HTLV-1. Further, we report the infection of neurons with STLV-1 in spinal cord regions as well as in brain cortical and cerebellar sections of postmortem NHP. Additionally, reactive microglial cells were found in infected areas, suggesting an immune antiviral response. These results emphasize the need to develop new efficient models by which to understand HTLV-1 neuroinfection and suggest an alternative mechanism that leads to HAM/TSP.
Collapse
|
12
|
Pise-Masison CA, Franchini G. Hijacking Host Immunity by the Human T-Cell Leukemia Virus Type-1: Implications for Therapeutic and Preventive Vaccines. Viruses 2022; 14:2084. [PMID: 36298639 PMCID: PMC9609126 DOI: 10.3390/v14102084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2024] Open
Abstract
Human T-cell Leukemia virus type-1 (HTLV-1) causes adult T-cell leukemia/lymphoma (ATLL), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and other inflammatory diseases. High viral DNA burden (VL) in peripheral blood mononuclear cells is a documented risk factor for ATLL and HAM/TSP, and patients with HAM/TSP have a higher VL in cerebrospinal fluid than in peripheral blood. VL alone is not sufficient to differentiate symptomatic patients from healthy carriers, suggesting the importance of other factors, including host immune response. HTLV-1 infection is life-long; CD4+-infected cells are not eradicated by the immune response because HTLV-1 inhibits the function of dendritic cells, monocytes, Natural Killer cells, and adaptive cytotoxic CD8+ responses. Although the majority of infected CD4+ T-cells adopt a resting phenotype, antigen stimulation may result in bursts of viral expression. The antigen-dependent "on-off" viral expression creates "conditional latency" that when combined with ineffective host responses precludes virus eradication. Epidemiological and clinical data suggest that the continuous attempt of the host immunity to eliminate infected cells results in chronic immune activation that can be further exacerbated by co-morbidities, resulting in the development of severe disease. We review cell and animal model studies that uncovered mechanisms used by HTLV-1 to usurp and/or counteract host immunity.
Collapse
Affiliation(s)
- Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
13
|
Mulherkar TH, Gómez DJ, Sandel G, Jain P. Co-Infection and Cancer: Host–Pathogen Interaction between Dendritic Cells and HIV-1, HTLV-1, and Other Oncogenic Viruses. Viruses 2022; 14:v14092037. [PMID: 36146843 PMCID: PMC9503663 DOI: 10.3390/v14092037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Dendritic cells (DCs) function as a link between innate and adaptive immune responses. Retroviruses HIV-1 and HTLV-1 modulate DCs to their advantage and utilize them to propagate infection. Coinfection of HTLV-1 and HIV-1 has implications for cancer malignancies. Both viruses initially infect DCs and propagate the infection to CD4+ T cells through cell-to-cell transmission using mechanisms including the formation of virologic synapses, viral biofilms, and conduits. These retroviruses are both neurotrophic with neurovirulence determinants. The neuropathogenesis of HIV-1 and HTLV-1 results in neurodegenerative diseases such as HIV-associated neurocognitive disorders (HAND) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Infected DCs are known to traffic to the brain (CNS) and periphery (PNS, lymphatics) to induce neurodegeneration in HAND and HAM/TSP patients. Elevated levels of neuroinflammation have been correlated with cognitive decline and impairment of motor control performance. Current vaccinations and therapeutics for HIV-1 and HTLV-1 are assessed and can be applied to patients with HIV-1-associated cancers and adult T cell leukemia/lymphoma (ATL). These diseases caused by co-infections can result in both neurodegeneration and cancer. There are associations with cancer malignancies and HIV-1 and HTLV-1 as well as other human oncogenic viruses (EBV, HBV, HCV, HDV, and HPV). This review contains current knowledge on DC sensing of HIV-1 and HTLV-1 including DC-SIGN, Tat, Tax, and current viral therapies. An overview of DC interaction with oncogenic viruses including EBV, Hepatitis viruses, and HPV is also provided. Vaccines and therapeutics targeting host–pathogen interactions can provide a solution to co-infections, neurodegeneration, and cancer.
Collapse
Affiliation(s)
- Tania H. Mulherkar
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Daniel Joseph Gómez
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
- Department of Biological Sciences, California State University, 25800 Carlos Bee Blvd, Hayward, CA 94542, USA
| | - Grace Sandel
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
- Correspondence:
| |
Collapse
|
14
|
Carcone A, Journo C, Dutartre H. Is the HTLV-1 Retrovirus Targeted by Host Restriction Factors? Viruses 2022; 14:v14081611. [PMID: 35893677 PMCID: PMC9332716 DOI: 10.3390/v14081611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1), the etiological agent of adult T cell leukemia/lymphoma (ATLL) and of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), was identified a few years before Human Immunodeficiency Virus (HIV). However, forty years later, our comprehension of HTLV-1 immune detection and the host immune responses to HTLV-1 is far more limited than for HIV. In addition to innate and adaptive immune responses that rely on specialized cells of the immune system, host cells may also express a range of antiviral factors that inhibit viral replication at different stages of the cycle, in a cell-autonomous manner. Multiple antiviral factors allowing such an intrinsic immunity have been primarily and extensively described in the context HIV infection. Here, we provide an overview of whether known HIV restriction factors might act on HTLV-1 replication. Interestingly, many of them do not exert any antiviral activity against HTLV-1, and we discuss viral replication cycle specificities that could account for these differences. Finally, we highlight future research directions that could help to identify antiviral factors specific to HTLV-1.
Collapse
|
15
|
Yaghoubi N, Youssefi M, Rafat Panah H, Jarahi L, Zahedi Avval F. Evaluation of antioxidant status and oxidative stress markers in HTLV-1 infected individuals: correlation with the severity of virus-induced complications. J Med Microbiol 2022; 71. [PMID: 35442185 DOI: 10.1099/jmm.0.001408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Human T-cell lymphotropic virus type 1 (HTLV-1), a well-known member of the retroviridae family, potentially causes serious outcomes including adult T-cell leukaemia/lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM-TSP). Oxidative stress plays a key role in progression and clinical exacerbation of several chronic infections. We have previously shown a reduction in serum total antioxidant capacity (TAC) during HTLV-1 infection and this study was set out to investigate the reasons for TAC reduction.Hypothesis/Gap Statement. Oxidant/antioxidant imbalance during HTLV-1 infection may result from disruptions in oxidant levels or antioxidant defence system.Aim. This study aimed to analyse the key enzymes and oxidant molecules playing important roles in virus-induced oxidative stress.Methodology. We measured serum activities of the major antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) as well as serum concentrations of the main oxidant markers: nitric oxide (NO) and malondialdehyde (MDA). Totally 40 HTLV-1 infected patients and 40 healthy controls were enrolled in this study. The patient group consisted of chronic carriers and patients with HAM-TSP (N=20).Results. The current study found that serum levels of MDA and NO were significantly higher in patient groups particularly in HAM-TSP patients (P<0.05). In addition, a reductive trend was observed in the serum activities of CAT, SOD, and GPX in HTLV-1 infected patients compared with healthy controls (P<0.05).Conclusion. Reduced activities of CAT, SOD, and GPX antioxidant enzymes along with the observed elevated concentrations of oxidant molecules may contribute to oxidative stress and worse outcomes during HTLV-1 infection.
Collapse
Affiliation(s)
- Neda Yaghoubi
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Youssefi
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hooshang Rafat Panah
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Lida Jarahi
- Department of Community Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Zahedi Avval
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Community Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Moles R, Sarkis S, Galli V, Omsland M, Artesi M, Bissa M, McKinnon K, Brown S, Hahaut V, Washington-Parks R, Welsh J, Venzon DJ, Gutowska A, Doster MN, Breed MW, Killoran KE, Kramer J, Jones J, Moniuszko M, Van den Broeke A, Pise-Masison CA, Franchini G. NK cells and monocytes modulate primary HTLV-1 infection. PLoS Pathog 2022; 18:e1010416. [PMID: 35377924 PMCID: PMC9022856 DOI: 10.1371/journal.ppat.1010416] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/21/2022] [Accepted: 03/04/2022] [Indexed: 12/21/2022] Open
Abstract
We investigated the impact of monocytes, NK cells, and CD8+ T-cells in primary HTLV-1 infection by depleting cell subsets and exposing macaques to either HTLV-1 wild type (HTLV-1WT) or to the HTLV-1p12KO mutant unable to infect replete animals due to a single point mutation in orf-I that inhibits its expression. The orf-I encoded p8/p12 proteins counteract cytotoxic NK and CD8+ T-cells and favor viral DNA persistence in monocytes. Double NK and CD8+ T-cells or CD8 depletion alone accelerated seroconversion in all animals exposed to HTLV-1WT. In contrast, HTLV-1p12KO infectivity was fully restored only when NK cells were also depleted, demonstrating a critical role of NK cells in primary infection. Monocyte/macrophage depletion resulted in accelerated seroconversion in all animals exposed to HTLV-1WT, but antibody titers to the virus were low and not sustained. Seroconversion did not occur in most animals exposed to HTLV-1p12KO.In vitro experiments in human primary monocytes or THP-1 cells comparing HTLV-1WT and HTLV-1p12KO demonstrated that orf-I expression is associated with inhibition of inflammasome activation in primary cells, with increased CD47 “don’t-eat-me” signal surface expression in virus infected cells and decreased monocyte engulfment of infected cells. Collectively, our data demonstrate a critical role for innate NK cells in primary infection and suggest a dual role of monocytes in primary infection. On one hand, orf-I expression increases the chances of viral transmission by sparing infected cells from efferocytosis, and on the other may protect the engulfed infected cells by modulating inflammasome activation. These data also suggest that, once infection is established, the stoichiometry of orf-I expression may contribute to the chronic inflammation observed in HTLV-1 infection by modulating monocyte efferocytosis. The immune cells that inhibit or favor HTLV-1 infection are still unknown and their identification is critical for understanding viral pathogenesis and for the development of an effective HTLV-1 vaccine. Neutralizing antibodies are produced in natural HTLV-1 infection, but their impact is likely hampered by the virus’s ability to be transmitted from cell to cell via the virological synapse, cellular conduits, and biofilms. By depleting specific immune cell subsets in blood, we found that NK cells play a critical role in the containment of early HTLV-1 infection. Moreover, transient depletion of monocytes/macrophages results in early, but not sustained seroconversion, suggesting that early engagement of monocytes may be necessary for long-term productive infection. The engulfment of apoptotic T-cells infected by HTLV-1 may represent a viral strategy to persist in the host since the viral proteins encoded by orf-I and orf-II affect the function of receptors and proteins involved in efferocytosis. These results suggest that effective HTLV-1 vaccines must also elicit durable innate responses able to promptly clear virus invasion of monocytes through engulfment of infected T-cells to avoid the establishment of a vicious cycle that leads to chronic inflammation.
Collapse
Affiliation(s)
- Ramona Moles
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Maria Omsland
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Maria Artesi
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Unit of Animal Genomics, GIGA, Université de Liège, Liège, Belgium
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Katherine McKinnon
- Vaccine Branch Flow Cytometry Core, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sophia Brown
- Vaccine Branch Flow Cytometry Core, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Vincent Hahaut
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Unit of Animal Genomics, GIGA, Université de Liège, Liège, Belgium
| | - Robyn Washington-Parks
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Joshua Welsh
- Translational Nanobiology Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - David J. Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Anna Gutowska
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Melvin N. Doster
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Matthew W. Breed
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Kristin E. Killoran
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Joshua Kramer
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Jennifer Jones
- Translational Nanobiology Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Marcin Moniuszko
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Anne Van den Broeke
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Unit of Animal Genomics, GIGA, Université de Liège, Liège, Belgium
| | - Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Millen S, Thoma-Kress AK. Milk Transmission of HTLV-1 and the Need for Innovative Prevention Strategies. Front Med (Lausanne) 2022; 9:867147. [PMID: 35360738 PMCID: PMC8962517 DOI: 10.3389/fmed.2022.867147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Breastfeeding is recommended by the World Health Organization for at least 6 months up to 2 years of age, and breast milk protects against several diseases and infections. Intriguingly, few viruses are transmitted via breastfeeding including Human T-cell leukemia virus Type 1 (HTLV-1). HTLV-1 is a highly oncogenic yet neglected retrovirus, which primarily infects CD4+ T-cells in vivo and causes incurable diseases like HTLV-1-associated inflammatory conditions or Adult T-cell leukemia/lymphoma (ATLL) after lifelong viral persistence. Worldwide, at least 5–10 million people are HTLV-1-infected and most of them are unaware of their infection posing the risk of silent transmissions. HTLV-1 is transmitted via cell-containing body fluids such as blood products, semen, and breast milk, which constitutes the major route of mother-to-child transmission (MTCT). Risk of transmission increases with the duration of breastfeeding, however, abstinence from breastfeeding as it is recommended in some endemic countries is not an option in resource-limited settings or underrepresented areas and populations. Despite significant progress in understanding details of HTLV-1 cell-to-cell transmission, it is still not fully understood, which cells in which organs get infected via the oral route, how these cells get infected, how breast milk affects this route of infection and how to inhibit oral transmission despite breastfeeding, which is an urgent need especially in underrepresented areas of the world. Here, we review these questions and provide an outlook how future research could help to uncover prevention strategies that might ultimately allow infants to benefit from breastfeeding while reducing the risk of HTLV-1 transmission.
Collapse
|
18
|
HIV-1 and HTLV-1 Transmission Modes: Mechanisms and Importance for Virus Spread. Viruses 2022; 14:v14010152. [PMID: 35062355 PMCID: PMC8779814 DOI: 10.3390/v14010152] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
So far, only two retroviruses, human immunodeficiency virus (HIV) (type 1 and 2) and human T-cell lymphotropic virus type 1 (HTLV-1), have been recognized as pathogenic for humans. Both viruses mainly infect CD4+ T lymphocytes. HIV replication induces the apoptosis of CD4 lymphocytes, leading to the development of acquired immunodeficiency syndrome (AIDS). After a long clinical latency period, HTLV-1 can transform lymphocytes, with subsequent uncontrolled proliferation and the manifestation of a disease called adult T-cell leukemia (ATLL). Certain infected patients develop neurological autoimmune disorder called HTLV-1-associated myelopathy, also known as tropical spastic paraparesis (HAM/TSP). Both viruses are transmitted between individuals via blood transfusion, tissue/organ transplantation, breastfeeding, and sexual intercourse. Within the host, these viruses can spread utilizing either cell-free or cell-to-cell modes of transmission. In this review, we discuss the mechanisms and importance of each mode of transmission for the biology of HIV-1 and HTLV-1.
Collapse
|
19
|
Barski MS, Vanzo T, Zhao XZ, Smith SJ, Ballandras-Colas A, Cronin NB, Pye VE, Hughes SH, Burke TR, Cherepanov P, Maertens GN. Structural basis for the inhibition of HTLV-1 integration inferred from cryo-EM deltaretroviral intasome structures. Nat Commun 2021; 12:4996. [PMID: 34404793 PMCID: PMC8370991 DOI: 10.1038/s41467-021-25284-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Between 10 and 20 million people worldwide are infected with the human T-cell lymphotropic virus type 1 (HTLV-1). Despite causing life-threatening pathologies there is no therapeutic regimen for this deltaretrovirus. Here, we screened a library of integrase strand transfer inhibitor (INSTI) candidates built around several chemical scaffolds to determine their effectiveness in limiting HTLV-1 infection. Naphthyridines with substituents in position 6 emerged as the most potent compounds against HTLV-1, with XZ450 having highest efficacy in vitro. Using single-particle cryo-electron microscopy we visualised XZ450 as well as the clinical HIV-1 INSTIs raltegravir and bictegravir bound to the active site of the deltaretroviral intasome. The structures reveal subtle differences in the coordination environment of the Mg2+ ion pair involved in the interaction with the INSTIs. Our results elucidate the binding of INSTIs to the HTLV-1 intasome and support their use for pre-exposure prophylaxis and possibly future treatment of HTLV-1 infection.
Collapse
Affiliation(s)
- Michal S Barski
- Imperial College London, St. Mary's Hospital, Department of Infectious Disease, Section of Virology, Norfolk Place, London, UK
- International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, Warsaw, Poland
| | - Teresa Vanzo
- Imperial College London, St. Mary's Hospital, Department of Infectious Disease, Section of Virology, Norfolk Place, London, UK
- Department CIBIO, University of Trento, Povo-Trento, Italy
| | - Xue Zhi Zhao
- Chemical Biology Laboratory, Centre for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Steven J Smith
- Retroviral Replication Laboratory, Centre for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | | | - Nora B Cronin
- LonCEM Facility, The Francis Crick Institute, London, UK
| | - Valerie E Pye
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Stephen H Hughes
- Retroviral Replication Laboratory, Centre for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Terrence R Burke
- Chemical Biology Laboratory, Centre for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Peter Cherepanov
- Imperial College London, St. Mary's Hospital, Department of Infectious Disease, Section of Virology, Norfolk Place, London, UK
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Goedele N Maertens
- Imperial College London, St. Mary's Hospital, Department of Infectious Disease, Section of Virology, Norfolk Place, London, UK.
| |
Collapse
|
20
|
Ahmadi Ghezeldasht S, Shamsian SAA, Gholizadeh Navashenaq J, Miri R, Ashrafi F, Mosavat A, Rezaee SA. HTLV-1 oncovirus-host interactions: From entry to the manifestation of associated diseases. Rev Med Virol 2021; 31:e2235. [PMID: 33742509 DOI: 10.1002/rmv.2235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022]
Abstract
Human T lymphotropic virus type-1 (HTLV-1) is a well-known human oncovirus, associated with two life-threatening diseases, adult T cell leukaemia/lymphoma (ATL) and HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The study of this oncogenic virus is significant from two different aspects. First, HTLV-1 can be considered as a neglected public health problem, which may spread slowly worldwide. Second, the incidence of HTLV-1 associated diseases due to oncogenic effects and deterioration of the immune system towards autoimmune diseases are not fully understood. Furthermore, knowledge about viral routes of transmission is important for considering potential interventions, treatments or vaccines in endemic regions. In this review, novel characteristics of HTLV-1, such as the unusual infectivity of virions through the virological synapse, are discussed in the context of the HTLV-1 associated diseases (ATL and HAM/TSP).
Collapse
Affiliation(s)
- Sanaz Ahmadi Ghezeldasht
- Inflammation and Inflammatory Diseases Division, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Akbar Shamsian
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
| | | | - Raheleh Miri
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
| | - Fereshteh Ashrafi
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Inflammation and Inflammatory Diseases Division, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Pinto DO, Al Sharif S, Mensah G, Cowen M, Khatkar P, Erickson J, Branscome H, Lattanze T, DeMarino C, Alem F, Magni R, Zhou W, Alais S, Dutartre H, El-Hage N, Mahieux R, Liotta LA, Kashanchi F. Extracellular vesicles from HTLV-1 infected cells modulate target cells and viral spread. Retrovirology 2021; 18:6. [PMID: 33622348 PMCID: PMC7901226 DOI: 10.1186/s12977-021-00550-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The Human T-cell Lymphotropic Virus Type-1 (HTLV-1) is a blood-borne pathogen and etiological agent of Adult T-cell Leukemia/Lymphoma (ATLL) and HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). HTLV-1 has currently infected up to 10 million globally with highly endemic areas in Japan, Africa, the Caribbean and South America. We have previously shown that Extracellular Vesicles (EVs) enhance HTLV-1 transmission by promoting cell-cell contact. RESULTS Here, we separated EVs into subpopulations using differential ultracentrifugation (DUC) at speeds of 2 k (2000×g), 10 k (10,000×g), and 100 k (100,000×g) from infected cell supernatants. Proteomic analysis revealed that EVs contain the highest viral/host protein abundance in the 2 k subpopulation (2 k > 10 k > 100 k). The 2 k and 10 k populations contained viral proteins (i.e., p19 and Tax), and autophagy proteins (i.e., LC3 and p62) suggesting presence of autophagosomes as well as core histones. Interestingly, the use of 2 k EVs in an angiogenesis assay (mesenchymal stem cells + endothelial cells) caused deterioration of vascular-like-tubules. Cells commonly associated with the neurovascular unit (i.e., astrocytes, neurons, and macrophages) in the blood-brain barrier (BBB) showed that HTLV-1 EVs may induce expression of cytokines involved in migration (i.e., IL-8; 100 k > 2 k > 10 k) from astrocytes and monocyte-derived macrophages (i.e., IL-8; 2 k > 10 k). Finally, we found that EVs were able to promote cell-cell contact and viral transmission in monocytic cell-derived dendritic cell. The EVs from both 2 k and 10 k increased HTLV-1 spread in a humanized mouse model, as evidenced by an increase in proviral DNA and RNA in the Blood, Lymph Node, and Spleen. CONCLUSIONS Altogether, these data suggest that various EV subpopulations induce cytokine expression, tissue damage, and viral spread.
Collapse
Affiliation(s)
- Daniel O Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Sarah Al Sharif
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Gifty Mensah
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - James Erickson
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Thomas Lattanze
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Farhang Alem
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Ruben Magni
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Sandrine Alais
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Fondation Pour La Recherche Médicale, Labex Ecofect, Lyon, France
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Fondation Pour La Recherche Médicale, Labex Ecofect, Lyon, France
| | - Nazira El-Hage
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Fondation Pour La Recherche Médicale, Labex Ecofect, Lyon, France
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA.
| |
Collapse
|
22
|
Panfil AR, Green PL, Yoder KE. CRISPR Genome Editing Applied to the Pathogenic Retrovirus HTLV-1. Front Cell Infect Microbiol 2020; 10:580371. [PMID: 33425776 PMCID: PMC7785941 DOI: 10.3389/fcimb.2020.580371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/20/2020] [Indexed: 11/13/2022] Open
Abstract
CRISPR editing of retroviral proviruses has been limited to HIV-1. We propose human T-cell leukemia virus type 1 (HTLV-1) as an excellent model to advance CRISPR/Cas9 genome editing technologies against actively expressing and latent retroviral proviruses. HTLV-1 is a tumorigenic human retrovirus responsible for the development of both leukemia/lymphoma (ATL) and a neurological disease (HAM/TSP). The virus immortalizes and persists in CD4+ T lymphocytes that survive for the lifetime of the host. The most important drivers of HTLV-1-mediated transformation and proliferation are the tax and hbz viral genes. Tax, transcribed from the plus-sense or genome strand, is essential for de novo infection and cellular immortalization. Hbz, transcribed from the minus-strand, supports proliferation and survival of infected cells in both its protein and mRNA forms. Abrogating the function or expression of tax and/or hbz by genome editing and mutagenic double-strand break repair may disable HTLV-1-infected cell growth/survival and prevent immune modulatory effects and ultimately HTLV-1-associated disease. In addition, the HTLV-1 viral genome is highly conserved with remarkable sequence homogeneity, both within the same host and even among different HTLV isolates. This offers more focused guide RNA targeting. In addition, there are several well-established animal models for studying HTLV-1 infection in vivo as well as cell immortalization in vitro. Therefore, studies with HTLV-1 may provide a better basis to assess and advance in vivo genome editing against retroviral infections.
Collapse
Affiliation(s)
- Amanda R Panfil
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States.,Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Patrick L Green
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States.,Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Kristine E Yoder
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States.,Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
23
|
Aghajanian S, Teymoori-Rad M, Molaverdi G, Mozhgani SH. Immunopathogenesis and Cellular Interactions in Human T-Cell Leukemia Virus Type 1 Associated Myelopathy/Tropical Spastic Paraparesis. Front Microbiol 2020; 11:614940. [PMID: 33414779 PMCID: PMC7783048 DOI: 10.3389/fmicb.2020.614940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/17/2020] [Indexed: 01/15/2023] Open
Abstract
HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) is a neuropathological disorder in 1–3% of individuals infected with Human T-lymphotropic virus 1 (HTLV-1). This condition is characterized by progressive spastic lower limb weakness and paralysis, lower back pain, bladder incontinence, and mild sensory disturbances resembling spinal forms of multiple sclerosis. This disease also causes chronic disability and is therefore associated with high health burden in areas where HTLV-1 infection is endemic. Despite various efforts in understanding the virus and discovery of novel diagnostic markers, and cellular and viral interactions, HAM/TSP management is still unsatisfactory and mainly focused on symptomatic alleviation, and it hasn’t been explained why only a minority of the virus carriers develop HAM/TSP. This comprehensive review focuses on host and viral factors in association with immunopathology of the disease in hope of providing new insights for drug therapies or other forms of intervention.
Collapse
Affiliation(s)
- Sepehr Aghajanian
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Molaverdi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
24
|
Dos Santos DF, de Pilger DRB, Vandermeulen C, Khouri R, Mantoani SP, Nunes PSG, de Andrade P, Carvalho I, Casseb J, Twizere JC, Willems L, Freitas-Junior L, Kashima S. Non-cytotoxic 1,2,3-triazole tethered fused heterocyclic ring derivatives display Tax protein inhibition and impair HTLV-1 infected cells. Bioorg Med Chem 2020; 28:115746. [PMID: 33007558 DOI: 10.1016/j.bmc.2020.115746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
Human T cell lymphotropic virus type 1 (HTLV-1) is a human retrovirus that infects approximately 10-20 million people worldwide and causes an aggressive neoplasia (adult T-cell leukemia/lymphoma - ATL). Therapeutic approaches for the treatment of ATL have variable effectiveness and poor prognosis, thus requiring strategies to identify novel compounds with activity on infected cells. In this sense, we initially screened a small series of 25 1,2,3-triazole derivatives to discover cell proliferation inhibitors and apoptosis inducers in HTLV-1-infected T-cell line (MT-2) for further assessment of their effect on viral tax activity through inducible-tax reporter cell line (Jurkat LTR-GFP). Eight promising compounds (02, 05, 06, 13, 15, 21, 22 and 25) with activity ≥70% were initially selected, based on a suitable cell-based assay using resazurin reduction method, and evaluated towards cell cycle, apoptosis and Tax/GFP expression analyses through flow cytometry. Compound 02 induced S phase cell cycle arrest and compounds 05, 06, 22 and 25 promoted apoptosis. Remarkably, compounds 22 and 25 also reduced GFP expression in an inducible-tax reporter cell, which suggests an effect on Tax viral protein. More importantly, compounds 02, 22 and 25 were not cytotoxic in human hepatoma cell line (Huh-7). Therefore, the discovery of 3 active and non-cytotoxic compounds against HTLV-1-infected cells can potentially contribute, as an initial promising strategy, to the development process of new drugs against ATL.
Collapse
Affiliation(s)
- Daiane Fernanda Dos Santos
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Regional Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil.
| | - Denise Regina Bairros de Pilger
- Federal University of São Paulo, São Paulo, São Paulo, Brazil; Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Ricardo Khouri
- Gonçalo Moniz Research Center (CPqGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | | | | | - Peterson de Andrade
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jorge Casseb
- Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Jean-Claude Twizere
- Protein Signaling and Interactions (GIGA), University of Liège, Liège, Belgium
| | - Luc Willems
- Molecular and Cellular Epigenetics (GIGA), University of Liège, Liège, Belgium
| | - Lucio Freitas-Junior
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Simone Kashima
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Regional Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
25
|
Maali Y, Journo C, Mahieux R, Dutartre H. Microbial Biofilms: Human T-cell Leukemia Virus Type 1 First in Line for Viral Biofilm but Far Behind Bacterial Biofilms. Front Microbiol 2020; 11:2041. [PMID: 33042035 PMCID: PMC7523422 DOI: 10.3389/fmicb.2020.02041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/03/2020] [Indexed: 12/25/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). To date, it is the unique published example of a virus able to form a biofilm at the surface of infected cells. Deeply studied in bacteria, bacterial biofilms represent multicellular assemblies of bacteria in contact with a surface and shielded by the extracellular matrix (ECM). Microbial lifestyle in biofilms, either viral or bacterial, is opposed structurally and physiologically to an isolated lifestyle, in which viruses or bacteria freely float in their environment. HTLV-1 biofilm formation is believed to be promoted by viral proteins, mainly Tax, through remodeling of the ECM of the infected cells. HTLV-1 biofilm has been linked to cell-to-cell transmission of the virus. However, in comparison to bacterial biofilms, very little is known on kinetics of viral biofilm formation or dissemination, but also on its pathophysiological roles, such as escape from immune detection or therapeutic strategies, as well as promotion of leukemogenesis. The switch between production of cell-free isolated virions and cell-associated viral biofilm, although not fully apprehended yet, remains a key step to understand HTLV-1 infection and pathogenesis.
Collapse
Affiliation(s)
- Yousef Maali
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Chloé Journo
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Renaud Mahieux
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Hélène Dutartre
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| |
Collapse
|
26
|
The Complex Relationship between HTLV-1 and Nonsense-Mediated mRNA Decay (NMD). Pathogens 2020; 9:pathogens9040287. [PMID: 32326562 PMCID: PMC7238105 DOI: 10.3390/pathogens9040287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 02/07/2023] Open
Abstract
Before the establishment of an adaptive immune response, retroviruses can be targeted by several cellular host factors at different stages of the viral replication cycle. This intrinsic immunity relies on a large diversity of antiviral processes. In the case of HTLV-1 infection, these active innate host defense mechanisms are debated. Among these mechanisms, we focused on an RNA decay pathway called nonsense-mediated mRNA decay (NMD), which can target multiple viral RNAs, including HTLV-1 unspliced RNA, as has been recently demonstrated. NMD is a co-translational process that depends on the RNA helicase UPF1 and regulates the expression of multiple types of host mRNAs. RNA sensitivity to NMD depends on mRNA organization and the ribonucleoprotein (mRNP) composition. HTLV-1 has evolved several means to evade the NMD threat, leading to NMD inhibition. In the early steps of infection, NMD inhibition favours the production of HTLV-1 infectious particles, which may contribute to the survival of the fittest clones despite genome instability; however, its direct long-term impact remains to be investigated.
Collapse
|
27
|
Rocamonde B, Carcone A, Mahieux R, Dutartre H. HTLV-1 infection of myeloid cells: from transmission to immune alterations. Retrovirology 2019; 16:45. [PMID: 31870397 PMCID: PMC6929313 DOI: 10.1186/s12977-019-0506-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1), the etiological agent of adult T-cell leukemia/lymphoma (ATLL) and the demyelinating neuroinflammatory disease known as HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), was the first human retrovirus to be discovered. T-cells, which represent the main reservoir for HTLV-1, have been the main focus of studies aimed at understanding viral transmission and disease progression. However, other cell types such as myeloid cells are also target of HTLV-1 infection and display functional alterations as a consequence. In this work, we review the current investigations that shed light on infection, transmission and functional alterations subsequent to HTLV-1 infection of the different myeloid cells types, and we highlight the lack of knowledge in this regard.
Collapse
Affiliation(s)
- Brenda Rocamonde
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Auriane Carcone
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.
- Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France.
| |
Collapse
|
28
|
Moles R, Sarkis S, Galli V, Omsland M, Purcell DFJ, Yurick D, Khoury G, Pise-Masison CA, Franchini G. p30 protein: a critical regulator of HTLV-1 viral latency and host immunity. Retrovirology 2019; 16:42. [PMID: 31852501 PMCID: PMC6921414 DOI: 10.1186/s12977-019-0501-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/29/2019] [Indexed: 12/24/2022] Open
Abstract
The extraordinarily high prevalence of HTLV-1 subtype C (HTLV-1C) in some isolated indigenous communities in Oceania and the severity of the health conditions associated with the virus impress the great need for basic and translational research to prevent and treat HTLV-1 infection. The genome of the virus’s most common subtype, HTLV-1A, encodes structural, enzymatic, and regulatory proteins that contribute to viral persistence and pathogenesis. Among these is the p30 protein encoded by the doubly spliced Tax-orf II mRNA, a nuclear/nucleolar protein with both transcriptional and post-transcriptional activity. The p30 protein inhibits the productive replication cycle via nuclear retention of the mRNA that encodes for both the viral transcriptional trans-activator Tax, and the Rex proteins that regulate the transport of incompletely spliced viral mRNA to the cytoplasm. In myeloid cells, p30 inhibits the PU-1 transcription factor that regulates interferon expression and is a critical mediator of innate and adaptive immunity. Furthermore, p30 alters gene expression, cell cycle progression, and DNA damage responses in T-cells, raising the hypothesis that p30 may directly contribute to T cell transformation. By fine-tuning viral expression while also inhibiting host innate responses, p30 is likely essential for viral infection and persistence. This concept is supported by the finding that macaques, a natural host for the closely genetically related simian T-cell leukemia virus 1 (STLV-1), exposed to an HTLV-1 knockout for p30 expression by a single point mutation do not became infected unless reversion and selection of the wild type HTLV-1 genotype occurs. All together, these data suggest that inhibition of p30 may help to curb and eventually eradicate viral infection by exposing infected cells to an effective host immune response.
Collapse
Affiliation(s)
- Ramona Moles
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Omsland
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - David Yurick
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Georges Khoury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Cynthia A Pise-Masison
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
29
|
Forlani G, Shallak M, Ramia E, Tedeschi A, Accolla RS. Restriction factors in human retrovirus infections and the unprecedented case of CIITA as link of intrinsic and adaptive immunity against HTLV-1. Retrovirology 2019; 16:34. [PMID: 31783769 PMCID: PMC6884849 DOI: 10.1186/s12977-019-0498-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/23/2019] [Indexed: 12/17/2022] Open
Abstract
Background Immunity against pathogens evolved through complex mechanisms that only for sake of simplicity are defined as innate immunity and adaptive immunity. Indeed innate and adaptive immunity are strongly intertwined each other during evolution. The complexity is further increased by intrinsic mechanisms of immunity that rely on the action of intracellular molecules defined as restriction factors (RFs) that, particularly in virus infections, counteract the action of pathogen gene products acting at different steps of virus life cycle. Main body and conclusion Here we provide an overview on the nature and the mode of action of restriction factors involved in retrovirus infection, particularly Human T Leukemia/Lymphoma Virus 1 (HTLV-1) infection. As it has been extensively studied by our group, special emphasis is given to the involvement of the MHC class II transactivator CIITA discovered in our laboratory as regulator of adaptive immunity and subsequently as restriction factor against HIV-1 and HTLV-1, a unique example of dual function linking adaptive and intrinsic immunity during evolution. We describe the multiple molecular mechanisms through which CIITA exerts its restriction on retroviruses. Of relevance, we review the unprecedented findings pointing to a concerted action of several restriction factors such as CIITA, TRIM22 and TRIM19/PML in synergizing against retroviral replication. Finally, as CIITA profoundly affects HTLV-1 replication by interacting and inhibiting the function of HTLV-1 Tax-1 molecule, the major viral product associated to the virus oncogenicity, we also put forward the hypothesis of CIITA as counteractor of HTLV-1-mediated cancer initiation.
Collapse
Affiliation(s)
- Greta Forlani
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, School of Medicine, University of Insubria, Via Ottorino Rossi 9, 21100, Varese, Italy
| | - Mariam Shallak
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, School of Medicine, University of Insubria, Via Ottorino Rossi 9, 21100, Varese, Italy
| | - Elise Ramia
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, School of Medicine, University of Insubria, Via Ottorino Rossi 9, 21100, Varese, Italy
| | - Alessandra Tedeschi
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, School of Medicine, University of Insubria, Via Ottorino Rossi 9, 21100, Varese, Italy
| | - Roberto S Accolla
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, School of Medicine, University of Insubria, Via Ottorino Rossi 9, 21100, Varese, Italy.
| |
Collapse
|
30
|
Millen S, Gross C, Donhauser N, Mann MC, Péloponèse JM, Thoma-Kress AK. Collagen IV (COL4A1, COL4A2), a Component of the Viral Biofilm, Is Induced by the HTLV-1 Oncoprotein Tax and Impacts Virus Transmission. Front Microbiol 2019; 10:2439. [PMID: 31708905 PMCID: PMC6819499 DOI: 10.3389/fmicb.2019.02439] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent for Adult T-Cell Leukemia/Lymphoma (ATLL) and HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). HTLV-1 infects CD4+ T-cells via cell-to-cell transmission requiring reorganization of the cytoskeleton and expression of the viral transactivator and oncoprotein Tax. Viruses spread at the virological synapse (VS), a virus-induced specialized cell-cell contact, by polarized budding into synaptic clefts, and by cell surface transfer of viral biofilms (VBs). Since little is known about Tax’s role in formation of the VB, we asked which component of the VB is regulated by Tax and important for HTLV-1 transmission. Collagens are not only structural proteins of the extracellular matrix and basal membrane but also represent an important component of the VB. Here, we report that among the collagens known to be present in VBs, COL4 is specifically upregulated in the presence of HTLV-1 infection. Further, we found that transient expression of Tax is sufficient to induce COL4A1 and COL4A2 transcripts in Jurkat and CCRF-CEM T-cells, while robust induction of COL4 protein requires continuous Tax expression as shown in Tax-transformed T-cell lines. Repression of Tax led to a significant reduction of COL4A1/A2 transcripts and COL4 protein. Mechanistically, luciferase-based promoter studies indicate that Tax activates the COL4A2 and, to a less extent, the COL4A1 promoter. Imaging showing partial co-localization of COL4 with the viral Gag protein in VBs at the VS and transfer of COL4 and Gag to target cells suggests a role of COL4 in VB formation. Strikingly, in chronically infected C91-PL cells, knockout of COL4A2 impaired Gag transfer between infected T-cells and acceptor T-cells, while release of virus-like particles was unaffected. Taken together, we identified COL4 (COL4A1, COL4A2) as a component of the VB and a novel cellular target of Tax with COL4A2 appearing to impact virus transmission. Thus, this study is the first to provide a link between Tax’s activity and VB formation by hijacking COL4 protein functions.
Collapse
Affiliation(s)
- Sebastian Millen
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christine Gross
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Norbert Donhauser
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie C Mann
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jean-Marie Péloponèse
- IRIM-UMR 9004, Research Institute in Infectiology of Montpellier, CNRS, University of Montpellier, Montpellier, France
| | - Andrea K Thoma-Kress
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
31
|
Pinto DO, DeMarino C, Pleet ML, Cowen M, Branscome H, Al Sharif S, Jones J, Dutartre H, Lepene B, Liotta LA, Mahieux R, Kashanchi F. HTLV-1 Extracellular Vesicles Promote Cell-to-Cell Contact. Front Microbiol 2019; 10:2147. [PMID: 31620104 PMCID: PMC6759572 DOI: 10.3389/fmicb.2019.02147] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/30/2019] [Indexed: 12/21/2022] Open
Abstract
Human T-cell leukemia virus-1 (HTLV-1) is a neglected and incurable retrovirus estimated to infect 5 to 10 million worldwide. Specific indigenous Australian populations report infection rates of more than 40%, suggesting a potential evolution of the virus with global implications. HTLV-1 causes adult T-cell leukemia/lymphoma (ATLL), and a neurological disease named HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Even though HTLV-1 transmission primarily occurs from cell-to-cell, there is still a gap of knowledge regarding the mechanisms of viral spread and disease progression. We have recently shown that Extracellular Vesicles (EVs) ubiquitously produced by cells may be used by HTLV-1 to transport viral proteins and RNA, and elicit adverse effects on recipient uninfected cells. The viral proteins Tax and HBZ are involved in disease progression and impairment of autophagy in infected cells. Here, we show that activation of HTLV-1 via ionizing radiation (IR) causes a significant increase of intracellular Tax, but not EV-associated Tax. Also, lower density EVs from HTLV-1-infected cells, separated by an Iodixanol density gradient, are positive for gp61+++/Tax+++/HBZ+ proteins (HTLV-1 EVs). We found that HTLV-1 EVs are not infectious when tested in multiple cell lines. However, these EVs promote cell-to-cell contact of uninfected cells, a phenotype which was enhanced with IR, potentially promoting viral spread. We treated humanized NOG mice with HTLV-1 EVs prior to infection and observed an increase in viral RNA synthesis in mice compared to control (EVs from uninfected cells). Proviral DNA levels were also quantified in blood, lung, spleen, liver, and brain post-treatment with HTLV-1 EVs, and we observed a consistent increase in viral DNA levels across all tissues, especially the brain. Finally, we show direct implications of EVs in viral spread and disease progression and suggest a two-step model of infection including the release of EVs from donor cells and recruitment of recipient cells as well as an increase in recipient cell-to-cell contact promoting viral spread.
Collapse
Affiliation(s)
- Daniel O. Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Michelle L. Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Sarah Al Sharif
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Jennifer Jones
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Helene Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | | | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| |
Collapse
|
32
|
Human T-Cell Leukemia Virus Type 1 (HTLV-1) bZIP Factor Upregulates the Expression of ICAM-1 To Facilitate HTLV-1 Infection. J Virol 2019; 93:JVI.00608-19. [PMID: 31315993 DOI: 10.1128/jvi.00608-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/10/2019] [Indexed: 12/30/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes multiple pathological effects, ranging from a form of leukemia to a spectrum of inflammation-mediated diseases. These diseases arise from one or several infected CD4+ T cells among thousands acquiring proliferation and survival advantages and ultimately becoming pathogenic. Given the low incidence of HTLV-1-associated diseases among carriers, such cellular evolutionary processes appear to occur rarely. Therefore, infectious spread of HTLV-1 within the T-cell population may be one underlying factor influencing disease development. Free HTLV-1 virions are poorly infectious, so infection of T cells relies on direct contact between infected and target cells. Following contact, virions pass to target cells through a virological synapse or cellular conduits or are transferred to target cells within an extracellular matrix. Lymphocyte functioning antigen 1 (LFA-1) on the surface of the target cell engaging with its ligand, ICAM-1, on the surface of the infected cell (effector cell) initiates and stabilizes cell-cell contact for infection. We found that stable expression of an HTLV-1 accessory protein, HTLV-1 bZIP factor (HBZ), in Jurkat T cells increases homotypic aggregation. This phenotype was attributed to elevated ICAM-1 expression in the presence of HBZ. Using a single-cycle replication-dependent luciferase assay, we found that HBZ expression in Jurkat cells (used as effector cells) increases HTLV-1 infection. Despite this effect, HBZ could not replace the critical infection-related functions of the HTLV-1 regulatory protein Tax. However, in HTLV-1-infected T cells, knockdown of HBZ expression did lead to a decrease in infection efficiency. These overall results suggest that HBZ contributes to HTLV-1 infectivity.IMPORTANCE Human T-cell leukemia virus type 1 (HTLV-1) causes a variety of diseases, ranging from a fatal form of leukemia to immune-mediated inflammatory diseases. These diseases occur rarely, arising from one or a small subset of virally infected cells infrequently evolving into a pathogenic state. Thus, the process of HTLV-1 cell-to-cell transmission within the host helps influence the probability of disease development. HTLV-1 primarily infects T cells and initially spreads within this cell population when virally infected T cells dock to uninfected target T cells and then transfer HTLV-1 virus particles to the target cells. Here we found that the viral protein HTLV-1 bZIP factor (HBZ) promotes infectivity. HBZ accomplishes this task by increasing the surface abundance of a cellular adhesion protein known as intercellular adhesion molecule 1 (ICAM-1), which helps initiate and stabilize contact (docking) between infected and target T cells. These results define a novel and unexpected function of HBZ, diverging from its defined functions in cellular survival and proliferation.
Collapse
|
33
|
Essential Role of Human T Cell Leukemia Virus Type 1 orf-I in Lethal Proliferation of CD4 + Cells in Humanized Mice. J Virol 2019; 93:JVI.00565-19. [PMID: 31315992 DOI: 10.1128/jvi.00565-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/11/2019] [Indexed: 12/29/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is the ethological agent of adult T cell leukemia/lymphoma (ATLL) and a number of lymphocyte-mediated inflammatory conditions, including HTLV-1-associated myelopathy/tropical spastic paraparesis. HTLV-1 orf-I encodes two proteins, p8 and p12, whose functions in humans are to counteract innate and adaptive responses and to support viral transmission. However, the in vivo requirements for orf-I expression vary in different animal models. In macaques, the ablation of orf-I expression by mutation of its ATG initiation codon abolishes the infectivity of the molecular clone HTLV-1p12KO In rabbits, HTLV-1p12KO is infective and persists efficiently. We used humanized mouse models to assess the infectivity of both wild-type HTLV-1 (HTLV-1WT) and HTLV-1p12KO We found that NOD/SCID/γC -/- c-kit+ mice engrafted with human tissues 1 day after birth (designated NSG-1d mice) were highly susceptible to infection by HTLV-1WT, with a syndrome characterized by the rapid polyclonal proliferation and infiltration of CD4+ CD25+ T cells into vital organs, weight loss, and death. HTLV-1 clonality studies revealed the presence of multiple clones of low abundance, confirming the polyclonal expansion of HTLV-1-infected cells in vivo HTLV-1p12KO infection in a bone marrow-liver-thymus (BLT) mouse model prone to graft-versus-host disease occurred only following reversion of the orf-I initiation codon mutation within weeks after exposure and was associated with high levels of HTLV-1 DNA in blood and the expansion of CD4+ CD25+ T cells. Thus, the incomplete reconstitution of the human immune system in BLT mice may provide a window of opportunity for HTLV-1 replication and the selection of viral variants with greater fitness.IMPORTANCE Humanized mice constitute a useful model for studying the HTLV-1-associated polyclonal proliferation of CD4+ T cells and viral integration sites in the human genome. The rapid death of infected animals, however, appears to preclude the clonal selection typically observed in human ATLL, which normally develops in 2 to 5% of individuals infected with HTLV-1. Nevertheless, the expansion of multiple clones of low abundance in these humanized mice mirrors the early phase of HTLV-1 infection in humans, providing a useful model to investigate approaches to inhibit virus-induced CD4+ T cell proliferation.
Collapse
|
34
|
Barski MS, Minnell JJ, Maertens GN. Inhibition of HTLV-1 Infection by HIV-1 First- and Second-Generation Integrase Strand Transfer Inhibitors. Front Microbiol 2019; 10:1877. [PMID: 31474960 PMCID: PMC6705210 DOI: 10.3389/fmicb.2019.01877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
More than 10 million people worldwide are infected with the retrovirus human T-cell lymphotropic virus type 1 (HTLV-1). Infection phenotypes can range from asymptomatic to severe adult T-cell leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy. HTLV-1, like human immunodeficiency virus type 1 (HIV-1), is a blood-borne pathogen and viral infection happens in a similar fashion, with the major mode of transmission through breastfeeding. There is a strong correlation between time of infection and disease development, with a higher incidence of ATLL in patients infected during childhood. There is no successful therapeutic or preventative regimen for HTLV-1. It is therefore essential to develop therapies to inhibit transmission or block the onset/development of HTLV-1 associated diseases. Recently, we have seen the overwhelming success of integrase strand transfer inhibitors (INSTIs) in the treatment of HIV-1. Previously, raltegravir was shown to inhibit HTLV-1 infection. Here, we tested FDA-approved and two Phase II HIV-1 INSTIs in vitro and in a cell-to-cell infection model and show that they are highly active in blocking HTLV-1 infection, with bictegravir (EC50 = 0.30 ± 0.17 nM) performing best overall. INSTIs, in particular bictegravir, are more potent in blocking HTLV-1 transmission than tenofovir disproxil fumarate (TDF), an RT inhibitor. Our data suggest that HIV-1 INSTIs could present a good clinical strategy in HTLV-1 management and justifies the inclusion of INSTIs in clinical trials.
Collapse
Affiliation(s)
- Michał S Barski
- Division of Infectious Diseases, Section of Molecular Virology, Department of Medicine, St Mary's Hospital, Imperial College London, London, United Kingdom
| | - Jordan J Minnell
- Division of Infectious Diseases, Section of Molecular Virology, Department of Medicine, St Mary's Hospital, Imperial College London, London, United Kingdom
| | - Goedele N Maertens
- Division of Infectious Diseases, Section of Molecular Virology, Department of Medicine, St Mary's Hospital, Imperial College London, London, United Kingdom
| |
Collapse
|
35
|
Nakamura H, Shimizu T, Takatani A, Suematsu T, Nakamura T, Kawakami A. Initial human T-cell leukemia virus type 1 infection of the salivary gland epithelial cells requires a biofilm-like structure. Virus Res 2019; 269:197643. [PMID: 31233774 DOI: 10.1016/j.virusres.2019.197643] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/27/2019] [Accepted: 06/20/2019] [Indexed: 11/26/2022]
Abstract
The initial phase of the human T cell leukemia virus-1 (HTLV-1) infection of salivary gland epithelial cells (SGECs) was examined. SGECs of patients with Sjögren's syndrome (SS) and non-SS subjects were co-cultured with the HTLV-1-infected cell line HCT-5 or MOLT-4, then immunofluorescence (IF), scanning and transmission electron microscopy (SEM/TEM) were employed. The extracellular matrix and linker proteins galectin-3, agrin, and tetherin were expressed on the surfaces of both HCT-5 and MOLT-4 cells. HTLV-1 Gag-positive spots were observed on adjacent SGECs after 1 h of co-culture with HCT-5. Both in subjects with and those without SS, agrin and tetherin were co-expressed with HTLV-1 Gag on SGECs after co-culture with HCT-5, although no polarization of HTLV-1 Gag and relevant molecules was observed. SEM showed HTLV-1 virions that were found on HCT-5 were observed in the interfaces between HCT-5 cells and SGECs. TEM imaging showed that HTLV-1 virions were transmitted to SGECs at the interface with thin film-like structure, while HTLV-1 virions were released from the surface of HCT-5 cells. No endogenous retroviruses were observed. These results showed that the initial phase of HTLV-1 infection toward SGECs of SS was mediated not by viral synapses, but by biofilm-like components.
Collapse
Affiliation(s)
- Hideki Nakamura
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Toshimasa Shimizu
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ayuko Takatani
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi Suematsu
- Division of Electron Microscopy, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tatsufumi Nakamura
- Department of Human Community, Faculty of Social Welfare, Nagasaki International University, Nagasaki, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
36
|
He B, Tran JT, Sanchez DJ. Manipulation of Type I Interferon Signaling by HIV and AIDS-Associated Viruses. J Immunol Res 2019; 2019:8685312. [PMID: 31089479 PMCID: PMC6476103 DOI: 10.1155/2019/8685312] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/14/2019] [Indexed: 12/20/2022] Open
Abstract
Type I Interferons were first described for their profound antiviral abilities in cell culture and animal models, and later, they were translated into potent antiviral therapeutics. However, as additional studies into the function of Type I Interferons progressed, it was also seen that pathogenic viruses have coevolved to encode potent mechanisms allowing them to evade or suppress the impact of Type I Interferons on their replication. For chronic viral infections, such as HIV and many of the AIDS-associated viruses, including HTLV, HCV, KSHV, and EBV, the clinical efficacy of Type I Interferons is limited by these mechanisms. Here, we review some of the ways that HIV and AIDS-associated viruses thrive in Type I Interferon-rich environments via mechanisms that block the function of this important antiviral cytokine. Overall, a better understanding of these mechanisms creates avenues to better understand the innate immune response to these viruses as well as plan the development of antivirals that would allow the natural antiviral effect of Type I Interferons to manifest during these infections.
Collapse
Affiliation(s)
- Buyuan He
- Pharmaceutical Sciences Department, College of Pharmacy, Western University of Health Sciences, Pomona 91766, California, USA
| | - James T. Tran
- Pharmaceutical Sciences Department, College of Pharmacy, Western University of Health Sciences, Pomona 91766, California, USA
| | - David Jesse Sanchez
- Pharmaceutical Sciences Department, College of Pharmacy, Western University of Health Sciences, Pomona 91766, California, USA
| |
Collapse
|
37
|
Assil S, Futsch N, Décembre E, Alais S, Gessain A, Cosset FL, Mahieux R, Dreux M, Dutartre H. Sensing of cell-associated HTLV by plasmacytoid dendritic cells is regulated by dense β-galactoside glycosylation. PLoS Pathog 2019; 15:e1007589. [PMID: 30818370 PMCID: PMC6413949 DOI: 10.1371/journal.ppat.1007589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/12/2019] [Accepted: 01/22/2019] [Indexed: 01/20/2023] Open
Abstract
Human T Lymphotropic virus (HTLV) infection can persist in individuals resulting, at least in part, from viral escape of the innate immunity, including inhibition of type I interferon response in infected T-cells. Plasmacytoid dendritic cells (pDCs) are known to bypass viral escape by their robust type I interferon production. Here, we demonstrated that pDCs produce type I interferons upon physical cell contact with HTLV-infected cells, yet pDC activation inversely correlates with the ability of the HTLV-producing cells to transmit infection. We show that pDCs sense surface associated-HTLV present with glycan-rich structure referred to as biofilm-like structure, which thus represents a newly described viral structure triggering the antiviral response by pDCs. Consistently, heparan sulfate proteoglycans and especially the cell surface pattern of terminal β-galactoside glycosylation, modulate the transmission of the immunostimulatory RNA to pDCs. Altogether, our results uncover a function of virus-containing cell surface-associated glycosylated structures in the activation of innate immunity.
Collapse
Affiliation(s)
- Sonia Assil
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Nicolas Futsch
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Elodie Décembre
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Sandrine Alais
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Antoine Gessain
- Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris France
| | - François-Loïc Cosset
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Renaud Mahieux
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Marlène Dreux
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
- * E-mail: (MD); (HD)
| | - Hélène Dutartre
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
- * E-mail: (MD); (HD)
| |
Collapse
|
38
|
Futsch N, Prates G, Mahieux R, Casseb J, Dutartre H. Cytokine Networks Dysregulation during HTLV-1 Infection and Associated Diseases. Viruses 2018; 10:v10120691. [PMID: 30563084 PMCID: PMC6315340 DOI: 10.3390/v10120691] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/19/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of a neural chronic inflammation, called HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and of a malignant lymphoproliferation, called the adult T-cell leukemia/lymphoma (ATLL). The mechanisms through which the HTLV-1 induces these diseases are still unclear, but they might rely on immune alterations. HAM/TSP is associated with an impaired production of pro-inflammatory cytokines and chemokines, such as IFN-γ, TNF-α, CXCL9, or CXCL10. ATLL is associated with high levels of IL-10 and TGF-β. These immunosuppressive cytokines could promote a protumoral micro-environment. Moreover, HTLV-1 infection impairs the IFN-I production and signaling, and favors the IL-2, IL-4, and IL-6 expression. This contributes both to immune escape and to infected cells proliferation. Here, we review the landscape of cytokine dysregulations induced by HTLV-1 infection and the role of these cytokines in the HTLV-1-associated diseases progression.
Collapse
Affiliation(s)
- Nicolas Futsch
- Équipe Oncogenèse Rétrovirale, Equipe Labellisée «FRM», CIRI-Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, Labex Ecofect, ENS Lyon, F-69007 Lyon, France.
| | - Gabriela Prates
- Institute of Tropical Medicine of São Paulo, São Paulo, SP 05403-000, Brazil.
- Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, University of São Paulo Medical School, São Paulo, SP 01246-100, Brazil.
| | - Renaud Mahieux
- Équipe Oncogenèse Rétrovirale, Equipe Labellisée «FRM», CIRI-Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, Labex Ecofect, ENS Lyon, F-69007 Lyon, France.
| | - Jorge Casseb
- Institute of Tropical Medicine of São Paulo, São Paulo, SP 05403-000, Brazil.
- Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, University of São Paulo Medical School, São Paulo, SP 01246-100, Brazil.
| | - Hélène Dutartre
- Équipe Oncogenèse Rétrovirale, Equipe Labellisée «FRM», CIRI-Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, Labex Ecofect, ENS Lyon, F-69007 Lyon, France.
| |
Collapse
|
39
|
Alais S, Pasquier A, Jegado B, Journo C, Rua R, Gessain A, Tobaly-Tapiero J, Lacoste R, Turpin J, Mahieux R. STLV-1 co-infection is correlated with an increased SFV proviral load in the peripheral blood of SFV/STLV-1 naturally infected non-human primates. PLoS Negl Trop Dis 2018; 12:e0006812. [PMID: 30273350 PMCID: PMC6181429 DOI: 10.1371/journal.pntd.0006812] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/11/2018] [Accepted: 09/03/2018] [Indexed: 12/23/2022] Open
Abstract
Simian T-Leukemia Virus type 1 and Simian Foamy Virus infect non-human primates. While STLV-1, as HTLV-1, causes Adult T-cell Leukemia/lymphoma, SFV infection is asymptomatic. Both retroviruses can be transmitted from NHPs to humans through bites that allow contact between infected saliva and recipient blood. Because both viruses infect CD4+ T-cells, they might interfere with each other replication, and this might impact viral transmission. Impact of STLV-1 co-infection on SFV replication was analyzed in 18 SFV-positive/STLV-1-negative and 18 naturally SFV/STLV-1 co-infected Papio anubis. Even if 9 animals were found STLV-1-positive in saliva, STLV-1 PVL was much higher in the blood. SFV proviruses were detected in the saliva of all animals. Interestingly, SFV proviral load was much higher in the blood of STLV-1/SFV co-infected animals, compared to STLV-1-negative animals. Given that soluble Tax protein can enter uninfected cells, we tested its effect on foamy virus promoter and we show that Tax protein can transactivate the foamy LTR. This demonstrates that true STLV-1 co-infection or Tax only has an impact on SFV replication and may influence the ability of the virus to be zoonotically transmitted as well as its ability to promote hematological abnormalities. Foamy viruses infect a lot of mammalian hosts including non-human primates (NHP) and humans. Foamy infection is not associated with disease, although a recent report described hematological abnormalities in infected humans. Some NHP species are also naturally infected with another retrovirus i.e. Simian T lymphotropic virus type 1, while humans are infected with the Human T lymphotropic virus type 1 counterpart. Both viruses cause leukemia. Here we report that natural foamy/STLV-1 co-infection is associated with a higher foamy virus proviral load in blood. Co-infected animals might therefore present a higher risk of developing hematological disease.
Collapse
Affiliation(s)
- Sandrine Alais
- International Center for Research in Infectiology, Retroviral Oncogenesis laboratory, INSERM U1111 –Université Claude CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labellisée “Ligue Nationale Contre le Cancer” et Labex Ecofect, Lyon, France
| | - Amandine Pasquier
- International Center for Research in Infectiology, Retroviral Oncogenesis laboratory, INSERM U1111 –Université Claude CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labellisée “Ligue Nationale Contre le Cancer” et Labex Ecofect, Lyon, France
- Ecole Pratique des Hautes Etudes, Paris, France
| | - Brice Jegado
- International Center for Research in Infectiology, Retroviral Oncogenesis laboratory, INSERM U1111 –Université Claude CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labellisée “Ligue Nationale Contre le Cancer” et Labex Ecofect, Lyon, France
| | - Chloé Journo
- International Center for Research in Infectiology, Retroviral Oncogenesis laboratory, INSERM U1111 –Université Claude CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labellisée “Ligue Nationale Contre le Cancer” et Labex Ecofect, Lyon, France
| | - Réjane Rua
- Epidémiologie et Physiopathologie des Virus Oncogènes, CNRS UMR 3569, Pasteur Institute, Paris, France
| | - Antoine Gessain
- Epidémiologie et Physiopathologie des Virus Oncogènes, CNRS UMR 3569, Pasteur Institute, Paris, France
| | - Joelle Tobaly-Tapiero
- INSERM U944-CNRS Université Paris Diderot, UMR7212-IUH-Hôpital St-Louis, Dynamic of Retroviruses and Retrotransposons Group, Paris, France
| | | | - Jocelyn Turpin
- International Center for Research in Infectiology, Retroviral Oncogenesis laboratory, INSERM U1111 –Université Claude CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labellisée “Ligue Nationale Contre le Cancer” et Labex Ecofect, Lyon, France
- Section of Virology, Department of Medicine, Imperial College London, London United Kingdom
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis laboratory, INSERM U1111 –Université Claude CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labellisée “Ligue Nationale Contre le Cancer” et Labex Ecofect, Lyon, France
- * E-mail:
| |
Collapse
|
40
|
Inhibition of Tunneling Nanotube (TNT) Formation and Human T-cell Leukemia Virus Type 1 (HTLV-1) Transmission by Cytarabine. Sci Rep 2018; 8:11118. [PMID: 30042514 PMCID: PMC6057998 DOI: 10.1038/s41598-018-29391-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) is highly dependent on cell-to-cell interaction for transmission and productive infection. Cell-to-cell interactions through the virological synapse, biofilm-like structures and cellular conduits have been reported, but the relative contribution of each mechanism on HTLV-1 transmission still remains vastly unknown. The HTLV-1 protein p8 has been found to increase viral transmission and cellular conduits. Here we show that HTLV-1 expressing cells are interconnected by tunneling nanotubes (TNTs) defined as thin structures containing F-actin and lack of tubulin connecting two cells. TNTs connected HTLV-1 expressing cells and uninfected T-cells and monocytes and the viral proteins Tax and Gag localized to these TNTs. The HTLV-1 expressing protein p8 was found to induce TNT formation. Treatment of MT-2 cells with the nucleoside analog cytarabine (cytosine arabinoside, AraC) reduced number of TNTs and furthermore reduced TNT formation induced by the p8 protein. Intercellular transmission of HTLV-1 through TNTs provides a means of escape from recognition by the immune system. Cytarabine could represent a novel anti-HTLV-1 drug interfering with viral transmission.
Collapse
|
41
|
Shimauchi T, Caucheteux S, Finsterbusch K, Turpin J, Blanchet F, Ladell K, Triantafilou K, Czubala M, Tatsuno K, Easter T, Ahmed Z, Bayliss R, Hakobyan S, Price DA, Tokura Y, Piguet V. Dendritic Cells Promote the Spread of Human T-Cell Leukemia Virus Type 1 via Bidirectional Interactions with CD4 + T Cells. J Invest Dermatol 2018; 139:157-166. [PMID: 30048652 DOI: 10.1016/j.jid.2018.06.188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/25/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) propagates within and between individuals via cell-to-cell transmission, and primary infection typically occurs across juxtaposed mucosal surfaces during breastfeeding or sexual intercourse. It is therefore likely that dendritic cells (DCs) are among the first potential targets for HTLV-1. However, it remains unclear how DCs contribute to virus transmission and dissemination in the early stages of infection. We show that an HTLV-1-infected cell line (MT-2) and naturally infected CD4+ T cells transfer p19+ viral particles to the surface of allogeneic DCs via cell-to-cell contacts. Similarly organized cell-to-cell contacts also facilitate DC-mediated transfer of HTLV-1 to autologous CD4+ T cells. These findings shed light on the cellular structures involved in anterograde and retrograde transmission and suggest a key role for DCs in the natural history and pathogenesis of HTLV-1 infection.
Collapse
Affiliation(s)
- Takatoshi Shimauchi
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK; Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Stephan Caucheteux
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Katja Finsterbusch
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Jocelyn Turpin
- Section of Virology, Department of Medicine, Imperial College London, London, UK
| | - Fabien Blanchet
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Kathy Triantafilou
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Magdalena Czubala
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Kazuki Tatsuno
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tammy Easter
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Zahra Ahmed
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Rebecca Bayliss
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Svetlana Hakobyan
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Yoshiki Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Vincent Piguet
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK; Division of Dermatology, Women's College Hospital, Toronto, Canada; Division of Dermatology, Department of Medicine, University of Toronto, Canada.
| |
Collapse
|
42
|
Tanaka A, Matsuoka M. HTLV-1 Alters T Cells for Viral Persistence and Transmission. Front Microbiol 2018; 9:461. [PMID: 29615995 PMCID: PMC5869182 DOI: 10.3389/fmicb.2018.00461] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) was the first retrovirus to be discovered as a causative agent of adult T-cell leukemia-lymphoma (ATL) and chronic inflammatory diseases. Two viral factors, Tax and HTLV-1 bZIP factor (HBZ), are thought to be involved in the leukemogenesis of ATL. Tax expression is frequently lost due to DNA methylation in the promoter region, genetic changes to the tax gene, and deletion of the 5′ long terminal repeat (LTR) in approximately half of all ATL cases. On the other hand, HBZ is expressed in all ATL cases. HBZ is known to function in both protein form and mRNA form, and both forms play an important role in the oncogenic process of HTLV-1. HBZ protein has a variety of functions, including the suppression of apoptosis, the promotion of proliferation, and the impairment of anti-viral activity, through the interaction with several host cellular proteins including p300/CBP, Foxp3, and Foxo3a. These functions dramatically modify the transcriptional profiling of host T cells. HBZ mRNA also promotes T cell proliferation and viability. HBZ changes infected T cells to CCR4+TIGIT+CD4+ effector/memory T cells. This unique immunophenotype enables T cells to migrate into various organs and tissues and to survive in vivo. In this review, we summarize how HBZ hijacks the transcriptional networks and immune systems of host T cells to contribute to HTLV-1 pathogenesis on the basis of recent new findings about HBZ and tax.
Collapse
Affiliation(s)
- Azusa Tanaka
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
43
|
Pasquier A, Alais S, Roux L, Thoulouze MI, Alvarez K, Journo C, Dutartre H, Mahieux R. How to Control HTLV-1-Associated Diseases: Preventing de Novo Cellular Infection Using Antiviral Therapy. Front Microbiol 2018; 9:278. [PMID: 29593659 PMCID: PMC5859376 DOI: 10.3389/fmicb.2018.00278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/07/2018] [Indexed: 12/21/2022] Open
Abstract
Five to ten million individuals are infected by Human T-cell Leukemia Virus type 1 (HTLV-1). HTLV-1 is transmitted through prolonged breast-feeding, by sexual contacts and by transmission of infected T lymphocytes through blood transfusion. One to ten percent of infected carriers will develop a severe HTLV-1-associated disease: Adult-T-cell leukemia/lymphoma (ATLL), or a neurological disorder named Tropical Spastic Paraparesis/HTLV-1 Associated Myelopathy (TSP/HAM). In vivo, HTLV-1 is mostly detected in CD4+ T-cells, and to a lesser extent in CD8+ T cells and dendritic cells. There is a strong correlation between HTLV-1 proviral load (PVL) and clinical status of infected individuals. Thus, reducing PVL could be part of a strategy to prevent or treat HTLV-1-associated diseases among carriers. Treatment of ATLL patients using conventional chemotherapy has very limited benefit. Some chronic and acute ATLL patients are, however, efficiently treated with a combination of interferon α and zidovudine (IFN-α/AZT), to which arsenic trioxide is added in some cases. On the other hand, no efficient treatment for TSP/HAM patients has been described yet. It is therefore crucial to develop therapies that could either prevent the occurrence of HTLV-1-associated diseases or at least block the evolution of the disease in the early stages. In vivo, reverse transcriptase (RT) activity is low in infected cells, which is correlated with a clonal mode of viral replication. This renders infected cells resistant to nucleoside RT inhibitors such as AZT. However, histone deacetylase inhibitors (HDACi) associated to AZT efficiently induces viral expression and prevent de novo cellular infection. In asymptomatic STLV-1 infected non-human primates, HDACi/AZT combination allows a strong decrease in the PVL. Unfortunately, rebound in the PVL occurs when the treatment is stopped, highlighting the need for better antiviral compounds. Here, we review previously used strategies targeting HTLV-1 replication. We also tested a series of HIV-1 RT inhibitors in an in vitro anti-HTLV-1 screen, and report that bis-POM-PMEA (adefovir dipivoxil) and bis-POC-PMPA (tenofovir disoproxil) are much more efficient compared to AZT to decrease HTLV-1 cell-to-cell transmission in vitro. Our results suggest that revisiting already established antiviral drugs is an interesting approach to discover new anti-HTLV-1 drugs.
Collapse
Affiliation(s)
- Amandine Pasquier
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France.,Ecole Pratique des Hautes Etudes, Paris, France
| | - Sandrine Alais
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Loic Roux
- CNRS UMR 7257, Architecture et Fonction des Macromolecules Biologiques, Aix-Marseille Université, Marseille, France
| | - Maria-Isabel Thoulouze
- "Biofilm and Viral Transmission" Team, Structural Virology Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Karine Alvarez
- CNRS UMR 7257, Architecture et Fonction des Macromolecules Biologiques, Aix-Marseille Université, Marseille, France
| | - Chloé Journo
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
44
|
Donhauser N, Heym S, Thoma-Kress AK. Quantitating the Transfer of the HTLV-1 p8 Protein Between T-Cells by Flow Cytometry. Front Microbiol 2018; 9:400. [PMID: 29563906 PMCID: PMC5850991 DOI: 10.3389/fmicb.2018.00400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/21/2018] [Indexed: 01/01/2023] Open
Abstract
The Human T-cell leukemia virus type 1 (HTLV-1)-encoded accessory protein p8 is cleaved from the precursor protein p12 encoded by the HTLV-1 open reading frame I. Both p12 and p8 are thought to contribute to efficient viral persistence. Mechanistically, p8 induces T-cell conjugates and cellular conduits. The latter are considered to facilitate transfer of p8 to target cells and virus transmission. Transfer of p8 between p8-expressing T-cells and recipient cells has been analyzed by immunofluorescence and live imaging. However, automatic quantitation of p8-transfer between cells has not been studied yet. Here we developed a novel method allowing time saving quantitation of p8 transfer between cells by flow cytometry. After establishing a protocol for the detection of intracellular p8 by flow cytometry and validation of p8 protein expression by western blot and immunofluorescence, we set up a co-culture assay between p8-expressing donor Jurkat T-cells and recipient Jurkat T-cells that had been prestained with a well-retained live cell dye. Upon quantitating the amount of p8 positive recipient cells with regard to the percentage of p8 expressing donor cells, time course experiments confirmed that p8 is rapidly transferred between Jurkat T-cells. We found that p8 enters approximately 5% of recipient T-cells immediately upon co-culture for 5 min. Prolonged co-culture for up to 24 h revealed an increase of relative p8 transfer to approximately 23% of the recipient cells. Immunofluorescence analysis of co-culture experiments and manual quantitation of p8 expression in fluorescence images confirmed the validity of the flow cytometry based assay. Application of the new assay revealed that manipulation of actin polymerization significantly decreased p8 transfer between Jurkat T-cells suggesting an important role of actin dynamics contributing to p8 transfer. Further, transfer of p8 to co-cultured T-cells varies between different donor cell types since p8 transfer could hardly been detected in co-cultures of 293T donor cells with Jurkat acceptor cells. In summary, our novel assay allows automatic and rapid quantitation of p8 transfer to target cells and might thus contribute to a better understanding of cellular processes and dynamics regulating p8 transfer and HTLV-1 transmission.
Collapse
Affiliation(s)
- Norbert Donhauser
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefanie Heym
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea K Thoma-Kress
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
45
|
Abstract
The retrovirus Human T-lymphotropic virus type 1 (HTLV-1) preferentially infects CD4+ T-cells via cell-to-cell transmission, while cell-free infection of T-cells is inefficient. Substantial insights into the different routes of transmission have largely been obtained by imaging techniques or by flow cytometry. Recently, strategies to quantify infection events with HTLV-1 improved. In this chapter, we present two different methods to quantitate virus transmission. Both methods are based on measuring gene activity of luciferase with a cost-saving in-house luciferase assay. First, we established a reporter Jurkat T-cell line carrying a luciferase gene under the control of the HTLV-1 core promoter U3R. Upon co-culture with chronically HTLV-1-infected T-cell lines, reporter cells are infected, and upon expression of the viral transactivator Tax, the viral promoter is activated resulting in enhanced luciferase activity. However, this assay as presented here does not exclude cell fusion as the mechanism allowing intracellular Tax-dependent activation of luciferase gene expression. Therefore, we describe a second method, the single-cycle replication-dependent reporter system developed by Mazurov et al. (PLoS Pathog 6:e1000788, 2010) that allows quantitation of HTLV-1 infection in co-cultured cells. Taken together, both methods facilitate quantitation of HTLV-1 transmission and will help to unravel pathways required for cell-to-cell transmission on a quantitative basis.
Collapse
|
46
|
Alais S, Dutartre H, Mahieux R. Quantitative Analysis of Human T-Lymphotropic Virus Type 1 (HTLV-1) Infection Using Co-Culture with Jurkat LTR-Luciferase or Jurkat LTR-GFP Reporter Cells. Methods Mol Biol 2018; 1582:47-55. [PMID: 28357661 DOI: 10.1007/978-1-4939-6872-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Unlike HIV-1, HTLV-1 viral transmission requires cell-to-cell contacts, while cell-free virions are poorly infectious and almost absent from body fluids. Though the virus uses three nonexclusive mechanisms to infect new target cells: (1) MTOC polarization followed by formation of a virological synapse and viral transfer into a synaptic cleft, (2) genesis of a viral biofilm and its transfer of embedded viruses, or (3) HTLV-1 transmission using conduits. The Tax transactivator and the p8 viral proteins are involved in virological synapse and nanotube formation respectively.HTLV-1 transcription from the viral promoter (i.e., LTR) requires the Tax protein that is absent from the viral particle and is expressed after productive infection. The present chapter focuses on a series of protocols used to quantify HTLV-1 de novo infection of target cells. These techniques do not discriminate between the different modes of transmission, but allow an accurate measure of productive infection. We used cell lines that are stably transfected with LTR-GFP or LTR-luciferase plasmids and quantified Green Fluorescent Protein expression or luciferase activity, since both of them reflect Tax expression.
Collapse
Affiliation(s)
- Sandrine Alais
- Equipe Oncogenèse Rétrovirale, Lyon, 69364 Cedex, 07, France
- Equipe labellisée "Ligue Nationale Contre le Cancer", Lyon, 69364 Cedex, 07, France
- International Center for Research in Infectiology, INSERM U1111 - CNRS UMR5308, Lyon, 69364 Cedex, 07, France
- Ecole Normale Supérieure de Lyon, 5 parvis René Descartes, BP 7000, 69342, Lyon, Cedex 07, France
- Université Lyon 1, Lyon, 69364 Cedex, 07, France
| | - Hélène Dutartre
- Equipe Oncogenèse Rétrovirale, Lyon, 69364 Cedex, 07, France
- Equipe labellisée "Ligue Nationale Contre le Cancer", Lyon, 69364 Cedex, 07, France
- International Center for Research in Infectiology, INSERM U1111 - CNRS UMR5308, Lyon, 69364 Cedex, 07, France
- Ecole Normale Supérieure de Lyon, 5 parvis René Descartes, BP 7000, 69342, Lyon, Cedex 07, France
- Université Lyon 1, Lyon, 69364 Cedex, 07, France
| | - Renaud Mahieux
- Equipe Oncogenèse Rétrovirale, Lyon, 69364 Cedex, 07, France.
- Equipe labellisée "Ligue Nationale Contre le Cancer", Lyon, 69364 Cedex, 07, France.
- International Center for Research in Infectiology, INSERM U1111 - CNRS UMR5308, Lyon, 69364 Cedex, 07, France.
- Ecole Normale Supérieure de Lyon, 5 parvis René Descartes, BP 7000, 69342, Lyon, Cedex 07, France.
- Université Lyon 1, Lyon, 69364 Cedex, 07, France.
| |
Collapse
|
47
|
Gazon H, Barbeau B, Mesnard JM, Peloponese JM. Hijacking of the AP-1 Signaling Pathway during Development of ATL. Front Microbiol 2018; 8:2686. [PMID: 29379481 PMCID: PMC5775265 DOI: 10.3389/fmicb.2017.02686] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/26/2017] [Indexed: 11/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of a fatal malignancy known as adult T-cell leukemia (ATL). One way to address the pathology of the disease lies on conducting research with a molecular approach. In addition to the analysis of ATL-relevant signaling pathways, understanding the regulation of important and relevant transcription factors allows researchers to reach this fundamental objective. HTLV-1 encodes for two oncoproteins, Tax and HTLV-1 basic leucine-zipper factor, which play significant roles in the cellular transformation and the activation of the host's immune responses. Activating protein-1 (AP-1) transcription factor has been linked to cancer and neoplastic transformation ever since the first representative members of the Jun and Fos gene family were cloned and shown to be cellular homologs of viral oncogenes. AP-1 is a dimeric transcription factor composed of proteins belonging to the Jun (c-Jun, JunB, and JunD), Fos (c-Fos, FosB, Fra1, and Fra2), and activating transcription factor protein families. Activation of AP-1 transcription factor family by different stimuli, such as inflammatory cytokines, stress inducers, or pathogens, results in innate and adaptive immunity. AP-1 is also involved in various cellular events including differentiation, proliferation, survival, and apoptosis. Deregulated expression of AP-1 transcription factors is implicated in various lymphomas such as classical Hodgkin lymphomas, anaplastic large cell lymphomas, diffuse large B-cell lymphomas, and adult T-cell leukemia. Here, we review the current thinking behind deregulation of the AP-1 pathway and its contribution to HTLV-induced cellular transformation.
Collapse
Affiliation(s)
- Hélène Gazon
- Belgium Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics, University of Liège, Liège, Belgium
| | - Benoit Barbeau
- Département des Sciences Biologiques and Centre de Recherche BioMed, Université du Québec à Montréal, Montréal, QC, Canada
| | - Jean-Michel Mesnard
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Jean-Marie Peloponese
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| |
Collapse
|
48
|
Futsch N, Mahieux R, Dutartre H. HTLV-1, the Other Pathogenic Yet Neglected Human Retrovirus: From Transmission to Therapeutic Treatment. Viruses 2017; 10:v10010001. [PMID: 29267225 PMCID: PMC5795414 DOI: 10.3390/v10010001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022] Open
Abstract
Going back to their discovery in the early 1980s, both the Human T-cell Leukemia virus type-1 (HTLV-1) and the Human Immunodeficiency Virus type-1 (HIV-1) greatly fascinated the virology scene, not only because they were the first human retroviruses discovered, but also because they were associated with fatal diseases in the human population. In almost four decades of scientific research, both viruses have had different fates, HTLV-1 being often upstaged by HIV-1. However, although being very close in terms of genome organization, cellular tropism, and viral replication, HIV-1 and HTLV-1 are not completely commutable in terms of treatment, especially because of the opposite fate of the cells they infect: death versus immortalization, respectively. Nowadays, the antiretroviral therapies developed to treat HIV-1 infected individuals and to limit HIV-1 spread among the human population have a poor or no effect on HTLV-1 infected individuals, and thus, do not prevent the development of HTLV-1-associated diseases, which still lack highly efficient treatments. The present review mainly focuses on the course of HTLV-1 infection, from the initial infection of the host to diseases development and associated treatments, but also investigates HIV-1/HTLV-1 co-infection events and their impact on diseases development.
Collapse
Affiliation(s)
- Nicolas Futsch
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007 Lyon, France.
- Equipe labellisée "Ligue Nationale Contre le Cancer", France.
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007 Lyon, France.
- Equipe labellisée "Ligue Nationale Contre le Cancer", France.
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007 Lyon, France.
- Equipe labellisée "Ligue Nationale Contre le Cancer", France.
| |
Collapse
|
49
|
Abstract
Human T cell leukemia virus type 1 (HTLV-1), also known as human T lymphotropic virus type 1, was the first exogenous human retrovirus discovered. Unlike the distantly related lentivirus HIV-1, HTLV-1 causes disease in only 5-10% of infected people, depending on their ethnic origin. But whereas HIV-1 infection and the consequent diseases can be efficiently contained in most cases by antiretroviral drug treatment, there is no satisfactory treatment for the malignant or inflammatory diseases caused by HTLV-1. The purpose of the present article is to review recent advances in the understanding of the mechanisms by which the virus persists in vivo and causes disabling or fatal diseases.
Collapse
Affiliation(s)
- Charles R M Bangham
- Division of Infectious Diseases, Faculty of Medicine, Imperial College, London W2 1PG, United Kingdom;
| |
Collapse
|
50
|
Sajiki Y, Konnai S, Nishimori A, Okagawa T, Maekawa N, Goto S, Nagano M, Kohara J, Kitano N, Takahashi T, Tajima M, Mekata H, Horii Y, Murata S, Ohashi K. Intrauterine infection with bovine leukemia virus in pregnant dam with high viral load. J Vet Med Sci 2017; 79:2036-2039. [PMID: 29109356 PMCID: PMC5745186 DOI: 10.1292/jvms.17-0391] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Enzootic bovine leukemia is caused by the bovine leukemia virus (BLV). BLV is transmitted vertically or horizontally through the transfer of infected cells via direct contact, through milk, insect bites and contaminated iatrogenic procedures. However, we lacked direct evidence of intrauterine infection. The purpose of this study was to confirm intrauterine BLV infection in two pregnant dams with high viral load by cesarean delivery. BLV was detected in cord and placental blood, and the BLV in the newborns showed 100% nucleotide identity with the BLV-env sequence from the dams. Notably, a newborn was seropositive for BLV but had no colostral antibodies. In this study, we presented a direct evidence of intrauterine BLV transmission in pregnant dam with a high proviral load. These results could aid the development of BLV control measures targeting viral load.
Collapse
Affiliation(s)
- Yamato Sajiki
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Satoru Konnai
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Asami Nishimori
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Tomohiro Okagawa
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Naoya Maekawa
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Shinya Goto
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Masashi Nagano
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Junko Kohara
- Animal Research Center, Agricultural Research Department, Hokkaido Research Organization, Shintoku, Hokkaido 081-0038, Japan
| | - Nana Kitano
- Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | | | - Motoshi Tajima
- Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hirohisa Mekata
- Organization for Promotion of Tenure Track, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192, Japan.,Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192, Japan
| | - Yoichiro Horii
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192, Japan
| | - Shiro Murata
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Kazuhiko Ohashi
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|