1
|
Bashandy SR, Mohamed OA, Abdalla OA, Elfarash A, Abd-Alla MH. Harnessing plant growth-promoting bacteria to combat watermelon mosaic virus in squash. Sci Rep 2025; 15:9440. [PMID: 40108347 PMCID: PMC11923214 DOI: 10.1038/s41598-025-92268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/26/2025] [Indexed: 03/22/2025] Open
Abstract
Plant diseases significantly threaten global food security, with viral infections, particularly Watermelon Mosaic Virus (WMV), causing substantial losses in economically important crops such as squash. This study aims to investigate the efficacy of beneficial bacteria isolated from various plants in promoting growth and mitigating the effects of WMV in squash. Understanding the interactions between plants and beneficial microbes could provide sustainable solutions for managing viral infections in agriculture. Sixty-two bacterial isolates were obtained from the rhizosphere of basil, mint, thyme, and squash plants. Among these, six strains exhibited notable plant growth-promoting activities, including the synthesis of indole acetic acid, solubilization of phosphate and zinc, ammonia production, and activity of 1-aminocyclopropane-1-carboxylate deaminase (ACCD). Morphological observations and 16S rRNA gene sequencing identified these isolates as Pseudomonas indica, Bacillus paramycoides, Bacillus thuringiensis, Bacillus mycoides, Paenibacillus glucanolyticus, and Niallia circulans. In pot experiments, squash plants inoculated with these bacterial strains demonstrated significant reductions in disease severity after being infected with WMV. Specifically, foliar applications of the bacteria resulted in the following reductions in disease severity: B. mycoides (87%), B. thuringiensis (73%), Paenibacillus glucanolyticus (73%), Niallia circulans (70%), B. paramycoides (65%), and Pseudomonas indica (65%). Additionally, plants treated with B. mycoides showed increased plant height and shoot dry weight, indicating enhanced growth performance relative to infected controls. Statistical analysis revealed that these growth promotions and disease severity reduction were significant (p < 0.05). GC-MS analysis of the six bacterial strains revealed a diverse array of 73 chemical metabolites, including common compounds such as 9-Octadecenoic acid (Z), benzene derivatives, and cyclopentanones. These findings suggest shared metabolic pathways among the strains and indicate potential roles in ecological interactions, plant defense mechanisms, and antiviral properties. These metabolites likely contribute to the observed reductions in viral severity and enhance plant resilience. The study indicates that inoculating squash plants with specific beneficial bacteria, especially B. mycoides, through foliar or soil application can significantly decrease the severity of WMV and promote plant growth. This approach offers an environmentally friendly alternative to chemical antiviral treatments and may reduce reliance on pesticides. This research highlights the potential of using plant growth-promoting bacteria (PGPB)as a sustainable approach to control viral infections in crops. Further field trials are necessary to PGPB validate the scalability of these findings and assess their effectiveness under diverse agricultural conditions. Incorporating these beneficial microbes into agricultural practices could enhance the resilience of cropping systems, ultimately fostering sustainable agriculture and enhancing food security.
Collapse
Affiliation(s)
- Shymaa R Bashandy
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | | | - Osama A Abdalla
- Plant Pathology Department Faculty of Agriculture, Assiut University, Assiut, 71516, Egypt
| | - A Elfarash
- Genetics Department Faculty of Agriculture, Assiut University, Assiut, 71516, Egypt
| | - Mohamed Hemida Abd-Alla
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
2
|
Mei H, Cai H, Liu F, Venkatadri R, Miller HE, Mathison AJ, Wang HYL, Silva SC, O’Doherty GA, Arav-Boger R. Interspecies Differences in Cytomegalovirus Inhibition by Cardiac Glycosides-A Unique Role of the Alpha3 Isoform of the Na +/K +-ATPase Pump. Viruses 2025; 17:398. [PMID: 40143325 PMCID: PMC11946196 DOI: 10.3390/v17030398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Cardiac glycosides (CGs), historically used to treat heart failure and arrhythmias, bind to the α subunit of the Na+/K+-ATPase pump and inhibit its activity. Their anticancer and antiviral activities are of interest. The α subunit of the Na+/K+-ATPase pump has four isoforms (α1-4), each with unique tissue distribution and expression pattern; their contributions to antiviral activities have not been studied. We previously reported that CGs inhibit human CMV (HCMV) in vitro but not mouse CMV (MCMV). In addition to the low affinity of mouse α1 for CGs, we hypothesized that other isoforms contribute to the anti-CMV activities of CGs. We show here that infection with HCMV significantly induced α3 in human foreskin fibroblasts, while MCMV did not induce mouse α3. Infection with guinea pig CMV (GPCMV) in GP fibroblasts also induced α3, and CGs inhibited GPCMV replication. HCMV inhibition with digitoxin reduced α3 expression. The concentration-dependent inhibition of HCMV with digitoxin analogs also correlated with α3 expression. Intriguingly, α3 was localized to the nucleus, and changes in its expression during infection and digitoxin treatment were mostly limited to the nucleus. At 4 h post-infection, α3 colocalized with immediate early 1 (IE1) and the promyelocytic leukemia protein (PML). An interaction of α3-PML-IE1 at 24 h post-infection was disrupted by digitoxin. The mRNA levels of IE1, major immediate early promoter (MIEP)-derived IE, and antiviral cytokines were reduced in infected digitoxin-treated cells. Summarized, these findings suggest a new role for α3 in the anti-HCMV activities of CGs via nuclear antiviral signaling pathways.
Collapse
Affiliation(s)
- Hong Mei
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hongyi Cai
- Department of Pediatrics, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Fengjie Liu
- Department of Pediatrics, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Rajkumar Venkatadri
- Department of Pediatrics, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Halli E. Miller
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Angela J. Mathison
- Department of Surgery, Division of Research and Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hua-Yu Leo Wang
- Department of Chemistry, Northeastern University, Boston, MA 02115, USA
| | - Simone C. Silva
- Department of Chemistry, Northeastern University, Boston, MA 02115, USA
| | | | - Ravit Arav-Boger
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
3
|
Li H, Yin Y, Cao W, Chen S, Chen J, Xing Y, Yang H. Enhanced autophagy and cholesterol efflux in mouse mesenchymal stem cells infected with H37Rv compared to H37Ra. Microb Pathog 2025; 199:107199. [PMID: 39653283 DOI: 10.1016/j.micpath.2024.107199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Autophagy, metabolism, and associated signaling pathways play critical roles in bacterial survival within mammalian cells and influence the immunopathogenesis of infections. Mesenchymal stem cells (MSCs) are important host cells during Mycobacterium tuberculosis (Mtb) infection, yet how autophagy, metabolism, and related pathways are modulated in MSCs infected with the virulent H37Rv or the attenuated H37Ra strain of Mtb remains poorly understood. In this study, we utilized RNA-Seq screening, qRT-PCR, and Western Blotting to investigate the differences in these processes between H37Rv and H37Ra infections. Our results show that, at early time points (no more than 24h), infection with H37Rv significantly increased the expression of TlLR2, Prkaa2, and Prkaa2 phosphorylation in MSCs compared with H37Ra infection. Further analysis revealed that H37Rv infection induced a stronger autophagic response (evidenced by increased Atg9b and LC3II/LC3I) through the TLR2-AMP-AMPK pathway than H37Ra infection. Despite these differences in autophagy, there was no statistically significant difference in bacillary loads, suggesting that, in addition to autophagy, other factors such as apoptosis and immune-inflammatory responses may also regulate Mtb growth in MSCs. Additionally, the metabolic analysis showed that H37Rv infection led to increased expression of SLC2A3, PFKFB3, HK1, and ABCA1 in MSCs compared to H37Ra infection. These findings confirm that, during the early stages of infection, H37Rv induces enhanced autophagy, glucose metabolism, and cholesterol efflux through a more active TLR2-AMP-AMPK pathway than H37Ra. Therefore, MSCs may represent a novel target for the prevention and treatment of tuberculosis.
Collapse
Affiliation(s)
- Heng Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yan Yin
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Wei Cao
- Institute of Health, Shanghai Institute of Life Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shichao Chen
- College of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Jianxia Chen
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; TB Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yanchun Xing
- Department of Medicine, Anhui Huangshan Vocational and Technical College, Huangshan, Anhui, 245000, China.
| | - Hong Yang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; TB Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
4
|
Zhao JZ, Xu LM, Li LF, Ren GM, Shao YZ, Liu Q, Lu TY. Traditional Chinese medicine bufalin inhibits infectious hematopoietic necrosis virus infection in vitro and in vivo. Microbiol Spectr 2024; 12:e0501622. [PMID: 38289115 PMCID: PMC10913368 DOI: 10.1128/spectrum.05016-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 11/23/2023] [Indexed: 03/06/2024] Open
Abstract
Infectious hematopoietic necrosis virus (IHNV) causes infectious hematopoietic necrosis and severe economic losses to salmon and trout aquaculture worldwide. Currently, the only commercial vaccine against IHNV is a DNA vaccine with some biosafety concerns. Hence, more effective vaccines and antiviral drugs are needed to prevent IHNV infection. In this study, 1,483 compounds were screened from a traditional Chinese medicine monomer library, and bufalin showed potential antiviral activity against IHNV. The 50% cytotoxic concentration of bufalin was >20 µM, and the 50% inhibitory concentration was 0.1223 µΜ against IHNV. Bufalin showed the inhibition of diverse IHNV strains in vitro, which confirmed that it had an inhibitory effect against all IHNV strains, rather than random activity against a single strain. The bufalin-mediated block of IHNV infection occurred at the viral attachment and RNA replication stages, but not internalization. Bufalin also inhibited IHNV infection in vivo and significantly increased the survival of rainbow trout compared with the mock drug-treated group, and this was confirmed by in vivo viral load monitoring. Our data showed that the anti-IHNV activity of bufalin was proportional to extracellular Na+ concentration and inversely proportional to extracellular K+ concentration, and bufalin may inhibit IHNV infection by targeting Na+/K+-ATPase. The in vitro and in vivo studies showed that bufalin significantly inhibited IHNV infection and may be a promising candidate drug against the disease in rainbow trout. IMPORTANCE Infectious hematopoietic necrosis virus (IHNV) is the pathogen of infectious hematopoietic necrosis (IHN) which outbreak often causes huge economic losses and hampers the healthy development of salmon and trout farming. Currently, there is only one approved DNA vaccine for IHN worldwide, but it faces some biosafety problems. Hence, more effective vaccines and antiviral drugs are needed to prevent IHNV infection. In this study, we report that bufalin, a traditional Chinese medicine, shows potential antiviral activity against IHNV both in vitro and in vivo. The bufalin-mediated block of IHNV infection occurred at the viral attachment and RNA replication stages, but not internalization, and bufalin inhibited IHNV infection by targeting Na+/K+-ATPase. The in vitro and in vivo studies showed that bufalin significantly inhibited IHNV infection and may be a promising candidate drug against the disease in rainbow trout.
Collapse
Affiliation(s)
- Jing-Zhuang Zhao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Harbin, China
| | - Li-Ming Xu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Lin-Fang Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Guang-Ming Ren
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Yi-Zhi Shao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Qi Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Tong-Yan Lu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
5
|
Kitaoka Y, Sase K. Molecular aspects of optic nerve autophagy in glaucoma. Mol Aspects Med 2023; 94:101217. [PMID: 37839231 DOI: 10.1016/j.mam.2023.101217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
The optic nerve consists of the glia, vessels, and axons including myelin and axoplasm. Since axonal degeneration precedes retinal ganglion cell death in glaucoma, the preceding axonal degeneration model may be helpful for understanding the molecular mechanisms of optic nerve degeneration. Optic nerve samples from these models can provide information on several aspects of autophagy. Autophagosomes, the most typical organelles expressing autophagy, are found much more frequently inside axons than around the glia. Thus, immunoblot findings from the optic nerve can reflect the autophagy state in axons. Autophagic flux impairment may occur in degenerating optic nerve axons, as in other central nervous system neurodegenerative diseases. Several molecular candidates are involved in autophagy enhancement, leading to axonal protection. This concept is an attractive approach to the prevention of further retinal ganglion cell death. In this review, we describe the factors affecting autophagy, including nicotinamide riboside, p38, ULK, AMPK, ROCK, and SIRT1, in the optic nerve and propose potential methods of axonal protection via enhancement of autophagy.
Collapse
Affiliation(s)
- Yasushi Kitaoka
- Department of Ophthalmology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan; Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Kana Sase
- Department of Ophthalmology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| |
Collapse
|
6
|
Ghosh AK, Su YP, Forman M, Keyes RF, Smith BC, Hu X, Ferrer M, Arav-Boger R. Harnessing the Noncanonical Keap1-Nrf2 Pathway for Human Cytomegalovirus Control. J Virol 2023; 97:e0016023. [PMID: 36939350 PMCID: PMC10134830 DOI: 10.1128/jvi.00160-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/02/2023] [Indexed: 03/21/2023] Open
Abstract
Host-derived cellular pathways can provide an unfavorable environment for virus replication. These pathways have been a subject of interest for herpesviruses, including the betaherpesvirus human cytomegalovirus (HCMV). Here, we demonstrate that a compound, ARP101, induces the noncanonical sequestosome 1 (SQSTM1)/p62-Keap1-Nrf2 pathway for HCMV suppression. ARP101 increased the levels of both LC3 II and SQSTM1/p62 and induced phosphorylation of p62 at the C-terminal domain, resulting in its increased affinity for Keap1. ARP101 treatment resulted in Nrf2 stabilization and translocation into the nucleus, binding to specific promoter sites and transcription of antioxidant enzymes under the antioxidant response element (ARE), and HCMV suppression. Knockdown of Nrf2 recovered HCMV replication following ARP101 treatment, indicating the role of the Keap1-Nrf2 axis in HCMV inhibition by ARP101. SQSTM1/p62 phosphorylation was not modulated by the mTOR kinase or casein kinase 1 or 2, indicating ARP101 engages other kinases. Together, the data uncover a novel antiviral strategy for SQSTM1/p62 through the noncanonical Keap1-Nrf2 axis. This pathway could be further exploited, including the identification of the responsible kinases, to define the biological events during HCMV replication. IMPORTANCE Antiviral treatment for human cytomegalovirus (HCMV) is limited and suffers from the selection of drug-resistant viruses. Several cellular pathways have been shown to modulate HCMV replication. The autophagy receptor sequestosome 1 (SQSTM1)/p62 has been reported to interact with several HCMV proteins, particularly with components of HCMV capsid, suggesting it plays a role in viral replication. Here, we report on a new and unexpected role for SQSTM1/p62, in HCMV suppression. Using a small-molecule probe, ARP101, we show SQSTM1/p62 phosphorylation at its C terminus domain initiates the noncanonical Keap1-Nrf2 axis, leading to transcription of genes under the antioxidant response element, resulting in HCMV inhibition in vitro. Our study highlights the dynamic nature of SQSTM1/p62 during HCMV infection and how its phosphorylation activates a new pathway that can be exploited for antiviral intervention.
Collapse
Affiliation(s)
- Ayan K. Ghosh
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yu-Pin Su
- Department of Pediatrics, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Forman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F. Keyes
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian C. Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, Maryland, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, Maryland, USA
| | - Ravit Arav-Boger
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pediatrics, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
The Alpha-1 Subunit of the Na +/K +-ATPase (ATP1A1) Is a Host Factor Involved in the Attachment of Porcine Epidemic Diarrhea Virus. Int J Mol Sci 2023; 24:ijms24044000. [PMID: 36835408 PMCID: PMC9966514 DOI: 10.3390/ijms24044000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/18/2023] Open
Abstract
Porcine epidemic diarrhea (PED) is an acute and severe atrophic enteritis caused by porcine epidemic diarrhea virus (PEDV) that infects pigs and makes huge economic losses to the global swine industry. Previously, researchers have believed that porcine aminopeptidase-N (pAPN) was the primary receptor for PEDV, but it has been found that PEDV can infect pAPN knockout pigs. Currently, the functional receptor for PEDV remains unspecified. In the present study, we performed virus overlay protein binding assay (VOPBA), found that ATP1A1 was the highest scoring protein in the mass spectrometry results, and confirmed that the CT structural domain of ATP1A1 interacts with PEDV S1. First, we investigated the effect of ATP1A1 on PEDV replication. Inhibition of hosts ATP1A1 protein expression using small interfering RNA (siRNAs) significantly reduced the cells susceptibility to PEDV. The ATP1A1-specific inhibitors Ouabain (a cardiac steroid) and PST2238 (a digitalis toxin derivative), which specifically bind ATP1A1, could block the ATP1A1 protein internalization and degradation, and consequently reduce the infection rate of host cells by PEDV significantly. Additionally, as expected, overexpression of ATP1A1 notably enhanced PEDV infection. Next, we observed that PEDV infection of target cells resulted in upregulation of ATP1A1 at the mRNA and protein levels. Furthermore, we found that the host protein ATP1A1 was involved in PEDV attachment and co-localized with PEDV S1 protein in the early stage of infection. In addition, pretreatment of IPEC-J2 and Vero-E6 cells with ATP1A1 mAb significantly reduced PEDV attachment. Our observations provided a perspective on identifying key factors in PEDV infection, and may provide valuable targets for PEDV infection, PEDV functional receptor, related pathogenesis, and the development of new antiviral drugs.
Collapse
|
8
|
The role of autophagic cell death in cardiac disease. J Mol Cell Cardiol 2022; 173:16-24. [PMID: 36084743 DOI: 10.1016/j.yjmcc.2022.08.362] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 01/06/2023]
Abstract
Cardiomyocytes undergo various forms of cell death during heart disease such as myocardial infarction and heart failure. Understanding the mechanisms of cell death in cardiomyocytes is one of the most fundamental issues in the treatment of heart failure. Among the several kinds of cell death mechanisms, this review will focus on autophagy-related cardiomyocyte cell death. Although autophagy plays an essential role in mediating cellular quality control mechanisms for cell survival, dysregulation of autophagy can cause cell death, referred to as autophagy-dependent cell death or type II programmed cell death. The recent discovery of autosis as a modality of autophagy-dependent cell death with unique morphological and biochemical features has allowed us to broaden our understanding of the mechanistic role of autophagy in cell death. Here, we discuss autophagy-dependent cardiomyocyte cell death, including autosis, in pathophysiological conditions of the heart.
Collapse
|
9
|
Strang BL. Toward inhibition of human cytomegalovirus replication with compounds targeting cellular proteins. J Gen Virol 2022; 103. [PMID: 36215160 DOI: 10.1099/jgv.0.001795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antiviral therapy for human cytomegalovirus (HCMV) currently relies upon direct-acting antiviral drugs. However, it is now well known that these drugs have shortcomings, which limit their use. Here I review the identification and investigation of compounds targeting cellular proteins that have anti-HCMV activity and could supersede those anti-HCMV drugs currently in use. This includes discussion of drug repurposing, for example the use of artemisinin compounds, and discussion of new directions to identify compounds that target cellular factors in HCMV-infected cells, for example screening of kinase inhibitors. In addition, I highlight developing areas such as the use of machine learning and emphasize how interaction with fields outside virology will be critical for development of anti-HCMV compounds.
Collapse
Affiliation(s)
- Blair L Strang
- Institute for Infection & Immunity, St George's, University of London, London, UK
| |
Collapse
|
10
|
Zhao W, Xu M, Barkema HW, Xie X, Lin Y, Khan S, Kastelic JP, Wang D, Deng Z, Han B. Prototheca bovis induces autophagy in bovine mammary epithelial cells via the HIF-1α and AMPKα/ULK1 pathway. Front Immunol 2022; 13:934819. [PMID: 36148236 PMCID: PMC9486811 DOI: 10.3389/fimmu.2022.934819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Prototheca bovis, a highly contagious pathogen, causes bovine mastitis, resulting in premature culling of affected cows and severe economic losses. Infection with P. bovis caused oxidative stress and apoptosis in bovine mammary epithelial cells (bMECs); however, mechanisms underlying P. bovis-induced autophagy remain unclear. Therefore, the autophagy flux induced by P. bovis in bMECs was analyzed by Western blot and laser scanning confocal microscopy. Expression levels of proteins in the HIF-1α and AMPKα/ULK1 pathway, including HIF-1α, AMPKα, p-AMPKα, ULK1, p-ULK1, mTOR, and p-mTOR, plus expression of autophagy-related genes including SQSTM1/p62, Atg5, Beclin1, and LC3II/LC3I, were quantified with Western blot. Infection with P. bovis induced autophagosomes and LC3 puncta in bMECs that were detected using transmission electron microscopy and laser scanning confocal microscopy, respectively. In addition, lysosome-associated proteins Rab7 and LAMP2a, and lysosomal activity were measured with Western blot and laser scanning confocal microscopy. Infection with P. bovis induced an unobstructed autophagic flux, increased protein expression of LC3II/LC3I, and decreased SQSTM1/p62 protein expression at 6 hpi. Furthermore, P. bovis upregulated protein expression in the HIF-1α and AMPKα/ULK1 pathway and increased the ratio of LC3II/LC3I, implying autophagy was activated in bMECs. However, deletion of AMPKα or ULK1 decreased LC3II/LC3I expression levels and LC3 puncta numbers, suggesting that autophagy was inhibited in bMECs. Additionally, deficiency of HIF-1α decreased protein expression of AMPKα and ULK1 as well as LC3 puncta numbers, and autophagy induced by P. bovis was also inhibited in bMECs. At 6 hpi, lysosome-associated protein Rab7 was decreased and LAMP2a was increased, indicating normal autophagy. In contrast, at 12 hpi, expression of Rab7 and LAMP2a proteins indicated that autophagy was inhibited in bMECs at that time. Therefore, we confirmed that P. bovis infection induced autophagy in bMECs via the HIF-1α and AMPKα/ULK1 pathway, with involvement of lysosome-associated protein Rab7 and LAMP2a.
Collapse
Affiliation(s)
- Wenpeng Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Maolin Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Xiaochen Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yushan Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sohrab Khan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - John P. Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Dong Wang
- College of Life Science, Ningxia University, Yinchuan, China
| | - Zhaoju Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Zhaoju Deng, ; Bo Han,
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Zhaoju Deng, ; Bo Han,
| |
Collapse
|
11
|
Guan H, Lin H, Wang X, Xu Y, Zheng Y, Zhou X, Diao X, Ye Z, Xiao J. Autophagy-dependent Na +-K +-ATPase signalling and abnormal urate reabsorption in hyperuricaemia-induced renal tubular injury. Eur J Pharmacol 2022; 932:175237. [PMID: 36063871 DOI: 10.1016/j.ejphar.2022.175237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/03/2022]
Abstract
Increasing evidence indicates that hyperuricaemia (HUA) is not only a result of decreased renal urate excretion but also a contributor to kidney disease. Na+-K+-ATPase (NKA), which establishes the sodium gradient for urate transport in proximal tubular epithelial cells (PTECs), its impairment leads to HUA-induced nephropathy. However, the specific mechanism underlying NKA impairment-mediated renal tubular injury and increased urate reabsorption in HUA is not well understood. In this study, we investigated whether autophagy plays a key role in the NKA impairment signalling and increased urate reabsorption in HUA-induced renal tubular injury. Protein spectrum analysis of exosomes from the urine of HUA patients revealed the activation of lysosomal processes, and exosomal expression of lysosome membrane protein 2 was associated with increased serum levels and decreased renal urate excretion in patients. We demonstrated that high uric acid (UA) induced lysosome dysfunction, autophagy and inflammation in a time- and dose-dependent manner and that high UA and/or NKA α1 siRNA significantly increased mitochondrial abnormalities, such as reductions in mitochondrial respiratory complexes and cellular ATP levels, accompanied by increased apoptosis in cultured PTECs. The autophagy inhibitor hydroxychloroquine (HCQ) ameliorated NKA impairment-mediated mitochondrial dysfunction, Nod-like receptor pyrin domain-containing protein 3 (NLRP3)-interleukin-1β (IL-1β) production, and abnormal urate reabsorption in PTECs stimulated with high UA and in rats with oxonic acid (OA)-induced HUA. Our findings suggest that autophagy plays a pivotal role in NKA impairment-mediated signalling and abnormal urate reabsorption in HUA-induced renal tubular injury and that inhibition of autophagy by HCQ could be a promising treatment for HUA.
Collapse
Affiliation(s)
- Haochen Guan
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, Shanghai, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, PR China
| | - Huagang Lin
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, Shanghai, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, PR China
| | - Xiaojun Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, PR China
| | - Ying Xu
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, Shanghai, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, PR China
| | - Yuqi Zheng
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, Shanghai, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, PR China
| | - Xun Zhou
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, Shanghai, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, PR China
| | - Xuehong Diao
- Department of Ultrasound, Huadong Hospital Affiliated to Fudan University, Shanghai, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, PR China
| | - Zhibin Ye
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, Shanghai, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, PR China.
| | - Jing Xiao
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, Shanghai, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, PR China.
| |
Collapse
|
12
|
Ren J, Gao X, Guo X, Wang N, Wang X. Research Progress in Pharmacological Activities and Applications of Cardiotonic Steroids. Front Pharmacol 2022; 13:902459. [PMID: 35721110 PMCID: PMC9205219 DOI: 10.3389/fphar.2022.902459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/11/2022] [Indexed: 12/21/2022] Open
Abstract
Cardiotonic steroids (CTS) are a group of compounds existing in animals and plants. CTS are commonly referred to cardiac glycosides (CGs) which are composed of sugar residues, unsaturated lactone rings and steroid cores. Their traditional mechanism of action is to inhibit sodium-potassium ATPase to strengthen the heart and regulate heart rate, so it is currently widely used in the treatment of cardiovascular diseases such as heart failure and tachyarrhythmia. It is worth noticing that recent studies have found an avalanche of inestimable values of CTS applications in many fields such as anti-tumor, anti-virus, neuroprotection, and immune regulation through multi-molecular mechanisms. Thus, the pharmacological activities and applications of CTS have extensive prospects, which would provide a direction for new drug research and development. Here, we review the potential applications of CTS in cardiovascular system and other systems. We also provide suggestions for new clinical practical strategies of CTS, for many diseases. Four main themes will be discussed, in relation to the impact of CTS, on 1) tumors, 2) viral infections, 3) nervous system diseases and 4) immune-inflammation-related diseases.
Collapse
Affiliation(s)
- Junwei Ren
- Key Laboratory of Cardiovascular Medicine Research, Department of Pharmacology, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xinyuan Gao
- Key Laboratory of Cardiovascular Medicine Research, Department of Pharmacology, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xi Guo
- Thyroid Surgery, Affiliated Cancer Hospital, Harbin Medical University, Harbin, China
| | - Ning Wang
- Key Laboratory of Cardiovascular Medicine Research, Department of Pharmacology, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Pharmacy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Repurposing drugs targeting epidemic viruses. Drug Discov Today 2022; 27:1874-1894. [DOI: 10.1016/j.drudis.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023]
|
14
|
The Synthesis and Anti-Cytomegalovirus Activity of Piperidine-4-Carboxamides. Viruses 2022; 14:v14020234. [PMID: 35215828 PMCID: PMC8876412 DOI: 10.3390/v14020234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 01/04/2023] Open
Abstract
Treatment options for human cytomegalovirus (CMV) remain limited and are associated with significant adverse effects and the selection of resistant CMV strains in transplant recipients and congenitally infected infants. Although most approved drugs target and inhibit the CMV DNA polymerase, additional agents with distinct mechanisms of action are needed for the treatment and prevention of CMV. In a large high throughput screen using our CMV-luciferase reporter Towne, we identified several unique inhibitors of CMV replication. Here, we synthesize and test in vitro 13 analogs of the original NCGC2955 hit (1). Analogs with no activity against the CMV-luciferase at 10 µM and 30 µM (2–6, 10–14) were removed from further analysis. Three analogs (7–9) inhibited CMV replication in infected human foreskin fibroblasts. The EC50 of (1) was 1.7 ± 0.6 µM and 1.99 ± 0.15 µM, based on luciferase and plaque assay, respectively. Compounds 7, 8, and 9 showed similar activities: the EC50 values of 7 were 0.21 ± 0.06 µM (luciferase) and 0.55 ± 0.06 (plaque), of 8: 0.28 ± 0.06 µM and 0.42 ± 0.07, and of 9: 0.30 ± 0.05 µM (luciferase) and 0.35 ± 0.07 (plaque). The CC50 for 7, 8, and 9 in non-infected human foreskin fibroblasts was > 500µM, yielding a selectivity index of >1500. Compounds 1, 7, and 8 were also tested in CMV-infected primary human hepatocytes and showed a dose–response against CMV by luciferase activity and viral protein expression. None of the active compounds inhibited herpes simplex virus 1 or 2. Compounds 7 and 8 inhibited mouse CMV replication in vitro. Both inhibited CMV at late stages of replication; 7 reduced virus yield at all late time points, although not to the same degree as letermovir. Finally, the activity of analog 8 was additive with newly identified CMV inhibitors (MLS8969, NFU1827, MSL8554, and MSL8091) and with ganciclovir. Further structural activity development should provide promising anti-CMV agents for use in clinical studies.
Collapse
|
15
|
Cardiac Glycosides as Autophagy Modulators. Cells 2021; 10:cells10123341. [PMID: 34943848 PMCID: PMC8699753 DOI: 10.3390/cells10123341] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/26/2022] Open
Abstract
Drug repositioning is one of the leading strategies in modern therapeutic research. Instead of searching for completely novel substances and demanding studies of their biological effects, much attention has been paid to the evaluation of commonly used drugs, which could be utilized for more distinct indications than they have been approved for. Since treatment approaches for cancer, one of the most extensively studied diseases, have still been very limited, great effort has been made to find or repurpose novel anticancer therapeutics. One of these are cardiac glycosides, substances commonly used to treat congestive heart failure or various arrhythmias. Recently, the antitumor properties of cardiac glycosides have been discovered and, therefore, these compounds are being considered for anticancer therapy. Their mechanism of antitumor action seems to be rather complex and not fully uncovered yet, however, autophagy has been confirmed to play a key role in this process. In this review article, we report on the up-to-date knowledge of the anticancer activity of cardiac glycosides with special attention paid to autophagy induction, the molecular mechanisms of this process, and the potential employment of this phenomenon in clinical practice.
Collapse
|
16
|
Role of Na +/K +-ATPase in ischemic stroke: in-depth perspectives from physiology to pharmacology. J Mol Med (Berl) 2021; 100:395-410. [PMID: 34839371 DOI: 10.1007/s00109-021-02143-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022]
Abstract
Na+/K+-ATPase (NKA) is a large transmembrane protein expressed in all cells. It is well studied for its ion exchanging function, which is indispensable for the maintenance of electrochemical gradients across the plasma membrane and herein neuronal excitability. The widely recognized pump function of NKA closely depends on its unique structure features and conformational changes upon binding of specific ions. Various Na+-dependent secondary transport systems are rigorously controlled by the ionic gradients generated by NKA and are essential for multiple physiological processes. In addition, roles of NKA as a signal transducer have also been unveiled nowadays. Plethora of signaling cascades are defined including Src-Ras-MAPK signaling, IP3R-mediated calcium oscillation, inflammation, and autophagy though most underlying mechanisms remain elusive. Ischemic stroke occurs when the blood flow carrying nutrients and oxygen into the brain is disrupted by blood clots, which is manifested by excitotoxicity, oxidative stress, inflammation, etc. The protective effect of NKA against ischemic stress is emerging gradually with the application of specific NKA inhibitor. However, NKA-related research is limited due to the opposite effects caused by NKA inhibitor at lower doses. The present review focuses on the recent progression involving different aspects about NKA in cellular homeostasis to present an in-depth understanding of this unique protein. Moreover, essential roles of NKA in ischemic pathology are discussed to provide a platform and bright future for the improvement in clinical research on ischemic stroke.
Collapse
|
17
|
Luo W, Liu Q, Chen X, Liu H, Quan B, Lu J, Zhang K, Wang X. FXYD6 Regulates Chemosensitivity by Mediating the Expression of Na+/K+-ATPase α1 and Affecting Cell Autophagy and Apoptosis in Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9986376. [PMID: 34212047 PMCID: PMC8208849 DOI: 10.1155/2021/9986376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/24/2021] [Indexed: 01/06/2023]
Abstract
PURPOSE Chemoresistance is a challenge of improving chemotherapeutic efficacy and prolonging survival time for patients with colorectal cancer (CRC); it is the major cause of frequent recurrence, rapid metastasis, and poor prognosis for CRC patients. FXYD6 is a regulator of Na+/K+-ATPase which is depressed in chemoresistant CRC patients. However, the biological roles of FXYD6 on regulating chemoresistance in CRC are still unclear. METHODS GSE3964 and GSE69657 from GEO DataSets were used to analyze the relationship of genes and chemoresistance. The FXYD6 expression level was detected by western blotting and real-time PCR and also analyzed from TCGA DataSet. To investigate the functional role of FXYD6 and ATP-α1, FXYD6 and ATP-α1 functional cell models were constructed. Drug sensitivity and cell proliferation were performed by MTT assay. Autophagy and apoptosis were conducted by autophagy fluorescence analysis and flow cytometric analysis, respectively. Autophagy and apoptosis markers were tested by western blotting. RESULTS FXYD6 was downregulated in CRC resistant patients and irinotecan- (Iri-) resistant SW620 cells (SW620/Iri). FXYD6 silence inhibited cell apoptosis and enhanced prosurvival autophagy, whereas FXYD6 overexpression produced the opposite effect which alleviated the drug resistance to irinotecan and oxaliplatin of CRC cells. FXYD6 regulates chemosensitivity by mediating the expression of Na+/K+-ATPase α1 and affecting cell autophagy and apoptosis in colorectal cancer. CONCLUSION FXYD6 functions as a chemosensitivity regulator which may predict the curative effect of chemotherapy in colorectal cancer.
Collapse
Affiliation(s)
- Wen Luo
- Department of General Surgery, Changde First People's Hospital, Changde, Hunan 415000, China
| | - Qingan Liu
- Department of General Surgery, Changde First People's Hospital, Changde, Hunan 415000, China
| | - Xinwen Chen
- Department of General Surgery, Changde First People's Hospital, Changde, Hunan 415000, China
| | - Haijun Liu
- Department of General Surgery, Changde First People's Hospital, Changde, Hunan 415000, China
| | - Bin Quan
- Department of General Surgery, Changde First People's Hospital, Changde, Hunan 415000, China
| | - Jinli Lu
- Department of General Surgery, Changde First People's Hospital, Changde, Hunan 415000, China
| | - Ke Zhang
- Department of General Surgery, Changde First People's Hospital, Changde, Hunan 415000, China
| | - Xiangling Wang
- Department of General Surgery, Changde First People's Hospital, Changde, Hunan 415000, China
| |
Collapse
|
18
|
Quo vadis Cardiac Glycoside Research? Toxins (Basel) 2021; 13:toxins13050344. [PMID: 34064873 PMCID: PMC8151307 DOI: 10.3390/toxins13050344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiac glycosides (CGs), toxins well-known for numerous human and cattle poisoning, are natural compounds, the biosynthesis of which occurs in various plants and animals as a self-protective mechanism to prevent grazing and predation. Interestingly, some insect species can take advantage of the CG’s toxicity and by absorbing them, they are also protected from predation. The mechanism of action of CG’s toxicity is inhibition of Na+/K+-ATPase (the sodium-potassium pump, NKA), which disrupts the ionic homeostasis leading to elevated Ca2+ concentration resulting in cell death. Thus, NKA serves as a molecular target for CGs (although it is not the only one) and even though CGs are toxic for humans and some animals, they can also be used as remedies for various diseases, such as cardiovascular ones, and possibly cancer. Although the anticancer mechanism of CGs has not been fully elucidated, yet, it is thought to be connected with the second role of NKA being a receptor that can induce several cell signaling cascades and even serve as a growth factor and, thus, inhibit cancer cell proliferation at low nontoxic concentrations. These growth inhibitory effects are often observed only in cancer cells, thereby, offering a possibility for CGs to be repositioned for cancer treatment serving not only as chemotherapeutic agents but also as immunogenic cell death triggers. Therefore, here, we report on CG’s chemical structures, production optimization, and biological activity with possible use in cancer therapy, as well as, discuss their antiviral potential which was discovered quite recently. Special attention has been devoted to digitoxin, digoxin, and ouabain.
Collapse
|
19
|
Bhutta MS, Gallo ES, Borenstein R. Multifaceted Role of AMPK in Viral Infections. Cells 2021; 10:1118. [PMID: 34066434 PMCID: PMC8148118 DOI: 10.3390/cells10051118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023] Open
Abstract
Viral pathogens often exploit host cell regulatory and signaling pathways to ensure an optimal environment for growth and survival. Several studies have suggested that 5'-adenosine monophosphate-activated protein kinase (AMPK), an intracellular serine/threonine kinase, plays a significant role in the modulation of infection. Traditionally, AMPK is a key energy regulator of cell growth and proliferation, host autophagy, stress responses, metabolic reprogramming, mitochondrial homeostasis, fatty acid β-oxidation and host immune function. In this review, we highlight the modulation of host AMPK by various viruses under physiological conditions. These intracellular pathogens trigger metabolic changes altering AMPK signaling activity that then facilitates or inhibits viral replication. Considering the COVID-19 pandemic, understanding the regulation of AMPK signaling following infection can shed light on the development of more effective therapeutic strategies against viral infectious diseases.
Collapse
Affiliation(s)
- Maimoona Shahid Bhutta
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
| | - Elisa S. Gallo
- Board-Certified Dermatologist and Independent Researcher, Norfolk, VA 23507, USA;
| | - Ronen Borenstein
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
| |
Collapse
|
20
|
The Autophagy-Initiating Protein Kinase ULK1 Phosphorylates Human Cytomegalovirus Tegument Protein pp28 and Regulates Efficient Virus Release. J Virol 2021; 95:JVI.02346-20. [PMID: 33328309 DOI: 10.1128/jvi.02346-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a catabolic process contributing to intrinsic cellular defense by degrading viral particles or proteins; however, several viruses hijack this pathway for their own benefit. The role of autophagy during human cytomegalovirus (HCMV) replication has not been definitely clarified yet. Utilizing small interfering RNA (siRNA)-based screening, we observed that depletion of many autophagy-related proteins resulted in reduced virus release, suggesting a requirement of autophagy-related factors for efficient HCMV replication. Additionally, we could show that the autophagy-initiating serine/threonine protein kinase ULK1 as well as other constituents of the ULK1 complex were upregulated at early times of infection and stayed upregulated throughout the replication cycle. We demonstrate that indirect interference with ULK1 through inhibition of the upstream regulator AMP-activated protein kinase (AMPK) impaired virus release. Furthermore, this result was verified by direct abrogation of ULK1 kinase activity utilizing the ULK1-specific kinase inhibitors SBI-0206965 and ULK-101. Analysis of viral protein expression in the presence of ULK-101 revealed a connection between the cellular kinase ULK1 and the viral tegument protein pp28 (pUL99), and we identified pp28 as a novel viral substrate of ULK1 by in vitro kinase assays. In the absence of ULK1 kinase activity, large pp28- and pp65-positive structures could be detected in the cytoplasm at late time points of infection. Transmission electron microscopy demonstrated that these structures represent large perinuclear protein accumulations presumably representing aggresomes. Our results indicate that HCMV manipulates ULK1 and further components of the autophagic machinery to ensure the efficient release of viral particles.IMPORTANCE The catabolic program of autophagy represents a powerful immune defense against viruses that is, however, counteracted by antagonizing viral factors. Understanding the exact interplay between autophagy and HCMV infection is of major importance since autophagy-related proteins emerged as promising targets for pharmacologic intervention. Our study provides evidence for a proviral role of several autophagy-related proteins suggesting that HCMV has developed strategies to usurp components of the autophagic machinery for its own benefit. In particular, we observed strong upregulation of the autophagy-initiating protein kinase ULK1 and further components of the ULK1 complex during HCMV replication. In addition, both siRNA-mediated depletion of ULK1 and interference with ULK1 protein kinase activity by two chemically different inhibitors resulted in impaired viral particle release. Thus, we propose that ULK1 kinase activity is required for efficient HCMV replication and thus represents a promising novel target for future antiviral drug development.
Collapse
|
21
|
The role of AMPK in regulation of Na +,K +-ATPase in skeletal muscle: does the gauge always plug the sink? J Muscle Res Cell Motil 2021; 42:77-97. [PMID: 33398789 DOI: 10.1007/s10974-020-09594-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
AMP-activated protein kinase (AMPK) is a cellular energy gauge and a major regulator of cellular energy homeostasis. Once activated, AMPK stimulates nutrient uptake and the ATP-producing catabolic pathways, while it suppresses the ATP-consuming anabolic pathways, thus helping to maintain the cellular energy balance under energy-deprived conditions. As much as ~ 20-25% of the whole-body ATP consumption occurs due to a reaction catalysed by Na+,K+-ATPase (NKA). Being the single most important sink of energy, NKA might seem to be an essential target of the AMPK-mediated energy saving measures, yet NKA is vital for maintenance of transmembrane Na+ and K+ gradients, water homeostasis, cellular excitability, and the Na+-coupled transport of nutrients and ions. Consistent with the model that AMPK regulates ATP consumption by NKA, activation of AMPK in the lung alveolar cells stimulates endocytosis of NKA, thus suppressing the transepithelial ion transport and the absorption of the alveolar fluid. In skeletal muscles, contractions activate NKA, which opposes a rundown of transmembrane ion gradients, as well as AMPK, which plays an important role in adaptations to exercise. Inhibition of NKA in contracting skeletal muscle accentuates perturbations in ion concentrations and accelerates development of fatigue. However, different models suggest that AMPK does not inhibit or even stimulates NKA in skeletal muscle, which appears to contradict the idea that AMPK maintains the cellular energy balance by always suppressing ATP-consuming processes. In this short review, we examine the role of AMPK in regulation of NKA in skeletal muscle and discuss the apparent paradox of AMPK-stimulated ATP consumption.
Collapse
|
22
|
Newman RA, Sastry KJ, Arav-Boger R, Cai H, Matos R, Harrod R. Antiviral Effects of Oleandrin. J Exp Pharmacol 2020; 12:503-515. [PMID: 33262663 PMCID: PMC7686471 DOI: 10.2147/jep.s273120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past 15 years, investigators have reported on the utility and safety of cardiac glycosides for numerous health benefits including those as treatments for malignant disease, stroke-mediated ischemic injury and certain neurodegenerative diseases. In addition to those, there is a growing body of evidence for novel antiviral effects of selected cardiac glycoside molecules. One unique cardiac glycoside, oleandrin derived from Nerium oleander, has been reported to have antiviral activity specifically against 'enveloped' viruses including HIV and HTLV-1. Importantly, a recent publication has presented in vitro evidence for oleandrin's ability to inhibit production of infectious virus particles when used for treatment prior to, as well as after infection by SARS-CoV-2/COVID-19. This review will highlight the known in vitro antiviral effects of oleandrin as well as present previously unpublished effects of this novel cardiac glycoside against Ebola virus, Cytomegalovirus, and Herpes simplex viruses.
Collapse
Affiliation(s)
- Robert A Newman
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77054, USA.,Phoenix Biotechnology, Inc, San Antonio, TX 78217, USA
| | - K Jagannadha Sastry
- Departments of Thoracic, Head and Neck Medical Oncology and Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ravit Arav-Boger
- Division of Infectious Diseases, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hongyi Cai
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Robert Harrod
- Department of Biological Sciences, the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275, USA
| |
Collapse
|
23
|
Human Cytomegalovirus-Induced Autophagy Prevents Necroptosis of Infected Monocytes. J Virol 2020; 94:JVI.01022-20. [PMID: 32878887 DOI: 10.1128/jvi.01022-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022] Open
Abstract
Key to the viral dissemination strategy of human cytomegalovirus (HCMV) is the induction of monocyte survival, where monocytes are normally short-lived cells. Autophagy is a cellular process that preserves cellular homeostasis and promotes cellular survival during times of stress. We found that HCMV rapidly induced autophagy within infected monocytes. The early induction of autophagy during HCMV infection was distinctly required for the survival of HCMV-infected monocytes, as repression of autophagosome formation led to cellular death of infected cells but had no effect on the viability of uninfected monocytes. The inhibition of caspases was insufficient to rescue cell viability of autophagy-repressed infected monocytes, suggesting that autophagy was not protecting cells from apoptosis. Accordingly, we found that HCMV blocked the activation of caspase 8, which was maintained in the presence of autophagy inhibitors. Necroptosis is an alternative form of cell death triggered when apoptosis is impeded and is dependent on RIPK3 phosphorylation of MLKL. Although we found that HCMV activated RIP3K upon infection, MLKL was not activated. However, inhibition of autophagy removed the block in RIPK3 phosphorylation of MLKL, suggesting that autophagy was protecting infected monocytes from undergoing necroptosis. Indeed, survival of autophagy-inhibited HCMV-infected monocytes was rescued when MLKL and RIPK3 were suppressed. Taken together, these data indicate that HCMV induces autophagy to prevent necroptotic cell death in order to ensure the survival of infected monocytes and thus facilitate viral dissemination within the host.IMPORTANCE Human cytomegalovirus (HCMV) infection is endemic throughout the world, with a seroprevalence of 40 to 100% depending on geographic location. HCMV infection is generally asymptomatic, but can cause severe inflammatory organ diseases in immunocompromised individuals. The broad array of organ diseases caused by HCMV is directly linked to the systematic spread of the virus mediated by monocytes. Monocytes are naturally programmed to undergo apoptosis, which is rapidly blocked by HCMV to ensure the survival and dissemination of infected monocytes to different organ sites. In this work, we demonstrate infected monocytes also initiate necroptosis as a "trap door" death pathway in response to HCMV subversion of apoptosis. HCMV then activates cellular autophagy as a countermeasure to prevent the execution of necroptosis, thereby promoting the continued survival of infected monocytes. Elucidating the mechanisms by which HCMV stimulates monocyte survival is an important step to the development of novel anti-HCMV drugs that prevent the spread of infected monocytes.
Collapse
|
24
|
Sharma K, Morla S, Goyal A, Kumar S. Computational guided drug repurposing for targeting 2'-O-ribose methyltransferase of SARS-CoV-2. Life Sci 2020; 259:118169. [PMID: 32738360 PMCID: PMC7387922 DOI: 10.1016/j.lfs.2020.118169] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/19/2020] [Accepted: 07/25/2020] [Indexed: 01/20/2023]
Abstract
Aims The recent outbreak of pandemic severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led the world towards a global health emergency. Currently, no proper medicine or effective treatment strategies are available; therefore, repurposing of FDA approved drugs may play an important role in overcoming the situation. Materials and methods The SARS-CoV-2 genome encodes for 2-O-methyltransferase (2′OMTase), which plays a key role in methylation of viral RNA for evading host immune system. In the present study, the protein sequence of 2′OMTase of SARS-CoV-2 was analyzed, and its structure was modeled by a comparative modeling approach and validated. The library of 3000 drugs was screened against the active site of 2′OMTase followed by re-docking analysis. The apo and ligand-bound 2′OMTase were further validated and analyzed by using molecular dynamics simulation. Key findings The modeled structure displayed the conserved characteristic fold of class I MTase family. The quality assessment analysis by SAVES server reveals that the modeled structure follows protein folding rules and of excellent quality. The docking analysis displayed that the active site of 2′OMTase accommodates an array of drugs, which includes alkaloids, antivirals, cardiac glycosides, anticancer, steroids, and other drugs. The redocking and MD simulation analysis of the best 5 FDA approved drugs reveals that these drugs form a stable conformation with the 2′OMTase. Significance The results suggested that these drugs may be used as potential inhibitors for 2′OMTase for combating the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kedar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sudhir Morla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arun Goyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
25
|
The GABARAP Co-Secretome Identified by APEX2-GABARAP Proximity Labelling of Extracellular Vesicles. Cells 2020; 9:cells9061468. [PMID: 32560054 PMCID: PMC7349886 DOI: 10.3390/cells9061468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 01/07/2023] Open
Abstract
The autophagy-related ATG8 protein GABARAP has not only been shown to be involved in the cellular self-degradation process called autophagy but also fulfils functions in intracellular trafficking processes such as receptor transport to the plasma membrane. Notably, available mass spectrometry data suggest that GABARAP is also secreted into extracellular vesicles (EVs). Here, we confirm this finding by the immunoblotting of EVs isolated from cell culture supernatants and human blood serum using specific anti-GABARAP antibodies. To investigate the mechanism by which GABARAP is secreted, we applied proximity labelling, a method for studying the direct environment of a protein of interest in a confined cellular compartment. By expressing an engineered peroxidase (APEX2)-tagged variant of GABARAP—which, like endogenous GABARAP, was present in EVs prepared from HEK293 cells—we demonstrate the applicability of APEX2-based proximity labelling to EVs. The biotinylated protein pool which contains the APEX2-GABARAP co-secretome contained not only known GABARAP interaction partners but also proteins that were found in APEX2-GABARAP’s proximity inside of autophagosomes in an independent study. All in all, we not only introduce a versatile tool for co-secretome analysis in general but also uncover the first details about autophagy-based pathways as possible biogenesis mechanisms of GABARAP-containing EVs.
Collapse
|
26
|
Elucidation of the mechanism of anti-herpes action of two novel semisynthetic cardenolide derivatives. Arch Virol 2020; 165:1385-1396. [PMID: 32346764 PMCID: PMC7188521 DOI: 10.1007/s00705-020-04562-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
Human herpesviruses are among the most prevalent pathogens worldwide and have become an important public health issue. Recurrent infections and the emergence of resistant viral strains reinforce the need of searching new drugs to treat herpes virus infections. Cardiac glycosides are used clinically to treat cardiovascular disturbances, such as congestive heart failure and atrial arrhythmias. In recent years, they have sparked new interest in their potential anti-herpes action. It has been previously reported by our research group that two new semisynthetic cardenolides, namely C10 (3β-[(N-(2-hydroxyethyl)aminoacetyl]amino-3-deoxydigitoxigenin) and C11 (3β-(hydroxyacetyl)amino-3-deoxydigitoxigenin), exhibited potential anti-HSV-1 and anti-HSV-2 with selectivity index values > 1,000, comparable with those of acyclovir. This work reports the mechanism investigation of anti-herpes action of these derivatives. The results demonstrated that C10 and C11 interfere with the intermediate and final steps of HSV replication, but not with the early stages, since they completely abolished the expression of the UL42 (β) and gD (γ) proteins and partially reduced that of ICP27 (α). Additionally, they were not virucidal and had no prophylactic effects. Both compounds inhibited HSV replication at nanomolar concentrations, but cardenolide C10 was more active than C11 and can be considered as an anti-herpes drug candidate including against acyclovir-resistant HSV-1 strains.
Collapse
|
27
|
Adamson CS, Nevels MM. Bright and Early: Inhibiting Human Cytomegalovirus by Targeting Major Immediate-Early Gene Expression or Protein Function. Viruses 2020; 12:v12010110. [PMID: 31963209 PMCID: PMC7019229 DOI: 10.3390/v12010110] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
The human cytomegalovirus (HCMV), one of eight human herpesviruses, establishes lifelong latent infections in most people worldwide. Primary or reactivated HCMV infections cause severe disease in immunosuppressed patients and congenital defects in children. There is no vaccine for HCMV, and the currently approved antivirals come with major limitations. Most approved HCMV antivirals target late molecular processes in the viral replication cycle including DNA replication and packaging. “Bright and early” events in HCMV infection have not been exploited for systemic prevention or treatment of disease. Initiation of HCMV replication depends on transcription from the viral major immediate-early (IE) gene. Alternative transcripts produced from this gene give rise to the IE1 and IE2 families of viral proteins, which localize to the host cell nucleus. The IE1 and IE2 proteins are believed to control all subsequent early and late events in HCMV replication, including reactivation from latency, in part by antagonizing intrinsic and innate immune responses. Here we provide an update on the regulation of major IE gene expression and the functions of IE1 and IE2 proteins. We will relate this insight to experimental approaches that target IE gene expression or protein function via molecular gene silencing and editing or small chemical inhibitors.
Collapse
|
28
|
Ouabain impairs cancer metabolism and activates AMPK-Src signaling pathway in human cancer cell lines. Acta Pharmacol Sin 2020; 41:110-118. [PMID: 31515527 PMCID: PMC7468359 DOI: 10.1038/s41401-019-0290-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022]
Abstract
In addition to the well-known cardiotonic effects, cardiac glycosides (CGs) produce potent anticancer effects with various molecular mechanisms. We previously show that ouabain induces autophagic cell death in human lung cancer cells by regulating AMPK-mediated mTOR and Src-mediated ERK1/2 signaling pathways. However, whether and how AMPK and Src signaling interacts in ouabain-treated cancer cells remains unclear. Given the pivotal role of AMPK in metabolism, whether ouabain affects cancer cell metabolism remains elusive. In this study we showed that treatment with ouabain (25 nM) caused simultaneous activation of AMPK and Src signaling pathways in human lung cancer A549 cells and human breast cancer MCF7 cells. Cotreatment with AMPK inhibitor compound C or siRNA greatly abrogates ouabain-induced Src activation, whereas cotreatment with Src inhibitor PP2 has little effect on ouabain-induced AMPK activity, suggesting that AMPK served as an upstream regulator of the Src signaling pathway. On the other hand, ouabain treatment greatly depletes ATP production in A549 and MCF7 cells, and supplement of ATP (100 μM) blocked ouabain-induced AMPK activation. We further demonstrated that ouabain greatly inhibited the mitochondrial oxidative phosphorylation (OXPHOS) in the cancer cells, and exerted differential metabolic effects on glycolysis depending on cancer cell type. Taken together, this study reveals that the altered cancer cell metabolism caused by ouabain may contribute to AMPK activation, as well as its cytotoxicity towards cancer cells.
Collapse
|
29
|
Stimulation of Na +/K +-ATPase with an Antibody against Its 4 th Extracellular Region Attenuates Angiotensin II-Induced H9c2 Cardiomyocyte Hypertrophy via an AMPK/SIRT3/PPAR γ Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4616034. [PMID: 31636805 PMCID: PMC6766118 DOI: 10.1155/2019/4616034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/09/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023]
Abstract
Activation of the renin-angiotensin system (RAS) contributes to the pathogenesis of cardiovascular diseases. Sodium potassium ATPase (NKA) expression and activity are often regulated by angiotensin II (Ang II). This study is aimed at investigating whether DR-Ab, an antibody against 4th extracellular region of NKA, can protect Ang II-induced cardiomyocyte hypertrophy. Our results showed that Ang II treatment significantly reduced NKA activity and membrane expression. Pretreatment with DR-Ab preserved cell size in Ang II-induced cardiomyopathy by stabilizing the plasma membrane expression of NKA and restoring its activity. DR-Ab reduced intracellular ROS generation through inhibition of NADPH oxidase activity and protection of mitochondrial functions in Ang II-treated H9c2 cardiomyocytes. Pharmacological manipulation and Western blotting analysis demonstrated the cardioprotective effects were mediated by the activation of the AMPK/Sirt-3/PPARγ signaling pathway. Taken together, our results suggest that dysfunction of NKA is an important mechanism for Ang II-induced cardiomyopathy and DR-Ab may be a novel and promising therapeutic approach to treat cardiomyocyte hypertrophy.
Collapse
|
30
|
Silwal P, Kim JK, Yuk JM, Jo EK. AMP-Activated Protein Kinase and Host Defense against Infection. Int J Mol Sci 2018; 19:ijms19113495. [PMID: 30404221 PMCID: PMC6274990 DOI: 10.3390/ijms19113495] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
5′-AMP-activated protein kinase (AMPK) plays diverse roles in various physiological and pathological conditions. AMPK is involved in energy metabolism, which is perturbed by infectious stimuli. Indeed, various pathogens modulate AMPK activity, which affects host defenses against infection. In some viral infections, including hepatitis B and C viral infections, AMPK activation is beneficial, but in others such as dengue virus, Ebola virus, and human cytomegaloviral infections, AMPK plays a detrimental role. AMPK-targeting agents or small molecules enhance the antiviral response and contribute to the control of microbial and parasitic infections. In addition, this review focuses on the double-edged role of AMPK in innate and adaptive immune responses to infection. Understanding how AMPK regulates host defenses will enable development of more effective host-directed therapeutic strategies against infectious diseases.
Collapse
Affiliation(s)
- Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Jae-Min Yuk
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| |
Collapse
|