1
|
Yuan L, Zhong L, Krummenacher C, Zhao Q, Zhang X. Epstein-Barr virus-mediated immune evasion in tumor promotion. Trends Immunol 2025; 46:386-402. [PMID: 40240193 DOI: 10.1016/j.it.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025]
Abstract
Epstein-Barr virus (EBV) was the first DNA virus identified to be tightly associated with multiple human tumors. It promotes malignant progression of tumors - including related lymphomas, nasopharyngeal carcinoma, and gastric adenocarcinoma - in part by evading surveillance and attack by the host immune system. In this article we review the main molecular mechanisms by which EBV-encoded proteins and RNAs interact with key molecules of the host immune system to inhibit Toll-like receptor (TLR)-nuclear factor κB (NF-κB), retinoic acid-inducible gene I (RIG-I), and interferon (IFN) signaling pathways, affect antigen presentation, prevent the cytotoxic effects of CD8+ effector cells, regulate the tumor microenvironment (TME) and cell metastasis and invasion, and inhibit cell apoptosis. These interactions not only contribute to the persistence of the virus but also provide potential targets for developing new immunotherapy strategies.
Collapse
Affiliation(s)
- Lie Yuan
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ling Zhong
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Claude Krummenacher
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ, USA.
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, China.
| | - Xiao Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Hsu CL, Chang YS, Li HP. Molecular diagnosis of nasopharyngeal carcinoma: Past and future. Biomed J 2025; 48:100748. [PMID: 38796105 PMCID: PMC11772973 DOI: 10.1016/j.bj.2024.100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/28/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originated from the nasopharynx epithelial cells and has been linked with Epstein-Barr virus (EBV) infection, dietary habits, environmental and genetic factors. It is a common malignancy in Southeast Asia, especially with gender preference among men. Due to its non-specific symptoms, NPC is often diagnosed at a late stage. Thus, the molecular diagnosis of NPC plays a crucial role in early detection, treatment selection, disease monitoring, and prognosis prediction. This review aims to provide a summary of the current state and the latest emerging molecular diagnostic techniques for NPC, including EBV-related biomarkers, gene mutations, liquid biopsy, and DNA methylation. Challenges and potential future directions of NPC molecular diagnosis will be discussed.
Collapse
Affiliation(s)
- Cheng-Lung Hsu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Sun Chang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Pai Li
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
3
|
Yee TM, Wang LW. Metabolic Reprogramming in Epstein-Barr Virus Associated Diseases. J Med Virol 2025; 97:e70197. [PMID: 39895469 DOI: 10.1002/jmv.70197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025]
Abstract
Epstein-Barr virus (EBV) is the first human cancer-causing viral pathogen to be discovered; it has been epidemiologically associated with a wide range of diseases, including cancers, autoimmunity, and hyperinflammatory disorders. Its evolutionary success is underpinned by coordinated expression of viral transcription factors (EBV nuclear antigens), signaling proteins (EBV latent membrane proteins), and noncoding RNAs, which orchestrate cell transformation, immune evasion, and dissemination. Each of those activities entails significant metabolic rewiring, which is achieved by viral subversion of key host metabolic regulators such as the mammalian target of rapamycin (mTOR), MYC, and hypoxia-inducible factor (HIF). In this review, we systemically discuss how EBV-encoded factors regulate metabolism to achieve viral persistence and propagation, as well as potential research questions and directions in EBV-driven metabolism.
Collapse
Affiliation(s)
- Tiffany Melanie Yee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Liang Wei Wang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| |
Collapse
|
4
|
Mark JKK, Teh AH, Yap BK. Epstein-Barr virus-infected nasopharyngeal carcinoma therapeutics: oncoprotein targets and clinical implications. Med Oncol 2025; 42:59. [PMID: 39888474 DOI: 10.1007/s12032-025-02610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Nasopharyngeal carcinoma (NPC) is a distinctive epithelial cancer closely associated with Epstein-Barr Virus (EBV) infection, posing significant challenges in diagnosis and treatment due to its resistance to conventional therapies and high recurrence rates. Current therapies, including radiotherapy and chemotherapy, exhibit limited efficacy, particularly in recurrent or metastatic cases, highlighting the urgent need for novel therapeutic strategies. Targeting EBV oncoproteins, such as Epstein-Barr Virus encoded Nuclear Antigen 1 (EBNA1), Latent Membrane Protein 1 (LMP1), and Latent Membrane Protein 2 (LMP2), presents a promising therapeutic avenue in NPC treatment. This review discusses the latest advancements in drug discovery targeting EBV oncoproteins, emphasizing the identification of inhibitors for specific functional regions of oncoproteins EBNA1, LMP1, and LMP2. Particular attention is given to the molecular mechanisms of these inhibitors and their preclinical or clinical potential in treating EBV-positive NPC. These developments highlight a promising future for targeted therapies in improving outcomes for NPC patients.
Collapse
Affiliation(s)
- Jacqueline Kar Kei Mark
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Aik-Hong Teh
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - Beow Keat Yap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|
5
|
Xu Y, Kong W, Zhao S, Xiong D, Wang Y. Capsaicin enhances cisplatin-induced anti-metastasis of nasopharyngeal carcinoma by inhibiting EMT and ERK signaling via serpin family B member 2. Carcinogenesis 2024; 45:556-568. [PMID: 38756095 DOI: 10.1093/carcin/bgae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024] Open
Abstract
Cisplatin (DDP)-based combined chemotherapy or concurrent chemoradiotherapy is the mainstay treatment for advanced-stage nasopharyngeal carcinoma (NPC), but needs improvement due to its severe side effects. Capsaicin (CAP) can enhance the anti-tumor activity of cytotoxic drugs. The aim of this study was to investigate the anti-metastasis activity of CAP in combination with DDP in NPC. Herein, CAP and DDP showed synergistic cytotoxic effects on NPC cells. CAP alone and DDP alone inhibited NPC migration and invasion in vitro and in vivo, and the combination of CAP and DDP had the greatest effect. Moreover, CAP upregulated the mRNA and protein expressions of serpin family B member 2 (SERPINB2). Further results showed that both SERPINB2 mRNA and protein expressions were downregulated in NPC cell lines and tissues and SERPINB2 overexpression inhibited NPC migration and invasion in vitro and in vivo, while silencing SERPINB2 acted oppositely. In addition, SERPINB2 was abnormally expressed in head and neck squamous cell carcinoma and other multiple cancers, and downregulation of SERPINB2 predicted poor prognosis in head and neck squamous cell carcinoma according to the Cancer Genome Atlas database. We further found that SERPINB2 overexpression inhibited epithelial-mesenchymal transition (EMT) and the phosphorylated extracellular signal-regulated kinase (p-ERK), and the inhibitory effect was enhanced by CAP and DDP. Altogether, our results suggest that the combined inhibition of CAP and DDP on NPC metastasis may be related to the inhibition of epithelial-mesenchymal transition and ERK signals mediated by SERPINB2, and CAP may help to improve the efficacy of DDP in the treatment of NPC and develop new therapeutic approaches.
Collapse
Affiliation(s)
- Yafei Xu
- Department of Cell Biology and Genetics, Shenzhen University Health Science Center, 1066 Xue Yuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518060, China
| | - Weimiao Kong
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, 1066 Xue Yuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518060, China
| | - Simin Zhao
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, 1066 Xue Yuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518060, China
| | - Dan Xiong
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, 47 Youyi Road, Luohu District, Shenzhen, Guangdong 518005, China
| | - Yejun Wang
- Department of Cell Biology and Genetics, Shenzhen University Health Science Center, 1066 Xue Yuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518060, China
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, 1066 Xue Yuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518060, China
| |
Collapse
|
6
|
Chen Y, Zhang Y, Duo S, Liu W, Luo B. Study on the regulatory mechanism of latent membrane protein 2A on GCNT3 expression in nasopharyngeal carcinoma. Virus Genes 2024; 60:347-356. [PMID: 38739247 DOI: 10.1007/s11262-024-02071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/06/2024] [Indexed: 05/14/2024]
Abstract
O-Glycan synthesis enzyme glucosaminyl (N-acetyl) transferase 3 (GCNT3) is closely related to the occurrence and development of various cancers. However, the regulatory mechanism and function of GCNT3 in nasopharyngeal carcinoma (NPC) are still poorly understood. This study aims to explore the regulatory mechanism of EBV-encoded latent membrane protein 2A (LMP2A) on GCNT3 and the biological role of GCNT3 in NPC. The results show that LMP2A can activate GCNT3 through the mTORC1 pathway, and there is a positive feedback between the mTORC1 and GCNT3. GCNT3 regulates EMT progression by forming a complex with ZEB1 to promote cell migration. GCNT3 can also promote cell proliferation. These findings indicate that targeting the LMP2A-mTORC1-GCNT3 axis may represent a novel therapeutic target in NPC.
Collapse
Affiliation(s)
- Yijing Chen
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Clinical Laboratory, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Clinical Laboratory, Central Hospital of Zibo, Zibo, China
| | - Shi Duo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Siak PY, Heng WS, Teoh SSH, Lwin YY, Cheah SC. Precision medicine in nasopharyngeal carcinoma: comprehensive review of past, present, and future prospect. J Transl Med 2023; 21:786. [PMID: 37932756 PMCID: PMC10629096 DOI: 10.1186/s12967-023-04673-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an aggressive malignancy with high propensity for lymphatic spread and distant metastasis. It is prominent as an endemic malignancy in Southern China and Southeast Asia regions. Studies on NPC pathogenesis mechanism in the past decades such as through Epstein Barr Virus (EBV) infection and oncogenic molecular aberrations have explored several potential targets for therapy and diagnosis. The EBV infection introduces oncoviral proteins that consequently hyperactivate many promitotic pathways and block cell-death inducers. EBV infection is so prevalent in NPC patients such that EBV serological tests were used to diagnose and screen NPC patients. On the other hand, as the downstream effectors of oncogenic mechanisms, the promitotic pathways can potentially be exploited therapeutically. With the apparent heterogeneity and distinct molecular aberrations of NPC tumor, the focus has turned into a more personalized treatment in NPC. Herein in this comprehensive review, we depict the current status of screening, diagnosis, treatment, and prevention in NPC. Subsequently, based on the limitations on those aspects, we look at their potential improvements in moving towards the path of precision medicine. The importance of recent advances on the key molecular aberration involved in pathogenesis of NPC for precision medicine progression has also been reported in the present review. Besides, the challenge and future outlook of NPC management will also be highlighted.
Collapse
Affiliation(s)
- Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Win Sen Heng
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Sharon Siew Hoon Teoh
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Yu Yu Lwin
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Medicine, Mandalay, Myanmar
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
8
|
Murata T. Tegument proteins of Epstein-Barr virus: Diverse functions, complex networks, and oncogenesis. Tumour Virus Res 2023; 15:200260. [PMID: 37169175 DOI: 10.1016/j.tvr.2023.200260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
The tegument is the structure between the envelope and nucleocapsid of herpesvirus particles. Viral (and cellular) proteins accumulate to create the layers of the tegument. Some Epstein-Barr virus (EBV) tegument proteins are conserved widely in Herpesviridae, but others are shared only by members of the gamma-herpesvirus subfamily. As the interface to envelope and nucleocapsid, the tegument functions in virion morphogenesis and budding of the nucleocapsid during progeny production. When a virus particle enters a cell, enzymes such as kinase and deubiquitinase, and transcriptional activators are released from the virion to promote virus infection. Moreover, some EBV tegument proteins are involved in oncogenesis. Here, we summarize the roles of EBV tegument proteins, in comparison to those of other herpesviruses.
Collapse
Affiliation(s)
- Takayuki Murata
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Japan.
| |
Collapse
|
9
|
Su ZY, Siak PY, Leong CO, Cheah SC. The role of Epstein-Barr virus in nasopharyngeal carcinoma. Front Microbiol 2023; 14:1116143. [PMID: 36846758 PMCID: PMC9947861 DOI: 10.3389/fmicb.2023.1116143] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a metastasis-prone malignancy closely associated with the Epstein-Barr virus (EBV). Despite ubiquitous infection of EBV worldwide, NPC incidences displayed predominance in certain ethnic groups and endemic regions. The majority of NPC patients are diagnosed with advanced-stage disease, as a result of anatomical isolation and non-specific clinical manifestation. Over the decades, researchers have gained insights into the molecular mechanisms underlying NPC pathogenesis as a result of the interplay of EBV infection with several environmental and genetic factors. EBV-associated biomarkers were also used for mass population screening for the early detection of NPC. EBV and its encoded products also serve as potential targets for the development of therapeutic strategies and tumour-specific drug delivery. This review will discuss the pathogenic role of EBV in NPC and efforts in exploiting the potential of EBV-associated molecules as biomarkers and therapeutic targets. The current knowledge on the role of EBV and its associated products in NPC tumorigenesis, development and progression will offer a new outlook and potential intervention strategy against this EBV-associated malignancy.
Collapse
Affiliation(s)
- Zhi Yi Su
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Negeri Sembilan, Malaysia
| | - Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Negeri Sembilan, Malaysia
| | - Chee-Onn Leong
- AGTC Genomics Sdn Bhd, Pusat Perdagangan Bandar, Persiaran Jalil 1, Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Negeri Sembilan, Malaysia
| |
Collapse
|
10
|
Li DK, Chen XR, Wang LN, Wang JH, Li JK, Zhou ZY, Li X, Cai LB, Zhong SS, Zhang JJ, Zeng YM, Zhang QB, Fu XY, Lyu XM, Li MY, Huang ZX, Yao KT. Exosomal HMGA2 protein from EBV-positive NPC cells destroys vascular endothelial barriers and induces endothelial-to-mesenchymal transition to promote metastasis. Cancer Gene Ther 2022; 29:1439-1451. [PMID: 35388172 PMCID: PMC9576596 DOI: 10.1038/s41417-022-00453-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/09/2021] [Accepted: 03/01/2022] [Indexed: 12/27/2022]
Abstract
Increased vascular permeability facilitates metastasis. Cancer-secreted exosomes are emerging mediators of cancer-host crosstalk. Epstein-Barr virus (EBV), identified as the first human tumor-associated virus, plays a crucial role in metastatic tumors, especially in nasopharyngeal carcinoma (NPC). To date, whether and how exosomes from EBV-infected NPC cells affect vascular permeability remains unclear. Here, we show that exosomes from EBV-positive NPC cells, but not exosomes from EBV-negative NPC cells, destroy endothelial cell tight junction (TJ) proteins, which are natural barriers against metastasis, and promote endothelial-to-mesenchymal transition (EndMT) in endothelial cells. Proteomic analysis revealed that the level of HMGA2 protein was higher in exosomes derived from EBV-positive NPC cells compared with that in exosomes derived from EBV-negative NPC cells. Depletion of HMGA2 in exosomes derived from EBV-positive NPC cells attenuates endothelial cell dysfunction and tumor cell metastasis. In contrast, exosomes from HMGA2 overexpressing EBV-negative NPC cells promoted these processes. Furthermore, we showed that HMGA2 upregulates the expression of Snail, which contributes to TJ proteins reduction and EndMT in endothelial cells. Moreover, the level of HMGA2 in circulating exosomes is significantly higher in NPC patients with metastasis than in those without metastasis and healthy negative controls, and the level of HMGA2 in tumor cells is associated with TJ and EndMT protein expression in endothelial cells. Collectively, our findings suggest exosomal HMGA2 from EBV-positive NPC cells promotes tumor metastasis by targeting multiple endothelial TJ and promoting EndMT, which highlights secreted HMGA2 as a potential therapeutic target and a predictive marker for NPC metastasis.
Collapse
Affiliation(s)
- Deng-Ke Li
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xing-Rui Chen
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li-Na Wang
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangzhou First People's Hospital, School of Medicine, Southern China University of Technology, Guangzhou, 510180, China
| | - Jia-Hong Wang
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ji-Ke Li
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zi-Ying Zhou
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, the Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, China
| | - Lin-Bo Cai
- Guangdong Sanjiu Brain Hospital, Guangzhou, 510510, China
| | | | - Jing-Jing Zhang
- Department of Radiotherapy, Tumor Hospital of Zhongshan People's Hospital, Zhongshan, 528403, China
| | - Yu-Mei Zeng
- Department of Pathology, Tumor Hospital of Zhongshan People's Hospital, Zhongshan, 528403, China
| | - Qian-Bing Zhang
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Yan Fu
- Department of Otorhinolaryngology Head and Neck Surgery, General Hospital of Southern Theater Command, People's Liberation Army of China, Guangzhou, 510010, China
| | - Xiao-Ming Lyu
- Department of laboratory medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Min-Ying Li
- Department of Radiotherapy, Tumor Hospital of Zhongshan People's Hospital, Zhongshan, 528403, China.
| | - Zhong-Xi Huang
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Kai-Tai Yao
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
11
|
Schor S, Pu S, Nicolaescu V, Azari S, Kõivomägi M, Karim M, Cassonnet P, Saul S, Neveu G, Yueh A, Demeret C, Skotheim JM, Jacob Y, Randall G, Einav S. The cargo adapter protein CLINT1 is phosphorylated by the Numb-associated kinase BIKE and mediates dengue virus infection. J Biol Chem 2022; 298:101956. [PMID: 35452674 PMCID: PMC9133654 DOI: 10.1016/j.jbc.2022.101956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
The signaling pathways and cellular functions regulated by the four Numb-associated kinases are largely unknown. We reported that AAK1 and GAK control intracellular trafficking of RNA viruses and revealed a requirement for BIKE in early and late stages of dengue virus (DENV) infection. However, the downstream targets phosphorylated by BIKE have not yet been identified. Here, to identify BIKE substrates, we conducted a barcode fusion genetics-yeast two-hybrid screen and retrieved publicly available data generated via affinity-purification mass spectrometry. We subsequently validated 19 of 47 putative BIKE interactors using mammalian cell-based protein-protein interaction assays. We found that CLINT1, a cargo-specific adapter implicated in bidirectional Golgi-to-endosome trafficking, emerged as a predominant hit in both screens. Our experiments indicated that BIKE catalyzes phosphorylation of a threonine 294 CLINT1 residue both in vitro and in cell culture. Our findings revealed that CLINT1 phosphorylation mediates its binding to the DENV nonstructural 3 protein and subsequently promotes DENV assembly and egress. Additionally, using live-cell imaging we revealed that CLINT1 cotraffics with DENV particles and is involved in mediating BIKE's role in DENV infection. Finally, our data suggest that additional cellular BIKE interactors implicated in the host immune and stress responses and the ubiquitin proteasome system might also be candidate phosphorylation substrates of BIKE. In conclusion, these findings reveal cellular substrates and pathways regulated by the understudied Numb-associated kinase enzyme BIKE, a mechanism for CLINT1 regulation, and control of DENV infection via BIKE signaling, with potential implications for cell biology, virology, and host-targeted antiviral design.
Collapse
Affiliation(s)
- Stanford Schor
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University, California, USA
| | - Szuyuan Pu
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University, California, USA
| | - Vlad Nicolaescu
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Siavash Azari
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University, California, USA
| | | | - Marwah Karim
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University, California, USA
| | - Patricia Cassonnet
- Department of Virology, Molecular Genetics of RNA Virus Genetics (GMVR), Pasteur Institute, National Center for Scientific Research, and Paris Diderot University, Paris, France
| | - Sirle Saul
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University, California, USA
| | - Gregory Neveu
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University, California, USA
| | - Andrew Yueh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Caroline Demeret
- Department of Virology, Molecular Genetics of RNA Virus Genetics (GMVR), Pasteur Institute, National Center for Scientific Research, and Paris Diderot University, Paris, France
| | - Jan M Skotheim
- Department of Biology, Stanford University, California, USA
| | - Yves Jacob
- Department of Virology, Molecular Genetics of RNA Virus Genetics (GMVR), Pasteur Institute, National Center for Scientific Research, and Paris Diderot University, Paris, France
| | - Glenn Randall
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University, California, USA; Chan Zuckerberg Biohub, San Francisco, California, USA.
| |
Collapse
|
12
|
Vattem C, Pakala SB. Metastasis-associated protein 1: A potential driver and regulator of the hallmarks of cancer. J Biosci 2022. [DOI: 10.1007/s12038-022-00263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Liu D, Shi D, Xu L, Sun L, Liu S, Luo B. LMP2A inhibits the expression of KLF5 through the mTORC1 pathway in EBV-associated gastric carcinoma. Virus Res 2022; 315:198792. [DOI: 10.1016/j.virusres.2022.198792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
|
14
|
Alfaro-García JP, Granados-Alzate MC, Vicente-Manzanares M, Gallego-Gómez JC. An Integrated View of Virus-Triggered Cellular Plasticity Using Boolean Networks. Cells 2021; 10:cells10112863. [PMID: 34831086 PMCID: PMC8616224 DOI: 10.3390/cells10112863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Virus-related mortality and morbidity are due to cell/tissue damage caused by replicative pressure and resource exhaustion, e.g., HBV or HIV; exaggerated immune responses, e.g., SARS-CoV-2; and cancer, e.g., EBV or HPV. In this context, oncogenic and other types of viruses drive genetic and epigenetic changes that expand the tumorigenic program, including modifications to the ability of cancer cells to migrate. The best-characterized group of changes is collectively known as the epithelial–mesenchymal transition, or EMT. This is a complex phenomenon classically described using biochemistry, cell biology and genetics. However, these methods require enormous, often slow, efforts to identify and validate novel therapeutic targets. Systems biology can complement and accelerate discoveries in this field. One example of such an approach is Boolean networks, which make complex biological problems tractable by modeling data (“nodes”) connected by logical operators. Here, we focus on virus-induced cellular plasticity and cell reprogramming in mammals, and how Boolean networks could provide novel insights into the ability of some viruses to trigger uncontrolled cell proliferation and EMT, two key hallmarks of cancer.
Collapse
Affiliation(s)
- Jenny Paola Alfaro-García
- Molecular and Translation Medicine Group, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia; (J.P.A.-G.); (M.C.G.-A.)
| | - María Camila Granados-Alzate
- Molecular and Translation Medicine Group, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia; (J.P.A.-G.); (M.C.G.-A.)
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
- Correspondence: (M.V.-M.); (J.C.G.-G.)
| | - Juan Carlos Gallego-Gómez
- Molecular and Translation Medicine Group, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia; (J.P.A.-G.); (M.C.G.-A.)
- Correspondence: (M.V.-M.); (J.C.G.-G.)
| |
Collapse
|
15
|
Oleynikova NA, Danilova NV, Grimuta MO, Malkov PG. Epstein-Barr Virus in the Development of Colorectal Cancer (Review). Sovrem Tekhnologii Med 2021; 13:82-91. [PMID: 34603767 PMCID: PMC8482827 DOI: 10.17691/stm2021.13.4.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 12/03/2022] Open
Abstract
The study of the influence of the Epstein–Barr virus (EBV) on the development of colorectal cancer is of current interest, particularly in light of the active discussion of the participation of this virus in the carcinogenesis of stomach cancer. In this review, aimed at a fundamental understanding of the processes associated with the impact of EBV on the human body, attention is paid to the issues of the life cycle of the virus, its phases (latent and lytic), as well as proteins that may be detected in each of the phases. The papers reporting on the role of EBV in the development of colorectal cancer have been analyzed. A summary table indicating the population under study, the number of samples, the method, and the result obtained is provided. Given that the primary cells affected by EBV are lymphocytes, it is logical to assume the involvement of this virus in the development of inflammatory bowel diseases. The review cites studies which confirm the presence of virus DNA in tissues in the inflammatory diseases of the colon, including microscopic and ulcerative colitis. To confirm the direct impact of EBV on the development of colorectal cancer, large studies with applying various methods for detecting the virus and the mandatory description of its localization are required. Besides, it is necessary to correlate these data with the clinical and morphological characteristics of EBV.
Collapse
Affiliation(s)
- N A Oleynikova
- Researcher, Department of Clinical Pathology; Medical Scientific and Educational Center, Lomonosov Moscow State University, 27/10 Lomonosov Prospect, Moscow, 119192, Russia
| | - N V Danilova
- Senior Researcher, Department of Clinical Pathology; Medical Scientific and Educational Center, Lomonosov Moscow State University, 27/10 Lomonosov Prospect, Moscow, 119192, Russia
| | - M O Grimuta
- Student; I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya St., Moscow, 119991, Russia
| | - P G Malkov
- Head of the Department of Clinical Pathology; Medical Scientific and Educational Center, Lomonosov Moscow State University, 27/10 Lomonosov Prospect, Moscow, 119192, Russia
| |
Collapse
|
16
|
Luo H, Yi B. The role of Exosomes in the Pathogenesis of Nasopharyngeal Carcinoma and the involved Clinical Application. Int J Biol Sci 2021; 17:2147-2156. [PMID: 34239345 PMCID: PMC8241729 DOI: 10.7150/ijbs.59688] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nanoscale membrane vesicles, which carry biologically active substances of their cell of origin and play an important role in signal transduction and intercellular communication. At present, exosomes have been identified as a promising non-invasive liquid biopsy biomarker in the tissues and circulating blood of nasopharyngeal carcinoma (NPC) and found to participate in regulating pathophysiological process of the tumor. We here review recent insights gained into the molecular mechanisms of exosome-induced cell growth, angiogenesis, metastasis, immunosuppression, radiation resistance and chemotherapy resistance in the development and progression of NPC, as well as the clinical application of exosomes as diagnostic biomarkers and therapeutic agents. We also discuss the limitations and challenges in exosome application. We hope this review may provide some references for the use of exosomes in clinical intervention.
Collapse
Affiliation(s)
- Huidan Luo
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Bin Yi
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| |
Collapse
|
17
|
Richardo T, Prattapong P, Ngernsombat C, Wisetyaningsih N, Iizasa H, Yoshiyama H, Janvilisri T. Epstein-Barr Virus Mediated Signaling in Nasopharyngeal Carcinoma Carcinogenesis. Cancers (Basel) 2020; 12:2441. [PMID: 32872147 PMCID: PMC7565514 DOI: 10.3390/cancers12092441] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common tumors occurring in China and Southeast Asia. Etiology of NPC seems to be complex and involves many determinants, one of which is Epstein-Barr virus (EBV) infection. Although evidence demonstrates that EBV infection plays a key role in NPC carcinogenesis, the exact relationship between EBV and dysregulation of signaling pathways in NPC needs to be clarified. This review focuses on the interplay between EBV and NPC cells and the corresponding signaling pathways, which are modulated by EBV oncoproteins and non-coding RNAs. These altered signaling pathways could be critical for the initiation and progression of NPC.
Collapse
Affiliation(s)
- Timmy Richardo
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany;
- Department of Biomedicine, Indonesia International Institute for Life Science (i3L), Jakarta 13210, Indonesia;
- Department of Microbiology, Shimane University, Izumo 693-8501, Japan; (H.I.); (H.Y.)
| | - Pongphol Prattapong
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.P.); (C.N.)
| | - Chawalit Ngernsombat
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.P.); (C.N.)
| | - Nurulfitri Wisetyaningsih
- Department of Biomedicine, Indonesia International Institute for Life Science (i3L), Jakarta 13210, Indonesia;
| | - Hisashi Iizasa
- Department of Microbiology, Shimane University, Izumo 693-8501, Japan; (H.I.); (H.Y.)
| | - Hironori Yoshiyama
- Department of Microbiology, Shimane University, Izumo 693-8501, Japan; (H.I.); (H.Y.)
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
18
|
EBV-miR-BART10-3p and EBV-miR-BART22 promote metastasis of EBV-associated gastric carcinoma by activating the canonical Wnt signaling pathway. Cell Oncol (Dordr) 2020; 43:901-913. [PMID: 32533512 DOI: 10.1007/s13402-020-00538-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC) constitutes the largest subpopulation in EBV-associated tumors worldwide. To date, 44 mature EBV-encoded microRNAs (EBV miRNAs) have been identified, but their roles in EBVaGC development are still poorly understood. In this study, we aimed to investigate the roles and targets of ebv-miR-BART10-3p (BART10-3p) and ebv-miR-BART22 (BART22) in EBVaGC. METHODS EBV miRNA expression in EBVaGCs was evaluated by deep sequencing and qRT-PCR, and relationships between BART10-3p or BART22 expression and clinicolpathological characteristics and survival rates of patients with EBVaGC were analyzed. The roles of BART10-3p and BART22 and their underlying mechanisms were further investigated through exogenous overexpression or silencing in EBVaGC cells, and validated in clinical EBVaGC tissue samples. RESULTS BART10-3p and BART22 were found to be highly expressed in the EBVaGC cell lines SNU719 and YCCEL1. Higher expression of BART10-3p or BART22 in primary EBVaGC samples was significantly associated with lymph node metastasis and a worse 5-year overall survival. BART10-3p and BART22 promoted cell migration and invasion by targeting adenomatous polyposis coli (APC) and Dickkopf 1 (DKK1), thereby activating the Wnt signaling pathway and, consequently, upregulating downstream Twist and downregulating downstream E-cadherin. In 874 primary gastric carcinoma samples, APC and DKK1 were found to be lower expressed in EBVaGC than in EBV-negative samples, and their expression levels were inversely correlated with those of BART10-3p and BART22 in 71 EBVaGC samples. CONCLUSIONS From our data we conclude that BART10-3p and BART22 play vital roles in promoting EBVaGC metastasis by targeting APC and DKK1 and, subsequently, activating the Wnt signaling pathway, thereby providing novel prognostic biomarkers and potential therapeutic targets for EBVaGC.
Collapse
|
19
|
Gupta I, Nasrallah GK, Sharma A, Jabeen A, Smatti MK, Al-Thawadi HA, Sultan AA, Alkhalaf M, Vranic S, Moustafa AEA. Co-prevalence of human Papillomaviruses (HPV) and Epstein-Barr virus (EBV) in healthy blood donors from diverse nationalities in Qatar. Cancer Cell Int 2020; 20:107. [PMID: 32265596 PMCID: PMC7118960 DOI: 10.1186/s12935-020-01190-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/27/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Infections by both human oncoviruses, human Papillomaviruses (HPV) and Epstein-Barr virus (EBV) are very common in the adult human population and are associated with various malignancies. While HPV is generally transmitted sexually or via skin-to-skin contact, EBV is frequently transmitted by oral secretions, blood transfusions and organ transplants. This study aims to determine the prevalence and circulating genotypes of HPV and EBV in healthy blood donors in Qatar. METHODS We explored the co-prevalence of high-risk HPVs and EBV in 378 males and only 7 females blood donors of different nationalities (mainly from Qatar, Egypt, Syria, Jordan, Pakistan, and India) residing in Qatar, using polymerase chain reaction (PCR). DNA was extracted from the buffy coat and genotyping was performed using PCR and nested-PCR targeting E6 and E7 as well as LMP-1 of HPV and EBV, respectively. RESULTS We found that from the total number of 385 cases of healthy blood donors studied, 54.8% and 61% of the samples are HPVs and EBV positive, respectively. Additionally, our data revealed that the co-presence of both high-risk HPVs and EBV is 40.4% of the total samples. More significantly, this study pointed out for the first time that the most frequent high-risk HPV types in Qatar are 59 (54.8%), 31 (53.7%), 52 (49.1%), 51 (48.6%), 58 (47%) and 35 (45.5%), while the most commonly expressed low-risk HPV types are 53 (50.6%), 11 (45.5), 73 (41.7%) and 6 (41.3%), with all the cases showing multiple HPVs infection. CONCLUSION In this study, we demonstrated for the first time that HPV and EBV are commonly co-present in healthy blood donors in Qatar. On the other hand, it is important to highlight that these oncoviruses can also be co-present in several types of human cancers where they can cooperate in the initiation and/or progression of these cancers. Therefore, more studies regarding the co-presence of these oncoviruses and their interaction are necessary to understand their cooperative role in human diseases.
Collapse
Affiliation(s)
- Ishita Gupta
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Anju Sharma
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ayesha Jabeen
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | | | | | | | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical Research Centre, Qatar University, Doha, Qatar
| |
Collapse
|
20
|
Qian D, Zheng W, Chen C, Jing G, Huang J. Roles of CCNB2 and NKX3-1 in Nasopharyngeal Carcinoma. Cancer Biother Radiopharm 2020; 35:208-213. [PMID: 32202926 DOI: 10.1089/cbr.2019.3016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background: Nasopharyngeal carcinoma (NPC) is leading form of cancer occurring in a few well-defined regions, including southern China. NPC possess a unique and intricate etiology that remains to be elucidated. Herein, we determine expression patterns of CCNB2 and NKX3-1 and identify their roles in NPC. Materials and Methods: Gene-expression profiles of NPC in the Gene Expression Omnibus (GEO) were analyzed. Cell viability, invasion, apoptosis, cell cycle entry and mitochondrial membrane potential (MMP) were evaluated in the presence of NKX3-1 or in the absence of CCNB2. Results: In all, 187 upregulated genes and 683 downregulated genes were obtained by analyzing GSE13597. NKX3-1, the downregulated gene, and CCNB2, the upregulated one, were further confirmed by in vitro studies. Overexpression of NKX3-1 was shown to inhibit NPC cell viability and invasion. Knockdown of CCNB2 was demonstrated to reduce cell cycle entry and MMP but induce apoptosis in NPC cells. Conclusions: Taken together, the key finding obtained from the study supports CCNB2 and NKX3-1 as two promising therapeutic candidates for NPC. Molecular mechanisms that control CCNB2 or NKX3-1 disturbance require further investigation and clarification.
Collapse
Affiliation(s)
- Di Qian
- Ear-Nose-Throat Department, The People's Hospital of Longhua District, Shenzhen, P.R. China
| | - Weichang Zheng
- Ear-Nose-Throat Department, The People's Hospital of Longhua District, Shenzhen, P.R. China
| | - Cuixia Chen
- Ear-Nose-Throat Department, The People's Hospital of Longhua District, Shenzhen, P.R. China
| | - Guanghuai Jing
- Ear-Nose-Throat Department, The People's Hospital of Longhua District, Shenzhen, P.R. China
| | - Junxuan Huang
- Ear-Nose-Throat Department, The People's Hospital of Longhua District, Shenzhen, P.R. China
| |
Collapse
|
21
|
Heawchaiyaphum C, Iizasa H, Ekalaksananan T, Burassakarn A, Kiyono T, Kanehiro Y, Yoshiyama H, Pientong C. Epstein-Barr Virus Infection of Oral Squamous Cells. Microorganisms 2020; 8:microorganisms8030419. [PMID: 32188127 PMCID: PMC7144007 DOI: 10.3390/microorganisms8030419] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
The Epstein-Barr virus (EBV) is a human herpesvirus associated with various cancers. The number of reports that describe infection of EBV in oral squamous carcinoma cells is increasing. However, there is no available in vitro model to study the possible role of EBV in the development of oral squamous cell carcinoma. Herein, we report establishment of a latent EBV infection of well-differentiated HSC1 cells and poorly differentiated SCC25 cells. Viral copy numbers per cell in EBV-infected HSC1 and SCC25 cells are 2 and 5, respectively. Although the EBV copy number was small, spontaneous viral replication was observed in EBV-infected HSC1 cells. Contrarily, infectious viral production was not observed in EBV-infected SCC25 cells, despite containing larger number of EBV genomes. Chemical activation of cells induced expression of viral lytic BZLF1 gene in EBV-infected HSC1 cells, but not in EBV-infected SCC25 cells. EBV infection activated proliferation and migration of HSC1 cells. However, EBV-infection activated migration but not proliferation in SCC25 cells. In conclusion, EBV can infect squamous cells and establish latent infection, but promotion of cell proliferation and of lytic EBV replication may vary depending on stages of cell differentiation. Our model can be used to study the role of EBV in the development of EBV-associated oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Chukkris Heawchaiyaphum
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (T.E.); (A.B.)
- Department of Microbiology, Shimane University Faculty of Medicine, Shimane 693-8501, Japan; (H.I.); (Y.K.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Hisashi Iizasa
- Department of Microbiology, Shimane University Faculty of Medicine, Shimane 693-8501, Japan; (H.I.); (Y.K.)
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (T.E.); (A.B.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ati Burassakarn
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (T.E.); (A.B.)
- Department of Microbiology, Shimane University Faculty of Medicine, Shimane 693-8501, Japan; (H.I.); (Y.K.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tohru Kiyono
- Division of Virology, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Yuichi Kanehiro
- Department of Microbiology, Shimane University Faculty of Medicine, Shimane 693-8501, Japan; (H.I.); (Y.K.)
| | - Hironori Yoshiyama
- Department of Microbiology, Shimane University Faculty of Medicine, Shimane 693-8501, Japan; (H.I.); (Y.K.)
- Correspondence: (H.Y.); (C.P.)
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (T.E.); (A.B.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: (H.Y.); (C.P.)
| |
Collapse
|
22
|
Li S, Zhao B, Zhao H, Shang C, Zhang M, Xiong X, Pu J, Kuang B, Deng G. Silencing of Long Non-coding RNA SMAD5-AS1 Reverses Epithelial Mesenchymal Transition in Nasopharyngeal Carcinoma via microRNA-195-Dependent Inhibition of SMAD5. Front Oncol 2019; 9:1246. [PMID: 31921616 PMCID: PMC6923203 DOI: 10.3389/fonc.2019.01246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/29/2019] [Indexed: 12/25/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have gained widespread attention in recent years as a key regulator of diverse biological processes, but the knowledge of the mechanisms by which they act is still very limited. Differentially expressed lncRNA SMAD5 antisense RNA 1 (SMAD5-AS1) in nasopharyngeal carcinoma (NPC) and normal samples shown by in silico analyses were selected as the main subject, and then microRNA-195 (miR-195) was suggested to bind to SMAD5-AS1 and SMAD5. Therefore, the purpose of the present study was to investigate the effects of SMAD5-AS1/miR-195/SMAD5 on epithelial-mesenchymal transition (EMT) in NPC cells. High expression of SMAD5-AS1 and SMAD5 but low miR-195 expression was determined in NPC tissues and NPC cell lines by RT-qPCR and western blot analysis. SMAD5-AS1 could upregulate SMAD5 expression by competitively binding to miR-195 in NPC cells. Loss- and gain-of-function investigations were subsequently conducted in NPC cells (CNE-2 and CNE-1) to explore the role of SMAD5-AS, miR-195 and SMAD5 in NPC progression by assessing cellular biological functions and tumorigenic ability in vivo as well as determining the expression of EMT markers. Downregulation of SMAD5-AS1 or SMAD5 or overexpression of miR-195 led to inhibited NPC cell proliferation, invasion and migration and reversed EMT, enhanced apoptosis in vitro as well as restrained tumor growth in vivo. In conclusion, our findings indicate that silencing of lncRNA SMAD5-AS1 induces the downregulation of SMAD5 by miR-195, eventually repressing EMT in NPC. Hence, SMAD5-AS1 may represent a potential therapeutic target for NPC intervention.
Collapse
Affiliation(s)
- Siwei Li
- Department of Oncology, Tongji Huangzhou Hospital, Huazhong University of Science and Technology, Huanggang, China.,Department of Radiation Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Bo Zhao
- Department of Radiation Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Haiying Zhao
- Graduate School, Guillin Medical University, Guilin, China
| | - Cui Shang
- Department of Oncology, Tongji Huangzhou Hospital, Huazhong University of Science and Technology, Huanggang, China
| | - Man Zhang
- Department of Oncology, Tongji Huangzhou Hospital, Huazhong University of Science and Technology, Huanggang, China
| | - Xiaoxia Xiong
- Department of Oncology, Tongji Huangzhou Hospital, Huazhong University of Science and Technology, Huanggang, China
| | - Jinjin Pu
- Graduate School, Guillin Medical University, Guilin, China
| | - Bohua Kuang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Oncology in South China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Guangrui Deng
- Department of Oncology, Tongji Huangzhou Hospital, Huazhong University of Science and Technology, Huanggang, China
| |
Collapse
|
23
|
Zhao CX, Zhu W, Ba ZQ, Xu HJ, Liu WD, Zhu B, Wang L, Song YJ, Yuan S, Ren CP. The regulatory network of nasopharyngeal carcinoma metastasis with a focus on EBV, lncRNAs and miRNAs. Am J Cancer Res 2018; 8:2185-2209. [PMID: 30555738 PMCID: PMC6291648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023] Open
Abstract
Metastasis of nasopharyngeal carcinoma (NPC) remains a main cause of death for NPC patients even though great advances have been made in therapeutic approaches. An in-depth study into the molecular mechanisms of NPC metastasis will help us combat NPC. Epstein-Barr virus (EBV) infection is an evident feature of nonkeratinizing NPC and is strongly associated with tumor metastasis. Recently, long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) have become a hot topic of research due to their epigenetic regulatory roles in NPC metastasis. The EBV products, lncRNAs and miRNAs can target each other and share several common signaling pathways, which form an interconnected, complex molecular regulatory network. In this review, we discuss the features of this regulatory network and summarize the molecular mechanisms of NPC metastasis, focusing on EBV, lncRNAs and miRNAs with updated knowledge.
Collapse
Affiliation(s)
- Chen-Xuan Zhao
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Wei Zhu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Zheng-Qing Ba
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Hong-Juan Xu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Wei-Dong Liu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Bin Zhu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Lei Wang
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Yu-Jia Song
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Shuai Yuan
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Cai-Ping Ren
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| |
Collapse
|
24
|
Ma K, Fan Y, Hu Y. Prognostic and clinical significance of metastasis-associated gene 1 overexpression in solid cancers: A meta-analysis. Medicine (Baltimore) 2018; 97:e12292. [PMID: 30313027 PMCID: PMC6203568 DOI: 10.1097/md.0000000000012292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 08/16/2018] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND In the past 2 decades, metastasis-associated gene 1 (MTA1) has attracted attention for its close association with cancer progression and its roles in chromatin remodeling processes, making it a central gene in cancer. The present meta-analysis was performed to assess MTA1 expression in solid tumors. MATERIALS AND METHODS This analysis identified studies that evaluated the relationship between MTA1 expression and clinical characteristics or prognosis of patients with solid tumors via the PubMed, Cochrane Library, and Embase electronic databases. Fixed-effect and random-effect meta-analytical techniques were used to correlate MTA1 expression with outcome measures. The outcome variables are shown as odds ratio (OR) or hazard ratio (HR) with 95% confidence interval (CI). RESULTS Analysis of 40 cohort studies involving 4564 cancer patients revealed a significant association of MTA1 overexpression with tumor patient age (>50 vs. <50 years: combined OR 0.73, 95% CI 0.57-0.94), tumor grade (G3/4 vs. G1/2: combined OR 1.94, 95% CI 1.48-2.53), tumor size (>3 cm vs. <3 cm: combined OR 2.35, 95% CI 1.73-3.19), T stage (T3/4 vs. T1/2: combined OR 2.11, 95% CI 1.74-2.56), lymph node metastasis (yes vs. no: combined OR 2.92, 95% CI 2.26-3.75), distant metastasis (yes vs. no: combined OR 2.26, 95% CI 1.42-3.59), TNM stage (III/IV vs. I/II: combined OR 2.50, 95% CI 1.84-3.38), vascular invasion (yes vs. no: combined OR 2.26, 95% CI 1.92-3.56), and poor overall survival time (HR 1.83; 95% CI: 1.53-2.20; P = .000). CONCLUSIONS Our analyses demonstrate that MTA1 was an effective predictor of a worse prognosis in tumor patients. Moreover, MTA1 may play important role in tumor progression and outcome, and targeting MTA1 may be a new strategy for anti-cancer therapy.
Collapse
Affiliation(s)
- Ke Ma
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan
| | - Yangwei Fan
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China
| | - Yuan Hu
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China
| |
Collapse
|
25
|
Cyprian FS, Al-Farsi HF, Vranic S, Akhtar S, Al Moustafa AE. Epstein-Barr Virus and Human Papillomaviruses Interactions and Their Roles in the Initiation of Epithelial-Mesenchymal Transition and Cancer Progression. Front Oncol 2018; 8:111. [PMID: 29765906 PMCID: PMC5938391 DOI: 10.3389/fonc.2018.00111] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/29/2018] [Indexed: 12/27/2022] Open
Abstract
Oncoviruses are implicated in around 20% of all human cancers including both solid and non-solid malignancies. Epstein–Barr virus (EBV) and human papillomaviruses (HPVs) are the most common oncoviruses worldwide. Currently, it is well established that onco-proteins of EBV (LMP1, LMP2A, and EBNA1) and high-risk HPVs (E5 and E6/E7) play an important role in the initiation and/or progression of several human carcinomas, including cervical, oral, and breast. More significantly, it has been recently pointed out that viral onco-proteins of EBV and high-risk HPVs can be co-present and consequently cooperate to initiate and/or amplify epithelial–mesenchymal transition (EMT), which is the hallmark of cancer progression and metastasis. This could occur by β-catenin, JAK/STAT/SRC, PI3k/Akt/mTOR, and/or RAS/MEK/ERK signaling pathways, which onco-proteins of EBV and HPVs share. This review presents the most recent advances related to EBV and high-risk HPVs onco-proteins interactions and their roles in the progression of human carcinomas especially oral and breast via the initiation of EMT.
Collapse
Affiliation(s)
| | | | - Semir Vranic
- College of Medicine, Qatar University, Doha, Qatar
| | | | - Ala-Eddin Al Moustafa
- College of Medicine, Qatar University, Doha, Qatar.,Biomedical Research Centre, Qatar University, Doha, Qatar.,Oncology Department, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Lu B, Lian R, Wu Z, Miao W, Li X, Li J, Shi Y, Yu W. MTA1 promotes viability and motility in nasopharyngeal carcinoma by modulating IQGAP1 expression. J Cell Biochem 2018; 119:3864-3872. [PMID: 29125886 DOI: 10.1002/jcb.26494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is frequently seen in Chinese, especially the population that resides in southeast China. Metastasis-associated protein 1 (MTA1) is a chromatin modifier and plays a role in tumor cell metastasis. IQGAP1 is a ubiquitously expressed protein that contributes to cytoskeleton remodeling. This study aimed to investigate the role of MTA1 and IQGAP1 in NPC malignant transformation. MTA1 and IQGAP1 expression in NPC (n = 43) and control tissues (n = 31) were detected using qRT-PCR, immunoblot, and immunohistochemistry. MTA1 was overexpressed in CNE-1 and CNE-2 cell line by pcDNA3.1/MTA1 transfection. Dominant-negative p53 was transfected to inhibit p53 activity. si-IQGAP1 or dominant-negative IQGAP1 (IQGAP1ΔGRD) was used to suppress IQGAP1 activity. Cell proliferation was measured by CKK-8 assay. Cell migration was evaluated by Transwell assay. The results showed that MTA1 and IQGAP1 were highly expressed in NPC tissues compared with the controls. Forced expression of MTA1 accelerated cell proliferation and migration and upregulated IQGAP1 expression in a p53-independent way. Knockdown of IQGAP1 or transfection of dominant-negative IQGAP1 impeded tumor cell proliferation and migration as well as PI3K/Akt signaling induced by MTA1. In conclusion, MTA1 participates in NPC malignant transformation via regulating IQGAP1 expression and PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Baocai Lu
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Rong Lian
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Zhiyan Wu
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Wenjie Miao
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Xiao Li
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Jin Li
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Yongjuan Shi
- Department of Anesthesiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Wenfa Yu
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
| |
Collapse
|
27
|
Huang SCM, Tsao SW, Tsang CM. Interplay of Viral Infection, Host Cell Factors and Tumor Microenvironment in the Pathogenesis of Nasopharyngeal Carcinoma. Cancers (Basel) 2018; 10:E106. [PMID: 29617291 PMCID: PMC5923361 DOI: 10.3390/cancers10040106] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/15/2022] Open
Abstract
Undifferentiated nasopharyngeal carcinoma (NPC) is strongly associated with Epstein-Barr virus (EBV) infection. In addition, heavy infiltration of leukocytes is a common characteristic of EBV-associated NPC. It has long been suggested that substantial and interactive impacts between cancer and stromal cells create a tumor microenvironment (TME) to promote tumorigenesis. The coexistence of tumor-infiltrating lymphocytes with EBV-infected NPC cells represents a distinct TME which supports immune evasion and cancer development from the early phase of EBV infection. Intracellularly, EBV-encoded viral products alter host cell signaling to facilitate tumor development and progression. Intercellularly, EBV-infected cancer cells communicate with stromal cells through secretion of cytokines and chemokines, or via release of tumor exosomes, to repress immune surveillance and enhance metastasis. Although high expression of miR-BARTs has been detected in NPC patients, contributions of these more recently discovered viral products to the establishment of TME are still vaguely defined. Further investigations are needed to delineate the mechanistic linkage of the interplay between viral and host factors, especially in relation to TME, which can be harnessed in future therapeutic strategies.
Collapse
Affiliation(s)
| | - Sai Wah Tsao
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, HK, China.
| | - Chi Man Tsang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, HK, China.
| |
Collapse
|
28
|
Zhu W, Li G, Guo H, Chen H, Xu X, Long J, Zeng C, Wang X. Clinicopathological Significance of MTA 1 Expression in Patients with Non-Small Cell Lung Cancer: A Meta-Analysis. Asian Pac J Cancer Prev 2017; 18:2903-2909. [PMID: 29172257 PMCID: PMC5773769 DOI: 10.22034/apjcp.2017.18.11.2903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: Metastasis associated gene 1(MTA1) is one of the most deregulated molecules in human cancer and leads to cancer progression and metastasis. We performed a meta-analysis to determine the correlations between MTA1 expression and the clinicopathological characteristics of non-small cell lung cancer (NSCLC). Methods: We searched PubMed, Springer, Science Direct, Google Scholar and China National Knowledge Infrastructure (CNKI) for relevant articles. For statistical analyses, we used R3.1.1 software. The fixed or random effects model was employed based on the results of the statistical test for homogeneity. Results: Seven studies involving 660 NSCLC patients were included. The proportion of MTA1 overexpression with 95% confidence interval (95% CI) was 0.53(95% CI: 0.43-0.62) in NSCLC patients; 0.47(95% CI: 0.40-0.55) in age <60 years and 0.52(95% CI: 0.34-0.70) in age ≥60 years; 0.5(95% CI: 0.41-0.62) in males and 0.51(95% CI: 0.39-0.62) in females; 0.59(95% CI: 0.48-0.69) in squamous cell carcinoma (SC) and 0.57(95% CI: 0.46-0.67) in adenocarcinoma (AC); 0.39(95% CI: 0.23-0.56) in well-differentiated tumors, 0.44(95% CI: 0.37-0.51) in moderately differentiated tumors and 0.55(95% CI: 0.37-0.51) in poorly differentiated tumors; 0.48(95% CI: 0.36-0.60) in clinical grade (III-IV) NSCLC and 0.75 (95% CI: 0.69-0.81) in clinical grade (I-II) NSCLC; 0.58(95% CI: 0.45-0.71) in T Stage (T1/T2) NSCLC; 0.68(95% CI: 0.49-0.82) in NSCLC patients with lymph node positivity and 0.51(95% CI: 0.43-0.58) in NSCLC patients with lymph node negativity. Conclusions: These results indicated that MTA1 might be a valuable biomarker in the diagnosis of NSCLC. MTA1 overexpression was significantly associated with age ≥60 years, gender, histopathological type, clinical grade (I-II), T stage (T1/T2) and lymph node positivity in NSCLC patients.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Pathology, School of Basic Medicine, Guangdong Medical University, Dongguan, Guangdong Province, China. ,
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Malisetty VL, Penugurti V, Panta P, Chitta SK, Manavathi B. MTA1 expression in human cancers - Clinical and pharmacological significance. Biomed Pharmacother 2017; 95:956-964. [PMID: 28915537 DOI: 10.1016/j.biopha.2017.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 02/09/2023] Open
Abstract
Remarkably, majority of the cancer deaths are due to metastasis, not because of primary tumors. Metastasis is one of the important hallmarks of cancer. During metastasis invasion of primary tumor cells from the site of origin to a new organ occurs. Metastasis associated proteins (MTAs) are a small family of transcriptional coregulators that are closely associated with tumor metastasis. These proteins are integral components of nuclear remodeling and deacetylation complex (NuRD). By virtue of being integral components of NuRD, these proteins regulate the gene expression by altering the epigenetic changes such as acetylation and methylation on the target gene chromatin. Among the MTA proteins, MTA1 expression is very closely correlated with the aggressiveness of several cancers that includes breast, liver, colon, pancreas, prostate, blood, esophageal, gastro-intestinal etc. Considering its close association with aggressiveness in human cancers, MTA1 may be considered as a potential therapeutic target for cancer treatment. The recent developments in its crystal structure further strengthened the idea of developing small molecule inhibitors for MTA1. In this review, we discuss the recent trends on the diverse functions of MTA1 and its role in various cancers, with the focus to consider MTA1 as a 'druggable' target in the control of human cancers.
Collapse
Affiliation(s)
| | - Vasudevarao Penugurti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Prashanth Panta
- Department of Oral Medicine and Radiology, MNR Dental College and Hospital, Sangareddy, Telangana, India
| | - Suresh Kumar Chitta
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapuramu, AP, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
30
|
Zhang H, Wang J, Yu D, Liu Y, Xue K, Zhao X. Role of Epstein-Barr Virus in the Development of Nasopharyngeal Carcinoma. Open Med (Wars) 2017; 12:171-176. [PMID: 28730175 PMCID: PMC5471915 DOI: 10.1515/med-2017-0025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022] Open
Abstract
Southern China experiences larger extent of total cancer pathologies, of which nasopharyngeal carcinoma has the highest incidence under otorhinolaryngeal malignant carcinomas. Risk factor of nasopharyngeal carcinoma varies from hereditary causes to virus infection, among which Epstein-Barr virus (EBV) infection is the mostly investigated. The study into mechanism of EBV in occurrence, development and prognosis of nasopharyngeal carcinoma has been studied for several decades. The pathophysiology in making of EBV into a cancerogen includes proteins as latent membrane protein 1 (LMPs) and nucleic acids as micro-RNAs. In this paper, we reviewed till date studies focusing on relationship between EBV and nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun130041, China
| | - Jing Wang
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun130041, China
| | - Dan Yu
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun130041, China
| | - Yan Liu
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun130041, China
| | - Kai Xue
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun130041, China
| | - Xue Zhao
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun130041, China
| |
Collapse
|
31
|
Le Sage V, Cinti A, Amorim R, Mouland AJ. Adapting the Stress Response: Viral Subversion of the mTOR Signaling Pathway. Viruses 2016; 8:v8060152. [PMID: 27231932 PMCID: PMC4926172 DOI: 10.3390/v8060152] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 02/06/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a central regulator of gene expression, translation and various metabolic processes. Multiple extracellular (growth factors) and intracellular (energy status) molecular signals as well as a variety of stressors are integrated into the mTOR pathway. Viral infection is a significant stress that can activate, reduce or even suppress the mTOR signaling pathway. Consequently, viruses have evolved a plethora of different mechanisms to attack and co-opt the mTOR pathway in order to make the host cell a hospitable environment for replication. A more comprehensive knowledge of different viral interactions may provide fruitful targets for new antiviral drugs.
Collapse
Affiliation(s)
- Valerie Le Sage
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
| | - Alessandro Cinti
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
- Department of Medicine, McGill University, Montréal, QC H3A 0G4, Canada.
| | - Raquel Amorim
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
- Department of Medicine, McGill University, Montréal, QC H3A 0G4, Canada.
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
- Department of Medicine, McGill University, Montréal, QC H3A 0G4, Canada.
| |
Collapse
|
32
|
Mao Y, Wu S, Zhao R, Deng Q. MiR-205 promotes proliferation, migration and invasion of nasopharyngeal carcinoma cells by activation of AKT signalling. J Int Med Res 2016; 44:231-40. [PMID: 26880795 PMCID: PMC5580060 DOI: 10.1177/0300060515576556] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/16/2015] [Indexed: 01/11/2023] Open
Abstract
Objective To examine the role of microRNA (miR)-205 in proliferation, migration and invasion of nasopharyngeal carcinoma (NPC). Methods The human NPC cell line CNE2 was transfected with miR-205 mimic, anti-miR-205 inhibitor or scrambled oligonucleotide (control). Cell proliferation was assessed via MTT assay. Cell migration and invasion were evaluated by transwell migration and Matrigel® invasion assay, respectively. Radiation induced apoptosis was quantified via Caspase-Glo3/7 assay. Apoptotic proteins and epithelial–mesenchymal transition (EMT) proteins were semiquantified by Western blot analysis. Results Overexpression of miR-205 increased the proliferation, migration and invasion of CNE2 cells, and decreased radiation-induced apoptosis compared with control cells. MiR-205 overexpression downregulated E-cadherin and upregulated Snail expression via downregulation of PTEN and upregulation of AKT. Conclusion MiR-205 plays vital roles in tumourigenesis and tumour progression in NPC, and may be a potential treatment target.
Collapse
Affiliation(s)
- Yanjiao Mao
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou First People's Hospital, Hangzhou, China
| | - Shixiu Wu
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou First People's Hospital, Hangzhou, China
| | - Ruping Zhao
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou First People's Hospital, Hangzhou, China
| | - Qinghua Deng
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou First People's Hospital, Hangzhou, China
| |
Collapse
|
33
|
Structure, expression and functions of MTA genes. Gene 2016; 582:112-21. [PMID: 26869315 DOI: 10.1016/j.gene.2016.02.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 11/23/2022]
Abstract
Metastatic associated proteins (MTA) are integrators of upstream regulatory signals with the ability to act as master coregulators for modifying gene transcriptional activity. The MTA family includes three genes and multiple alternatively spliced variants. The MTA proteins neither have their own enzymatic activity nor have been shown to directly interact with DNA. However, MTA proteins interact with a variety of chromatin remodeling factors and complexes with enzymatic activities for modulating the plasticity of nucleosomes, leading to the repression or derepression of target genes or other extra-nuclear and nucleosome remodeling and histone deacetylase (NuRD)-complex independent activities. The functions of MTA family members are driven by the steady state levels and subcellular localization of MTA proteins, the dynamic nature of modifying signals and enzymes, the structural features and post-translational modification of protein domains, interactions with binding proteins, and the nature of the engaged and resulting features of nucleosomes in the proximity of target genes. In general, MTA1 and MTA2 are the most upregulated genes in human cancer and correlate well with aggressive phenotypes, therapeutic resistance, poor prognosis and ultimately, unfavorable survival of cancer patients. Here we will discuss the structure, expression and functions of the MTA family of genes in the context of cancer cells.
Collapse
|
34
|
Epstein-Barr virus infection and nasopharyngeal carcinoma: the other side of the coin. Anticancer Drugs 2015; 26:1017-25. [PMID: 26241803 DOI: 10.1097/cad.0000000000000276] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oncogenic viruses may have a significant impact on the therapeutic management of several malignancies besides their well-known role in tumor pathogenesis. Epstein-Barr virus (EBV) induces neoplastic transformation of epithelial cells of the nasopharynx by various molecular mechanisms mostly involving activation of oncogenes and inactivation of tumor-suppressor genes. EBV infection can also induce the expression of several immunogenic peptides on the plasma membrane of the infected cells. Importantly, these virus-related antigens may be used as targets for antitumor immunotherapy-based treatment strategies. Two different immunotherapy strategies, namely adoptive and active immunotherapy, have been developed and strongly improved in the recent years. Furthermore, EBV infection may influence the use of targeted therapies for nasopharyngeal carcinoma (NPC) considering that the presence of EBV can induce important modifications in cell signaling. As an example, latent membrane protein type 1 is a viral transmembrane protein mainly involved in the cancerogenesis process, which can also mediate overexpression of the epidermal growth factor receptor (EGFR) in NPC cells, rendering them more sensitive to anti-EGFR therapy. Finally, EBV may induce epigenetic changes in the infected cells, such as DNA hypermethylation and histone deacetylation, that can sustain tumor growth and can thus be considered potential targets for novel therapies. In conclusion, EBV infection can modify important biological features of NPC cells, rendering them more vulnerable to both immunotherapy and targeted therapy.
Collapse
|
35
|
Wang SC, Lin XL, Wang HY, Qin YJ, Chen L, Li J, Jia JS, Shen HF, Yang S, Xie RY, Wei F, Gao F, Rong XX, Yang J, Zhao WT, Zhang TT, Shi JW, Yao KT, Luo WR, Sun Y, Xiao D. Hes1 triggers epithelial-mesenchymal transition (EMT)-like cellular marker alterations and promotes invasion and metastasis of nasopharyngeal carcinoma by activating the PTEN/AKT pathway. Oncotarget 2015; 6:36713-36730. [PMID: 26452025 PMCID: PMC4742206 DOI: 10.18632/oncotarget.5457] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 09/21/2015] [Indexed: 02/07/2023] Open
Abstract
Overexpression of the transcriptional factor Hes1 (hairy and enhancer of split-1) has been observed in numerous cancers, but the precise roles of Hes1 in epithelial-mesenchymal transition (EMT), cancer invasion and metastasis remain unknown. Our current study firstly revealed that Hes1 upregulation in a cohort of human nasopharyngeal carcinoma (NPC) biopsies is significantly associated with the EMT, invasive and metastatic phenotypes of cancer. In the present study, we found that Hes1 overexpression triggered EMT-like cellular marker alterations of NPC cells, whereas knockdown of Hes1 through shRNA reversed the EMT-like phenotypes, as strongly supported by Hes1-mediated EMT in NPC clinical specimens described above. Gain-of-function and loss-of-function experiments demonstrated that Hes1 promoted the migration and invasion of NPC cells in vitro. In addition, exogenous expression of Hes1 significantly enhanced the metastatic ability of NPC cells in vivo. Chromatin immunoprecipitation (ChIP) assays showed that Hes1 inhibited PTEN expression in NPC cells through binding to PTEN promoter region. Increased Hes1 expression and decreased PTEN expression were also observed in a cohort of NPC biopsies. Additional studies demonstrated that Hes1-induced EMT-like molecular changes and increased motility and invasion of NPC cells were mediated by PTEN. Taken together, our results suggest, for what we believe is the first time, that Hes1 plays an important role in the invasion and metastasis of NPC through inhibiting PTEN expression to trigger EMT-like phenotypes.
Collapse
Affiliation(s)
- Sheng-Chun Wang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- Department of Pathology, Guangdong Medical University, Dongguan 523808, China
| | - Xiao-Lin Lin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Hui-Yan Wang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yu-Juan Qin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Lin Chen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jun-Shuang Jia
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Hong-Fen Shen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Sheng Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Rao-Ying Xie
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Fang Wei
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Fei Gao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiao-Xiang Rong
- Department of Oncology, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Jie Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wen-Tao Zhao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Ting-Ting Zhang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jun-Wen Shi
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Kai-Tai Yao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wei-Ren Luo
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yan Sun
- Joint Program in Transfusion Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dong Xiao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
36
|
Wang SC, Lin XL, Wang HY, Qin YJ, Chen L, Li J, Jia JS, Shen HF, Yang S, Xie RY, Wei F, Gao F, Rong XX, Yang J, Zhao WT, Zhang TT, Shi JW, Yao KT, Luo WR, Sun Y, Xiao D. Hes1 triggers epithelial-mesenchymal transition (EMT)-like cellular marker alterations and promotes invasion and metastasis of nasopharyngeal carcinoma by activating the PTEN/AKT pathway. Oncotarget 2015. [PMID: 26452025 DOI: hes1 triggers epithelial-mesenchymal transition (emt)-like cellular marker alterations and promotes invasion and metastasis of nasopharyngeal carcinoma by activating the pten/akt pathway] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Overexpression of the transcriptional factor Hes1 (hairy and enhancer of split-1) has been observed in numerous cancers, but the precise roles of Hes1 in epithelial-mesenchymal transition (EMT), cancer invasion and metastasis remain unknown. Our current study firstly revealed that Hes1 upregulation in a cohort of human nasopharyngeal carcinoma (NPC) biopsies is significantly associated with the EMT, invasive and metastatic phenotypes of cancer. In the present study, we found that Hes1 overexpression triggered EMT-like cellular marker alterations of NPC cells, whereas knockdown of Hes1 through shRNA reversed the EMT-like phenotypes, as strongly supported by Hes1-mediated EMT in NPC clinical specimens described above. Gain-of-function and loss-of-function experiments demonstrated that Hes1 promoted the migration and invasion of NPC cells in vitro. In addition, exogenous expression of Hes1 significantly enhanced the metastatic ability of NPC cells in vivo. Chromatin immunoprecipitation (ChIP) assays showed that Hes1 inhibited PTEN expression in NPC cells through binding to PTEN promoter region. Increased Hes1 expression and decreased PTEN expression were also observed in a cohort of NPC biopsies. Additional studies demonstrated that Hes1-induced EMT-like molecular changes and increased motility and invasion of NPC cells were mediated by PTEN. Taken together, our results suggest, for what we believe is the first time, that Hes1 plays an important role in the invasion and metastasis of NPC through inhibiting PTEN expression to trigger EMT-like phenotypes.
Collapse
Affiliation(s)
- Sheng-Chun Wang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Department of Pathology, Guangdong Medical University, Dongguan 523808, China
| | - Xiao-Lin Lin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Hui-Yan Wang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yu-Juan Qin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Lin Chen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jun-Shuang Jia
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Hong-Fen Shen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Sheng Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Rao-Ying Xie
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Fang Wei
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Fei Gao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiao-Xiang Rong
- Department of Oncology, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Jie Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wen-Tao Zhao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Ting-Ting Zhang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jun-Wen Shi
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Kai-Tai Yao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wei-Ren Luo
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yan Sun
- Joint Program in Transfusion Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dong Xiao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
37
|
Wang SC, Lin XL, Wang HY, Qin YJ, Chen L, Li J, Jia JS, Shen HF, Yang S, Xie RY, Wei F, Gao F, Rong XX, Yang J, Zhao WT, Zhang TT, Shi JW, Yao KT, Luo WR, Sun Y, Xiao D. Hes1 triggers epithelial-mesenchymal transition (EMT)-like cellular marker alterations and promotes invasion and metastasis of nasopharyngeal carcinoma by activating the PTEN/AKT pathway. Oncotarget 2015. [PMID: 26452025 DOI: hes1 triggers epithelial-mesenchymal transition (emt)-like cellular marker alterations and promotes invasion and metastasis of nasopharyngeal carcinoma by activating the pten/akt pathway] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Overexpression of the transcriptional factor Hes1 (hairy and enhancer of split-1) has been observed in numerous cancers, but the precise roles of Hes1 in epithelial-mesenchymal transition (EMT), cancer invasion and metastasis remain unknown. Our current study firstly revealed that Hes1 upregulation in a cohort of human nasopharyngeal carcinoma (NPC) biopsies is significantly associated with the EMT, invasive and metastatic phenotypes of cancer. In the present study, we found that Hes1 overexpression triggered EMT-like cellular marker alterations of NPC cells, whereas knockdown of Hes1 through shRNA reversed the EMT-like phenotypes, as strongly supported by Hes1-mediated EMT in NPC clinical specimens described above. Gain-of-function and loss-of-function experiments demonstrated that Hes1 promoted the migration and invasion of NPC cells in vitro. In addition, exogenous expression of Hes1 significantly enhanced the metastatic ability of NPC cells in vivo. Chromatin immunoprecipitation (ChIP) assays showed that Hes1 inhibited PTEN expression in NPC cells through binding to PTEN promoter region. Increased Hes1 expression and decreased PTEN expression were also observed in a cohort of NPC biopsies. Additional studies demonstrated that Hes1-induced EMT-like molecular changes and increased motility and invasion of NPC cells were mediated by PTEN. Taken together, our results suggest, for what we believe is the first time, that Hes1 plays an important role in the invasion and metastasis of NPC through inhibiting PTEN expression to trigger EMT-like phenotypes.
Collapse
Affiliation(s)
- Sheng-Chun Wang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Department of Pathology, Guangdong Medical University, Dongguan 523808, China
| | - Xiao-Lin Lin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Hui-Yan Wang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yu-Juan Qin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Lin Chen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jun-Shuang Jia
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Hong-Fen Shen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Sheng Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Rao-Ying Xie
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Fang Wei
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Fei Gao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiao-Xiang Rong
- Department of Oncology, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Jie Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wen-Tao Zhao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Ting-Ting Zhang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jun-Wen Shi
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Kai-Tai Yao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wei-Ren Luo
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yan Sun
- Joint Program in Transfusion Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dong Xiao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
38
|
Ohshiro K, Kumar R. MTA1 regulation of ERβ pathway in salivary gland carcinoma cells. Biochem Biophys Res Commun 2015; 464:1016-1021. [PMID: 26168722 PMCID: PMC4558379 DOI: 10.1016/j.bbrc.2015.07.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/08/2015] [Indexed: 11/21/2022]
Abstract
Although Metastatic-tumor antigen 1 (MTA1) is differentially expressed in metastatic cancer and coregulates the status and activity of nuclear receptors, its role upon estrogen receptor β (ERβ) - a potent tumor suppressor, remains poorly understood. Here we investigated whether MTA1 regulates the expression and functions of ERβ, an ER isoform predominantly expressed in salivary gland cancer cells. We found that the depletion of the endogenous MTA1 in the HSG and HSY salivary duct carcinoma cell lines enhances the expression of ERβ while MTA1 overexpression augmented the expression of ERβ in salivary duct carcinoma cells. Furthermore, MTA1 knockdown inhibited the proliferations and invasion of HSG and HSY cells. The noted ERβ downregulation by MTA1 overexpression involves the process of proteasomal degradation, as a proteasome inhibitor could block it. In addition, both MTA1 knockdown and ERβ overexpression attenuated the cell migration and inhibited the ERK1/2 signaling in the both cell lines. These findings imply that MTA1 dysregulation in a subset of salivary gland cancer might promote aggressive phenotypes by compromising the tumor suppressor activity of ERβ, and hence, MTA1-ERβ axis might serve a new therapeutic target for the salivary gland cancer.
Collapse
Affiliation(s)
- Kazufumi Ohshiro
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, 2300 Eye Street, Washington, DC 20037, USA.
| | - Rakesh Kumar
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, 2300 Eye Street, Washington, DC 20037, USA
| |
Collapse
|
39
|
Lin Z, Deng L, Ji J, Cheng C, Wan X, Jiang R, Tang J, Zhuo H, Sun B, Chen Y. S100A4 hypomethylation affects epithelial-mesenchymal transition partially induced by LMP2A in nasopharyngeal carcinoma. Mol Carcinog 2015; 55:1467-76. [PMID: 26292668 DOI: 10.1002/mc.22389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 07/25/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022]
Abstract
To identify cellular target genes involved in NPC cell invasion and metastasis, gene expression profiles of CNE-1 cells with or without ectopic LMP2A expression were compared by using the metastatic gene array. S100 calcium binding protein A4 (S100A4) was the highest increased one among these genes both in mRNA and protein levels of NPC cells. Moreover, S100A4 was upregulated in LMP2A-positive NPC tissues. We found that CNE-1-S100A4 showed significantly increased invasion ability as compared to the controls both in vitro and in vivo, which indicated that S100A4 induced EMT occurrence and promoted metastasis. Notably, the DNA hypomethylation of S100A4 was found in LMP2A-positive NPC tissues. Besides, inhibition of DNA methyltransferases via 5-Aza-dC stimulated the expression of S100A4 in the cells without ectopic LMP2A expression. The methylation changes were confirmed by methylation specific PCR (MSP), suggesting that LMP2A ectopic expression led to the demethylation of S100A4 promoter. These results demonstrated that LMP2A-induced hypomethylation participated in regulating S100A4 expression in NPC. Our findings provide an evidence for the emerging notion that hypomethylation and activation of correlated genes are crucial for metastasis progression in cancer. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhe Lin
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lei Deng
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jie Ji
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ci Cheng
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xin Wan
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Runqiu Jiang
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junwei Tang
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Han Zhuo
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Beicheng Sun
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Yun Chen
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
40
|
Warns JA, Davie JR, Dhasarathy A. Connecting the dots: chromatin and alternative splicing in EMT. Biochem Cell Biol 2015; 94:12-25. [PMID: 26291837 DOI: 10.1139/bcb-2015-0053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases, and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process.
Collapse
Affiliation(s)
- Jessica A Warns
- a Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 501 N. Columbia Road Stop 9061, Grand Forks, ND 58202-9061, USA
| | - James R Davie
- b Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, Winnipeg, Manitoba R3E 3P4, Canada
| | - Archana Dhasarathy
- a Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 501 N. Columbia Road Stop 9061, Grand Forks, ND 58202-9061, USA
| |
Collapse
|
41
|
Gaur N, Gandhi J, Robertson ES, Verma SC, Kaul R. Epstein-Barr virus latent antigens EBNA3C and EBNA1 modulate epithelial to mesenchymal transition of cancer cells associated with tumor metastasis. Tumour Biol 2015; 36:3051-60. [PMID: 25501510 PMCID: PMC4793920 DOI: 10.1007/s13277-014-2941-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022] Open
Abstract
Epithelial-mesenchymal transition is an important mechanism in cancer invasiveness and metastasis. We had previously reported that cancer cells expressing Epstein-Barr virus (EBV) latent viral antigens EBV nuclear antigen EBNA3C and/ or EBNA1 showed higher motility and migration potential and had a propensity for increased metastases when tested in nude mice model. We now show that both EBNA3C and EBNA1 can modulate cellular pathways critical for epithelial to mesenchymal transition of cancer cells. Our data confirms that presence of EBNA3C or EBNA1 result in upregulation of transcriptional repressor Slug and Snail, upregulation of intermediate filament of mesenchymal origin vimentin, upregulation of transcription factor TCF8/ZEB1, downregulation as well as disruption of tight junction zona occludens protein ZO-1, downregulation of cell adhesion molecule E-cadherin, and nuclear translocation of β-catenin. We further show that the primary tumors as well as metastasized lesions derived from EBV antigen-expressing cancer cells in nude mice model display EMT markers expression pattern suggesting their greater propensity to mesenchymal transition.
Collapse
Affiliation(s)
- Nivedita Gaur
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Jaya Gandhi
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Erle S. Robertson
- Department of Microbiology and Tumour Virology Program, Abramson Cancer Centre, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada Reno, Reno, NV, USA
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| |
Collapse
|
42
|
Abstract
Latent Epstein–Barr virus (EBV) infection has a substantial role in causing many human disorders. The persistence of these viral genomes in all malignant cells, yet with the expression of limited latent genes, is consistent with the notion that EBV latent genes are important for malignant cell growth. While the EBV-encoded nuclear antigen-1 (EBNA-1) and latent membrane protein-2A (LMP-2A) are critical, the EBNA-leader proteins, EBNA-2, EBNA-3A, EBNA-3C and LMP-1, are individually essential for in vitro transformation of primary B cells to lymphoblastoid cell lines. EBV-encoded RNAs and EBNA-3Bs are dispensable. In this review, the roles of EBV latent genes are summarized.
Collapse
Affiliation(s)
- Myung-Soo Kang
- 1] Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, Korea [2] Samsung Biomedical Research Institute (SBRI), Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
| | - Elliott Kieff
- Department of Medicine, Brigham and Women's Hospital, Program in Virology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Abstract
Metastasis-associated gene or metastasis tumor antigen 1 (MTA1) is a new member of cancer progression-related gene family. It was first identified in rat mammary adenocarcinoma and later recognized as an important constituent of nucleosomal remodeling complex (NuRD), displaying dual regulatory functions as a co-repressor and co-activator for a large number of genes. Chromatin remodelers are ATP-dependent multi-protein chromatin modifying machines. These complexes alter the nucleosome positioning regulating the accessibility of genomic DNA to various transcription factors and thus modulate eukaryotic gene transcription. Since its identification two decades ago, MTA1 has been reported to be overexpressed in many cancers. Moreover, its overexpression has also been correlated with transformation and tumor progression. Furthermore, MTA1 has been shown to modulate the response of several tumor suppressor genes like p53 and oncogenes like c-myc. Taken together, current literature suggests that MTA proteins, especially MTA1, act as a master co-regulatory molecule involved in the carcinogenesis and progression of various malignant tumors. The primary focus of this review is to provide an overview of the MTA proteins with special emphasis on its role in cancer and use as a marker for cancer progression and potential target for therapy.
Collapse
Affiliation(s)
- Ekjot Kaur
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | | | | |
Collapse
|
44
|
Tan G, Tang X, Huang D, Li Y, Liu N, Peng Z, Zhang Z, Duan C, Lu J, Yan G, Tang F. Dinitrosopiperazine-mediated phosphorylated-proteins are involved in nasopharyngeal carcinoma metastasis. Int J Mol Sci 2014; 15:20054-71. [PMID: 25375189 PMCID: PMC4264155 DOI: 10.3390/ijms151120054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/12/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022] Open
Abstract
N,N'-dinitrosopiperazine (DNP) with organ specificity for nasopharyngeal epithelium, is involved in nasopharyngeal carcinoma (NPC) metastasis, though its mechanism is unclear. To reveal the pathogenesis of DNP-induced metastasis, immunoprecipitation was used to identify DNP-mediated phosphoproteins. DNP-mediated NPC cell line (6-10B) motility and invasion was confirmed. Twenty-six phosphoproteins were increased at least 1.5-fold following DNP exposure. Changes in the expression levels of selected phosphoproteins were verified by Western-blotting analysis. DNP treatment altered the phosphorylation of ezrin (threonine 567), vimentin (serine 55), stathmin (serine 25) and STAT3 (serine 727). Furthermore, it was shown that DNP-dependent metastasis is mediated in part through ezrin at threonine 567, as DNP-mediated metastasis was decreased when threonine 567 of ezrin was mutated. Strikingly, NPC metastatic tumors exhibited a higher expression of phosphorylated-ezrin at threonine 567 than the primary tumors. These findings provide novel insight into DNP-induced NPC metastasis and may contribute to a better understanding of the metastatic mechanisms of NPC tumors.
Collapse
Affiliation(s)
- Gongjun Tan
- Medical Research Center and Clinical Laboratory, Zhuhai Hospital of Jinan University, 79 Kangning Road, Zhuhai 519000, China.
| | - Xiaowei Tang
- Metallurgical Science and Engineering, Central South University, 21 Lushan South Road, Changsha 410083, China.
| | - Damao Huang
- Clinical Laboratory and Medical Research Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China.
| | - Yuejin Li
- Medical Research Center and Clinical Laboratory, Zhuhai Hospital of Jinan University, 79 Kangning Road, Zhuhai 519000, China.
| | - Na Liu
- Clinical Laboratory and Medical Research Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China.
| | - Zhengke Peng
- Medical Research Center and Clinical Laboratory, Zhuhai Hospital of Jinan University, 79 Kangning Road, Zhuhai 519000, China.
| | - Zhenlin Zhang
- Medical Research Center and Clinical Laboratory, Zhuhai Hospital of Jinan University, 79 Kangning Road, Zhuhai 519000, China.
| | - Chaojun Duan
- Clinical Laboratory and Medical Research Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China.
| | - Jinping Lu
- Medical Research Center and Clinical Laboratory, Zhuhai Hospital of Jinan University, 79 Kangning Road, Zhuhai 519000, China.
| | - Guangrong Yan
- Institute of Life and Health Engineering, National Engineering and Research Center for Genetic Medicine, Jinan University, 601 Huangpu Road West, Guangzhou 510632, China.
| | - Faqing Tang
- Medical Research Center and Clinical Laboratory, Zhuhai Hospital of Jinan University, 79 Kangning Road, Zhuhai 519000, China.
| |
Collapse
|