1
|
Dunowska M. Avian influenza viruses: are they changing? N Z Vet J 2025; 73:225-229. [PMID: 40261820 DOI: 10.1080/00480169.2025.2485064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Affiliation(s)
- Magdalena Dunowska
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
2
|
Briand FX, Palumbo L, Martenot C, Massin P, Cherbonnel M, Busson R, Louboutin K, Orosco A, Guillemoto C, Souchaud F, Pierre I, Hirchaud E, Tasset M, Blanchard Y, Le Moal N, Wiele AVD, Schmitz A, Niqueux E, Grasland B. Highly Pathogenic Clade 2.3.4.4b H5N1 Influenza Virus in Seabirds in France, 2022-2023. Transbound Emerg Dis 2025; 2025:8895883. [PMID: 40302742 PMCID: PMC12016834 DOI: 10.1155/tbed/8895883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/16/2025] [Indexed: 05/02/2025]
Abstract
In 2022, a very high number of wild bird deaths associated with the detection of highly pathogenic (HP) H5 avian influenza virus (AIV) lineage Gs/GD/96, clade 2.3.4.4b viruses were unusually observed in Europe between May and September, whereas prior to 2022 most of these HP H5 AIVs detected in wild birds in Europe were almost all detected between October and March and few between April and September. In France, wild birds affected by this virus during this unusual period were mainly seabirds, including larids and sulids. Although the abnormal mortalities in larids and sulids were reported simultaneously, sequencing of the complete genomes of the viruses identified in these seabirds showed that sulids are mainly infected with genotype EA-2020-C, whereas larids are mainly infected with genotype EA-2022-BB. The identification of these two genotypes, therefore, confirmed that there was no direct link between the abnormal mortality observed in sulids and the abnormal mortality observed in larids. These two seabird mortality events can also be distinguished by the evolutionary pattern of the number of detections. Indeed, sulid mortality associated with the EA-2020-C genotype was observed in France only between July and September, corresponding to a single epidemic wave, whereas larid mortality associated with the EA-2022-BB genotype began in France and Europe in May 2022 and then this genotype continued to spread among larids in France in the form of several successive epidemic waves until at least September 2023.
Collapse
Affiliation(s)
| | - Loïc Palumbo
- French Biodiversity Agency (OFB), Vincennes, France
| | - Claire Martenot
- Ploufragan-Plouzané-Niort Laboratory, Anses, Ploufragan, France
| | - Pascale Massin
- Ploufragan-Plouzané-Niort Laboratory, Anses, Ploufragan, France
| | | | - Rachel Busson
- Ploufragan-Plouzané-Niort Laboratory, Anses, Ploufragan, France
| | | | - Angelina Orosco
- Ploufragan-Plouzané-Niort Laboratory, Anses, Ploufragan, France
| | | | | | - Isabelle Pierre
- Ploufragan-Plouzané-Niort Laboratory, Anses, Ploufragan, France
| | | | - Manon Tasset
- Ploufragan-Plouzané-Niort Laboratory, Anses, Ploufragan, France
| | | | - Nolwenn Le Moal
- Office of Animal Health, French General Directorate for Food (DGAl), Paris, France
| | | | - Audrey Schmitz
- Ploufragan-Plouzané-Niort Laboratory, Anses, Ploufragan, France
| | - Eric Niqueux
- Ploufragan-Plouzané-Niort Laboratory, Anses, Ploufragan, France
| | | |
Collapse
|
3
|
Siegers JY, Wille M, Yann S, Tok S, Sin S, Chea S, Porco A, Sours S, Chim V, Chea S, Chhel K, Tum S, Sorn S, Hak M, Thielen P, Dhanasekaran V, Karlsson EA. Detection and phylogenetic analysis of contemporary H14N2 Avian influenza A virus in domestic ducks in Southeast Asia (Cambodia). Emerg Microbes Infect 2024; 13:2297552. [PMID: 38112157 PMCID: PMC11025406 DOI: 10.1080/22221751.2023.2297552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/17/2023] [Indexed: 12/20/2023]
Abstract
Avian influenza virus (AIV) in Asia is a complex system with numerous subtypes and a highly porous wild birds-poultry interface. Certain AIV subtypes, such as H14, are underrepresented in current surveillance efforts, leaving gaps in our understanding of their ecology and evolution. The detection of rare subtype H14 in domestic ducks in Southeast Asia comprises a geographic region and domestic bird population previously unassociated with this subtype. These H14 viruses have a complex evolutionary history involving gene reassortment events. They share sequence similarity to AIVs endemic in Cambodian ducks, and Eurasian low pathogenicity and high pathogenicity H5Nx AIVs. The detection of these H14 viruses in Southeast Asian domestic poultry further advances our knowledge of the ecology and evolution of this subtype and reinforces the need for continued, longitudinal, active surveillance in domestic and wild birds. Additionally, in vivo and in vitro risk assessment should encompass rare AIV subtypes, as they have the potential to establish in poultry systems.
Collapse
Affiliation(s)
- Jurre Y. Siegers
- Virology Unit, Institute Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Michelle Wille
- Centre for Pathogen Genomics, Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sokhoun Yann
- Virology Unit, Institute Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Songha Tok
- Virology Unit, Institute Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sarath Sin
- Virology Unit, Institute Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sokha Chea
- Wildlife Conservation Society, Phnom Penh, Cambodia
| | - Alice Porco
- Wildlife Conservation Society, Phnom Penh, Cambodia
| | - Sreyem Sours
- Wildlife Conservation Society, Phnom Penh, Cambodia
| | - Vutha Chim
- National Animal Health and Production Research Institute, Phnom Penh, Cambodia
| | - Samban Chea
- Virology Unit, Institute Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Kimtuo Chhel
- Virology Unit, Institute Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sothyra Tum
- National Animal Health and Production Research Institute, Phnom Penh, Cambodia
| | - San Sorn
- National Animal Health and Production Research Institute, Phnom Penh, Cambodia
| | - Makara Hak
- Food and Agriculture Organization of the United Nations Country Office, Phnom Penh, Cambodia
| | - Peter Thielen
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Vijaykrishna Dhanasekaran
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, People’s Republic of China
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Erik A. Karlsson
- Virology Unit, Institute Pasteur du Cambodge, Phnom Penh, Cambodia
| |
Collapse
|
4
|
Khatun MN, Tasnim S, Hossain MR, Rahman MZ, Hossain MT, Chowdhury EH, Parvin R. Molecular epidemiology of avian influenza viruses and avian coronaviruses in environmental samples from migratory bird inhabitants in Bangladesh. Front Vet Sci 2024; 11:1446577. [PMID: 39434717 PMCID: PMC11491338 DOI: 10.3389/fvets.2024.1446577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
Migratory birds are a natural reservoir for major respiratory viruses such as the avian influenza virus (AIV) and the avian coronavirus (AvCoV). Transmission of these viruses from migratory birds to domestic birds increases the prevalence of those diseases that cause severe economic and public health concerns in Bangladesh. The study focused on active surveillance of major respiratory viral pathogens in migratory birds, molecular identification of the viruses, and their phylogenetic origin. To conduct this study, 850 environmental samples (830 fecal samples, 10 soil samples, and 10 water samples) were collected during three consecutive winter seasons from three divisions (Dhaka, Sylhet, and Mymensingh) and pooled according to the year of collection and locations, resulting in a total of 184 tested samples. Using gene-specific primers and probes in TaqMan-and SYBR Green-based RT-qPCR assays, the samples were screened for AIV and AvCoV, respectively. Out of the 184 pooled samples, 37 were found to be positive for these respiratory pathogens. Furthermore, out of the 37 (20.11%) positive respiratory pathogens, 11.96% were AIV (n = 22) and 8.15% were AvCoV (n = 15). For the first time in Bangladesh, AIV H4N2, H4N6, and AvCoVs have been found in fecal samples from migratory birds through surveillance. Phylogenetic analyses of the HA and NA genes of AIV and the polymerase gene (Orf 1) of AvCoV revealed that these strains share a close phylogenetic relationship with the isolates from wild birds in Europe and Asia. The Bangladeshi strains with Eurasian ancestry might pose a significant threat to migratory birds flying through the Asian flyways. They might also be a potential source of virus introduction and spread to poultry raised on land. These findings emphasize the significance of ongoing AIV and AvCoV surveillance in migratory birds in Bangladesh.
Collapse
Affiliation(s)
- Most. Nahida Khatun
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shadia Tasnim
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Riabbel Hossain
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Ziaur Rahman
- Molecular Radiobiology and Biodosimetry Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Dhaka, Bangladesh
| | - Md. Tofazzal Hossain
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
5
|
Zhang Z, Lei Z. The Alarming Situation of Highly Pathogenic Avian Influenza Viruses in 2019-2023. Glob Med Genet 2024; 11:200-213. [PMID: 38947761 PMCID: PMC11213626 DOI: 10.1055/s-0044-1788039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Avian influenza viruses (AIVs) have the potential to cause severe illness in wild birds, domestic poultry, and humans. The ongoing circulation of highly pathogenic avian influenza viruses (HPAIVs) has presented significant challenges to global poultry industry and public health in recent years. This study aimed to elucidate the circulation of HPAIVs during 2019 to 2023. Specifically, we assess the alarming global spread and continuous evolution of HPAIVs. Moreover, we discuss their transmission and prevention strategies to provide valuable references for future prevention and control measures against AIVs.
Collapse
Affiliation(s)
- Zhiwei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian Province, People's Republic of China
- Department of Industrial & Systems Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Zhao Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| |
Collapse
|
6
|
Li T, Spruit CM, Wei N, Liu L, Wolfert MA, de Vries RP, Boons GJ. Chemoenzymatic Synthesis of Tri-antennary N-Glycans Terminating in Sialyl-Lewis x Reveals the Importance of Glycan Complexity for Influenza A Virus Receptor Binding. Chemistry 2024; 30:e202401108. [PMID: 38567703 PMCID: PMC11156558 DOI: 10.1002/chem.202401108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Indexed: 05/09/2024]
Abstract
Sialyl-Lewisx (SLex) is involved in immune regulation, human fertilization, cancer, and bacterial and viral diseases. The influence of the complex glycan structures, which can present SLex epitopes, on binding is largely unknown. We report here a chemoenzymatic strategy for the preparation of a panel of twenty-two isomeric asymmetrical tri-antennary N-glycans presenting SLex-Lex epitopes on either the MGAT4 or MGAT5 arm that include putative high-affinity ligands for E-selectin. The N-glycans were prepared starting from a sialoglycopeptide isolated from egg yolk powder and took advantage of inherent substrate preferences of glycosyltransferases and the use of 5'-diphospho-N-trifluoracetylglucosamine (UDP-GlcNHTFA) that can be transferred by branching N-acetylglucosaminyltransferases to give, after base treatment, GlcNH2-containing glycans that temporarily disable an antenna from enzymatic modification. Glycan microarray binding studies showed that E-selectin bound equally well to linear glycans and tri-antennary N-glycans presenting SLex-Lex. On the other hand, it was found that hemagglutinins (HA) of H5 influenza A viruses (IAV) preferentially bound the tri-antennary N-glycans. Furthermore, several H5 HAs preferentially bound to N-glycan presenting SLex on the MGAT4 arm. SLex is displayed in the respiratory tract of several avian species, demonstrating the relevance of investigating the binding of, among others IAVs, to complex N-glycans presenting SLex.
Collapse
Affiliation(s)
- Tiehai Li
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Present address: Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Cindy M Spruit
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Na Wei
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Margreet A Wolfert
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Chemistry Department, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
7
|
Spruit CM, Palme DI, Li T, Ríos Carrasco M, Gabarroca García A, Sweet IR, Kuryshko M, Maliepaard JCL, Reiding KR, Scheibner D, Boons GJ, Abdelwhab EM, de Vries RP. Complex N-glycans are important for interspecies transmission of H7 influenza A viruses. J Virol 2024; 98:e0194123. [PMID: 38470143 PMCID: PMC11019957 DOI: 10.1128/jvi.01941-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Influenza A viruses (IAVs) can overcome species barriers by adaptation of the receptor-binding site of the hemagglutinin (HA). To initiate infection, HAs bind to glycan receptors with terminal sialic acids, which are either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc); the latter is mainly found in horses and pigs but not in birds and humans. We investigated the influence of previously identified equine NeuGc-adapting mutations (S128T, I130V, A135E, T189A, and K193R) in avian H7 IAVs in vitro and in vivo. We observed that these mutations negatively affected viral replication in chicken cells but not in duck cells and positively affected replication in horse cells. In vivo, the mutations reduced virus virulence and mortality in chickens. Ducks excreted high viral loads longer than chickens, although they appeared clinically healthy. To elucidate why these viruses infected chickens and ducks despite the absence of NeuGc, we re-evaluated the receptor binding of H7 HAs using glycan microarray and flow cytometry studies. This re-evaluation demonstrated that mutated avian H7 HAs also bound to α2,3-linked NeuAc and sialyl-LewisX, which have an additional fucose moiety in their terminal epitope, explaining why infection of ducks and chickens was possible. Interestingly, the α2,3-linked NeuAc and sialyl-LewisX epitopes were only bound when presented on tri-antennary N-glycans, emphasizing the importance of investigating the fine receptor specificities of IAVs. In conclusion, the binding of NeuGc-adapted H7 IAV to tri-antennary N-glycans enables viral replication and shedding by chickens and ducks, potentially facilitating interspecies transmission of equine-adapted H7 IAVs.IMPORTANCEInfluenza A viruses (IAVs) cause millions of deaths and illnesses in birds and mammals each year. The viral surface protein hemagglutinin initiates infection by binding to host cell terminal sialic acids. Hemagglutinin adaptations affect the binding affinity to these sialic acids and the potential host species targeted. While avian and human IAVs tend to bind to N-acetylneuraminic acid (sialic acid), equine H7 viruses prefer binding to N-glycolylneuraminic acid (NeuGc). To better understand the function of NeuGc-specific adaptations in hemagglutinin and to elucidate interspecies transmission potential NeuGc-adapted viruses, we evaluated the effects of NeuGc-specific mutations in avian H7 viruses in chickens and ducks, important economic hosts and reservoir birds, respectively. We also examined the impact on viral replication and found a binding affinity to tri-antennary N-glycans containing different terminal epitopes. These findings are significant as they contribute to the understanding of the role of receptor binding in avian influenza infection.
Collapse
Affiliation(s)
- Cindy M. Spruit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Diana I. Palme
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Tiehai Li
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - María Ríos Carrasco
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Alba Gabarroca García
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Igor R. Sweet
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maryna Kuryshko
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Joshua C. L. Maliepaard
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Karli R. Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Nilsson J, Eriksson P, Naguib MM, Jax E, Sihlbom C, Olsson BM, Lundkvist Å, Olsen B, Järhult JD, Larson G, Ellström P. Expression of influenza A virus glycan receptor candidates in mallard, chicken, and tufted duck. Glycobiology 2024; 34:cwad098. [PMID: 38127648 PMCID: PMC10987293 DOI: 10.1093/glycob/cwad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Influenza A virus (IAV) pandemics result from interspecies transmission events within the avian reservoir and further into mammals including humans. Receptor incompatibility due to differently expressed glycan structures between species has been suggested to limit zoonotic IAV transmission from the wild bird reservoir as well as between different bird species. Using glycoproteomics, we have studied the repertoires of expressed glycan structures with focus on putative sialic acid-containing glycan receptors for IAV in mallard, chicken and tufted duck; three bird species with different roles in the zoonotic ecology of IAV. The methodology used pinpoints specific glycan structures to specific glycosylation sites of identified glycoproteins and was also used to successfully discriminate α2-3- from α2-6-linked terminal sialic acids by careful analysis of oxonium ions released from glycopeptides in tandem MS/MS (MS2), and MS/MS/MS (MS3). Our analysis clearly demonstrated that all three bird species can produce complex N-glycans including α2-3-linked sialyl Lewis structures, as well as both N- and O- glycans terminated with both α2-3- and α2-6-linked Neu5Ac. We also found the recently identified putative IAV receptor structures, Man-6P N-glycopeptides, in all tissues of the three bird species. Furthermore, we found many similarities in the repertoires of expressed receptors both between the bird species investigated and to previously published data from pigs and humans. Our findings of sialylated glycan structures, previously anticipated to be mammalian specific, in all three bird species may have major implications for our understanding of the role of receptor incompatibility in interspecies transmission of IAV.
Collapse
Affiliation(s)
- Jonas Nilsson
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska University Hospital, Vita Stråket 12, Gothenburg SE-413 45, Sweden
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Bruna Stråket 16, Gothenburg SE-413 45, Sweden
- Proteomics Core Facility, University of Gothenburg, Sahlgrenska Academy, Medicinaregatan 9E, Gothenburg SE-405 30, Sweden
| | - Per Eriksson
- Zoonosis Science Center, Department of Medical Sciences, Husargatan 3, Uppsala University, Uppsala, SE-75185, Sweden
| | - Mahmoud M Naguib
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Husargatan 3, Uppsala University, Uppsala, SE-75237, Sweden
| | - Elinor Jax
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, Radolfzell, Baden-Württemberg DE-78315, Germany
| | - Carina Sihlbom
- Proteomics Core Facility, University of Gothenburg, Sahlgrenska Academy, Medicinaregatan 9E, Gothenburg SE-405 30, Sweden
| | - Britt-Marie Olsson
- Proteomics Core Facility, University of Gothenburg, Sahlgrenska Academy, Medicinaregatan 9E, Gothenburg SE-405 30, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Husargatan 3, Uppsala University, Uppsala, SE-75237, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Husargatan 3, Uppsala University, Uppsala, SE-75185, Sweden
| | - Josef D Järhult
- Zoonosis Science Center, Department of Medical Sciences, Husargatan 3, Uppsala University, Uppsala, SE-75185, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska University Hospital, Vita Stråket 12, Gothenburg SE-413 45, Sweden
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Bruna Stråket 16, Gothenburg SE-413 45, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Husargatan 3, Uppsala University, Uppsala, SE-75185, Sweden
| |
Collapse
|
9
|
Wang M, Guo J, Zhang H, Sun X, Shen J, Guan M, Liu L, Liu W, Yu Z, Ren A, Li Y, Li X. Ecological and Genetic Landscapes of Global H12 Avian Influenza Viruses and Biological Characteristics of an H12N5 Virus Isolated from Wild Ducks in Eastern China. Transbound Emerg Dis 2024; 2024:9140418. [PMID: 40303124 PMCID: PMC12017136 DOI: 10.1155/2024/9140418] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 05/02/2025]
Abstract
Wild migratory birds are considered the central reservoirs of avian influenza viruses. H12 viruses are one of the 16 hemagglutinin (HA) subtypes of avian influenza viruses and are rarely reported because they are infrequently detected in birds. Consequently, the ecological and genetic profiles of H12 viruses and their adaptation in domestic birds and mammals remain unclear. Here, we found that H12N5 viruses were predominant in the nine identified H12NX subtypes, with the HA (H12) and neuraminidase (NA) (N5) genes showing combination bias in the categorized analysis of subtype combinations (H12 and N1-N9; H1-H12, H14, H15, and N5). These identified H12N5 viruses were primarily detected in birds of Anatidae and Scolopacidae in North America, excluding their possible characterization as chicken or mammalian viruses. The H12N5 viruses were divided into the North American lineage and Eurasian lineage according to their genetic differences, including the HA and NA surface genes and internal genes, although reassortment was observed between the two lineages. We isolated an Eurasian-lineage H12N5 virus from wild ducks in Eastern China, which was one of the 12 identified H12 viruses in China. Infectivity studies indicated that the H12N5 virus is poorly adapted to domestic ducks and chickens, although viral shedding could be detected in both inoculated and contact birds. Additionally, the naturally isolated H12N5 virus did not achieve good replication in mice. These results indicate that the rare subtype of H12 viruses was mainly pooled in wild migratory birds and has an established phylogeography, with low risks of spillover into domestic birds and mammals.
Collapse
Affiliation(s)
- Mengjing Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Jing Guo
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Hong Zhang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Xiaohong Sun
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Jinyan Shen
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Mengdi Guan
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Lili Liu
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Wenqiang Liu
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Zhijun Yu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Shandong, China
| | - Anran Ren
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Yubao Li
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Xuyong Li
- College of Agronomy, Liaocheng University, Liaocheng, China
| |
Collapse
|
10
|
Elli S, Raffaini G, Guerrini M, Kosakovsky Pond S, Matrosovich M. Molecular modeling and phylogenetic analyses highlight the role of amino acid 347 of the N1 subtype neuraminidase in influenza virus host range and interspecies adaptation. Front Microbiol 2023; 14:1309156. [PMID: 38169695 PMCID: PMC10758481 DOI: 10.3389/fmicb.2023.1309156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
The N1 neuraminidases (NAs) of avian and pandemic human influenza viruses contain tyrosine and asparagine, respectively, at position 347 on the rim of the catalytic site; the biological significance of this difference is not clear. Here, we used molecular dynamics simulation to model the effects of amino acid 347 on N1 NA interactions with sialyllacto-N-tetraoses 6'SLN-LC and 3'SLN-LC, which represent NA substrates in humans and birds, respectively. Our analysis predicted that Y347 plays an important role in the NA preference for the avian-type substrates. The Y347N substitution facilitates hydrolysis of human-type substrates by resolving steric conflicts of the Neu5Ac2-6Gal moiety with the bulky side chain of Y347, decreasing the free energy of substrate binding, and increasing the solvation of the Neu5Ac2-6Gal bond. Y347 was conserved in all N1 NA sequences of avian influenza viruses in the GISAID EpiFlu database with two exceptions. First, the Y347F substitution was present in the NA of a specific H6N1 poultry virus lineage and was associated with the substitutions G228S and/or E190V/L in the receptor-binding site (RBS) of the hemagglutinin (HA). Second, the highly pathogenic avian H5N1 viruses of the Gs/Gd lineage contained sporadic variants with the NA substitutions Y347H/D, which were frequently associated with substitutions in the HA RBS. The Y347N substitution occurred following the introductions of avian precursors into humans and pigs with N/D347 conserved during virus circulation in these hosts. Comparative evolutionary analysis of site 347 revealed episodic positive selection across the entire tree and negative selection within most host-specific groups of viruses, suggesting that substitutions at NA position 347 occurred during host switches and remained under pervasive purifying selection thereafter. Our results elucidate the role of amino acid 347 in NA recognition of sialoglycan substrates and emphasize the significance of substitutions at position 347 as a marker of host range and adaptive evolution of influenza viruses.
Collapse
Affiliation(s)
- Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche ‘G. Ronzoni’, Milan, Italy
| | - Giuseppina Raffaini
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche ‘G. Ronzoni’, Milan, Italy
| | - Sergei Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
| | | |
Collapse
|
11
|
Wang Y, Wang M, Zhang H, Zhao C, Zhang Y, Shen J, Sun X, Xu H, Xie Y, Gao X, Cui P, Chu D, Li Y, Liu W, Peng P, Deng G, Guo J, Li X. Prevalence, evolution, replication and transmission of H3N8 avian influenza viruses isolated from migratory birds in eastern China from 2017 to 2021. Emerg Microbes Infect 2023; 12:2184178. [PMID: 36913241 PMCID: PMC10013397 DOI: 10.1080/22221751.2023.2184178] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The continued evolution and emergence of novel influenza viruses in wild and domestic animals poses an increasing public health risk. Two human cases of H3N8 avian influenza virus infection in China in 2022 have caused public concern regarding the risk of transmission between birds and humans. However, the prevalence of H3N8 avian influenza viruses in their natural reservoirs and their biological characteristics are largely unknown. To elucidate the potential threat of H3N8 viruses, we analyzed five years of surveillance data obtained from an important wetland region in eastern China and evaluated the evolutionary and biological characteristics of 21 H3N8 viruses isolated from 15,899 migratory bird samples between 2017 and 2021. Genetic and phylogenetic analyses showed that the H3N8 viruses circulating in migratory birds and ducks have evolved into different branches and have undergone complicated reassortment with viruses in waterfowl. The 21 viruses belonged to 12 genotypes, and some strains induced body weight loss and pneumonia in mice. All the tested H3N8 viruses preferentially bind to avian-type receptors, although they have acquired the ability to bind human-type receptors. Infection studies in ducks, chickens and pigeons demonstrated that the currently circulating H3N8 viruses in migratory birds have a high possibility of infecting domestic waterfowl and a low possibility of infecting chickens and pigeons. Our findings imply that circulating H3N8 viruses in migratory birds continue to evolve and pose a high infection risk in domestic ducks. These results further emphasize the importance of avian influenza surveillance at the wild bird and poultry interface.
Collapse
Affiliation(s)
- Yanwen Wang
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Mengjing Wang
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Hong Zhang
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Conghui Zhao
- Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin, People's Republic of China
| | - Yaping Zhang
- Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin, People's Republic of China
| | - Jinyan Shen
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Xiaohong Sun
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Hongke Xu
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Yujiao Xie
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Xinxin Gao
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Pengfei Cui
- Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin, People's Republic of China
| | - Dong Chu
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang, People's Republic of China
| | - Yubao Li
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Wenqiang Liu
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Peng Peng
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang, People's Republic of China
| | - Guohua Deng
- Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin, People's Republic of China
| | - Jing Guo
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Xuyong Li
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| |
Collapse
|
12
|
Zhou X, Wang S, Ma Y, Li Y, Deng G, Shi J, Wang X. Rapid detection of avian influenza virus based on CRISPR-Cas12a. Virol J 2023; 20:261. [PMID: 37957729 PMCID: PMC10644463 DOI: 10.1186/s12985-023-02232-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Avian influenza (AI) is a disease caused by the avian influenza virus (AIV). These viruses spread naturally among wild aquatic birds worldwide and infect domestic poultry, other birds, and other animal species. Currently, real-time reverse transcription polymerase chain reaction (rRT-PCR) is mainly used to detect the presence of pathogens and has good sensitivity and specificity. However, the diagnosis requires sophisticated instruments under laboratory conditions, which significantly limits point-of-care testing (POCT). Rapid, reliable, non-lab-equipment-reliant, sensitive, and specific diagnostic tests are urgently needed for rapid clinical detection and diagnosis. Our study aimed to develop a reverse transcription recombinase polymerase amplification (RT-RPA)/CRISPR method which improves on these limitations. METHODS The Cas12a protein was purified by affinity chromatography with Ni-agarose resin and observed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Specific CRISPR RNA (crRNA) and primers targeting the M and NP genes of the AIV were designed and screened. By combining RT-RPA with the Cas12a/crRNA trans-cleavage system, a detection system that uses fluorescence readouts under blue light or lateral flow strips was established. Sensitivity assays were performed using a tenfold dilution series of plasmids and RNA of the M and NP genes as templates. The specificity of this method was determined using H1-H16 subtype AIVs and other avian pathogens, such as newcastle disease virus (NDV), infectious bursal disease virus (IBDV), and infectious bronchitis virus (IBV). RESULTS The results showed that the method was able to detect AIV and that the detection limit can reach 6.7 copies/μL and 12 copies/μL for the M and NP gene, respectively. In addition, this assay showed no cross-reactivity with other avian-derived RNA viruses such as NDV, IBDV, and IBV. Moreover, the detection system presented 97.5% consistency and agreement with rRT-PCR and virus isolation for detecting samples from poultry. This portable and accurate method has great potential for AIV detection in the field. CONCLUSION An RT-RPA/CRISPR method was developed for rapid, sensitive detection of AIV. The new system presents a good potential as an accurate, user-friendly, and inexpensive platform for point-of-care testing applications.
Collapse
Affiliation(s)
- Xu Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siwen Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanbing Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiurong Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
13
|
Carnegie L, Raghwani J, Fournié G, Hill SC. Phylodynamic approaches to studying avian influenza virus. Avian Pathol 2023; 52:289-308. [PMID: 37565466 DOI: 10.1080/03079457.2023.2236568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023]
Abstract
Avian influenza viruses can cause severe disease in domestic and wild birds and are a pandemic threat. Phylodynamics is the study of how epidemiological, evolutionary, and immunological processes can interact to shape viral phylogenies. This review summarizes how phylodynamic methods have and could contribute to the study of avian influenza viruses. Specifically, we assess how phylodynamics can be used to examine viral spread within and between wild or domestic bird populations at various geographical scales, identify factors associated with virus dispersal, and determine the order and timing of virus lineage movement between geographic regions or poultry production systems. We discuss factors that can complicate the interpretation of phylodynamic results and identify how future methodological developments could contribute to improved control of the virus.
Collapse
Affiliation(s)
- L Carnegie
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| | - J Raghwani
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| | - G Fournié
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint Genes Champanelle, France
| | - S C Hill
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| |
Collapse
|
14
|
Naguib MM, Eriksson P, Jax E, Wille M, Lindskog C, Bröjer C, Krambrich J, Waldenström J, Kraus RHS, Larson G, Lundkvist Å, Olsen B, Järhult JD, Ellström P. A Comparison of Host Responses to Infection with Wild-Type Avian Influenza Viruses in Chickens and Tufted Ducks. Microbiol Spectr 2023; 11:e0258622. [PMID: 37358408 PMCID: PMC10434033 DOI: 10.1128/spectrum.02586-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/31/2023] [Indexed: 06/27/2023] Open
Abstract
Cross-species transmission of influenza A virus (IAV) from wild waterfowl to poultry is the first step in a chain of events that can ultimately lead to exposure and infection of humans. Herein, we study the outcome of infection with eight different mallard-origin IAV subtypes in two different avian hosts: tufted ducks and chickens. We found that infection and shedding patterns as well as innate immune responses were highly dependent on viral subtypes, host species, and inoculation routes. For example, intraoesophageal inoculation, commonly used in mallard infection experiments, resulted in no infections in contrast to oculonasal inoculation, suggesting a difference in transmission routes. Despite H9N2 being endemic in chickens, inoculation of mallard-origin H9N2 failed to cause viable infection beyond 1 day postinfection in our study design. The innate immune responses were markedly different in chickens and tufted ducks, and despite the presence of retinoic acid-inducible gene-I (RIG-I) in tufted duck transcriptomes, it was neither up nor downregulated in response to infection. Overall, we have revealed the heterogeneity of infection patterns and responses in two markedly different avian hosts following a challenge with mallard-origin IAV. These virus-host interactions provide new insights into important aspects of interspecies transmission of IAV. IMPORTANCE Our current findings highlight important aspects of IAV infection in birds that have implications for our understanding of its zoonotic ecology. In contrast to mallards where the intestinal tract is the main site of IAV replication, chickens and tufted ducks show limited or no signs of intestinal infection suggesting that the fecal-oral transmission route might not apply to all bird IAV host species. Our results indicate that mallard-origin IAVs undergo genetic changes upon introduction into new hosts, suggesting rapid adaptation to a new environment. However, similar to the mallard, chickens and tufted ducks show a limited immune response to infection with low pathogenic avian influenza viruses. These findings and future studies in different IAV hosts are important for our understanding of barriers to IAV transmission between species and ultimately from the wild reservoir to humans.
Collapse
Affiliation(s)
- Mahmoud M. Naguib
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Per Eriksson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Elinor Jax
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Michelle Wille
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Caroline Bröjer
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Janina Krambrich
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Robert H. S. Kraus
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Göran Larson
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Josef D. Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Genetic Analysis of a Novel H16N3 Virus Isolated from a Migratory Gull in China in 2021 and Animal Studies of Infection. Microbiol Spectr 2022; 10:e0248422. [PMID: 36314919 PMCID: PMC9769943 DOI: 10.1128/spectrum.02484-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
H16 avian influenza viruses mainly circulate in wild migratory gulls worldwide, and the infection risks in poultry and mammals remain largely unknown. In this study, we isolated a novel H16N3 virus from migratory gulls in eastern China in 2021. Genetic analysis indicated that the H16N3 virus originated from the H16 and H13 viruses that circulated in wild birds. This H16N3 virus has not adapted to replicate in chickens, ducks, or mice, although it can be transmitted between inoculated and contacted birds. The circulation of H16Nx viruses in the Northern Hemisphere indicates that we should strengthen active surveillance to monitor their prevalence and evolution in migratory gulls and their introduction into other migratory and domestic waterfowl. IMPORTANCE Migratory wild birds are natural reservoirs of H16 viruses and play a key role in the global prevalence of these viruses. Here, we found that H16 viruses predominantly circulate in migratory gulls and that the gull H16N3 virus cannot replicate efficiently in chickens, ducks, or mice without prior adaptation. These findings contribute to our understanding of the ecology, evolution, and biological properties of H16 viruses and will guide avian influenza surveillance in birds.
Collapse
|
16
|
Tarasiuk K, Kycko A, Knitter M, Świętoń E, Wyrostek K, Domańska-Blicharz K, Bocian Ł, Meissner W, Śmietanka K. Pathogenicity of highly pathogenic avian influenza H5N8 subtype for herring gulls (Larus argentatus): impact of homo- and heterosubtypic immunity on the outcome of infection. Vet Res 2022; 53:108. [PMID: 36517883 PMCID: PMC9749649 DOI: 10.1186/s13567-022-01125-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
To improve understanding of the pathobiology of highly pathogenic avian influenza virus (HPAIV) infections in wild birds, pathogenicity and transmissibility of HPAIV H5N8 subtype clade 2.3.4.4b was evaluated in ~ 8-week-old herring gulls (Larus argentatus) divided into 3 groups: naïve birds (group A), birds previously exposed to low pathogenic avian influenza virus (LPAIV) H5N1 (group B) and LPAIV H13N6 (group C). The HPAIV H5N8 virus was highly virulent for naïve gulls, that showed early morbidity, high mortality, a broad spectrum of clinical signs, including violent neurological disorders, systemic distribution of the virus in organs accompanied by high level of shedding and transmission to contact birds. Pre-exposure to homologous and heterologous LPAIV subtypes conferred only partial protection: we observed increased survival rate (statistically significant only in group B), nervous signs, pantropic distribution of virus in organs, shedding (significantly reduced in gulls of group C in the early phase of disease and asymptomatic shedding in the late phase), transmission to contact gulls (more pronounced in group B) and near-complete seroconversion in survivors. Histopathological and immunohistochemical results indicate virus tropism for the neural, respiratory and myocardial tissues. In conclusion, we demonstrate that HPAIV H5N8 clade 2.3.4.4b is highly virulent and lethal for fully susceptible herring gulls and that pre-exposure to homo- and heterosubtypic LPAIV only partially modulates the disease outcome.
Collapse
Affiliation(s)
- Karolina Tarasiuk
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| | - Anna Kycko
- Department of Pathology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| | - Małgorzata Knitter
- Ornithology Unit, Department of Vertebrate Ecology & Zoology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Edyta Świętoń
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| | - Krzysztof Wyrostek
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| | - Katarzyna Domańska-Blicharz
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| | - Łukasz Bocian
- Department of Epidemiology and Risk Assessment, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| | - Włodzimierz Meissner
- Ornithology Unit, Department of Vertebrate Ecology & Zoology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Krzysztof Śmietanka
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland.
| |
Collapse
|
17
|
Asrani P, Seebohm G, Stoll R. Potassium viroporins as model systems for understanding eukaryotic ion channel behaviour. Virus Res 2022; 320:198903. [PMID: 36037849 DOI: 10.1016/j.virusres.2022.198903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022]
Abstract
Ion channels are membrane proteins essential for a plethora of cellular functions including maintaining cell shape, ion homeostasis, cardiac rhythm and action potential in neurons. The complexity and often extensive structure of eukaryotic membrane proteins makes it difficult to understand their basic biological regulation. Therefore, this article suggests, viroporins - the miniature versions of eukaryotic protein homologs from viruses - might serve as model systems to provide insights into behaviour of eukaryotic ion channels in general. The structural requirements for correct assembly of the channel along with the basic functional properties of a K+ channel exist in the minimal design of the viral K+ channels from two viruses, Chlorella virus (Kcv) and Ectocarpus siliculosus virus (Kesv). These small viral proteins readily assemble into tetramers and they sort in cells to distinct target membranes. When these viruses-encoded channels are expressed into the mammalian cells, they utilise their protein machinery and hence can serve as excellent tools to study the cells protein sorting machinery. This combination of small size and robust function makes viral K+ channels a valuable model system for detection of basic structure-function correlations. It is believed that molecular and physiochemical analyses of these viroporins may serve as basis for the development of inhibitors or modulators to ion channel activity for targeting ion channel diseases - so called channelopathies. Therefore, it may provide a potential different scope for molecular pharmacology studies aiming at novel and innovative therapeutics associated with channel related diseases. This article reviews the structural and functional properties of Kcv and Kesv upon expression in mammalian cells and Xenopus oocytes. The mechanisms behind differential protein sorting in Kcv and Kesv are also thoroughly discussed.
Collapse
Affiliation(s)
- Purva Asrani
- Biomolecular Spectroscopy and RUBiospec|NMR, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Bochum D-44780, Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Münster D-48149, Germany
| | - Raphael Stoll
- Biomolecular Spectroscopy and RUBiospec|NMR, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Bochum D-44780, Germany.
| |
Collapse
|
18
|
Evolution of the North American Lineage H7 Avian Influenza Viruses in Association with H7 Virus's Introduction to Poultry. J Virol 2022; 96:e0027822. [PMID: 35862690 PMCID: PMC9327676 DOI: 10.1128/jvi.00278-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The incursions of H7 subtype low-pathogenicity avian influenza virus (LPAIV) from wild birds into poultry and its mutations to highly pathogenic avian influenza virus (HPAIV) have been an ongoing concern in North America. Since 2000, 10 phylogenetically distinct H7 virus outbreaks from wild birds have been detected in poultry, six of which mutated to HPAIV. To study the molecular evolution of the H7 viruses that occurs when changing hosts from wild birds to poultry, we performed analyses of the North American H7 hemagglutinin (HA) genes to identify amino acid changes as the virus circulated in wild birds from 2000 to 2019. Then, we analyzed recurring HA amino acid changes and gene constellations of the viruses that spread from wild birds to poultry. We found six HA amino acid changes occurring during wild bird circulation and 10 recurring changes after the spread to poultry. Eight of the changes were in and around the HA antigenic sites, three of which were supported by positive selection. Viruses from each H7 outbreak had a unique genotype, with no specific genetic group associated with poultry outbreaks or mutation to HPAIV. However, the genotypes of the H7 viruses in poultry outbreaks tended to contain minor genetic groups less observed in wild bird H7 viruses, suggesting either a biased sampling of wild bird AIVs or a tendency of having reassortment with minor genetic groups prior to the virus's introduction to poultry. IMPORTANCE Wild bird-origin H7 subtype avian influenza viruses are a constant threat to commercial poultry, both directly by the disease they cause and indirectly through trade restrictions that can be imposed when the virus is detected in poultry. It is important to understand the genetic basis of why the North American lineage H7 viruses have repeatedly crossed the species barrier from wild birds to poultry. We examined the amino acid changes in the H7 viruses associated with poultry outbreaks and tried to determine gene reassortment related to poultry adaptation and mutations to HPAIV. The findings in this study increase the understanding of the evolutionary pathways of wild bird AIV before infecting poultry and the HA changes associated with adaptation of the virus in poultry.
Collapse
|
19
|
Yang F, Zhang X, Liu F, Yao H, Wu N, Wu H. Increased virulence of a novel reassortant H1N3 avian influenza virus in mice as a result of adaptive amino acid substitutions. Virus Genes 2022; 58:473-477. [PMID: 35616824 DOI: 10.1007/s11262-022-01911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/29/2022] [Indexed: 11/27/2022]
Abstract
In this study, a novel multiple-gene reassortant H1N3 subtype avian influenza virus (AIV) (A/chicken/Zhejiang/81213/2017, CK81213) was isolated in Eastern China, whose genes were derived from H1 (H1N3), H7 (H7N3 and H7N9), and H10 (H10N3 and H10N8) AIVs. This AIV belongs to the avian Eurasian-lineage and exhibits low pathogenicity. Serial lung-to-lung passages of CK81213 in mice was performed to study the amino acid substitutions potentially related to the adaptation of H1 AIVs in mammals. And the mouse-adapted H1N3 virus showed greater virulence than wild-type H1N3 AIV in mice and the genomic analysis revealed a total of two amino acid substitutions in the PB2 (E627K) and HA (L67V) proteins. Additionally, the results of the animal study indicate that CK81213 could infect mice without prior adaption and become highly pathogenic to mice after continuous passage. Our findings show that routine surveillance of H1 AIVs is important for the prediction of influenza epidemics.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiaodi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
20
|
Yoo DS, Kang SI, Lee YN, Lee EK, Kim WY, Lee YJ. Bridging the Local Persistence and Long-Range Dispersal of Highly Pathogenic Avian Influenza Virus (HPAIv): A Case Study of HPAIv-Infected Sedentary and Migratory Wildfowls Inhabiting Infected Premises. Viruses 2022; 14:v14010116. [PMID: 35062320 PMCID: PMC8780574 DOI: 10.3390/v14010116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
The past two decades have seen the emergence of highly pathogenic avian influenza (HPAI) infections that are characterized as extremely contagious, with a high fatality rate in chickens, and humans; this has sparked considerable concerns for global health. Generally, the new variant of the HPAI virus crossed into various countries through wild bird migration, and persisted in the local environment through the interactions between wild and farmed birds. Nevertheless, no studies have found informative cases associated with connecting local persistence and long-range dispersal. During the 2016–2017 HPAI H5N6 epidemic in South Korea, we observed several waterfowls with avian influenza infection under telemetric monitoring. Based on the telemetry records and surveillance data, we conducted a case study to test hypotheses related to the transmission pathway between wild birds and poultry. One sedentary wildfowl naturally infected with HPAI H5N6, which overlapped with the home range of one migratory bird with H5-specific antibody-positive, showed itself to be phylogenetically close to the isolates from a chicken farm located within its habitat. Our study is the first observational study that provides scientific evidence supporting the hypothesis that the HPAI spillover into poultry farms is caused by local persistence in sedentary birds, in addition to its long-range dispersal by sympatric migratory birds.
Collapse
Affiliation(s)
- Dae-sung Yoo
- Animal and Plant Quarantine Agency, Gimcheon 39660, Korea;
| | - Sung-Il Kang
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea;
| | - Yu-Na Lee
- Avian Influenza Research and Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea; (Y.-N.L.); (E.-K.L.)
| | - Eun-Kyoung Lee
- Avian Influenza Research and Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea; (Y.-N.L.); (E.-K.L.)
| | - Woo-yuel Kim
- Honam National Institute of Biological Resources, Mokpo 58762, Korea;
| | - Youn-Jeong Lee
- Avian Influenza Research and Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea; (Y.-N.L.); (E.-K.L.)
- Correspondence:
| |
Collapse
|
21
|
Sriwilaijaroen N, Suzuki Y. Roles of Glycans and Non-glycans on the Epithelium and in the Immune System in H1-H18 Influenza A Virus Infections. Methods Mol Biol 2022; 2556:205-242. [PMID: 36175637 DOI: 10.1007/978-1-0716-2635-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The large variation of influenza A viruses (IAVs) in various susceptible hosts and their rapid evolution, which allows host/tissue switching, host immune escape, vaccine escape, and drug resistance, are difficult challenges for influenza control in all countries worldwide. Access and binding of the IAV to actual receptors at endocytic sites is critical for the establishment of influenza infection. In this chapter, the progress in identification of and roles of glycans and non-glycans on the epithelium and in the immune system in H1-H18 IAV infections are reviewed. The first part of the review is on current knowledge of H1-H16 IAV receptors on the epithelium including sialyl glycans, other negatively charged glycans, and annexins. The second part of the review focuses on H1-H16 IAV receptors in the immune system including acidic surfactant phospholipids, Sia on surfactant proteins, the carbohydrate recognition domain (CRD) of surfactant proteins, Sia on mucins, Sia and C-type lectins on macrophages and dendritic cells, and Sia on NK cells. The third part of the review is about a possible H17-H18 IAV receptor. Binding of these receptors to IAVs may result in inhibition or enhancement of IAV infection depending on their location, host cell type, and IAV strain. Among these receptors, host sialyl glycans are key determinants of viral hemagglutinin (HA) lectins for H1-H16 infections. HA must acquire mutations to bind to sialyl glycans that are dominant on a new target tissue when switching to a new host for efficient transmission and to bind to long sialyl glycans found in the case of seasonal HAs with multiple glycosylation sites as a consequence of immune evasion. Although sialyl receptors/C-type lectins on immune cells are decoy receptors/pathogen recognition receptors for capturing viral HA lectin/glycans protecting HA antigenic sites, some IAV strains do not escape, such as by release with neuraminidase, but hijack these molecules to gain entry and replication in immune cells. An understanding of the virus-host battle tactics at the receptor level might lead to the establishment of novel strategies for effective control of influenza.
Collapse
Affiliation(s)
- Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand.
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| | - Yasuo Suzuki
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
22
|
Matrosovich MN, Gambaryan AS. Characterization of Influenza Virus Binding to Receptors on Isolated Cell Membranes. Methods Mol Biol 2022; 2556:149-168. [PMID: 36175633 DOI: 10.1007/978-1-0716-2635-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An interplay between receptor-binding properties of influenza viruses (IVs) and spectrum of sialic acid-containing receptors on target cells in birds and mammals determine viral host range, tissue tropism, and pathogenicity. Here, we describe method that allows to characterize binding of IVs to biologically relevant cellular receptors using a conventional solid-phase enzyme-linked assay. In this method, we isolate plasma membranes from respiratory and intestinal epithelial cells of animal origin (Subheading 3.2). We adsorb the membranes in the wells of 96-well ELISA plates, incubate the membrane-coated wells with serially diluted IVs, and determine amounts of IVs attached to the membranes using viral ability to bind peroxidase-labeled sialoglycoprotein fetuin. Based on the concentration dependence of IV binding to the membrane, we estimate binding avidity and number of binding sites. We describe two variants of the assay in Subheadings 3.6 and 3.7 and provide examples.
Collapse
Affiliation(s)
| | - Alexandra S Gambaryan
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
23
|
Mueller RC, Ellström P, Howe K, Uliano-Silva M, Kuo RI, Miedzinska K, Warr A, Fedrigo O, Haase B, Mountcastle J, Chow W, Torrance J, Wood JMD, Järhult JD, Naguib MM, Olsen B, Jarvis ED, Smith J, Eöry L, Kraus RHS. A high-quality genome and comparison of short- versus long-read transcriptome of the palaearctic duck Aythya fuligula (tufted duck). Gigascience 2021; 10:giab081. [PMID: 34927191 PMCID: PMC8685854 DOI: 10.1093/gigascience/giab081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/15/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The tufted duck is a non-model organism that experiences high mortality in highly pathogenic avian influenza outbreaks. It belongs to the same bird family (Anatidae) as the mallard, one of the best-studied natural hosts of low-pathogenic avian influenza viruses. Studies in non-model bird species are crucial to disentangle the role of the host response in avian influenza virus infection in the natural reservoir. Such endeavour requires a high-quality genome assembly and transcriptome. FINDINGS This study presents the first high-quality, chromosome-level reference genome assembly of the tufted duck using the Vertebrate Genomes Project pipeline. We sequenced RNA (complementary DNA) from brain, ileum, lung, ovary, spleen, and testis using Illumina short-read and Pacific Biosciences long-read sequencing platforms, which were used for annotation. We found 34 autosomes plus Z and W sex chromosomes in the curated genome assembly, with 99.6% of the sequence assigned to chromosomes. Functional annotation revealed 14,099 protein-coding genes that generate 111,934 transcripts, which implies a mean of 7.9 isoforms per gene. We also identified 246 small RNA families. CONCLUSIONS This annotated genome contributes to continuing research into the host response in avian influenza virus infections in a natural reservoir. Our findings from a comparison between short-read and long-read reference transcriptomics contribute to a deeper understanding of these competing options. In this study, both technologies complemented each other. We expect this annotation to be a foundation for further comparative and evolutionary genomic studies, including many waterfowl relatives with differing susceptibilities to avian influenza viruses.
Collapse
Affiliation(s)
- Ralf C Mueller
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, 78315, Germany
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| | - Patrik Ellström
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, SE-75185, Sweden
| | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | | | - Richard I Kuo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Katarzyna Miedzinska
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Amanda Warr
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, New York, 10065, NY
| | - Bettina Haase
- Vertebrate Genome Laboratory, The Rockefeller University, New York, 10065, NY
| | | | - William Chow
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - James Torrance
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | | | - Josef D Järhult
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, SE-75185, Sweden
| | - Mahmoud M Naguib
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, 75237, Sweden
| | - Björn Olsen
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, SE-75185, Sweden
| | - Erich D Jarvis
- Vertebrate Genome Laboratory and HHMI, The Rockefeller University, New York, 10065, NY
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Lél Eöry
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Robert H S Kraus
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, 78315, Germany
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| |
Collapse
|
24
|
Hemagglutinins of avian influenza viruses are proteolytically activated by TMPRSS2 in human and murine airway cells. J Virol 2021; 95:e0090621. [PMID: 34319155 DOI: 10.1128/jvi.00906-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cleavage of the influenza A virus (IAV) hemagglutinin (HA) by host proteases is indispensable for virus replication. Most IAVs possess a monobasic HA cleavage site cleaved by trypsin-like proteases. Previously, the transmembrane protease TMPRSS2 was shown to be essential for proteolytic activation of IAV HA subtypes H1, H2, H7 and H10 in mice. In contrast, additional proteases are involved in activation of certain H3 IAVs, indicating that HAs with monobasic cleavage site can differ in their sensitivity to host proteases. Here, we investigated the role of TMPRSS2 in proteolytic activation of avian HA subtypes H1 to H11 and H14 to H16 in human and mouse airway cell cultures. Using reassortant viruses carrying representative HAs, we analysed HA cleavage and multicycle replication in (i) lung cells of TMPRSS2-deficient mice and (ii) Calu-3 cells and primary human bronchial cells subjected to morpholino oligomer-mediated knockdown of TMPRSS2 activity. TMPRSS2 was found to be crucial for activation of H1 to H11, H14 and H15 in airway cells of human and mouse. Only H9 with an R-S-S-R cleavage site and H16 were proteolytically activated in the absence of TMPRSS2 activity, albeit with reduced efficiency. Moreover, a TMPRSS2-orthologous protease from duck supported activation of H1 to H11, H15 and H16 in MDCK cells. Together, our data demonstrate that in human and murine respiratory cells, TMPRSS2 is the major activating protease of almost all IAV HA subtypes with monobasic cleavage site. Furthermore, our results suggest that TMPRSS2 supports activation of IAV with monobasic cleavage site in ducks. Importance Human infections with avian influenza A viruses upon exposure to infected birds are frequently reported and have received attention as a potential pandemic threat. Cleavage of the envelope glycoprotein hemagglutinin (HA) by host proteases is a prerequisite for membrane fusion and essential for virus infectivity. In this study, we identify the transmembrane protease TMPRSS2 as the major activating protease of avian influenza virus HAs of subtypes H1 to H11, H14 and H15 in human and murine airway cells. Our data demonstrate that inhibition of TMPRSS2 activity may provide a useful approach for the treatment of human infections with avian influenza viruses that should be considered for pandemic preparedness as well. Additionally, we show that a TMPRSS2-orthologous protease from duck can activate avian influenza virus HAs with a monobasic cleavage site and thus represents a potential virus-activating protease in waterfowl, the primary reservoir for influenza A viruses.
Collapse
|