1
|
Jang Y, Baek YG, Lee YN, Cha RM, Choi YC, Park MJ, Lee YJ, Lee EK. Research Note: Establishment of vector system harboring duck RNA polymerase I promoter for avian influenza virus. Poult Sci 2025; 104:104570. [PMID: 39631283 PMCID: PMC11652914 DOI: 10.1016/j.psj.2024.104570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/17/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Reverse genetics (RG) systems are extensively utilized to investigate the characteristics of influenza viruses and develop vaccines, predominantly relying on human RNA polymerase I (pol I). However, the efficiency of RG systems for avian-origin influenza viruses may be compromised due to potential species-specific interactions of RNA pol I. In this study, we reported the polymerase activities of the duck RNA pol I promoter in avian cells and the generation of recombinant avian-derived influenza viruses using a novel vector system containing the duck RNA pol I promoter region to enhance the rescue efficiency of the RG system in avian cells. Initially, we explored a putative duck promoter region and identified the optimal size to improve the existing system. Subsequently, we established an RG system incorporating the duck RNA pol I promoter and compared its rescue efficiency with the human pol I system by generating recombinant influenza viruses in several cell lines. Notably, the 250-bp duck RNA pol I promoter demonstrated effective functionality in avian cells, exhibiting higher polymerase activity in a minigenome assay. The newly constructed RG system was significantly improved, enabling the rescue of influenza viruses in 293T, DF-1, and CCL141 cells. Furthermore, HPAI viruses were successfully rescued in DF-1 cells, a result that had not been achieved in previous experiments. In conclusion, our novel RG system harboring duck RNA pol I offers an additional tool for researching influenza viruses and may facilitate the development of vaccines for poultry.
Collapse
Affiliation(s)
- Yunyueng Jang
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Yoon-Gi Baek
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Yu-Na Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Ra Mi Cha
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Yun-Chan Choi
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Min-Ji Park
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Youn-Jeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Eun-Kyoung Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea.
| |
Collapse
|
2
|
Gu C, Maemura T, Guan L, Eisfeld AJ, Biswas A, Kiso M, Uraki R, Ito M, Trifkovic S, Wang T, Babujee L, Presler R, Dahn R, Suzuki Y, Halfmann PJ, Yamayoshi S, Neumann G, Kawaoka Y. A human isolate of bovine H5N1 is transmissible and lethal in animal models. Nature 2024; 636:711-718. [PMID: 39467571 DOI: 10.1038/s41586-024-08254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
The outbreak of clade 2.3.4.4b highly pathogenic avian influenza viruses of the H5N1 subtype (HPAI H5N1) in dairy cattle in the USA has so far resulted in spillover infections of at least 14 farm workers1-3, who presented with mild respiratory symptoms or conjunctivitis, and one individual with no known animal exposure who was hospitalized but recovered3,4. Here we characterized A/Texas/37/2024 (huTX37-H5N1), a virus isolated from the eyes of an infected farm worker who developed conjunctivitis5. huTX37-H5N1 replicated efficiently in primary human alveolar epithelial cells, but less efficiently in corneal epithelial cells. Despite causing mild disease in the infected worker, huTX37-H5N1 proved lethal in mice and ferrets and spread systemically, with high titres in both respiratory and non-respiratory organs. Importantly, in four independent experiments in ferrets, huTX37-H5N1 transmitted by respiratory droplets in 17-33% of transmission pairs, and five of six exposed ferrets that became infected died. PB2-631L (encoded by bovine isolates) promoted influenza polymerase activity in human cells, suggesting a role in mammalian adaptation similar to that of PB2-627K (encoded by huTX37-H5N1). In addition, bovine HPAI H5N1 virus was found to be susceptible to polymerase inhibitors both in vitro and in mice. Thus, HPAI H5N1 virus derived from dairy cattle transmits by respiratory droplets in mammals without previous adaptation and causes lethal disease in animal models.
Collapse
Affiliation(s)
- Chunyang Gu
- Influenza Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Tadashi Maemura
- Influenza Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Lizheng Guan
- Influenza Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Amie J Eisfeld
- Influenza Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Asim Biswas
- Influenza Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Maki Kiso
- Department of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ryuta Uraki
- Department of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Mutsumi Ito
- Department of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Sanja Trifkovic
- Influenza Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Tong Wang
- Influenza Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Lavanya Babujee
- Influenza Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert Presler
- Influenza Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Randall Dahn
- Influenza Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Yasuo Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Seiya Yamayoshi
- Department of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan.
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
| |
Collapse
|
3
|
Sekine W, Kamiki H, Ishida H, Matsugo H, Ohira K, Li K, Katayama M, Takenaka-Uema A, Murakami S, Horimoto T. Adaptation potential of H3N8 canine influenza virus in human respiratory cells. Sci Rep 2024; 14:18750. [PMID: 39138310 PMCID: PMC11322661 DOI: 10.1038/s41598-024-69509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
In 2004, the equine-origin H3N8 canine influenza virus (CIV) first caused an outbreak with lethal cases in racing greyhounds in Florida, USA, and then spread to domestic dogs nationwide. Although transmission of this canine virus to humans has not been reported, it is important to evaluate its zoonotic potential because of the high contact opportunities between companion dogs and humans. To gain insight into the interspecies transmissibility of H3N8 CIV, we tested its adaptability to human respiratory A549 cells through successive passages. We found that CIV acquired high growth properties in these cells mainly through mutations in surface glycoproteins, such as hemagglutinin (HA) and neuraminidase (NA). Our reverse genetics approach revealed that HA2-K82E, HA2-R163K, and NA-S18L mutations were responsible for the increased growth of CIV in human cells. Molecular analyses revealed that both HA2 mutations altered the optimum pH for HA membrane fusion activity and that the NA mutation changed the HA-NA functional balance. These findings suggest that H3N8 CIV could evolve into a human pathogen with pandemic potential through a small number of mutations, thereby posing a threat to public health in the future.
Collapse
Affiliation(s)
- Wataru Sekine
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Haruhiko Kamiki
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Hiroho Ishida
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
- Laboratory of Infectious Diseases, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Hiromichi Matsugo
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
- Laboratory of RNA Viruses, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kosuke Ohira
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Kaixin Li
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Misa Katayama
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Akiko Takenaka-Uema
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Shin Murakami
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Taisuke Horimoto
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan.
| |
Collapse
|
4
|
Li J, Takeda M, Imahatakenaka M, Ikeda M. Identification of dihydroorotate dehydrogenase inhibitor, vidofludimus, as a potent and novel inhibitor for influenza virus. J Med Virol 2024; 96:e29372. [PMID: 38235544 DOI: 10.1002/jmv.29372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/19/2024]
Abstract
Influenza A virus (IAV) infection causes respiratory disease. Recently, infection of IAV H5N1 among mammals are reported in farmed mink. Therefore, to discover antivirals against IAV, we screened a compound library by using the RNA-dependent RNA polymerase (RdRp) assay system derived from H5N1 IAV including a drug-resistant PA mutant (I38T) and a viral polymerase activity enhancing PB2 mutant (T271A). Upon screening, we found vidofludimus can be served as a potential inhibitor for IAV. Vidofludimus an orally active inhibitor for dihydroorotate dehydrogenase (DHODH), a key enzyme for the cellular de novo pyrimidine biosynthesis pathway. We found that vidofludimus exerted antiviral activity against wild-type and drug-resistant mutant IAV, with effective concentrations (EC50 ) of 2.10 and 2.11 μM, respectively. The anti-IAV activity of vidofludimus was canceled by the treatment of uridine or cytidine through pyrimidine salvage synthesis pathway, or orotic acid through pyrimidine de novo synthesis pathway. This indicated that the main target of vidofludimus is DHODH in IAV RdRp expressing cells. We also produced recombinant seasonal IAV H1N1 virion and influenza B virus (IBV) RdRp assay system and confirmed vidofludimus also carried highly antiviral activity against seasonal IAV and IBV. Vidofludimus is a candidate drug for the future threat of IAV H5N1 infection among humans as well as seasonal influenza virus infection.
Collapse
Affiliation(s)
- Jiazhou Li
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Midori Takeda
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Mikiko Imahatakenaka
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Masanori Ikeda
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
5
|
Lu G, Zheng F, Ou J, Yin X, Li S. Investigating Influenza Virus Polymerase Activity in Feline Cells Based on the Influenza Virus Minigenome Replication System Driven by the Feline RNA Polymerase I Promoter. Front Immunol 2022; 13:827681. [PMID: 35693765 PMCID: PMC9185166 DOI: 10.3389/fimmu.2022.827681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/08/2022] [Indexed: 12/03/2022] Open
Abstract
Emerging influenza virus poses a health threat to humans and animals. Domestic cats have recently been identified as a potential source of zoonotic influenza virus. The influenza virus minigenome replication system based on the ribonucleic acid (RNA) polymerase I (PolI) promoter is the most widely used tool for investigating polymerase activity. It could help determine host factors or viral proteins influencing influenza virus polymerase activity in vitro. However, influenza virus polymerase activity has never been studied in feline cells thus far. In the present study, the feline RNA PolI promoter was identified in the intergenic spacer regions between adjacent upstream 28S and downstream 18S rRNA genes in the cat (Felis catus) genome using bioinformatics strategies. The transcription initiation site of the feline RNA PolI promoter was predicted. The feline RNA PolI promoter was cloned from CRFK cells, and a promoter size of 250 bp contained a sequence with sufficient PolI promoter activity by a dual-luciferase reporter assay. The influenza virus minigenome replication system based on the feline RNA PolI promoter was then established. Using this system, the feline RNA PolI promoter was determined to have significantly higher transcriptional activity than the human and chicken RNA PolI promoters in feline cells, and equine (H3N8) influenza virus presented higher polymerase activity than human (H1N1) and canine (H3N2) influenza viruses. In addition, feline myxovirus resistance protein 1 (Mx1) and baloxavir were observed to inhibit influenza virus polymerase activity in vitro in a dose-dependent manner. Our study will help further investigations on the molecular mechanism of host adaptation and cross-species transmission of influenza virus in cats.
Collapse
Affiliation(s)
- Gang Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Feiyan Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiajun Ou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
- *Correspondence: Xin Yin, ; Shoujun Li,
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
- *Correspondence: Xin Yin, ; Shoujun Li,
| |
Collapse
|
6
|
Neumann G. Influenza Reverse Genetics-Historical Perspective. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038547. [PMID: 31964649 DOI: 10.1101/cshperspect.a038547] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The generation of wild-type, mutant, and reassortant influenza viruses from viral cDNAs (reverse genetics) is now a basic molecular virology technique in many influenza virus laboratories. Here, I describe the original RNA polymerase I reverse genetics system and the modifications that have been developed in past years. Together, these technologies have made possible many advances in basic and applied influenza virology that would not have been otherwise attainable, including the revival and study of extinct influenza viruses, the rapid characterization of emerging influenza viruses, the generation of conventional influenza vaccines, and the development of novel influenza vaccines.
Collapse
Affiliation(s)
- Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53711, USA
| |
Collapse
|
7
|
Abstract
Influenza virus epidemics are caused when seasonal influenza viruses (i.e., those circulating in humans) acquire mutations in the antigenic sites of the viral hemagglutinin (HA) protein that prevent the antibodies present in people from binding to the virus and blocking virus interaction with cellular receptors. To date, vaccination is the best protective option against seasonal influenza viruses. Because influenza viruses frequently acquire mutations in their antigenic sites, vaccine viruses need to be updated regularly. Here, we present an experimental system that allows the simulation of influenza virus evolution in the test tube. By using this system, we can identify antigenic variants that may emerge among natural influenza viruses in the near future. This information would help in the selection and prioritization of variants for vaccine production.
Collapse
Affiliation(s)
- Gabriele Neumann
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Shufang Fan
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- Division of Virology, Department of Microbiology and Immunology, University of Tokyo, Tokyo, Japan.
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
8
|
Reverse Genetics for Peste des Petits Ruminants Virus: Current Status and Lessons to Learn from Other Non-segmented Negative-Sense RNA Viruses. Virol Sin 2018; 33:472-483. [PMID: 30456658 PMCID: PMC6335227 DOI: 10.1007/s12250-018-0066-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/11/2018] [Indexed: 11/20/2022] Open
Abstract
Peste des petits ruminants (PPR) is a highly contagious transboundary animal disease with a severe socio-economic impact on the livestock industry, particularly in poor countries where it is endemic. Full understanding of PPR virus (PPRV) pathobiology and molecular biology is critical for effective control and eradication of the disease. To achieve these goals, establishment of stable reverse genetics systems for PPRV would play a key role. Unfortunately, this powerful technology remains less accessible and poorly documented for PPRV. In this review, we discussed the current status of PPRV reverse genetics as well as the recent innovations and advances in the reverse genetics of other non-segmented negative-sense RNA viruses that could be applicable to PPRV. These strategies may contribute to the improvement of existing techniques and/or the development of new reverse genetics systems for PPRV.
Collapse
|
9
|
Kamiki H, Matsugo H, Kobayashi T, Ishida H, Takenaka-Uema A, Murakami S, Horimoto T. A PB1-K577E Mutation in H9N2 Influenza Virus Increases Polymerase Activity and Pathogenicity in Mice. Viruses 2018; 10:v10110653. [PMID: 30463209 PMCID: PMC6266086 DOI: 10.3390/v10110653] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 01/25/2023] Open
Abstract
H9N2 avian influenza viruses are present in poultry worldwide. These viruses are considered to have pandemic potential, because recent isolates can recognize human-type receptor and several sporadic human infections have been reported. In this study, we aimed to identify mutations related to mammalian adaptation of H9N2 influenza virus. We found that mouse-adapted viruses had several mutations in hemagglutinin (HA), PB2, PA, and PB1. Among the detected mutations, PB1-K577E was a novel mutation that had not been previously reported to involve mammalian adaptation. A recombinant H9N2 virus bearing only the PB1-K577E mutation showed enhanced pathogenicity in mice, with increased virus titers in nasal turbinates compared to that in mice infected with the wild-type virus. In addition, the PB1-K577E mutation increased virus polymerase activity in human cell culture at a lower temperature. These data suggest that the PB1-K577E mutation is a novel pathogenicity determinant of H9N2 virus in mice and could be a signature for mammalian adaptation.
Collapse
Affiliation(s)
- Haruhiko Kamiki
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Hiromichi Matsugo
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Tomoya Kobayashi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Hiroho Ishida
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Akiko Takenaka-Uema
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Shin Murakami
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Taisuke Horimoto
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
10
|
Hatakeyama D, Shoji M, Yamayoshi S, Yoh R, Ohmi N, Takenaka S, Saitoh A, Arakaki Y, Masuda A, Komatsu T, Nagano R, Nakano M, Noda T, Kawaoka Y, Kuzuhara T. Influenza A virus nucleoprotein is acetylated by histone acetyltransferases PCAF and GCN5. J Biol Chem 2018; 293:7126-7138. [PMID: 29555684 PMCID: PMC5950015 DOI: 10.1074/jbc.ra117.001683] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/09/2018] [Indexed: 12/22/2022] Open
Abstract
Histone acetylation plays crucial roles in transcriptional regulation and chromatin organization. Viral RNA of the influenza virus interacts with its nucleoprotein (NP), whose function corresponds to that of eukaryotic histones. NP regulates viral replication and has been shown to undergo acetylation by the cAMP-response element (CRE)–binding protein (CBP) from the host. However, whether NP is the target of other host acetyltransferases is unknown. Here, we show that influenza virus NP undergoes acetylation by the two host acetyltransferases GCN5 and P300/CBP-associated factor (PCAF) and that this modification affects viral polymerase activities. Western blot analysis with anti–acetyl-lysine antibody on cultured A549 human lung adenocarcinoma epithelial cells infected with different influenza virus strains indicated acetylation of the viral NP. A series of biochemical analyses disclosed that the host lysine acetyltransferases GCN5 and PCAF acetylate NP in vitro. MS experiments identified three lysine residues as acetylation targets in the host cells and suggested that Lys-31 and Lys-90 are acetylated by PCAF and GCN5, respectively. RNAi-mediated silencing of GCN5 and PCAF did not change acetylation levels of NP. However, interestingly, viral polymerase activities were increased by the PCAF silencing and were decreased by the GCN5 silencing, suggesting that acetylation of the Lys-31 and Lys-90 residues has opposing effects on viral replication. Our findings suggest that epigenetic control of NP via acetylation by host acetyltransferases contributes to regulation of polymerase activity in the influenza A virus.
Collapse
Affiliation(s)
- Dai Hatakeyama
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Masaki Shoji
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Rina Yoh
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Naho Ohmi
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Shiori Takenaka
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Ayaka Saitoh
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Yumie Arakaki
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Aki Masuda
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Tsugunori Komatsu
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Rina Nagano
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Masahiro Nakano
- Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan
| | - Takeshi Noda
- Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan; PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53711
| | - Takashi Kuzuhara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan.
| |
Collapse
|
11
|
Wang K, Huang Q, Yang Z, Qi K, Liu H, Chen H. Alternative reverse genetics system for influenza viruses based on a synthesized swine 45S rRNA promoter. Virus Genes 2017; 53:661-666. [PMID: 28434065 DOI: 10.1007/s11262-017-1457-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/12/2017] [Indexed: 01/06/2023]
Abstract
We generated an alternative reverse genetics (RG) system based on a synthesized swine 45S rRNA promoter to rescue the H3N2 subtype swine influenza virus. All eight flanking segment cassettes of A/swine/Henan/7/2010 (H3N2) were amplified with ambisense expression elements from RG plasmids. All segments were then recombined with the pHC2014 vector, which contained the synthesized swine 45S rRNA promoter (spol1) and its terminal sequence (t1) in a pcDNA3 backbone. As a result, we obtained a set of RG plasmids carrying the corresponding eight-segment cassettes. We efficiently generated the H3N2 virus after transfection into 293T/PK15, PK15, and 293T cells. The efficiency of spol1-driven influenza virus rescue in PK15 cells was similar to that in 293T cells by titration using the human pol1 RG system. Our approach suggests that an alternative spol1-based RG system can produce influenza viruses.
Collapse
Affiliation(s)
- Kai Wang
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Qi Huang
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zhiwei Yang
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Kezong Qi
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Hongmei Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
- Animal Influenza Virus Ecology and Pathogenesis Innovation Team, The Agricultural Science and Technology Innovation Program, Shanghai, 200241, China.
| |
Collapse
|
12
|
Temperature-Sensitive Live-Attenuated Canine Influenza Virus H3N8 Vaccine. J Virol 2017; 91:JVI.02211-16. [PMID: 27928017 DOI: 10.1128/jvi.02211-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022] Open
Abstract
Canine influenza is a respiratory disease of dogs caused by canine influenza virus (CIV). CIV subtypes responsible for influenza in dogs include H3N8, which originated from the transfer of H3N8 equine influenza virus to dogs; and the H3N2 CIV, which is an avian-origin virus that adapted to infect dogs. Influenza infections are most effectively prevented through vaccination to reduce transmission and future infection. Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIV in dogs. However, the efficacy of IIVs is suboptimal, and novel approaches are necessary for the prevention of disease caused by this canine respiratory pathogen. Using reverse genetics techniques, we have developed a live-attenuated CIV vaccine (LACIV) for the prevention of H3N8 CIV. The H3N8 LACIV replicates efficiently in canine cells at 33°C but is impaired at temperatures of 37 to 39°C and was attenuated compared to wild-type H3N8 CIV in vivo and ex vivo The LACIV was able to induce protection against H3N8 CIV challenge with a single intranasal inoculation in mice. Immunogenicity and protection efficacy were better than that observed with a commercial CIV H3N8 IIV but provided limited cross-reactive immunity and heterologous protection against H3N2 CIV. These results demonstrate the feasibility of implementing a LAIV approach for the prevention and control of H3N8 CIV in dogs and suggest the need for a new LAIV for the control of H3N2 CIV. IMPORTANCE Two influenza A virus subtypes has been reported in dogs in the last 16 years: the canine influenza viruses (CIV) H3N8 and H3N2 of equine and avian origins, respectively. To date, only inactivated influenza vaccines (IIVs) are available to prevent CIV infections. Here, we report the generation of a recombinant, temperature-sensitive H3N8 CIV as a live-attenuated influenza vaccine (LAIV), which was attenuated in mice and dog tracheal, explants compared to CIV H3N8 wild type. A single dose of H3N8 LACIV showed immunogenicity and protection against a homologous challenge that was better than that conferred with an H3N8 IIV, demonstrating the feasibility of implementing a LAIV approach for the improved control of H3N8 CIV infections in dogs.
Collapse
|
13
|
Abstract
Annual influenza epidemics are caused not only by influenza A viruses but also by influenza B viruses. Initially established for the generation of recombinant influenza A viruses, plasmid-based reverse genetics techniques have allowed researchers the generation of wild type and mutant viruses from full-length cDNA copies of the influenza viral genome. These reverse genetics approaches have allowed researchers to answer important questions on the biology of influenza viruses by genetically engineering infectious recombinant viruses. This has resulted in a better understanding of the molecular biology of influenza viruses, including both viral and host factors required for genome replication and transcription. With the ability to generate recombinant viruses containing specific mutations in the viral genome, these reverse genetics tools have also allowed the identification of viral and host factors involved in influenza pathogenesis, transmissibility, host-range interactions and restrictions, and virulence. Likewise, reverse genetics techniques have been used for the implementation of inactivated or live-attenuated influenza vaccines and the identification of anti-influenza drugs and their mechanism of antiviral activity. In 2002, these reverse genetics approaches allowed also the recovery of recombinant influenza B viruses entirely from plasmid DNA. In this chapter we describe the cloning of influenza B/Brisbane/60/2008 viral RNAs into the ambisense pDP-2002 plasmid and the experimental procedures for the successful generation of recombinant influenza B viruses.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Daniel R Perez
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, 953 College Station Road, Athens, GA, 30602, USA
| | - Jefferson Santos
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, 953 College Station Road, Athens, GA, 30602, USA
| | - Courtney Finch
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
14
|
Cloning the Horse RNA Polymerase I Promoter and Its Application to Studying Influenza Virus Polymerase Activity. Viruses 2016; 8:v8060119. [PMID: 27258298 PMCID: PMC4926170 DOI: 10.3390/v8060119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/20/2022] Open
Abstract
An influenza virus polymerase reconstitution assay based on the human, dog, or chicken RNA polymerase I (PolI) promoter has been developed and widely used to study the polymerase activity of the influenza virus in corresponding cell types. Although it is an important member of the influenza virus family and has been known for sixty years, no studies have been performed to clone the horse PolI promoter or to study the polymerase activity of equine influenza virus (EIV) in horse cells. In our study, the horse RNA PolI promoter was cloned from fetal equine lung cells. Using the luciferase assay, it was found that a 500 bp horse RNA PolI promoter sequence was required for efficient transcription. Then, using the developed polymerase reconstitution assay based on the horse RNA PolI promoter, the polymerase activity of two EIV strains was compared, and equine myxovirus resistance A protein was identified as having the inhibiting EIV polymerase activity function in horse cells. Our study enriches our knowledge of the RNA PolI promoter of eukaryotic species and provides a useful tool for the study of influenza virus polymerase activity in horse cells.
Collapse
|
15
|
Amino acid changes in PB2 and HA affect the growth of a recombinant influenza virus expressing a fluorescent reporter protein. Sci Rep 2016; 6:19933. [PMID: 26847414 PMCID: PMC4742795 DOI: 10.1038/srep19933] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/21/2015] [Indexed: 12/19/2022] Open
Abstract
Influenza viruses that express reporter proteins are useful tools, but are often attenuated. Recently, we found that an influenza virus encoding the Venus fluorescent protein acquired two mutations in its PB2 and HA proteins upon mouse adaptation. Here, we demonstrate that the enhanced viral replication and virulence in mice of this Venus-expressing influenza virus are primarily conferred by the PB2-E712D mutation, with only a minor contribution by the HA-T380A mutation.
Collapse
|
16
|
Shoji M, Arakaki Y, Esumi T, Kohnomi S, Yamamoto C, Suzuki Y, Takahashi E, Konishi S, Kido H, Kuzuhara T. Bakuchiol Is a Phenolic Isoprenoid with Novel Enantiomer-selective Anti-influenza A Virus Activity Involving Nrf2 Activation. J Biol Chem 2015; 290:28001-17. [PMID: 26446794 PMCID: PMC4646038 DOI: 10.1074/jbc.m115.669465] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 12/21/2022] Open
Abstract
Influenza represents a substantial threat to human health and requires novel therapeutic approaches. Bakuchiol is a phenolic isoprenoid compound present in Babchi (Psoralea corylifolia L.) seeds. We examined the anti-influenza viral activity of synthetic bakuchiol using Madin-Darby canine kidney cells. We found that the naturally occurring form, (+)-(S)-bakuchiol, and its enantiomer, (-)-(R)-bakuchiol, inhibited influenza A viral infection and growth and reduced the expression of viral mRNAs and proteins in these cells. Furthermore, these compounds markedly reduced the mRNA expression of the host cell influenza A virus-induced immune response genes, interferon-β and myxovirus-resistant protein 1. Interestingly, (+)-(S)-bakuchiol had greater efficacy than (-)-(R)-bakuchiol, indicating that chirality influenced anti-influenza virus activity. In vitro studies indicated that bakuchiol did not strongly inhibit the activities of influenza surface proteins or the M2 ion channel, expressed in Chinese hamster ovary cells. Analysis of luciferase reporter assay data unexpectedly indicated that bakuchiol may induce some host cell factor(s) that inhibited firefly and Renilla luciferases. Next generation sequencing and KeyMolnet analysis of influenza A virus-infected and non-infected cells exposed to bakuchiol revealed activation of transcriptional regulation by nuclear factor erythroid 2-related factor (Nrf), and an Nrf2 reporter assay showed that (+)-(S)-bakuchiol activated Nrf2. Additionally, (+)-(S)-bakuchiol up-regulated the mRNA levels of two Nrf2-induced genes, NAD(P)H quinone oxidoreductase 1 and glutathione S-transferase A3. These findings demonstrated that bakuchiol had enantiomer-selective anti-influenza viral activity involving a novel effect on the host cell oxidative stress response.
Collapse
Affiliation(s)
- Masaki Shoji
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, and
| | - Yumie Arakaki
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, and
| | - Tomoyuki Esumi
- the Institute of Pharmacognosy, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Shuntaro Kohnomi
- the Department of Neurophysiology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan
| | - Chihiro Yamamoto
- the Institute of Pharmacognosy, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Yutaka Suzuki
- the Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8568, Japan, and
| | - Etsuhisa Takahashi
- the Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| | - Shiro Konishi
- the Department of Neurophysiology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan
| | - Hiroshi Kido
- the Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| | - Takashi Kuzuhara
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, and
| |
Collapse
|
17
|
Molecular Determinants of Virulence and Stability of a Reporter-Expressing H5N1 Influenza A Virus. J Virol 2015; 89:11337-46. [PMID: 26339046 DOI: 10.1128/jvi.01886-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/24/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED We previously reported that an H5N1 virus carrying the Venus reporter gene, which was inserted into the NS gene segment from the A/Puerto Rico/8/1934(H1N1) virus (Venus-H5N1 virus), became more lethal to mice, and the reporter gene was stably maintained after mouse adaptation compared with the wild-type Venus-H5N1 (WT-Venus-H5N1) virus. However, the basis for this difference in virulence and Venus stability was unclear. Here, we investigated the molecular determinants behind this virulence and reporter stability by comparing WT-Venus-H5N1 virus with a mouse-adapted Venus-H5N1 (MA-Venus-H5N1) virus. To determine the genetic basis for these differences, we used reverse genetics to generate a series of reassortants of these two viruses. We found that reassortants with PB2 from MA-Venus-H5N1 (MA-PB2), MA-PA, or MA-NS expressed Venus more stably than did WT-Venus-H5N1 virus. We also found that a single mutation in PB2 (V25A) or in PA (R443K) increased the virulence of the WT-Venus-H5N1 virus in mice and that the presence of both of these mutations substantially enhanced the pathogenicity of the virus. Our results suggest roles for PB2 and PA in the stable maintenance of a foreign protein as an NS1 fusion protein in influenza A virus. IMPORTANCE The ability to visualize influenza viruses has far-reaching benefits in influenza virus research. Previously, we reported that an H5N1 virus bearing the Venus reporter gene became more pathogenic to mice and that its reporter gene was more highly expressed and more stably maintained after mouse adaptation. Here, we investigated the molecular determinants behind this enhanced virulence and reporter stability. We found that mutations in PB2 (V25A) and PA (R443K) play crucial roles in the stable maintenance of a foreign protein as an NS1 fusion protein in influenza A virus and in the virulence of influenza virus in mice. Our findings further our knowledge of the pathogenicity of influenza virus in mammals and will help advance influenza virus-related live-imaging studies in vitro and in vivo.
Collapse
|
18
|
Zhang X, Curtiss R. Efficient generation of influenza virus with a mouse RNA polymerase I-driven all-in-one plasmid. Virol J 2015; 12:95. [PMID: 26093583 PMCID: PMC4495709 DOI: 10.1186/s12985-015-0321-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 06/08/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The current influenza vaccines are effective against seasonal influenza, but cannot be manufactured in a timely manner for a sudden pandemic or to be cost-effective to immunize huge flocks of birds. We propose a novel influenza vaccine composing a bacterial carrier and a plasmid cargo. In the immunized subjects, the bacterial carrier invades and releases its cargo into host cells where the plasmid expresses viral RNAs and proteins for reconstitution of attenuated influenza virus. Here we aimed to construct a mouse PolI-driven plasmid for efficient production of influenza virus. RESULTS A plasmid was constructed to express all influenza viral RNAs and proteins. This all-in-one plasmid resulted in 10(5)-10(6) 50% tissue culture infective dose (TCID50)/mL of influenza A virus in baby hamster kidney (BHK-21) cells on the third day post-transfection, and also reconstituted influenza virus in Madin-Darby canine kidney (MDCK) and Chinese hamster ovary (CHO) cells. A 6-unit plasmid was constructed by deleting the HA and NA cassettes from the all-in-one plasmid. Cotransfection of BHK-21 cells with the 6-unit plasmid and the two other plasmids encoding the HA or NA genes resulted in influenza virus titers similar to those produced by the 1-plasmid method. CONCLUSIONS An all-in-one plasmid and a 3-plasmid murine PolI-driven reverse genetics systems were developed, and efficiently reconstituted influenza virus in BHK-21 cells. The all-in-one plasmid may serve as a tool to determine the factors inhibiting virus generation from a large size plasmid. In addition, we recommend a simple and robust "1 + 2" approach to generate influenza vaccine seed virus.
Collapse
Affiliation(s)
- Xiangmin Zhang
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA. .,Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, MI, USA.
| | - Roy Curtiss
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA. .,School of Life Science, Arizona State University, Tempe, AZ, 85287, USA. .,Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, PO Box 110880, Gainesville, FL, 32611-0880, USA.
| |
Collapse
|
19
|
Finch C, Li W, Perez DR. Design of alternative live attenuated influenza virus vaccines. Curr Top Microbiol Immunol 2015; 386:205-35. [PMID: 25005928 DOI: 10.1007/82_2014_404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Each year due to the ever-evolving nature of influenza, new influenza vaccines must be produced to provide protection against the influenza viruses in circulation. Currently, there are two mainstream strategies to generate seasonal influenza vaccines: inactivated and live-attenuated. Inactivated vaccines are non-replicating forms of whole influenza virus, while live-attenuated vaccines are viruses modified to be replication impaired. Although it is widely believed that by inducing both mucosal and humoral immune responses the live-attenuated vaccine provides better protection than that of the inactivated vaccine, there are large populations of individuals who cannot safely receive the LAIV vaccine. Thus, safer LAIV vaccines are needed to provide adequate protection to these populations. Improvement is also needed in the area of vaccine production. Current strategies relying on traditional tissue culture-based and egg-based methods are slow and delay production time. This chapter describes experimental vaccine generation and production strategies that address the deficiencies in current methods for potential human and agricultural use.
Collapse
Affiliation(s)
- Courtney Finch
- Department of Veterinary Medicine, College Park and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | | | | |
Collapse
|
20
|
Edenborough K, Marsh GA. Reverse genetics: Unlocking the secrets of negative sense RNA viral pathogens. World J Clin Infect Dis 2014; 4:16-26. [DOI: 10.5495/wjcid.v4.i4.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/29/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
Negative-sense RNA viruses comprise several zoonotic pathogens that mutate rapidly and frequently emerge in people including Influenza, Ebola, Rabies, Hendra and Nipah viruses. Acute respiratory distress syndrome, encephalitis and vasculitis are common disease outcomes in people as a result of pathogenic viral infection, and are also associated with high case fatality rates. Viral spread from exposure sites to systemic tissues and organs is mediated by virulence factors, including viral attachment glycoproteins and accessory proteins, and their contribution to infection and disease have been delineated by reverse genetics; a molecular approach that enables researchers to experimentally produce recombinant and reassortant viruses from cloned cDNA. Through reverse genetics we have developed a deeper understanding of virulence factors key to disease causation thereby enabling development of targeted antiviral therapies and well-defined live attenuated vaccines. Despite the value of reverse genetics for virulence factor discovery, classical reverse genetic approaches may not provide sufficient resolution for characterization of heterogeneous viral populations, because current techniques recover clonal virus, representing a consensus sequence. In this review the contribution of reverse genetics to virulence factor characterization is outlined, while the limitation of the technique is discussed with reference to new technologies that may be utilized to improve reverse genetic approaches.
Collapse
|
21
|
Hatakeyama D, Shoji M, Yamayoshi S, Hirota T, Nagae M, Yanagisawa S, Nakano M, Ohmi N, Noda T, Kawaoka Y, Kuzuhara T. A novel functional site in the PB2 subunit of influenza A virus essential for acetyl-CoA interaction, RNA polymerase activity, and viral replication. J Biol Chem 2014; 289:24980-94. [PMID: 25063805 PMCID: PMC4155666 DOI: 10.1074/jbc.m114.559708] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PA, PB1, and PB2 subunits, components of the RNA-dependent RNA polymerase of influenza A virus, are essential for viral transcription and replication. The PB2 subunit binds to the host RNA cap (7-methylguanosine triphosphate (m(7)GTP)) and supports the endonuclease activity of PA to "snatch" the cap from host pre-mRNAs. However, the structure of PB2 is not fully understood, and the functional sites remain unknown. In this study, we describe a novel Val/Arg/Gly (VRG) site in the PB2 cap-binding domain, which is involved in interaction with acetyl-CoA found in eukaryotic histone acetyltransferases (HATs). In vitro experiments revealed that the recombinant PB2 cap-binding domain that includes the VRG site interacts with acetyl-CoA; moreover, it was found that this interaction could be blocked by CoA and various HAT inhibitors. Interestingly, m(7)GTP also inhibited this interaction, suggesting that the same active pocket is capable of interacting with acetyl-CoA and m(7)GTP. To elucidate the importance of the VRG site on PB2 function and viral replication, we constructed a PB2 recombinant protein and recombinant viruses including several patterns of amino acid mutations in the VRG site. Substitutions of the valine and arginine residues or of all 3 residues of the VRG site to alanine significantly reduced the binding ability of PB2 to acetyl-CoA and its RNA polymerase activity. Recombinant viruses containing the same mutations could not be replicated in cultured cells. These results indicate that the PB2 VRG sequence is a functional site that is essential for acetyl-CoA interaction, RNA polymerase activity, and viral replication.
Collapse
Affiliation(s)
- Dai Hatakeyama
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Masaki Shoji
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Seiya Yamayoshi
- the Department of Microbiology and Immunology, Division of Virology, Institute of Medical Science, and
| | - Takenori Hirota
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Monami Nagae
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Shin Yanagisawa
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Masahiro Nakano
- the Department of Microbiology and Immunology, Division of Virology, Institute of Medical Science, and PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan, and
| | - Naho Ohmi
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Takeshi Noda
- the Department of Microbiology and Immunology, Division of Virology, Institute of Medical Science, and PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan, and
| | - Yoshihiro Kawaoka
- the Department of Microbiology and Immunology, Division of Virology, Institute of Medical Science, and the Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan, the Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53711
| | - Takashi Kuzuhara
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan,
| |
Collapse
|
22
|
RNA virus reverse genetics and vaccine design. Viruses 2014; 6:2531-50. [PMID: 24967693 PMCID: PMC4113782 DOI: 10.3390/v6072531] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/22/2022] Open
Abstract
RNA viruses are capable of rapid spread and severe or potentially lethal disease in both animals and humans. The development of reverse genetics systems for manipulation and study of RNA virus genomes has provided platforms for designing and optimizing viral mutants for vaccine development. Here, we review the impact of RNA virus reverse genetics systems on past and current efforts to design effective and safe viral therapeutics and vaccines.
Collapse
|
23
|
Yamayoshi S, Yamada S, Fukuyama S, Murakami S, Zhao D, Uraki R, Watanabe T, Tomita Y, Macken C, Neumann G, Kawaoka Y. Virulence-affecting amino acid changes in the PA protein of H7N9 influenza A viruses. J Virol 2014; 88:3127-34. [PMID: 24371069 PMCID: PMC3957961 DOI: 10.1128/jvi.03155-13] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/19/2013] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Novel avian-origin influenza A(H7N9) viruses were first reported to infect humans in March 2013. To date, 143 human cases, including 45 deaths, have been recorded. By using sequence comparisons and phylogenetic and ancestral inference analyses, we identified several distinct amino acids in the A(H7N9) polymerase PA protein, some of which may be mammalian adapting. Mutant viruses possessing some of these amino acid changes, singly or in combination, were assessed for their polymerase activities and growth kinetics in mammalian and avian cells and for their virulence in mice. We identified several mutants that were slightly more virulent in mice than the wild-type A(H7N9) virus, A/Anhui/1/2013. These mutants also exhibited increased polymerase activity in human cells but not in avian cells. Our findings indicate that the PA protein of A(H7N9) viruses has several amino acid substitutions that are attenuating in mammals. IMPORTANCE Novel avian-origin influenza A(H7N9) viruses emerged in the spring of 2013. By using computational analyses of A(H7N9) viral sequences, we identified several amino acid changes in the polymerase PA protein, which we then assessed for their effects on viral replication in cultured cells and mice. We found that the PA proteins of A(H7N9) viruses possess several amino acid substitutions that cause attenuation in mammals.
Collapse
Affiliation(s)
- Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shinya Yamada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Satoshi Fukuyama
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama, Japan
| | - Shin Murakami
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Dongming Zhao
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama, Japan
| | - Ryuta Uraki
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tokiko Watanabe
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama, Japan
| | - Yuriko Tomita
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama, Japan
| | - Catherine Macken
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama, Japan
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
24
|
Genzel Y, Reichl U. Continuous cell lines as a production system for influenza vaccines. Expert Rev Vaccines 2014; 8:1681-92. [DOI: 10.1586/erv.09.128] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Kapoor S, Dhama K. Prevention and Control of Influenza Viruses. INSIGHT INTO INFLUENZA VIRUSES OF ANIMALS AND HUMANS 2014. [PMCID: PMC7121144 DOI: 10.1007/978-3-319-05512-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The 2003–2004 outbreaks of highly pathogenic avian influenza (HPAI) have proven to be disastrous to the regional poultry industry in Asia, and have raised serious worldwide public health apprehension regarding the steps that should be taken to urgently control HPAI. Control measures must be taken based on the principles of biosecurity and disease management and at the same time making public aware of the precautionary measures at the verge of outbreak. Creation of protection and surveillance zones, various vaccination strategies viz. routine, preventive, emergency, mass and targeted vaccination programmes using live, inactivated and recombinant vaccines are the common strategies adopted in different parts of the globe. The new generation vaccines include recombinant vaccines and recombinant fusion vaccine. The pro-poor disease control programmes, giving compensation and subsidies to the farmers along with effective and efficient Veterinary Services forms integral part of control of HPAI. Following biosecurity principles and vaccination forms integral part of control programme against swine and equine influenza as well. Use of neuraminidase (NA) inhibitors (Zanamivir and Oseltamivir) for the treatment of human influenza has been widely accepted worldwide. The threat of increasing resistance of the flu viruses to these antivirals has evoked interest in the development of novel antiviral drugs for influenza virus such as inhibitors of cellular factors and host signalling cascades, cellular miRNAs, siRNA and innate immune peptides (defensins and cathelicidins). Commercial licensed inactivated vaccines for humans against influenza A and B viruses are available consisting of three influenza viruses: influenza type A subtype H3N2, influenza type A subtype H1N1 (seasonal) virus strain and influenza type B virus strain. As per WHO, use of tetravaccine consisting of antigens of influenza virus serotypes H3N2, H1N1, B and H5 is the most promising method to control influenza pandemic. All healthy children in many countries are required to be vaccinated between 6 and 59 months of age. The seasonal vaccines currently used in humans induce strain-specific humoral immunity as the antibodies. Universal influenza virus vaccines containing the relatively conserved ectodomain of M2 (M2e), M1, HA fusion peptide and stalk domains, NA, NP alone or in combination have been developed which have been shown to induce cross-protection. The T cell-based vaccines are another recent experimental approach that has been shown to elicit broad-spectrum heterosubtypic immunity in the host. As far as HPAI is concerned, various pandemic preparedness strategies have been documented.
Collapse
Affiliation(s)
- Sanjay Kapoor
- Department of Veterinary Microbiology, LLR University of Veterinary and Animal Sciences, Hisar, 125004 Haryana India
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, 243122 Uttar Pradesh India
| |
Collapse
|
26
|
Cheng BYH, Ortiz-Riaño E, de la Torre JC, Martínez-Sobrido L. Generation of recombinant arenavirus for vaccine development in FDA-approved Vero cells. J Vis Exp 2013. [PMID: 23928556 DOI: 10.3791/50662] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The development and implementation of arenavirus reverse genetics represents a significant breakthrough in the arenavirus field. The use of cell-based arenavirus minigenome systems together with the ability to generate recombinant infectious arenaviruses with predetermined mutations in their genomes has facilitated the investigation of the contribution of viral determinants to the different steps of the arenavirus life cycle, as well as virus-host interactions and mechanisms of arenavirus pathogenesis. In addition, the development of trisegmented arenaviruses has permitted the use of the arenavirus genome to express additional foreign genes of interest, thus opening the possibility of arenavirus-based vaccine vector applications. Likewise, the development of single-cycle infectious arenaviruses capable of expressing reporter genes provides a new experimental tool to improve the safety of research involving highly pathogenic human arenaviruses. The generation of recombinant arenaviruses using plasmid-based reverse genetics techniques has so far relied on the use of rodent cell lines, which poses some barriers for the development of Food and Drug Administration (FDA)-licensed vaccine or vaccine vectors. To overcome this obstacle, we describe here the efficient generation of recombinant arenaviruses in FDA-approved Vero cells.
Collapse
Affiliation(s)
- Benson Y H Cheng
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, USA
| | | | | | | |
Collapse
|
27
|
Mostafa A, Kanrai P, Ziebuhr J, Pleschka S. Improved dual promotor-driven reverse genetics system for influenza viruses. J Virol Methods 2013; 193:603-10. [PMID: 23886561 DOI: 10.1016/j.jviromet.2013.07.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/01/2013] [Accepted: 07/10/2013] [Indexed: 12/25/2022]
Abstract
Reverse genetic systems for influenza A virus (IAV) allow the generation of genetically manipulated infectious virus from a set of transfected plasmid DNAs encoding the eight genomic viral RNA segments (vRNA). For this purpose, cDNAs representing these eight vRNA segments are cloned into specific plasmid vectors that allow the generation of vRNA-like transcripts using polymerase I (Pol I). In addition, these plasmids support the transcription of viral mRNA by polymerase II (Pol II), leading to the expression of viral protein(s) encoded by the respective transcripts. In an effort to develop this system further, we constructed the bi-directional vector pMPccdB. It is based on pHW2000 (Hoffmann et al., 2000b) but contains additionally (i) the ccdB gene whose expression is lethal for most Escherichia coli strains and therefore used as a negative selection marker and (ii) more efficient AarI cloning sites that flank the ccdB gene on either side. Furthermore, we used a modified one-step restriction/ligation protocol to insert the desired cDNA into the respective pMPccdB vector DNA. Both the use of a negative selection marker and an improved cloning protocol were shown to facilitate the generation of genetically engineered IAV as illustrated in this study by the cloning and rescue of the 2009 pandemic isolate A/Giessen/6/2009 (Gi-H1N1).
Collapse
Affiliation(s)
- Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, BFS, Schubertstrasse 81, 35392 Giessen, Germany; Virology Laboratory, Environmental Research Division, National Research Center, 12311 Dokki, Giza, Egypt.
| | | | | | | |
Collapse
|
28
|
Song MS, Baek YH, Pascua PNQ, Kwon HI, Park SJ, Kim EH, Lim GJ, Choi YK. Establishment of Vero cell RNA polymerase I-driven reverse genetics for Influenza A virus and its application for pandemic (H1N1) 2009 influenza virus vaccine production. J Gen Virol 2013; 94:1230-1235. [PMID: 23486669 DOI: 10.1099/vir.0.051284-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The constant threat of newly emerging influenza viruses with pandemic potential requires the need for prompt vaccine production. Here, we utilized the Vero cell polymerase I (PolI) promoter, rather than the commonly used human PolI promoter, in an established reverse-genetics system to rescue viable influenza viruses in Vero cells, an approved cell line for human vaccine production. The Vero PolI promoter was more efficient in Vero cells and demonstrated enhanced transcription levels and virus rescue rates commensurate with that of the human RNA PolI promoter in 293T cells. These results appeared to be associated with more efficient generation of A(H1N1)pdm09- and H5N1-derived vaccine seed viruses in Vero cells, whilst the rescue rates in 293T cells were comparable. Our study provides an alternative means for improving vaccine preparation by using a novel reverse-genetics system for generating influenza A viruses.
Collapse
Affiliation(s)
- Min-Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong, Heungduk-Ku, Cheongju, Republic of Korea
| | - Yun Hee Baek
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong, Heungduk-Ku, Cheongju, Republic of Korea
| | - Philippe Noriel Q Pascua
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong, Heungduk-Ku, Cheongju, Republic of Korea
| | - Hyeok-Il Kwon
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong, Heungduk-Ku, Cheongju, Republic of Korea
| | - Su-Jin Park
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong, Heungduk-Ku, Cheongju, Republic of Korea
| | - Eun-Ha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong, Heungduk-Ku, Cheongju, Republic of Korea
| | - Gyo-Jin Lim
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong, Heungduk-Ku, Cheongju, Republic of Korea
| | - Young-Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong, Heungduk-Ku, Cheongju, Republic of Korea
| |
Collapse
|
29
|
Comparison of vRNA and cRNA based reporters for detection of influenza replication. Antiviral Res 2013; 98:76-84. [PMID: 23403209 DOI: 10.1016/j.antiviral.2013.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/04/2012] [Accepted: 01/06/2013] [Indexed: 11/24/2022]
Abstract
In this study, RNA polymerase I expressed replicons containing EGFP and luciferase reporter genes controlled by influenza vRNA or cRNA promoters were compared side-by-side in the ability to detect influenza RNA-dependent RNA polymerase activity as an indicator of influenza replication. Results showed the vRNA based Luc reporter was more sensitive to early detection of influenza virus at 6h post infection (p<0.05), and at 10-fold lower titer (MOI=0.001). Lower sensitivity of cRNA based Luc reporter constructs was due to its background expression, 2-fold lower expression, and around 4h delay in expression of luciferase. Despite these differences, both cRNA- and vRNA-based reporters demonstrated strong correlation between MOI and luciferase signal, and can be used for effective and early detection of influenza infection in vitro. Further, we demonstrated that these reporters can be used successfully to study the kinetics of antiviral drugs including siRNA. Our results also suggest that progeny vRNAs might participate not only in secondary transcription but also in secondary replication. The developed cRNA and vRNA reporters may help with further elucidation of the replication model of influenza A virus.
Collapse
|
30
|
Ortiz-Riaño E, Cheng BYH, Carlos de la Torre J, Martínez-Sobrido L. Arenavirus reverse genetics for vaccine development. J Gen Virol 2013; 94:1175-1188. [PMID: 23364194 DOI: 10.1099/vir.0.051102-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Arenaviruses are important human pathogens with no Food and Drug Administration (FDA)-licensed vaccines available and current antiviral therapy being limited to an off-label use of the nucleoside analogue ribavirin of limited prophylactic efficacy. The development of reverse genetics systems represented a major breakthrough in arenavirus research. However, rescue of recombinant arenaviruses using current reverse genetics systems has been restricted to rodent cells. In this study, we describe the rescue of recombinant arenaviruses from human 293T cells and Vero cells, an FDA-approved line for vaccine development. We also describe the generation of novel vectors that mediate synthesis of both negative-sense genome RNA and positive-sense mRNA species of lymphocytic choriomeningitis virus (LCMV) directed by the human RNA polymerases I and II, respectively, within the same plasmid. This approach reduces by half the number of vectors required for arenavirus rescue, which could facilitate virus rescue in cell lines approved for human vaccine production but that cannot be transfected at high efficiencies. We have shown the feasibility of this approach by rescuing both the Old World prototypic arenavirus LCMV and the live-attenuated vaccine Candid#1 strain of the New World arenavirus Junín. Moreover, we show the feasibility of using these novel strategies for efficient rescue of recombinant tri-segmented both LCMV and Candid#1.
Collapse
Affiliation(s)
- Emilio Ortiz-Riaño
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Benson Yee Hin Cheng
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Juan Carlos de la Torre
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
31
|
Liu M, Liu CG, Zhang Y, Shi WL, Wang W, Liu YY. Efficacy of a high-yield attenuated vaccine strain wholly derived from avian influenza viruses by use of reverse genetics. Vet Microbiol 2012; 161:43-8. [DOI: 10.1016/j.vetmic.2012.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/30/2012] [Accepted: 07/02/2012] [Indexed: 01/09/2023]
|
32
|
Engelhardt OG. Many ways to make an influenza virus--review of influenza virus reverse genetics methods. Influenza Other Respir Viruses 2012; 7:249-56. [PMID: 22712782 PMCID: PMC5779834 DOI: 10.1111/j.1750-2659.2012.00392.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Methods to introduce targeted mutations into a genome or, in the context of virology, into a virus are subsumed under the term reverse genetics (RG). Influenza viruses are important human pathogens that continue to surprise us. The development of RG for influenza viruses has greatly expanded our knowledge about influenza virus and enabled researchers to generate influenza viruses with rationally designed genotypes. Currently, a wide array of influenza virus RG methods is available. These can all be traced to fundamental principles essential in any RG system for negative-strand RNA viruses. This review gives an overview of these principles and of the multitude of RG methods, categorising them by technical characteristics.
Collapse
Affiliation(s)
- Othmar G Engelhardt
- Division of Virology, National Institute for Biological Standards and Control, Health Protection Agency, Potters Bar, UK.
| |
Collapse
|
33
|
Abstract
The ability to modify influenza viruses at will has revolutionized influenza research. Reverse genetics has been used to generate mutant or reassortant influenza viruses to assess their replication, virulence, pathogenicity, host range, and transmissibility. Moreover, this technology is now being used to generate approved influenza virus vaccines and develop novel vaccines to combat seasonal and (future) pandemic influenza viruses. Several variations of the original system have been established, all of which are considerably robust and efficient.
Collapse
Affiliation(s)
- Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | | |
Collapse
|
34
|
Enhanced growth of influenza vaccine seed viruses in vero cells mediated by broadening the optimal pH range for virus membrane fusion. J Virol 2011; 86:1405-10. [PMID: 22090129 DOI: 10.1128/jvi.06009-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Vaccination is one of the most effective preventive measures to combat influenza. Prospectively, cell culture-based influenza vaccines play an important role for robust vaccine production in both normal settings and urgent situations, such as during the 2009 pandemic. African green monkey Vero cells are recommended by the World Health Organization as a safe substrate for influenza vaccine production for human use. However, the growth of influenza vaccine seed viruses is occasionally suboptimal in Vero cells, which places limitations on their usefulness for enhanced vaccine production. Here, we present a strategy for the development of vaccine seed viruses with enhanced growth in Vero cells by changing an amino acid residue in the stem region of the HA2 subunit of the hemagglutinin (HA) molecule. This mutation optimized the pH for HA-mediated membrane fusion in Vero cells and enhanced virus growth 100 to 1,000 times in the cell line, providing a promising strategy for cell culture-based influenza vaccines.
Collapse
|
35
|
Establishment and characterization of a Madin-Darby canine kidney reporter cell line for influenza A virus assays. J Clin Microbiol 2010; 48:2515-23. [PMID: 20504984 DOI: 10.1128/jcm.02286-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza virus diagnosis has traditionally relied on virus isolation in chicken embryo or cell cultures. Many laboratories have adopted rapid molecular methods for detection of influenza viruses and discontinued routine utilization of the relatively slow viral culture methods. We describe an influenza A virus reporter cell line that contributes to more efficient viral detection in cell culture. Madin-Darby canine kidney (MDCK) cells were engineered to constitutively produce an influenza virus genome-like luciferase reporter RNA driven by the canine RNA polymerase I promoter. Induction of a high level of luciferase activity was detected in the Luc9.1 cells upon infection with various strains of influenza A virus, including 2009 H1N1 pandemic and highly pathogenic H5N1 virus. In contrast, infection with influenza B virus or human adenovirus type 5 did not induce significant levels of reporter expression. The reporter Luc9.1 cells were evaluated in neutralizing antibody assays with convalescent H3N2 ferret serum, yielding a neutralization titer comparable to that obtained by the conventional microneutralization assay, suggesting that the use of the reporter cell line might simplify neutralization assays by facilitating the establishment of infectious virus endpoints. Luc9.1 cells were also used to determine the susceptibility of influenza A viruses to a model antiviral drug. The equivalence to conventional antiviral assay results indicated that the Luc9.1 cells could provide an alternative cell-based platform for high-throughput drug discovery screens. In summary, the MDCK-derived Luc9.1 reporter cell line is highly permissive for influenza A virus replication and provides a very specific and sensitive approach for simultaneous detection and isolation of influenza A viruses as well as functional evaluation of antibodies and antiviral molecules.
Collapse
|
36
|
Human RNA polymerase I-driven reverse genetics for influenza a virus in canine cells. J Virol 2010; 84:3721-5. [PMID: 20071567 DOI: 10.1128/jvi.01925-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have established a human RNA polymerase I (pol I)-driven influenza virus reverse genetics (RG) system in the Madin-Darby canine kidney 33016-PF cell line, which is approved for influenza vaccine manufacture. RNA pol I polymerases are generally active only in cells of species closely related to the species of origin of the polymerases. Nevertheless, we show that a nonendogenous RNA pol I promoter drives efficient rescue of influenza A viruses in a canine cell line. Application of this system allows efficient generation of virus strains and presents an alternative approach for influenza vaccine production.
Collapse
|
37
|
Koudstaal W, Hartgroves L, Havenga M, Legastelois I, Ophorst C, Sieuwerts M, Zuijdgeest D, Vogels R, Custers J, de Boer-Luijtze E, de Leeuw O, Cornelissen L, Goudsmit J, Barclay W. Suitability of PER.C6® cells to generate epidemic and pandemic influenza vaccine strains by reverse genetics. Vaccine 2009; 27:2588-93. [DOI: 10.1016/j.vaccine.2009.02.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 02/02/2009] [Accepted: 02/11/2009] [Indexed: 11/16/2022]
|
38
|
Abstract
Recent outbreaks of highly pathogenic avian influenza A virus infections (including those of the H5N1 subtype) in poultry and in humans (through contact with infected birds) have raised concerns that a new influenza pandemic will soon occur. Effective vaccines against H5N1 virus are therefore urgently needed. Reverse genetics-based inactivated vaccines have been prepared according to WHO recommendations and licensed in several countries following their assessment in clinical trials. However, the effectiveness of these vaccines in a pandemic is not guaranteed. We must therefore continue to develop alternative pandemic vaccine strategies. Here, we review the current strategies for the development of H5N1 influenza vaccines, as well as some future directions for vaccine development.
Collapse
|
39
|
Abstract
H5N1 influenza A viruses are exacting a growing human toll, with more than 240 fatal cases to date. In the event of an influenza pandemic caused by these viruses, embryonated chicken eggs, which are the approved substrate for human inactivated-vaccine production, will likely be in short supply because chickens will be killed by these viruses or culled to limit the worldwide spread of the infection. The Madin-Darby canine kidney (MDCK) cell line is a promising alternative candidate substrate because it supports efficient growth of influenza viruses compared to other cell lines. Here, we addressed the molecular determinants for growth of an H5N1 vaccine seed virus in MDCK cells, revealing the critical responsibility of the Tyr residue at position 360 of PB2, the considerable requirement for functional balance between hemagglutinin (HA) and neuraminidase (NA), and the partial responsibility of the Glu residue at position 55 of NS1. Based on these findings, we produced a PR8/H5N1 reassortant, optimized for this cell line, that derives all of its genes for its internal proteins from the PR8(UW) strain except for the NS gene, which derives from the PR8(Cambridge) strain; its N1 NA gene, which has a long stalk and derives from an early H5N1 strain; and its HA gene, which has an avirulent-type cleavage site sequence and is derived from a circulating H5N1 virus. Our findings demonstrate the importance and feasibility of a cell culture-based approach to producing seed viruses for inactivated H5N1 vaccines that grow robustly and in a timely, cost-efficient manner as an alternative to egg-based vaccine production.
Collapse
|