1
|
Yan M, Su A, Meyer D, Sosa GR, Fritsch H, Pitters M, Fischer N, Herrler G, Becher P. Precursor of H-type II histo-blood group antigen and subterminal sialic acids on gangliosides are significantly implicated in cell entry and infection by a porcine P[11] rotavirus. Emerg Microbes Infect 2025; 14:2447608. [PMID: 39726161 PMCID: PMC11727068 DOI: 10.1080/22221751.2024.2447608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/21/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Rotaviruses, non-enveloped viruses with a double-stranded RNA genome, are the leading etiological pathogen of acute gastroenteritis in young children and animals. The P[11] genotype of rotaviruses exhibits a tropism for neonates. In the present study, a binding assay using synthetic oligosaccharides demonstrated that the VP8* protein of P[11] porcine rotavirus (PRV) strain 4555 binds to lacto-N-neotetraose (LNnT) with the sequence Galβ1,4-GlcNAcβ1,3-Galβ1,4-Glc, one of the core parts of histo-blood group antigen (HBGA) and milk glycans. However, infections were significantly inhibited by blocking of endogenous monosialoganglioside (GM) GM1a with cholera toxin B subunit and preincubation of the virus with exogenous GM1a, suggesting that GM1a is involved in the infection of P[11] PRV 4555. In addition to GM1a, preincubation of the virus with exogenous disialogangliosides (GD) GD1a, GD1b, and trisialoganglioside (GT) GT1b also prevented infection. In contrast, exogenous ganglioside GM3 only inhibited infections at an early time point, and exogenous asyalosphingolipids GA1 and LacCer did not show any inhibitory effect on infections. This indicates that P[11] PRV 4555 preferentially utilizes gangliosides containing subterminal sialic acids. Further experiments revealed that P[11] PRV 4555 infections were prevented by preincubation of the virus with Neu5Ac and Neu5Gc. These results confirmed that sialic acids are essential for P[11] PRV 4555 cell entry, despite the classification as NA-resistant strain. Overall, our results proved that P[11] rotavirus not only binds to the Gal-GlcNAc motif but also utilizes gangliosides containing subterminal sialic acids.
Collapse
Affiliation(s)
- Miaomiao Yan
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ang Su
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Denise Meyer
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gleyder Roman Sosa
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Henrik Fritsch
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Malte Pitters
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicole Fischer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Paul Becher
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
2
|
Dai J, Feng Y, Liao Y, Tan L, Sun Y, Song C, Qiu X, Ding C. Virus infection and sphingolipid metabolism. Antiviral Res 2024; 228:105942. [PMID: 38908521 DOI: 10.1016/j.antiviral.2024.105942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Cellular sphingolipids have vital roles in human virus replication and spread as they are exploited by viruses for cell entry, membrane fusion, genome replication, assembly, budding, and propagation. Intracellular sphingolipid biosynthesis triggers conformational changes in viral receptors and facilitates endosomal escape. However, our current understanding of how sphingolipids precisely regulate viral replication is limited, and further research is required to comprehensively understand the relationships between viral replication and endogenous sphingolipid species. Emerging evidence now suggests that targeting and manipulating sphingolipid metabolism enzymes in host cells is a promising strategy to effectively combat viral infections. Additionally, serum sphingolipid species and concentrations could function as potential serum biomarkers to help monitor viral infection status in different patients. In this work, we comprehensively review the literature to clarify how viruses exploit host sphingolipid metabolism to accommodate viral replication and disrupt host innate immune responses. We also provide valuable insights on the development and use of antiviral drugs in this area.
Collapse
Affiliation(s)
- Jun Dai
- Experimental Animal Center, Zunyi Medical University, Zunyi, 563099, China
| | - Yiyi Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
3
|
de Sautu M, Herrmann T, Scanavachi G, Jenni S, Harrison SC. The rotavirus VP5*/VP8* conformational transition permeabilizes membranes to Ca2. PLoS Pathog 2024; 20:e1011750. [PMID: 38574119 PMCID: PMC11020617 DOI: 10.1371/journal.ppat.1011750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/16/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
Rotaviruses infect cells by delivering into the cytosol a transcriptionally active inner capsid particle (a "double-layer particle": DLP). Delivery is the function of a third, outer layer, which drives uptake from the cell surface into small vesicles from which the DLPs escape. In published work, we followed stages of rhesus rotavirus (RRV) entry by live-cell imaging and correlated them with structures from cryogenic electron microscopy and tomography (cryo-EM and cryo-ET). The virus appears to wrap itself in membrane, leading to complete engulfment and loss of Ca2+ from the vesicle produced by the wrapping. One of the outer-layer proteins, VP7, is a Ca2+-stabilized trimer; loss of Ca2+ releases both VP7 and the other outer-layer protein, VP4, from the particle. VP4, activated by cleavage into VP8* and VP5*, is a trimer that undergoes a large-scale conformational rearrangement, reminiscent of the transition that viral fusion proteins undergo to penetrate a membrane. The rearrangement of VP5* thrusts a 250-residue, C-terminal segment of each of the three subunits outward, while allowing the protein to remain attached to the virus particle and to the cell being infected. We proposed that this segment inserts into the membrane of the target cell, enabling Ca2+ to cross. In the work reported here, we show the validity of key aspects of this proposed sequence. By cryo-EM studies of liposome-attached virions ("triple-layer particles": TLPs) and single-particle fluorescence imaging of liposome-attached TLPs, we confirm insertion of the VP4 C-terminal segment into the membrane and ensuing generation of a Ca2+ "leak". The results allow us to formulate a molecular description of early events in entry. We also discuss our observations in the context of other work on double-strand RNA virus entry.
Collapse
Affiliation(s)
- Marilina de Sautu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- Laboratory of Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Tobias Herrmann
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gustavo Scanavachi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen C. Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- Laboratory of Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Carossino M, Vissani MA, Barrandeguy ME, Balasuriya UBR, Parreño V. Equine Rotavirus A under the One Health Lens: Potential Impacts on Public Health. Viruses 2024; 16:130. [PMID: 38257830 PMCID: PMC10819593 DOI: 10.3390/v16010130] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Group A rotaviruses are a well-known cause of viral gastroenteritis in infants and children, as well as in many mammalian species and birds, affecting them at a young age. This group of viruses has a double-stranded, segmented RNA genome with high genetic diversity linked to point mutations, recombination, and, importantly, reassortment. While initial molecular investigations undertaken in the 1900s suggested host range restriction among group A rotaviruses based on the fact that different gene segments were distributed among different animal species, recent molecular surveillance and genome constellation genotyping studies conducted by the Rotavirus Classification Working Group (RCWG) have shown that animal rotaviruses serve as a source of diversification of human rotavirus A, highlighting their zoonotic potential. Rotaviruses occurring in various animal species have been linked with contributing genetic material to human rotaviruses, including horses, with the most recent identification of equine-like G3 rotavirus A infecting children. The goal of this article is to review relevant information related to rotavirus structure/genomic organization, epidemiology (with a focus on human and equine rotavirus A), evolution, inter-species transmission, and the potential zoonotic role of equine and other animal rotaviruses. Diagnostics, surveillance and the current status of human and livestock vaccines against RVA are also reviewed.
Collapse
Affiliation(s)
- Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Maria Aldana Vissani
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Maria E. Barrandeguy
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Viviana Parreño
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
5
|
Raev SA, Raque M, Kick MK, Saif LJ, Vlasova AN. Differential transcriptome response following infection of porcine ileal enteroids with species A and C rotaviruses. Virol J 2023; 20:238. [PMID: 37848925 PMCID: PMC10580564 DOI: 10.1186/s12985-023-02207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Rotavirus C (RVC) is the major causative agent of acute gastroenteritis in suckling piglets, while most RVAs mostly affect weaned animals. Besides, while most RVA strains can be propagated in MA-104 and other continuous cell lines, attempts to isolate and culture RVC strains remain largely unsuccessful. The host factors associated with these unique RVC characteristics remain unknown. METHODS In this study, we have comparatively evaluated transcriptome responses of porcine ileal enteroids infected with RVC G1P[1] and two RVA strains (G9P[13] and G5P[7]) with a focus on innate immunity and virus-host receptor interactions. RESULTS The analysis of differentially expressed genes regulating antiviral immune response indicated that in contrast to RVA, RVC infection resulted in robust upregulation of expression of the genes encoding pattern recognition receptors including RIG1-like receptors and melanoma differentiation-associated gene-5. RVC infection was associated with a prominent upregulation of the most of glycosyltransferase-encoding genes except for the sialyltransferase-encoding genes which were downregulated similar to the effects observed for G9P[13]. CONCLUSIONS Our results provide novel data highlighting the unique aspects of the RVC-associated host cellular signalling and suggest that increased upregulation of the key antiviral factors maybe one of the mechanisms responsible for RVC age-specific characteristics and its inability to replicate in most cell cultures.
Collapse
Affiliation(s)
- Sergei A Raev
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, 44677, USA.
| | - Molly Raque
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, 44677, USA
| | - Maryssa K Kick
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, 44677, USA
| | - Linda J Saif
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, 44677, USA
| | - Anastasia N Vlasova
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, 44677, USA.
| |
Collapse
|
6
|
De Sautu M, Herrmann T, Jenni S, Harrison SC. The rotavirus VP5*/VP8* conformational transition permeabilizes membranes to Ca 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.15.562449. [PMID: 37905109 PMCID: PMC10614792 DOI: 10.1101/2023.10.15.562449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Rotaviruses infect cells by delivering into the cytosol a transcriptionally active inner capsid particle (a "double-layer particle": DLP). Delivery is the function of a third, outer layer, which drives uptake from the cell surface into small vesicles from which the DLPs escape. In published work, we followed stages of rhesus rotavirus (RRV) entry by live-cell imaging and correlated them with structures from cryogenic electron microscopy and tomography (cryo-EM and cryo-ET). The virus appears to wrap itself in membrane, leading to complete engulfment and loss of Ca2+ from the vesicle produced by the wrapping. One of the outer-layer proteins, VP7, is a Ca2+-stabilized trimer; loss of Ca2+ releases both outer-layer proteins from the particle. The other outer-layer protein, VP4, activated by cleavage into VP8* and VP5*, is a trimer that undergoes a large-scale conformational rearrangement, reminiscent of the transition that viral fusion proteins undergo to penetrate a membrane. The rearrangement of VP5* thrusts a 250-residue, C-terminal segment of each of the three subunits outward, while allowing the protein to remain attached to the virus particle and to the cell being infected. We proposed that this segment inserts into the membrane of the target cell, enabling Ca2+ to cross. In the work reported here, we show the validity of key aspects of this proposed sequence. By cryo-EM studies of liposome-attached virions ("triple-layer particles": TLPs) and single-particle fluorescence imaging of liposome-attached TLPs, we confirm insertion of the VP4 C-terminal segment into the membrane and ensuing generation of a Ca2+ "leak". The results allow us to formulate a molecular description of early events in entry. We also discuss our observations in the context of other work on double-strand RNA virus entry.
Collapse
Affiliation(s)
- Marilina De Sautu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
- Laboratory of Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Tobias Herrmann
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Stephen C. Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
- Laboratory of Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Li A, Bao J, Gao S, He Y, Nie X, Hosyanto FF, He X, Li T, Xu L. MicroRNA hsa-miR-320a-3p and Its Targeted mRNA FKBP5 Were Differentially Expressed in Patients with HIV/TB Co-Infection. ACS Infect Dis 2023; 9:1742-1753. [PMID: 37624586 DOI: 10.1021/acsinfecdis.3c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Among the PLWH (people living with HIV) population, the risk of developing active tuberculosis (TB) is increasing. Active TB also accelerates the deterioration of PLWH's immune function and is one of the leading causes of death in the PLWH population. So far, accurate diagnosis of active TB in the PLWH population remains challenging. Through data analysis of HIV/TB co-infection in the GEO database, the differentially expressed genes as well as their related microRNA (miRNA) were acquired and were further verified through clinical blood samples. Dual-luciferase assay was used to verify the mechanism of miRNA on mRNA. The enrichment of immune cells in database patient samples was analyzed by bioinformatics and finally verified by blood routine data. Our study found that FKBP5 (FK506 binding protein 5) was highly expressed in the HIV/TB co-infection group; hsa-miR-320a-3p was highly expressed in the HIV infection group but decreased in the HIV/TB co-infection group. Dual-luciferase assay results showed that hsa-miR-320a-3p mimics significantly reduced the relative luciferase activity of the WT-FKBP5 group; however, this phenomenon was not observed in the MUT-FKBP5 group. At the same time, as a key molecule of the immune-related pathway, FKBP5 is highly correlated with the amount of neutrophils, which provides a new suggestion for the treatment of the HIV/TB co-infection population. Our study found that hsa-miR-320a-3p can decrease FKBP5 expression, suggesting a potential regulatory role for FKBP5. The involvement of FKBP5 and its related molecule hsa-miR-320a-3p in HIV/TB co-infection proposes them as potential biomarkers for the diagnosis of active TB in the PLWH population.
Collapse
Affiliation(s)
- Anlong Li
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jiajia Bao
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Hospital-Acquired Infection Control Department, First People's Hospital of Jintang County, Chengdu 610400, China
| | - Sijia Gao
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ying He
- Central Laboratory, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing 400036, China
| | - Xiaoping Nie
- Central Laboratory, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing 400036, China
| | | | - Xintong He
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Tongxin Li
- Central Laboratory, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing 400036, China
| | - Lei Xu
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
8
|
Raque M, Raev SA, Guo Y, Kick MK, Saif LJ, Vlasova AN. Host Cell Response to Rotavirus Infection with Emphasis on Virus-Glycan Interactions, Cholesterol Metabolism, and Innate Immunity. Viruses 2023; 15:1406. [PMID: 37515094 PMCID: PMC10385841 DOI: 10.3390/v15071406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Although rotavirus A (RVA) is the primary cause of acute viral gastroenteritis in children and young animals, mechanisms of its replication and pathogenesis remain poorly understood. We previously demonstrated that the neuraminidase-mediated removal of terminal sialic acids (SAs) significantly enhanced RVA-G9P[13] replication, while inhibiting RVA-G5P[7] replication. In this study, we compared the transcriptome responses of porcine ileal enteroids (PIEs) to G5P[7] vs. G9P[13] infections, with emphasis on the genes associated with immune response, cholesterol metabolism, and host cell attachment. The analysis demonstrated that G9P[13] infection led to a robust modulation of gene expression (4093 significantly modulated genes vs. 488 genes modulated by G5P[7]) and a significant modulation of glycosyltransferase-encoding genes. The two strains differentially affected signaling pathways related to immune response, with G9P[13] mostly upregulating and G5P[7] inhibiting them. Both RVAs modulated the expression of genes encoding for cholesterol transporters. G9P[13], but not G5P[7], significantly affected the ceramide synthesis pathway known to affect both cholesterol and glycan metabolism. Thus, our results highlight the unique mechanisms regulating cellular response to infection caused by emerging/re-emerging and historical RVA strains relevant to RVA-receptor interactions, metabolic pathways, and immune signaling pathways that are critical in the design of effective control strategies.
Collapse
Affiliation(s)
- Molly Raque
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| | - Sergei A Raev
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| | - Yusheng Guo
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| | - Maryssa K Kick
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| | - Linda J Saif
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| | - Anastasia N Vlasova
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| |
Collapse
|
9
|
Peruzzu D, Fecchi K, Venturi G, Gagliardi MC. Repurposing Amphotericin B and Its Liposomal Formulation for the Treatment of Human Mpox. Int J Mol Sci 2023; 24:ijms24108896. [PMID: 37240241 DOI: 10.3390/ijms24108896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Mpox (monkeypox) is a zoonotic viral disease caused by the mpox virus (MPXV). Recently in 2022, a multi-country Mpox outbreak has determined great concern as the disease rapidly spreads. The majority of cases are being noticed in European regions and are unrelated to endemic travel or known contact with infected individuals. In this outbreak, close sexual contact appears to be important for MPXV transmission, and an increasing prevalence in people with multiple sexual partners and in men who have sex with men has been observed. Although Vaccinia virus (VACV)-based vaccines have been shown to induce a cross-reactive and protective immune response against MPXV, limited data support their efficacy against the 2022 Mpox outbreak. Furthermore, there are no specific antiviral drugs for Mpox. Host-cell lipid rafts are small, highly dynamic plasma-membrane microdomains enriched in cholesterol, glycosphingolipids and phospholipids that have emerged as crucial surface-entry platforms for several viruses. We previously demonstrated that the antifungal drug Amphotericin B (AmphB) inhibits fungal, bacterial and viral infection of host cells through its capacity to sequester host-cell cholesterol and disrupt lipid raft architecture. In this context, we discuss the hypothesis that AmphB could inhibit MPXV infection of host cells through disruption of lipid rafts and eventually through redistribution of receptors/co-receptors mediating virus entry, thus representing an alternative or additional therapeutic tool for human Mpox.
Collapse
Affiliation(s)
- Daniela Peruzzu
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Katia Fecchi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Giulietta Venturi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Maria Cristina Gagliardi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
10
|
Shah PNM, Gilchrist JB, Forsberg BO, Burt A, Howe A, Mosalaganti S, Wan W, Radecke J, Chaban Y, Sutton G, Stuart DI, Boyce M. Characterization of the rotavirus assembly pathway in situ using cryoelectron tomography. Cell Host Microbe 2023; 31:604-615.e4. [PMID: 36996819 PMCID: PMC7615348 DOI: 10.1016/j.chom.2023.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/27/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023]
Abstract
Rotavirus assembly is a complex process that involves the stepwise acquisition of protein layers in distinct intracellular locations to form the fully assembled particle. Understanding and visualization of the assembly process has been hampered by the inaccessibility of unstable intermediates. We characterize the assembly pathway of group A rotaviruses observed in situ within cryo-preserved infected cells through the use of cryoelectron tomography of cellular lamellae. Our findings demonstrate that the viral polymerase VP1 recruits viral genomes during particle assembly, as revealed by infecting with a conditionally lethal mutant. Additionally, pharmacological inhibition to arrest the transiently enveloped stage uncovered a unique conformation of the VP4 spike. Subtomogram averaging provided atomic models of four intermediate states, including a pre-packaging single-layered intermediate, the double-layered particle, the transiently enveloped double-layered particle, and the fully assembled triple-layered virus particle. In summary, these complementary approaches enable us to elucidate the discrete steps involved in forming an intracellular rotavirus particle.
Collapse
Affiliation(s)
- Pranav N M Shah
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK; CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Headington, Oxford, UK.
| | - James B Gilchrist
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Björn O Forsberg
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK; Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Alister Burt
- Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Andrew Howe
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Shyamal Mosalaganti
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - William Wan
- Vanderbilt University Center for Structural Biology, PMB 407917, 465 21st Ave S, 5140 MRB3, Nashville, TN, USA
| | - Julika Radecke
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Yuriy Chaban
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Geoff Sutton
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK
| | - David I Stuart
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK; CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Headington, Oxford, UK; Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK.
| | - Mark Boyce
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK.
| |
Collapse
|
11
|
Jiang L, Tang A, Song L, Tong Y, Fan H. Advances in the development of antivirals for rotavirus infection. Front Immunol 2023; 14:1041149. [PMID: 37006293 PMCID: PMC10063883 DOI: 10.3389/fimmu.2023.1041149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Rotavirus (RV) causes 200,000 deaths per year and imposes a serious burden to public health and livestock farming worldwide. Currently, rehydration (oral and intravenous) remains the main strategy for the treatment of rotavirus gastroenteritis (RVGE), and no specific drugs are available. This review discusses the viral replication cycle in detail and outlines possible therapeutic approaches including immunotherapy, probiotic-assisted therapy, anti-enteric secretory drugs, Chinese medicine, and natural compounds. We present the latest advances in the field of rotavirus antivirals and highlights the potential use of Chinese medicine and natural compounds as therapeutic agents. This review provides an important reference for rotavirus prevention and treatment.
Collapse
Affiliation(s)
| | | | - Lihua Song
- *Correspondence: Huahao Fan, ; Yigang Tong, ; Lihua Song,
| | - Yigang Tong
- *Correspondence: Huahao Fan, ; Yigang Tong, ; Lihua Song,
| | - Huahao Fan
- *Correspondence: Huahao Fan, ; Yigang Tong, ; Lihua Song,
| |
Collapse
|
12
|
Raev S, Amimo J, Saif L, Vlasova A. Intestinal mucin-type O-glycans: the major players in the host-bacteria-rotavirus interactions. Gut Microbes 2023; 15:2197833. [PMID: 37020288 PMCID: PMC10078158 DOI: 10.1080/19490976.2023.2197833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Rotavirus (RV) causes severe diarrhea in young children and animals worldwide. Several glycans terminating in sialic acids (SAs) and histo-blood group antigens (HBGAs) on intestinal epithelial cell (IEC) surface have been recognized to act as attachment sites for RV. IECs are protected by the double layer of mucus of which O-glycans (including HBGAs and SAs) are a major organic component. Luminal mucins, as well as bacterial glycans, can act as decoy molecules removing RV particles from the gut. The composition of the intestinal mucus is regulated by complex O-glycan-specific interactions among the gut microbiota, RV and the host. In this review, we highlight O-glycan-mediated interactions within the intestinal lumen prior to RV attachment to IECs. A better understanding of the role of mucus is essential for the development of alternative therapeutic tools including the use of pre- and probiotics to control RV infection.
Collapse
Affiliation(s)
- S.A. Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - J.O. Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - L.J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - A.N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
13
|
Muacevic A, Adler JR, Dighriri IM, Alharthi MS, Alqurashi GB, Musharraf RA, Albuhayri AH, Almalki MK, Alnami SA, Mashraqi ZO. An Overview of Fluvoxamine and its Use in SARS-CoV-2 Treatment. Cureus 2023; 15:e34158. [PMID: 36843775 PMCID: PMC9949685 DOI: 10.7759/cureus.34158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2023] [Indexed: 01/26/2023] Open
Abstract
Fluvoxamine (FLV) is a well-tolerated, widely accessible antidepressant of the selective serotonin reuptake inhibitor (SSRI) category. It was formerly used to reduce anxiety, obsessive-compulsive disorder, panic attacks, and depression. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enclosed ribonucleic acid (RNA) virus with a positive-sense RNA genome that belongs to the Coronaviridae family. Infection with SARS-CoV-2 causes clinical deterioration, increased hospitalization, morbidity, and death. As a result, the purpose of this research was to review FLV and its use in the treatment of SARS-CoV-2. FLV is a potent sigma-1 receptor (S1R) agonist that modulates inflammation by reducing mast cell downregulation, cytokine production, platelet aggregation, interfering with endolysosomal viral transport, and delaying clinical deterioration. FLV treatment reduced the requirement for hospitalization in high-risk outpatients with early identified coronavirus disease 2019 (COVID-19), defined by detention in a COVID-19 emergency department or transfer to a tertiary hospital. In addition, FLV may reduce mortality and risk of hospital admission or death in patients with SARS-CoV-2. The most common adverse effect is nausea; other gastrointestinal symptoms, neurologic consequences, and suicidal thoughts may also occur. There is no evidence that FLV can treat children with SARS-CoV-2. Although FLV is not expected to increase the frequency of congenital abnormalities during pregnancy, this risk must be balanced with the potential benefit. More research is required to determine the effectiveness, dose, and mechanisms of action of FLV; however, FLV appears to offer significant promise as a safe and widely accessible drug that can be repurposed to reduce substantial morbidity and mortality due to SARS-CoV-2.
Collapse
|
14
|
Sarkar R, Banerjee S, Halder P, Koley H, Komoto S, Chawla-Sarkar M. Suppression of classical nuclear import pathway by importazole and ivermectin inhibits rotavirus replication. J Antimicrob Chemother 2022; 77:3443-3455. [PMID: 36210599 DOI: 10.1093/jac/dkac339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rotavirus is the foremost cause of acute gastroenteritis among infants in resource-poor countries, causing severe morbidity and mortality. The currently available rotavirus vaccines are effective in reducing severity of the disease but not the infection rates, thus antivirals as an adjunct therapy are needed to reduce the morbidity in children. Viruses rely on host cellular machinery for nearly every step of the replication cycle. Therefore, targeting host factors that are indispensable for virus replication could be a promising strategy. OBJECTIVES To assess the therapeutic potential of ivermectin and importazole against rotaviruses. METHODS Antirotaviral activity of importazole and ivermectin was measured against various rotavirus strains (RV-SA11, RV-Wa, RV-A5-13, RV-EW) in vitro and in vivo by quantifying viral protein expression by western blot, analysing viroplasm formation by confocal microscopy, and measuring virus yield by plaque assay. RESULTS Importin-β1 and Ran were found to be induced during rotavirus infection. Knocking down importin-β1 severely impaired rotavirus replication, suggesting a critical role for importin-β1 in the rotavirus life cycle. In vitro studies revealed that treatment of ivermectin and importazole resulted in reduced synthesis of viral proteins, diminished production of infectious virus particles, and decrease in viroplasm-positive cells. Mechanistic study proved that both drugs perform antirotavirus activity by inhibiting the function of importin-β1. In vivo investigations in mice also confirmed the antirotavirus potential of importazole and ivermectin at non-toxic doses. Treatments of rotavirus-infected mice with either drug resulted in diminished shedding of viral particles in the stool sample, reduced expression of viral protein in the small intestine and restoration of damaged intestinal villi comapared to untreated infected mice. CONCLUSIONS The study highlights the potential of importazole and ivermectin as antirotavirus therapeutics.
Collapse
Affiliation(s)
- Rakesh Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, 700010, Kolkata, West Bengal, India
| | - Shreya Banerjee
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, 700010, Kolkata, West Bengal, India
| | - Prolay Halder
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Aichi, Japan
| | - Mamta Chawla-Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, 700010, Kolkata, West Bengal, India
| |
Collapse
|
15
|
Kumar D, Shepherd FK, Springer NL, Mwangi W, Marthaler DG. Rotavirus Infection in Swine: Genotypic Diversity, Immune Responses, and Role of Gut Microbiome in Rotavirus Immunity. Pathogens 2022; 11:pathogens11101078. [PMID: 36297136 PMCID: PMC9607047 DOI: 10.3390/pathogens11101078] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Rotaviruses (RVs) are endemic in swine populations, and all swine herds certainly have a history of RV infection and circulation. Rotavirus A (RVA) and C (RVC) are the most common among all RV species reported in swine. RVA was considered most prevalent and pathogenic in swine; however, RVC has been emerging as a significant cause of enteritis in newborn piglets. RV eradication from swine herds is not practically achievable, hence producers’ mainly focus on minimizing the production impact of RV infections by reducing mortality and diarrhea. Since no intra-uterine passage of immunoglobulins occur in swine during gestation, newborn piglets are highly susceptible to RV infection at birth. Boosting lactogenic immunity in gilts by using vaccines and natural planned exposure (NPE) is currently the only way to prevent RV infections in piglets. RVs are highly diverse and multiple RV species have been reported from swine, which also contributes to the difficulties in preventing RV diarrhea in swine herds. Human RV-gut microbiome studies support a link between microbiome composition and oral RV immunogenicity. Such information is completely lacking for RVs in swine. It is not known how RV infection affects the functionality or structure of gut microbiome in swine. In this review, we provide a detailed overview of genotypic diversity of swine RVs, host-ranges, innate and adaptive immune responses to RVs, homotypic and heterotypic immunity to RVs, current methods used for RV management in swine herds, role of maternal immunity in piglet protection, and prospects of investigating swine gut microbiota in providing immunity against rotaviruses.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: (D.K.); (W.M.); (D.G.M.); Tel.: +1-804-503-1241 (D.K.)
| | - Frances K Shepherd
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55108, USA
| | - Nora L. Springer
- Clinical Pathology, Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: (D.K.); (W.M.); (D.G.M.); Tel.: +1-804-503-1241 (D.K.)
| | - Douglas G. Marthaler
- Indical Inc., 1317 Edgewater Dr #3722, Orlando, FL 32804, USA
- Correspondence: (D.K.); (W.M.); (D.G.M.); Tel.: +1-804-503-1241 (D.K.)
| |
Collapse
|
16
|
Mahdi M, Hermán L, Réthelyi JM, Bálint BL. Potential Role of the Antidepressants Fluoxetine and Fluvoxamine in the Treatment of COVID-19. Int J Mol Sci 2022; 23:3812. [PMID: 35409171 PMCID: PMC8998734 DOI: 10.3390/ijms23073812] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Mapping non-canonical cellular pathways affected by approved medications can accelerate drug repurposing efforts, which are crucial in situations with a global impact such as the COVID-19 pandemic. Fluoxetine and fluvoxamine are well-established and widely-used antidepressive agents that act as serotonin reuptake inhibitors (SSRI-s). Interestingly, these drugs have been reported earlier to act as lysosomotropic agents, inhibitors of acid sphingomyelinase in the lysosomes, and as ligands of sigma-1 receptors, mechanisms that might be used to fight severe outcomes of COVID-19. In certain cases, these drugs were administered for selected COVID-19 patients because of their antidepressive effects, while in other cases, clinical studies were performed to assess the effect of these drugs on treating COVID-19 patients. Clinical studies produced promising data that encourage the further investigation of fluoxetine and fluvoxamine regarding their use in COVID-19. In this review, we summarize experimental data and the results of the performed clinical studies. We also provide an overview of previous knowledge on the tissue distribution of these drugs and by integrating this information with the published experimental results, we highlight the real opportunity of using these drugs in our fight against COVID-19.
Collapse
Affiliation(s)
- Mohamed Mahdi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Infectology Clinic, University of Debrecen Clinical Centre, Bartók Béla út 2-26, 4031 Debrecen, Hungary
| | - Levente Hermán
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6, 1083 Budapest, Hungary
| | - János M Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6, 1083 Budapest, Hungary
| | - Bálint László Bálint
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Department of Bioinformatics, Semmelweis University, Tűzoltó utca 7-9, 1094 Budapest, Hungary
| |
Collapse
|
17
|
Maeda K, Zachos NC, Orzalli MH, Schmieder SS, Chang D, Bugda Gwilt K, Doucet M, Baetz NW, Lee S, Crawford SE, Estes MK, Kagan JC, Turner JR, Lencer WI. Depletion of the apical endosome in response to viruses and bacterial toxins provides cell-autonomous host defense at mucosal surfaces. Cell Host Microbe 2022; 30:216-231.e5. [PMID: 35143768 PMCID: PMC8852832 DOI: 10.1016/j.chom.2021.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/28/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
Polarized epithelial cells form an essential barrier against infection at mucosal surfaces. Many pathogens breach this barrier to cause disease, often by co-opting cellular endocytosis mechanisms to enter the cell through the lumenal (apical) cell surface. We recently discovered that the loss of the cell polarity gene PARD6B selectively diminishes apical endosome function. Here, we find that in response to the entry of certain viruses and bacterial toxins into the epithelial cells via the apical membrane, PARD6B and aPKC, two components of the PARD6B-aPKC-Cdc42 apical polarity complex, undergo rapid proteasome-dependent degradation. The perturbation of apical membrane glycosphingolipids by toxin- or virus-binding initiates degradation of PARD6B. The loss of PARD6B causes the depletion of apical endosome function and renders the cell resistant to further infection from the lumenal cell surface, thus enabling a form of cell-autonomous host defense.
Collapse
Affiliation(s)
- Keiko Maeda
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas C Zachos
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Megan H Orzalli
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stefanie S Schmieder
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Denis Chang
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Katlynn Bugda Gwilt
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Michele Doucet
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas W Baetz
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sun Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, MS: BCM-385, Houston, TX 77030, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, MS: BCM-385, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard Digestive Diseases Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jerrold R Turner
- Harvard Digestive Diseases Center, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Wayne I Lencer
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard Digestive Diseases Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Patra U, Mukhopadhyay U, Mukherjee A, Dutta S, Chawla-Sarkar M. Treading a HOSTile path: Mapping the dynamic landscape of host cell-rotavirus interactions to explore novel host-directed curative dimensions. Virulence 2021; 12:1022-1062. [PMID: 33818275 PMCID: PMC8023246 DOI: 10.1080/21505594.2021.1903198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/20/2021] [Accepted: 03/10/2021] [Indexed: 12/27/2022] Open
Abstract
Viruses are intracellular pathogens and are dependent on host cellular resources to carry out their cycles of perpetuation. Obtaining an integrative view of host-virus interaction is of utmost importance to understand the complex and dynamic interplay between viral components and host machineries. Besides its obvious scholarly significance, a comprehensive host-virus interaction profile also provides a platform where from host determinants of pro-viral and antiviral importance can be identified and further be subjected to therapeutic intervention. Therefore, adjunct to conventional methods of prophylactic vaccination and virus-directed antivirals, this host-targeted antiviral approach holds promising therapeutic potential. In this review, we present a comprehensive landscape of host cellular reprogramming in response to infection with rotavirus (RV) which causes profuse watery diarrhea in neonates and infants. In addition, an emphasis is given on how host determinants are either usurped or subverted by RV in course of infection and how therapeutic manipulation of specific host factors can effectively modulate the RV life cycle.
Collapse
Affiliation(s)
- Upayan Patra
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Urbi Mukhopadhyay
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Arpita Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| |
Collapse
|
19
|
Functionality of the putative surface glycoproteins of the Wuhan spiny eel influenza virus. Nat Commun 2021; 12:6161. [PMID: 34697321 PMCID: PMC8546056 DOI: 10.1038/s41467-021-26409-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022] Open
Abstract
A panel of influenza virus-like sequences were recently documented in fish and amphibians. Of these, the Wuhan spiny eel influenza virus (WSEIV) was found to phylogenetically cluster with influenza B viruses as a sister clade. Influenza B viruses have been documented to circulate only in humans, with certain virus isolates found in harbor seals. It is therefore interesting that a similar virus was potentially found in fish. Here we characterize the putative hemagglutinin (HA) and neuraminidase (NA) surface glycoproteins of the WSEIV. Functionally, we show that the WSEIV NA-like protein has sialidase activity comparable to B/Malaysia/2506/2004 influenza B virus NA, making it a bona fide neuraminidase that is sensitive to NA inhibitors. We tested the functionality of the HA by addressing the receptor specificity, stability, preferential airway protease cleavage, and fusogenicity. We show highly specific binding to monosialic ganglioside 2 (GM2) and fusogenicity at a range of different pH conditions. In addition, we found limited antigenic conservation of the WSEIV HA and NA relative to the B/Malaysia/2506/2004 virus HA and NA. In summary, we perform a functional and antigenic characterization of the glycoproteins of WSEIV to assess if it is indeed a bona fide influenza virus potentially circulating in ray-finned fish.
Collapse
|
20
|
Ceramide and Related Molecules in Viral Infections. Int J Mol Sci 2021; 22:ijms22115676. [PMID: 34073578 PMCID: PMC8197834 DOI: 10.3390/ijms22115676] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 02/08/2023] Open
Abstract
Ceramide is a lipid messenger at the heart of sphingolipid metabolism. In concert with its metabolizing enzymes, particularly sphingomyelinases, it has key roles in regulating the physical properties of biological membranes, including the formation of membrane microdomains. Thus, ceramide and its related molecules have been attributed significant roles in nearly all steps of the viral life cycle: they may serve directly as receptors or co-receptors for viral entry, form microdomains that cluster entry receptors and/or enable them to adopt the required conformation or regulate their cell surface expression. Sphingolipids can regulate all forms of viral uptake, often through sphingomyelinase activation, and mediate endosomal escape and intracellular trafficking. Ceramide can be key for the formation of viral replication sites. Sphingomyelinases often mediate the release of new virions from infected cells. Moreover, sphingolipids can contribute to viral-induced apoptosis and morbidity in viral diseases, as well as virus immune evasion. Alpha-galactosylceramide, in particular, also plays a significant role in immune modulation in response to viral infections. This review will discuss the roles of ceramide and its related molecules in the different steps of the viral life cycle. We will also discuss how novel strategies could exploit these for therapeutic benefit.
Collapse
|
21
|
Arias CF, López S. Rotavirus cell entry: not so simple after all. Curr Opin Virol 2021; 48:42-48. [PMID: 33887683 DOI: 10.1016/j.coviro.2021.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 01/25/2023]
Abstract
Rotaviruses are important agents of severe gastroenteritis in young children, and show a very selective cell and tissue tropism, as well as significant age and host restriction. In the last few years, these properties have been associated with the initial interaction of the virus with histo-blood group antigens on the cell surface, although post-attachment interactions have also been found to define the susceptibility to infection of human enteroids. These initial interactions seem also to determine the virus entry pathway, as well as the induction of signaling cascades that influence the virus intracellular vesicular traffic and escape from endosomes. Here we review the current knowledge of the different stages of the virus entry journey.
Collapse
Affiliation(s)
- Carlos F Arias
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, Mexico.
| | - Susana López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| |
Collapse
|
22
|
Herrmann T, Torres R, Salgado EN, Berciu C, Stoddard D, Nicastro D, Jenni S, Harrison SC. Functional refolding of the penetration protein on a non-enveloped virus. Nature 2021; 590:666-670. [PMID: 33442061 PMCID: PMC8297411 DOI: 10.1038/s41586-020-03124-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/08/2020] [Indexed: 11/09/2022]
Abstract
A non-enveloped virus requires a membrane lesion to deliver its genome into a target cell1. For rotaviruses, membrane perforation is a principal function of the viral outer-layer protein, VP42,3. Here we describe the use of electron cryomicroscopy to determine how VP4 performs this function and show that when activated by cleavage to VP8* and VP5*, VP4 can rearrange on the virion surface from an 'upright' to a 'reversed' conformation. The reversed structure projects a previously buried 'foot' domain outwards into the membrane of the host cell to which the virion has attached. Electron cryotomograms of virus particles entering cells are consistent with this picture. Using a disulfide mutant of VP4, we have also stabilized a probable intermediate in the transition between the two conformations. Our results define molecular mechanisms for the first steps of the penetration of rotaviruses into the membranes of target cells and suggest similarities with mechanisms postulated for other viruses.
Collapse
Affiliation(s)
- Tobias Herrmann
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.,Graduate Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Raúl Torres
- Laboratory of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Eric N Salgado
- Laboratory of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Seqirus USA, Cambridge, MA, USA
| | - Cristina Berciu
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, MA, USA.,Microscopy Core Facility, McLean Hospital, Belmont, MA, USA
| | - Daniel Stoddard
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, MA, USA.,Department of Cell Biology, University of Texas Southwestern, Dallas, TX, USA
| | - Daniela Nicastro
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, MA, USA.,Department of Cell Biology, University of Texas Southwestern, Dallas, TX, USA
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA. .,Laboratory of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA. .,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Vitner EB. The role of brain innate immune response in lysosomal storage disorders: fundamental process or evolutionary side effect? FEBS Lett 2020; 594:3619-3631. [PMID: 33131047 DOI: 10.1002/1873-3468.13980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 01/14/2023]
Abstract
Sphingolipidoses are diseases caused by mutations in genes responsible for sphingolipid degradation and thereby lead to sphingolipid accumulation. Most sphingolipidoses have a neurodegenerative manifestation characterized by innate immune activation in the brain. However, the role of the immune response in disease progression is ill-understood. In contrast to infectious diseases, immune activation is unable to eliminate the offending agent in sphingolipidoses resulting in ineffective, chronic inflammation. This paradox begs two fundamental questions: Why has this immune response evolved in sphingolipidoses? What role does it play in disease progression? Here, starting from the observation that sphingolipids (SLs) are elevated also in infectious diseases, I discuss the possibility that the activation of the brain immune response by SLs has evolved as a part of the immune response against pathogens and plays no major role in sphingolipidoses.
Collapse
Affiliation(s)
- Einat B Vitner
- Department of Infectious Diseases, Israel institute for Biological Research, Ness-Ziona, Israel
| |
Collapse
|
24
|
Bosseboeuf A, Seillier C, Mennesson N, Allain-Maillet S, Fourny M, Tallet A, Piver E, Lehours P, Mégraud F, Berthelot L, Harb J, Bigot-Corbel E, Hermouet S. Analysis of the Targets and Glycosylation of Monoclonal IgAs From MGUS and Myeloma Patients. Front Immunol 2020; 11:854. [PMID: 32536913 PMCID: PMC7266999 DOI: 10.3389/fimmu.2020.00854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Previous studies showed that monoclonal immunoglobulins G (IgGs) of “monoclonal gammopathy of undetermined significance” (MGUS) and myeloma were hyposialylated, thus presumably pro-inflammatory, and for about half of patients, the target of the monoclonal IgG was either a virus—Epstein–Barr virus (EBV), other herpes viruses, hepatitis C virus (HCV)—or a glucolipid, lysoglucosylceramide (LGL1), suggesting antigen-driven disease in these patients. In the present study, we show that monoclonal IgAs share these characteristics. We collected 35 sera of patients with a monoclonal IgA (6 MGUS, 29 myeloma), and we were able to purify 25 of the 35 monoclonal IgAs (6 MGUS, 19 myeloma). Monoclonal IgAs from MGUS and myeloma patients were significantly less sialylated than IgAs from healthy volunteers. When purified monoclonal IgAs were tested against infectious pathogens and LGL1, five myeloma patients had a monoclonal IgA that specifically recognized viral proteins: the core protein of HCV in one case, EBV nuclear antigen 1 (EBNA-1) in four cases (21.1% of IgA myeloma). Monoclonal IgAs from three myeloma patients reacted against LGL1. In summary, monoclonal IgAs are hyposialylated and as described for IgG myeloma, significant subsets (8/19, or 42%) of patients with IgA myeloma may have viral or self (LGL1) antigen-driven disease.
Collapse
Affiliation(s)
- Adrien Bosseboeuf
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Nantes, France
| | - Célia Seillier
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Nantes, France
| | - Nicolas Mennesson
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Nantes, France
| | | | - Maeva Fourny
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Nantes, France
| | - Anne Tallet
- Laboratoire de Biochimie, CHU de Tours, Tours, France
| | - Eric Piver
- Laboratoire de Biochimie, CHU de Tours, Tours, France.,Inserm UMR966, Tours, France
| | - Philippe Lehours
- Inserm U1053, Université de Bordeaux, Bordeaux, France.,Laboratoire de Bactériologie, Centre National de Reference des Campylobacters et des Hélicobacters, CHU de Bordeaux, Bordeaux, France
| | - Francis Mégraud
- Inserm U1053, Université de Bordeaux, Bordeaux, France.,Laboratoire de Bactériologie, Centre National de Reference des Campylobacters et des Hélicobacters, CHU de Bordeaux, Bordeaux, France
| | - Laureline Berthelot
- Centre de Recherche en Transplantation et Immunologie UMR1064, Inserm, Université de Nantes, Nantes, France
| | - Jean Harb
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Nantes, France.,Centre de Recherche en Transplantation et Immunologie UMR1064, Inserm, Université de Nantes, Nantes, France.,Laboratoire de Biochimie, CHU de Nantes, Nantes, France
| | - Edith Bigot-Corbel
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Nantes, France.,Laboratoire de Biochimie, CHU de Nantes, Nantes, France
| | - Sylvie Hermouet
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Nantes, France.,Laboratoire d'Hématologie, CHU de Nantes, Nantes, France
| |
Collapse
|
25
|
Kim CH. Viral Protein Interaction with Host Cells GSLs. GLYCOSPHINGOLIPIDS SIGNALING 2020:53-92. [DOI: 10.1007/978-981-15-5807-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
|
26
|
Yu H, Santra A, Li Y, McArthur JB, Ghosh T, Yang X, Wang PG, Chen X. Streamlined chemoenzymatic total synthesis of prioritized ganglioside cancer antigens. Org Biomol Chem 2019; 16:4076-4080. [PMID: 29789847 DOI: 10.1039/c8ob01087k] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A highly efficient streamlined chemoenzymatic strategy for total synthesis of four prioritized ganglioside cancer antigens GD2, GD3, fucosyl GM1, and GM3 from commercially available lactose and phytosphingosine is demonstrated. Lactosyl sphingosine (LacβSph) was chemically synthesized (on a 13 g scale), subjected to sequential one-pot multienzyme (OPME) glycosylation reactions with facile C18-cartridge purification, followed by improved acylation conditions to form target gangliosides, including fucosyl GM1 which has never been synthesized before.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Rodríguez JM, Luque D. Structural Insights into Rotavirus Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:45-68. [PMID: 31317495 DOI: 10.1007/978-3-030-14741-9_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
28
|
Zhu L, Hu X, Kumar D, Chen F, Feng Y, Zhu M, Liang Z, Huang L, Yu L, Xu J, Xue R, Cao G, Gong C. Both ganglioside GM2 and cholesterol in the cell membrane are essential for Bombyx mori cypovirus cell entry. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:161-168. [PMID: 30031014 DOI: 10.1016/j.dci.2018.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
Bombyx mori cypovirus (BmCPV) enters permissive cells via clathrin-mediated endocytosis pathway. However, the distinct entry mechanism for BmCPV is still ambiguous. The aim of this study is to investigate the role of gangliosides and cholesterol in BmCPV cell entry. The number of BmCPV virions attached to the cell surface and the expression level of BmCPV vp1 gene was significantly decreased by digestion of terminal sialic acids in gangliosides with neuraminidase (NA). Preincubation of different concentration of ganglioside GM1, GM2 or GM3 with BmCPV prior to infection, the reduction of BmCPV infectivity was found by GM2-treated in a dose-depend manner. BmCPV virions were found to colocalize with GM2 in the cell surface. The infectivity of BmCPV was reduced by anti-GM2 antibody treatment cells. Moreover, BmCPV infection was impaired by depletion of membrane cholesterol with MβCD, but the inhibitory effect of MβCD was restored by supplementing with cholesterol. The number of viral particles attached on the BmN cells was significantly decreased by pretreated with MβCD, and BmCPV infection was inhibited by silencing the expression of 3-hydroxy-3-methylglutaryl-CoA reductase gene (Hmg-r) in cholesterol biosynthesis pathway. These results indicate that ganglioside GM2 and cholesterol in membrane lipid rafts are essential for BmCPV attachment to cell surface for its cell entry.
Collapse
Affiliation(s)
- Liyuan Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Dhiraj Kumar
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Fei Chen
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Yongjie Feng
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Zi Liang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Lixu Huang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Lei Yu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Jian Xu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Renyu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Guangli Cao
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
29
|
Glycan Binding Specificity and Mechanism of Human and Porcine P[6]/P[19] Rotavirus VP8*s. J Virol 2018; 92:JVI.00538-18. [PMID: 29720519 DOI: 10.1128/jvi.00538-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/23/2018] [Indexed: 12/25/2022] Open
Abstract
Rotaviruses (RVs), which cause severe gastroenteritis in infants and children, recognize glycan ligands in a genotype-dependent manner via the distal VP8* head of the spike protein VP4. However, the glycan binding mechanisms remain elusive for the P[II] genogroup RVs, including the widely prevalent human RVs (P[8], P[4], and P[6]) and a rare P[19] RV. In this study, we characterized the glycan binding specificities of human and porcine P[6]/P[19] RV VP8*s and found that the P[II] genogroup RV VP8*s could commonly interact with mucin core 2, which may play an important role in RV evolution and cross-species transmission. We determined the first P[6] VP8* structure, as well as the complex structures of human P[19] VP8*, with core 2 and lacto-N-tetraose (LNT). A glycan binding site was identified in human P[19] VP8*. Structural superimposition and sequence alignment revealed the conservation of the glycan binding site in the P[II] genogroup RV VP8*s. Our data provide significant insight into the glycan binding specificity and glycan binding mechanism of the P[II] genogroup RV VP8*s, which could help in understanding RV evolution, transmission, and epidemiology and in vaccine development.IMPORTANCE Rotaviruses (RVs), belonging to the family Reoviridae, are double-stranded RNA viruses that cause acute gastroenteritis in children and animals worldwide. Depending on the phylogeny of the VP8* sequences, P[6] and P[19] RVs are grouped into genogroup II, together with P[4] and P[8], which are widely prevalent in humans. In this study, we characterized the glycan binding specificities of human and porcine P[6]/P[19] RV VP8*s, determined the crystal structure of P[6] VP8*, and uncovered the glycan binding pattern in P[19] VP8*, revealing a conserved glycan binding site in the VP8*s of P[II] genogroup RVs by structural superimposition and sequence alignment. Our data suggested that mucin core 2 may play an important role in P[II] RV evolution and cross-species transmission. These data provide insight into the cell attachment, infection, epidemiology, and evolution of P[II] genogroup RVs, which could help in developing control and prevention strategies against RVs.
Collapse
|
30
|
Díaz-Salinas MA, Casorla LA, López T, López S, Arias CF. Most rotavirus strains require the cation-independent mannose-6-phosphate receptor, sortilin-1, and cathepsins to enter cells. Virus Res 2017; 245:44-51. [PMID: 29275103 PMCID: PMC7173016 DOI: 10.1016/j.virusres.2017.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 12/27/2022]
Abstract
Rotaviruses require the TGN to LE transporter CI-M6PR for cell entry. Sortilin-1 was identified as a cell factor involved in rotavirus replication. Rotaviruses require cathepsins also to enter Caco-2 cells.
Cathepsins, endosomal acid proteases, are transported from the trans-Golgi network to late endosomes by the mannose-6-phosphate receptor (M6PR). We have previously demonstrated that some rotavirus strains, like UK, Wa, WI61, DS-1, and YM, require the cation-dependent (CD-) M6PR and cathepsins to enter from late endosomes to the cytoplasm in MA104 cells, while other strains, like the simian strain RRV, which enter cells from maturing endosomes, do not. However, the role of other trans-Golgi network-late endosome transporters, such as the cation-independent (CI-) M6PR and sortillin-1, has not been evaluated. In this work, we found that several rotavirus strains that require the CD-M6PR for cell entry are also dependent on CI-M6PR and sortilin-1. Furthermore, we showed that the infectivity of all these rotavirus strains also requires cathepsins to enter not only MA104 cells, but also human intestinal Caco-2 cells. This study identifies sortilin-1 as a novel cell factor necessary for the infectivity of a virus; in addition, our results strongly suggest that cathepsins could be common cell factors needed for the infectivity of most rotavirus strains.
Collapse
Affiliation(s)
- Marco A Díaz-Salinas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Luis A Casorla
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Tomás López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Susana López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Carlos F Arias
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
31
|
Green VA, Pelkmans L. A Systems Survey of Progressive Host-Cell Reorganization during Rotavirus Infection. Cell Host Microbe 2017; 20:107-20. [PMID: 27414499 DOI: 10.1016/j.chom.2016.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/12/2016] [Accepted: 05/24/2016] [Indexed: 12/19/2022]
Abstract
Pathogen invasion is often accompanied by widespread alterations in cellular physiology, which reflects the hijacking of host factors and processes for pathogen entry and replication. Although genetic perturbation screens have revealed the complexity of host factors involved for numerous pathogens, it has remained challenging to temporally define the progression of events in host cell reorganization during infection. We combine high-confidence genome-scale RNAi screening of host factors required for rotavirus infection in human intestinal cells with an innovative approach to infer the trajectory of virus infection from fixed cell populations. This approach reveals a comprehensive network of host cellular processes involved in rotavirus infection and implicates AMPK in initiating the development of a rotavirus-permissive environment. Our work provides a powerful approach that can be generalized to order complex host cellular requirements along a trajectory of cellular reorganization during pathogen invasion.
Collapse
Affiliation(s)
- Victoria A Green
- Faculty of Sciences, Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| | - Lucas Pelkmans
- Faculty of Sciences, Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
32
|
Single-Particle Detection of Transcription following Rotavirus Entry. J Virol 2017; 91:JVI.00651-17. [PMID: 28701394 PMCID: PMC5571246 DOI: 10.1128/jvi.00651-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 06/29/2017] [Indexed: 12/25/2022] Open
Abstract
Infectious rotavirus particles are triple-layered, icosahedral assemblies. The outer layer proteins, VP4 (cleaved to VP8* and VP5*) and VP7, surround a transcriptionally competent, double-layer particle (DLP), which they deliver into the cytosol. During entry of rhesus rotavirus, VP8* interacts with cell surface gangliosides, allowing engulfment into a membrane vesicle by a clathrin-independent process. Escape into the cytosol and outer-layer shedding depend on interaction of a hydrophobic surface on VP5* with the membrane bilayer and on a large-scale conformational change. We report here experiments that detect the fate of released DLPs and their efficiency in initiating RNA synthesis. By replacing the outer layer with fluorescently tagged, recombinant proteins and also tagging the DLP, we distinguished particles that have lost their outer layer and entered the cytosol (uncoated) from those still within membrane vesicles. We used fluorescent in situ hybridization with probes for nascent transcripts to determine how soon after uncoating transcription began and what fraction of the uncoated particles were active in initiating RNA synthesis. We detected RNA synthesis by uncoated particles as early as 15 min after adding virus. The uncoating efficiency was 20 to 50%; of the uncoated particles, about 10 to 15% synthesized detectable RNA. In the format of our experiments, about 10% of the added particles attached to the cell surface, giving an overall ratio of added particles to RNA-synthesizing particles of between 250:1 and 500:1, in good agreement with the ratio of particles to focus-forming units determined by infectivity assays. Thus, RNA synthesis by even a single, uncoated particle can initiate infection in a cell.IMPORTANCE The pathways by which a virus enters a cell transform its packaged genome into an active one. Contemporary fluorescence microscopy can detect individual virus particles as they enter cells, allowing us to map their multistep entry pathways. Rotaviruses, like most viruses that lack membranes of their own, disrupt or perforate the intracellular, membrane-enclosed compartment into which they become engulfed following attachment to a cell surface, in order to gain access to the cell interior. The properties of rotavirus particles make it possible to determine molecular mechanisms for these entry steps. In the work described here, we have asked the following question: what fraction of the rotavirus particles that penetrate into the cell make new viral RNA? We find that of the cell-attached particles, between 20 and 50% ultimately penetrate, and of these, about 10% make RNA. RNA synthesis by even a single virus particle can initiate a productive infection.
Collapse
|
33
|
Identification of Rab18 as an Essential Host Factor for BK Polyomavirus Infection Using a Whole-Genome RNA Interference Screen. mSphere 2017; 2:mSphere00291-17. [PMID: 28815213 PMCID: PMC5555678 DOI: 10.1128/mspheredirect.00291-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 07/12/2017] [Indexed: 11/20/2022] Open
Abstract
Polyomaviruses bind to a group of specific gangliosides on the plasma membrane of the cell prior to being endocytosed. They then follow a retrograde trafficking pathway to reach the endoplasmic reticulum (ER). The viruses begin to disassemble in the ER and then exit the ER and move to the nucleus. However, the details of intracellular trafficking between the endosome and the ER are largely unknown. By implementing a whole human genome small interfering RNA screen, we identified Rab18, syntaxin 18, and the NRZ complex as key components in endosome-ER trafficking of the human polyomavirus BKPyV. These results serve to further elucidate the route BKPyV takes from outside the cell to its site of replication in the nucleus. BK polyomavirus (BKPyV) is a human pathogen first isolated in 1971. BKPyV infection is ubiquitous in the human population, with over 80% of adults worldwide being seropositive for BKPyV. BKPyV infection is usually asymptomatic; however, BKPyV reactivation in immunosuppressed transplant patients causes two diseases, polyomavirus-associated nephropathy and hemorrhagic cystitis. To establish a successful infection in host cells, BKPyV must travel in retrograde transport vesicles to reach the nucleus. To make this happen, BKPyV requires the cooperation of host cell proteins. To further identify host factors associated with BKPyV entry and intracellular trafficking, we performed a whole-genome small interfering RNA screen on BKPyV infection of primary human renal proximal tubule epithelial cells. The results revealed the importance of Ras-related protein Rab18 and syntaxin 18 for BKPyV infection. Our subsequent experiments implicated additional factors that interact with this pathway and suggest a more detailed model of the intracellular trafficking process, indicating that BKPyV reaches the endoplasmic reticulum (ER) lumen through a retrograde transport pathway between the late endosome and the ER. IMPORTANCE Polyomaviruses bind to a group of specific gangliosides on the plasma membrane of the cell prior to being endocytosed. They then follow a retrograde trafficking pathway to reach the endoplasmic reticulum (ER). The viruses begin to disassemble in the ER and then exit the ER and move to the nucleus. However, the details of intracellular trafficking between the endosome and the ER are largely unknown. By implementing a whole human genome small interfering RNA screen, we identified Rab18, syntaxin 18, and the NRZ complex as key components in endosome-ER trafficking of the human polyomavirus BKPyV. These results serve to further elucidate the route BKPyV takes from outside the cell to its site of replication in the nucleus.
Collapse
|
34
|
Drake MJ, Brennan B, Briley Jr K, Bart SM, Sherman E, Szemiel AM, Minutillo M, Bushman FD, Bates P. A role for glycolipid biosynthesis in severe fever with thrombocytopenia syndrome virus entry. PLoS Pathog 2017; 13:e1006316. [PMID: 28388693 PMCID: PMC5397019 DOI: 10.1371/journal.ppat.1006316] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 04/19/2017] [Accepted: 03/24/2017] [Indexed: 01/01/2023] Open
Abstract
A novel bunyavirus was recently found to cause severe febrile illness with high mortality in agricultural regions of China, Japan, and South Korea. This virus, named severe fever with thrombocytopenia syndrome virus (SFTSV), represents a new group within the Phlebovirus genus of the Bunyaviridae. Little is known about the viral entry requirements beyond showing dependence on dynamin and endosomal acidification. A haploid forward genetic screen was performed to identify host cell requirements for SFTSV entry. The screen identified dependence on glucosylceramide synthase (ugcg), the enzyme responsible for initiating de novo glycosphingolipid biosynthesis. Genetic and pharmacological approaches confirmed that UGCG expression and enzymatic activity were required for efficient SFTSV entry. Furthermore, inhibition of UGCG affected a post-internalization stage of SFTSV entry, leading to the accumulation of virus particles in enlarged cytoplasmic structures, suggesting impaired trafficking and/or fusion of viral and host membranes. These findings specify a role for glucosylceramide in SFTSV entry and provide a novel target for antiviral therapies.
Collapse
Affiliation(s)
- Mary Jane Drake
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Benjamin Brennan
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Kenneth Briley Jr
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Stephen M. Bart
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eric Sherman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Agnieszka M. Szemiel
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Madeleine Minutillo
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Paul Bates
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
35
|
Hu X, Zhu M, Liang Z, Kumar D, Chen F, Zhu L, Kuang S, Xue R, Cao G, Gong C. Proteomic analysis of BmN cell lipid rafts reveals roles in Bombyx mori nucleopolyhedrovirus infection. Mol Genet Genomics 2017; 292:465-474. [DOI: 10.1007/s00438-016-1284-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/26/2016] [Indexed: 11/25/2022]
|
36
|
|
37
|
Glycosphingolipid-Protein Interaction in Signal Transduction. Int J Mol Sci 2016; 17:ijms17101732. [PMID: 27754465 PMCID: PMC5085762 DOI: 10.3390/ijms17101732] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022] Open
Abstract
Glycosphingolipids (GSLs) are a class of ceramide-based glycolipids essential for embryo development in mammals. The synthesis of specific GSLs depends on the expression of distinctive sets of GSL synthesizing enzymes that is tightly regulated during development. Several reports have described how cell surface receptors can be kept in a resting state or activate alternative signalling events as a consequence of their interaction with GSLs. Specific GSLs, indeed, interface with specific protein domains that are found in signalling molecules and which act as GSL sensors to modify signalling responses. The regulation exerted by GSLs on signal transduction is orthogonal to the ligand–receptor axis, as it usually does not directly interfere with the ligand binding to receptors. Due to their properties of adjustable production and orthogonal action on receptors, GSLs add a new dimension to the control of the signalling in development. GSLs can, indeed, dynamically influence progenitor cell response to morphogenetic stimuli, resulting in alternative differentiation fates. Here, we review the available literature on GSL–protein interactions and their effects on cell signalling and development.
Collapse
|
38
|
Cevallos Porta D, López S, Arias CF, Isa P. Polarized rotavirus entry and release from differentiated small intestinal cells. Virology 2016; 499:65-71. [PMID: 27639572 DOI: 10.1016/j.virol.2016.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 01/26/2023]
Abstract
Rotaviruses infect mature enterocytes from small intestine, however most data about their cellular entry are from studies carried out in non-intestinal polarized or non-polarized cell lines. In this work the entry of porcine rotavirus YM strain into small intestinal cell line IPEC-J2 was studied. It was found that YM and the human rotavirus Wa strain infect preferentially from the basolateral cell surface. Cell infection from the apical and basolateral surfaces was dependent on the presence of cholesterol. The treatment with neuraminidase, sucrose, and bafilomycin suggests that there are differences in the receptor usage and entry mechanism of the virus from the apical and basolateral surface. While cell entry is more efficient from basolateral surface, the viruses egressed mainly from the apical cell side.
Collapse
Affiliation(s)
- Diego Cevallos Porta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico.
| | - Susana López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico.
| | - Carlos F Arias
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico.
| | - Pavel Isa
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico.
| |
Collapse
|
39
|
Wang K, Wang J, Sun T, Bian G, Pan W, Feng T, Wang P, Li Y, Dai J. Glycosphingolipid GM3 is Indispensable for Dengue Virus Genome Replication. Int J Biol Sci 2016; 12:872-83. [PMID: 27313500 PMCID: PMC4910605 DOI: 10.7150/ijbs.15641] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/03/2016] [Indexed: 01/08/2023] Open
Abstract
Dengue virus (DENV) causes the most prevalent arthropod-borne viral disease of humans worldwide. Glycosphingolipids (GSLs) are involved in virus infection by regulating various steps of viral-host interaction. However, the distinct role of GSLs during DENV infection remains unclear. In this study, we used mouse melanoma B16 cells and their GSL-deficient mutant counterpart GM95 cells to study the influence of GSLs on DENV infection. Surprisingly, GM95 cells were highly resistant to DENV infection compared with B16 cells. Pretreatment of B16 cells with synthetase inhibitor of GM3, the most abundant GSLs in B16 cells, or silencing GM3 synthetase T3GAL5, significantly inhibited DENV infection. DENV attachment and endocytosis were not impaired in GM95 cells, but DENV genome replication was obviously inhibited in GM95 cells compared to B16 cells. Furthermore, GM3 was colocalized with DENV viral replication complex on endoplasmic reticulum (ER) inside the B16 cells. Finally, GM3 synthetase inhibitor significantly reduced the mortality rate of suckling mice that challenged with DENV by impairing the viral replication in mouse brain. Taken together, these data indicated that GM3 was not required for DENV attachment and endocytosis, however, essential for viral genome replication. Targeting GM3 could be a novel strategy to inhibit DENV infection.
Collapse
Affiliation(s)
- Kezhen Wang
- 1. Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, P.R. China
| | - Juanjuan Wang
- 1. Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, P.R. China
| | - Ta Sun
- 1. Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, P.R. China
| | - Gang Bian
- 1. Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, P.R. China
| | - Wen Pan
- 1. Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, P.R. China
| | - Tingting Feng
- 1. Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, P.R. China
| | - Penghua Wang
- 2. Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Yunsen Li
- 1. Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, P.R. China
| | - Jianfeng Dai
- 1. Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
40
|
Arias C, Silva-Ayala D, Isa P, Díaz-Salinas M, López S. Rotavirus Attachment, Internalization, and Vesicular Traffic. VIRAL GASTROENTERITIS 2016:103-119. [DOI: 10.1016/b978-0-12-802241-2.00006-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
41
|
|
42
|
Coulson BS. Expanding diversity of glycan receptor usage by rotaviruses. Curr Opin Virol 2015; 15:90-6. [PMID: 26363995 DOI: 10.1016/j.coviro.2015.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/11/2015] [Accepted: 08/26/2015] [Indexed: 11/16/2022]
Abstract
Rotaviruses are major etiologic agents of severe gastroenteritis in human and animals, infecting the mature intestinal epithelium. Their attachment to host cell glycans is mediated through the virion spike protein. This is considered to be crucial for successful host cell invasion by rotaviruses. Recent studies have greatly expanded our understanding of the diversity of glycans commonly recognized by rotaviruses, to include the ganglioside GM1a and histo-blood group antigens. Here, these new findings are integrated with advances in knowledge of spike protein structure, rotavirus entry mechanisms and innate intestinal immunity to provide an overview of the variety of rotavirus glycan receptors and their roles in cell penetration, host tropism and pathogenesis.
Collapse
Affiliation(s)
- Barbara S Coulson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, Victoria 3000, Australia.
| |
Collapse
|
43
|
López T, López S, Arias CF. The tyrosine kinase inhibitor genistein induces the detachment of rotavirus particles from the cell surface. Virus Res 2015. [PMID: 26216271 DOI: 10.1016/j.virusres.2015.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Group A rotaviruses are a major cause of severe gastroenteritis in young infants. In this work we evaluated the potential role of protein tyrosine kinases on rotavirus infectivity and viral progeny production. From the broad-spectrum inhibitors tested, only genistein, a flavonoid, inhibited rotavirus infectivity. The inhibition observed was dose and strain dependent, with more than 10-fold IC50 differences for some rotavirus strains, and the effect of the drug was shown to be dependent of their activity as a protein tyrosine kinase inhibitor, since the inactive analogue of genistein, daidzein, had no effect on virus infection. Investigation of the stage of virus replication blocked by the drug showed that it interferes with the early interactions of the virus with receptors and/or co-receptors, since treatment of the cells with genistein promoted the detachment of the virus from the cell surface.
Collapse
Affiliation(s)
- Tomás López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, México.
| | - Susana López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, México.
| | - Carlos F Arias
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, México.
| |
Collapse
|
44
|
Romero-Maraccini OC, Shisler JL, Nguyen TH. Solar and temperature treatments affect the ability of human rotavirus wa to bind to host cells and synthesize viral RNA. Appl Environ Microbiol 2015; 81:4090-7. [PMID: 25862222 PMCID: PMC4524135 DOI: 10.1128/aem.00027-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/01/2015] [Indexed: 12/13/2022] Open
Abstract
Rotavirus, the leading cause of diarrheal diseases in children under the age of five, is often resistant to conventional wastewater treatment and thus can remain infectious once released into the aquatic environment. Solar and heat treatments can inactivate rotavirus, but it is unknown how these treatments inactivate the virus on a molecular level. To answer this question, our approach was to correlate rotavirus inactivation with the inhibition of portions of the virus life cycle as a means to identify the mechanisms of solar or heat inactivation. Specifically, the integrity of the rotavirus NSP3 gene, virus-host cell interaction, and viral RNA synthesis were examined after heat (57°C) or solar treatment of rotavirus. Only the inhibition of viral RNA synthesis positively correlated with a loss of rotavirus infectivity; 57°C treatment of rotavirus resulted in a decrease of rotavirus RNA synthesis at the same rate as rotavirus infectivity. These data suggest that heat treatment neutralized rotaviruses primarily by targeting viral transcription functions. In contrast, when using solar disinfection, the decrease in RNA synthesis was responsible for approximately one-half of the decrease in infectivity, suggesting that other mechanisms, including posttranslational, contribute to inactivation. Nevertheless, both solar and heat inactivation of rotaviruses disrupted viral RNA synthesis as a mechanism for inactivation.
Collapse
Affiliation(s)
- Ofelia C Romero-Maraccini
- Department of Civil and Environmental Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Joanna L Shisler
- Department of Microbiology, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
45
|
Torres-Flores JM, Silva-Ayala D, Espinoza MA, López S, Arias CF. The tight junction protein JAM-A functions as coreceptor for rotavirus entry into MA104 cells. Virology 2014; 475:172-8. [PMID: 25481868 DOI: 10.1016/j.virol.2014.11.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/12/2014] [Accepted: 11/12/2014] [Indexed: 01/19/2023]
Abstract
Several molecules have been identified as receptors or coreceptors for rotavirus infection, including glycans, integrins, and hsc70. In this work we report that the tight junction proteins JAM-A, occludin, and ZO-1 play an important role during rotavirus entry into MA104 cells. JAM-A was found to function as coreceptor for rotavirus strains RRV, Wa, and UK, but not for rotavirus YM. Reassortant viruses derived from rotaviruses RRV and YM showed that the virus spike protein VP4 determines the use of JAM-A as coreceptor.
Collapse
Affiliation(s)
- Jesús M Torres-Flores
- Instituto de Biotecnología, Universidad Nacional Autónoma de México. Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, México.
| | - Daniela Silva-Ayala
- Instituto de Biotecnología, Universidad Nacional Autónoma de México. Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, México.
| | - Marco A Espinoza
- Instituto de Biotecnología, Universidad Nacional Autónoma de México. Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, México.
| | - Susana López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México. Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, México.
| | - Carlos F Arias
- Instituto de Biotecnología, Universidad Nacional Autónoma de México. Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, México.
| |
Collapse
|
46
|
Abstract
Rotaviruses are the leading etiological agents of acute gastroenteritis in infants and young children worldwide. These nonenveloped viruses enter cells using different types of endocytosis and, depending on the virus strain, travel to different endosomal compartments before exiting to the cytosolic space. In this Gem, we review the viral and cellular factors involved in the different stages of a productive virus cell entry and share with the readers the journey that we have taken into the cell to learn about virus entry.
Collapse
|
47
|
Abstract
Viral infections are initiated by attachment of the virus to host cell surface receptors, including sialic acid-containing glycans. It is now possible to rapidly identify specific glycan receptors using glycan array screening, to define atomic-level structures of virus-glycan complexes and to alter the glycan-binding site to determine the function of glycan engagement in viral disease. This Review highlights general principles of virus-glycan interactions and provides specific examples of sialic acid binding by viruses with stalk-like attachment proteins, including influenza virus, reovirus, adenovirus and rotavirus. Understanding virus-glycan interactions is essential to combating viral infections and designing improved viral vectors for therapeutic applications.
Collapse
|
48
|
Abdelhakim AH, Salgado EN, Fu X, Pasham M, Nicastro D, Kirchhausen T, Harrison SC. Structural correlates of rotavirus cell entry. PLoS Pathog 2014; 10:e1004355. [PMID: 25211455 PMCID: PMC4161437 DOI: 10.1371/journal.ppat.1004355] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 07/24/2014] [Indexed: 01/06/2023] Open
Abstract
Cell entry by non-enveloped viruses requires translocation into the cytosol of a macromolecular complex--for double-strand RNA viruses, a complete subviral particle. We have used live-cell fluorescence imaging to follow rotavirus entry and penetration into the cytosol of its ∼ 700 Å inner capsid particle ("double-layered particle", DLP). We label with distinct fluorescent tags the DLP and each of the two outer-layer proteins and track the fates of each species as the particles bind and enter BSC-1 cells. Virions attach to their glycolipid receptors in the host cell membrane and rapidly become inaccessible to externally added agents; most particles that release their DLP into the cytosol have done so by ∼ 10 minutes, as detected by rapid diffusional motion of the DLP away from residual outer-layer proteins. Electron microscopy shows images of particles at various stages of engulfment into tightly fitting membrane invaginations, consistent with the interpretation that rotavirus particles drive their own uptake. Electron cryotomography of membrane-bound virions also shows closely wrapped membrane. Combined with high resolution structural information about the viral components, these observations suggest a molecular model for membrane disruption and DLP penetration.
Collapse
Affiliation(s)
- Aliaa H. Abdelhakim
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eric N. Salgado
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaofeng Fu
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Mithun Pasham
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniela Nicastro
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Tomas Kirchhausen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen C. Harrison
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
49
|
Etzold S, Bode L. Glycan-dependent viral infection in infants and the role of human milk oligosaccharides. Curr Opin Virol 2014; 7:101-7. [PMID: 25047751 DOI: 10.1016/j.coviro.2014.06.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/16/2014] [Accepted: 06/27/2014] [Indexed: 12/27/2022]
Abstract
Glycan interactions play a crucial role in the infection of rotavirus (RV), norovirus (NV) and human immunodeficiency virus (HIV) as they facilitate viral attachment to the host receptor cell. A number of cell surface glycan epitopes involved in this process have been identified, including human blood group antigens (HBGAs). These antigens are also found on human milk oligosaccharides (HMO), an abundant and structurally diverse component in human milk. Breast-fed infants seem to have a reduced risk of acquiring RV, NV and HIV infection, suggesting a potential effector function of milk oligosaccharides in viral pathogenesis. However, the underlying mechanisms of HMO in viral protection and the identification of individual, structurally distinct effective HMO, needs further elucidation.
Collapse
Affiliation(s)
- Sabrina Etzold
- Division of Neonatology and Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, School of Medicine, University of California San Diego, 9500 Gilman Drive, San Diego, CA 92093-0715, USA
| | - Lars Bode
- Division of Neonatology and Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, School of Medicine, University of California San Diego, 9500 Gilman Drive, San Diego, CA 92093-0715, USA.
| |
Collapse
|
50
|
Abstract
A large number of viruses, including many human pathogens, bind cell-surface glycans during the initial steps of infection. Viral glycan receptors such as glycosaminoglycans and sialic acid-containing carbohydrates are often negatively charged, but neutral glycans such as histo-blood group antigens can also function as receptors. The engagement of glycans facilitates attachment and entry and, consequently, is often a key determinant of the host range, tissue tropism, pathogenicity, and transmissibility of viruses. Here, we review current knowledge about virus-glycan interactions using representative crystal structures of viral attachment proteins in complex with glycans. We illuminate the determinants of specificity utilized by different glycan-binding viruses and explore the potential of these interactions for switching receptor specificities within or even between glycan classes. A detailed understanding of these parameters is important for the prediction of binding sites where structural information is not available, and is invaluable for the development of antiviral therapeutics.
Collapse
Affiliation(s)
- Luisa J Ströh
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076 Tübingen, Germany;
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076 Tübingen, Germany; .,Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|