1
|
Ramesh AK, Sivaccumar JP, Ye X, Yang L, Guo H, Chin CN, Ha S, Shiver JW, Strohl WR, Xu Y, Du H, Zhou T, Zhang N, Xu K, Liu X, Fu TM, An Z. An intranasally administered IgM protects against antigenically distinct subtypes of influenza A viruses. Nat Commun 2025; 16:4025. [PMID: 40301359 PMCID: PMC12041195 DOI: 10.1038/s41467-025-59294-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 04/15/2025] [Indexed: 05/01/2025] Open
Abstract
Engineering broadly neutralizing monoclonal antibodies (mAbs) targeting the hemagglutinin (HA) of Influenza A virus (IAV) is a promising approach for intervention of seasonal flu. However, HA plasticity often leads to resistant strains that compromise mAb potency as bivalent IgGs. Here we hypothesize that multimerization of anti-IAV antibodies as IgMs can enhance coverage and neutralization potency. Here, we construct 18 IgM antibodies from known broadly neutralizing IgGs targeting different IAV HA epitopes and evaluate their breadth and potency of neutralization against distinct H1N1 and H3N2 IAVs. The IgM version of receptor binding site-specific IgG F045-092 shows increased breadth and antiviral potency compared to its parental IgG. Engineered IgM molecules overcome IAV strain resistance by expanded avidity, providing potent neutralization in vitro at sub-nanomolar ranges while retaining parental IgG specificity. Intranasal delivery of engineered IgM-F045-092 in female mice demonstrates efficient bio-retention in nasal cavities and lungs, offering protection against lethal doses of H1N1 and H3N2 IAV when administered prophylactically. Optimal epitope selection, trans-crosslinking, decavalent avidity, and intranasal administration contribute to the broader protection and potency of engineered IgM antibodies against diverse IAV subtypes.
Collapse
MESH Headings
- Animals
- Immunoglobulin M/immunology
- Immunoglobulin M/administration & dosage
- Immunoglobulin M/genetics
- Administration, Intranasal
- Female
- Mice
- Antibodies, Viral/immunology
- Antibodies, Viral/administration & dosage
- Influenza A Virus, H1N1 Subtype/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- Influenza A Virus, H3N2 Subtype/immunology
- Humans
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Mice, Inbred BALB C
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/administration & dosage
- Epitopes/immunology
- Immunoglobulin G/immunology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/administration & dosage
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Influenza A virus/immunology
- Dogs
- Madin Darby Canine Kidney Cells
Collapse
Affiliation(s)
- Ashwin Kumar Ramesh
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jwala Priyadarsini Sivaccumar
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiaohua Ye
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
| | - Luona Yang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Hailong Guo
- IGM Biosciences Inc., Mountain View, CA, USA
| | | | - Sha Ha
- IGM Biosciences Inc., Mountain View, CA, USA
| | | | | | - Yan Xu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Haijuan Du
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kai Xu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Department of Microbial Infection and Immunity & Veterinary Biosciences, Ohio State University, Columbus, OH, USA.
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA.
| | | | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
2
|
Zhao B, Sun Z, Wang S, Shi Z, Jiang Y, Wang X, Deng G, Jiao P, Chen H, Wang J. Structural basis of different neutralization capabilities of monoclonal antibodies against H7N9 virus. J Virol 2025; 99:e0140024. [PMID: 39704525 PMCID: PMC11784312 DOI: 10.1128/jvi.01400-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
Neutralizing antibodies (nAbs) are important for the treatment of emerging viral diseases and for effective vaccine development. In this study, we generated and evaluated three nAbs (1H9, 2D7, and C4H4) against H7N9 influenza viruses and found that they differ in their ability to inhibit viral attachment, membrane fusion, and egress. We resolved the cryo-electron microscopy (cryo-EM) structures of H7N9 hemagglutinin (HA) alone and in complex with the nAb antigen-binding fragments (Fabs) and identified the HA head-located epitope for each nAb, thereby revealing the molecular basis and key residues that determine the differences in these nAbs in neutralizing H7N9 viruses. Moreover, we found that the humanized nAb CC4H4 provided complete protection in mice against death caused by a lethal H7N9 virus infection, even when nAb was given 3 days after the mice were infected. These findings provide new insights into the neutralizing mechanism and structural basis for the rational design of H7N9 virus vaccines and therapeutics.IMPORTANCEH7N9 viruses have caused severe infections in both birds and humans since their emergence in early 2013 in China. Their persistent presence and variation in avian populations pose a significant threat to both poultry and humans. There are no treatments for human infections. In this study, we thoroughly investigated the neutralization mechanisms, structural basis, and therapeutic effects of three nAbs (1H9, 2D7, and C4H4) against H7N9 viruses. We revealed the molecular determinants underlying the varied performances of the three nAbs in neutralizing H7N9 viruses and protecting H7N9-infected mice. These insights provide a solid foundation for the rational design of vaccines and therapeutics against H7N9 viruses.
Collapse
MESH Headings
- Influenza A Virus, H7N9 Subtype/immunology
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/chemistry
- Mice
- Antibodies, Viral/immunology
- Antibodies, Viral/chemistry
- Cryoelectron Microscopy
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Humans
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/chemistry
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Mice, Inbred BALB C
- Epitopes/immunology
- Neutralization Tests
- Influenza, Human/immunology
- Influenza, Human/virology
- Female
- Virus Attachment
Collapse
Affiliation(s)
- Bingbing Zhao
- State Key Laboratory for Animal Disease Control and Prevention & National Data Center for Animal Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Zhenzhao Sun
- State Key Laboratory for Animal Disease Control and Prevention & National Data Center for Animal Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Shida Wang
- State Key Laboratory for Animal Disease Control and Prevention & National Data Center for Animal Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Zhibin Shi
- State Key Laboratory for Animal Disease Control and Prevention & National Data Center for Animal Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yongping Jiang
- State Key Laboratory for Animal Disease Control and Prevention & National Data Center for Animal Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xiurong Wang
- State Key Laboratory for Animal Disease Control and Prevention & National Data Center for Animal Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention & National Data Center for Animal Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Peirong Jiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention & National Data Center for Animal Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jingfei Wang
- State Key Laboratory for Animal Disease Control and Prevention & National Data Center for Animal Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| |
Collapse
|
3
|
Nan X, Li Y, Zhang R, Wang R, Lv N, Li J, Chen Y, Zhou B, Wang Y, Wang Z, Zhu J, Chen J, Li J, Chen W, Zhang Q, Shi X, Zhao C, Chen C, Liu Z, Zhao Y, Liu D, Wang X, Yan LT, Li T, Zhang L, Yang YR. Exploring distinct modes of inter-spike cross-linking for enhanced neutralization by SARS-CoV-2 antibodies. Nat Commun 2024; 15:10578. [PMID: 39632831 PMCID: PMC11618796 DOI: 10.1038/s41467-024-54746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its Omicron subvariants drastically amplifies transmissibility, infectivity, and immune escape, mainly due to their resistance to most neutralizing antibodies. Thus, exploring the mechanisms underlying antibody evasion is crucial. Although the full-length native form of antibody, immunoglobulin G (IgG), offers valuable insights into the neutralization, structural investigations primarily focus on the fragment of antigen-binding (Fab). Here, we employ single-particle cryo-electron microscopy (cryo-EM) to characterize a W328-6H2 antibody, in its native IgG form complexed with severe acute respiratory syndrome (SARS), severe acute respiratory syndrome coronavirus 2 wild-type (WT) and Omicron variant BA.1 spike protein (S). Three high-resolution structures reveal that the full-length IgG forms a centered head-to-head dimer of trimer when binds fully stoichiometrically with both SARS and WT S, while adopting a distinct offset configuration with Omicron BA.1 S. Combined with functional assays, our results suggest that, beyond the binding affinity between the RBD epitope and Fab, the higher-order architectures of S trimer and full-length IgG play an additional role in neutralization, enriching our understanding of enhanced neutralization by SARS-CoV-2 antibodies.
Collapse
Grants
- 22277017, 92169205, 82241072, 82150205, and 32270983 National Natural Science Foundation of China (National Science Foundation of China)
- National Key R&D Program of China (2022YFA1206400), Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB0770000), National Key Plan for Scientific Research and Development of China (2022YFF1203100, 2021YFC0864500,2022YFC2604100,2022YFC2303400 and 2023YFC3043300), the Wanke Scientific Research Program (20221080056), Special Research Fund for the Central High-level Hospitals of Peking Union Medical College Hospital (2022-PUMCH-D-008), the Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (2021-I2M-1-037), National Key Technologies R&D Program for the 13th Five-year Plan (2017ZX10202101-001), CAMS Innovation Fund for Medical Sciences (CIFMS 2019-I2M-5-018),Tencent Foundation, Shuidi Foundation, and TH Capital for financial support.
Collapse
Affiliation(s)
- Xuanyu Nan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Yujie Li
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Rui Zhang
- Comprehensive AlDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ruoke Wang
- Comprehensive AlDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Niannian Lv
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiayi Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanfang Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bini Zhou
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Yangjunqi Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China
| | - Ziyi Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiayi Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China
| | - Jing Chen
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinqian Li
- Comprehensive AlDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Wenlong Chen
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Qi Zhang
- Comprehensive AlDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Xuanling Shi
- Comprehensive AlDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Changwen Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Chunying Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China
| | - Zhihua Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuliang Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongsheng Liu
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
- State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing, China.
- Center for AIDS Research, Chinese Academy of Medical Sciences, Beijing, China.
| | - Linqi Zhang
- Comprehensive AlDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China.
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Yuhe R Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
He Y, Guo Z, Subiaur S, Benegal A, Vahey MD. Antibody inhibition of influenza A virus assembly and release. J Virol 2024; 98:e0139823. [PMID: 38179944 PMCID: PMC10878280 DOI: 10.1128/jvi.01398-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Antibodies are frontline defenders against influenza virus infection, providing protection through multiple complementary mechanisms. Although a subset of monoclonal antibodies (mAbs) has been shown to restrict replication at the level of virus assembly and release, it remains unclear how potent and pervasive this mechanism of protection is, due in part to the challenge of separating this effect from other aspects of antibody function. To address this question, we developed imaging-based assays to determine how effectively a broad range of mAbs against the IAV surface proteins can specifically restrict viral egress. We find that classically neutralizing antibodies against hemagglutinin are broadly multifunctional, inhibiting virus assembly and release at concentrations 1-20-fold higher than the concentrations at which they inhibit viral entry. These antibodies are also capable of altering the morphological features of shed virions, reducing the proportion of filamentous particles. We find that antibodies against neuraminidase and M2 also restrict viral egress and that inhibition by anti-neuraminidase mAbs is only partly attributable to a loss in enzymatic activity. In all cases, antigen crosslinking-either on the surface of the infected cell, between the viral and cell membrane, or both-plays a critical role in inhibition, and we are able to distinguish between these modes experimentally and through a structure-based computational model. Together, these results provide a framework for dissecting antibody multifunctionality that could help guide the development of improved therapeutic antibodies or vaccines and that can be extended to other viral families and antibody isotypes.IMPORTANCEAntibodies against influenza A virus provide multifaceted protection against infection. Although sensitive and quantitative assays are widely used to measure inhibition of viral attachment and entry, the ability of diverse antibodies to inhibit viral egress is less clear. We address this challenge by developing an imaging-based approach to measure antibody inhibition of virus release across a panel of monoclonal antibodies targeting the influenza A virus surface proteins. Using this approach, we find that inhibition of viral egress is common and can have similar potency to the ability of an antibody to inhibit viral entry. Insights into this understudied aspect of antibody function may help guide the development of improved countermeasures.
Collapse
Affiliation(s)
- Yuanyuan He
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Zijian Guo
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Sofie Subiaur
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ananya Benegal
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael D. Vahey
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Garcia NK, Kephart SM, Benhaim MA, Matsui T, Mileant A, Guttman M, Lee KK. Structural dynamics reveal subtype-specific activation and inhibition of influenza virus hemagglutinin. J Biol Chem 2023; 299:104765. [PMID: 37121546 PMCID: PMC10220487 DOI: 10.1016/j.jbc.2023.104765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/25/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
Influenza hemagglutinin (HA) is a prototypical class 1 viral entry glycoprotein, responsible for mediating receptor binding and membrane fusion. Structures of its prefusion and postfusion forms, embodying the beginning and endpoints of the fusion pathway, have been extensively characterized. Studies probing HA dynamics during fusion have begun to identify intermediate states along the pathway, enhancing our understanding of how HA becomes activated and traverses its conformational pathway to complete fusion. HA is also the most variable, rapidly evolving part of influenza virus, and it is not known whether mechanisms of its activation and fusion are conserved across divergent viral subtypes. Here, we apply hydrogen-deuterium exchange mass spectrometry to compare fusion activation in two subtypes of HA, H1 and H3. Our data reveal subtype-specific behavior in the regions of HA that undergo structural rearrangement during fusion, including the fusion peptide and HA1/HA2 interface. In the presence of an antibody that inhibits the conformational change (FI6v3), we observe that acid-induced dynamic changes near the epitope are dampened, but the degree of protection at the fusion peptide is different for the two subtypes investigated. These results thus provide new insights into variation in the mechanisms of influenza HA's dynamic activation and its inhibition.
Collapse
Affiliation(s)
- Natalie K Garcia
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Sally M Kephart
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Mark A Benhaim
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Laboratory, SLAC, Menlo Park, California, USA
| | - Alexander Mileant
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
6
|
Mechanistic dissection of antibody inhibition of influenza entry yields unexpected heterogeneity. Biophys J 2022:S0006-3495(22)00864-5. [DOI: 10.1016/j.bpj.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022] Open
|
7
|
Viral Aggregation: The Knowns and Unknowns. Viruses 2022; 14:v14020438. [PMID: 35216031 PMCID: PMC8879382 DOI: 10.3390/v14020438] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
Viral aggregation is a complex and pervasive phenomenon affecting many viral families. An increasing number of studies have indicated that it can modulate critical parameters surrounding viral infections, and yet its role in viral infectivity, pathogenesis, and evolution is just beginning to be appreciated. Aggregation likely promotes viral infection by increasing the cellular multiplicity of infection (MOI), which can help overcome stochastic failures of viral infection and genetic defects and subsequently modulate their fitness, virulence, and host responses. Conversely, aggregation can limit the dispersal of viral particles and hinder the early stages of establishing a successful infection. The cost–benefit of viral aggregation seems to vary not only depending on the viral species and aggregating factors but also on the spatiotemporal context of the viral life cycle. Here, we review the knowns of viral aggregation by focusing on studies with direct observations of viral aggregation and mechanistic studies of the aggregation process. Next, we chart the unknowns and discuss the biological implications of viral aggregation in their infection cycle. We conclude with a perspective on harnessing the therapeutic potential of this phenomenon and highlight several challenging questions that warrant further research for this field to advance.
Collapse
|
8
|
Linnik J, Syedbasha M, Hollenstein Y, Halter J, Egli A, Stelling J. Model-based inference of neutralizing antibody avidities against influenza virus. PLoS Pathog 2022; 18:e1010243. [PMID: 35100312 PMCID: PMC8830794 DOI: 10.1371/journal.ppat.1010243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/10/2022] [Accepted: 01/03/2022] [Indexed: 11/23/2022] Open
Abstract
To assess the response to vaccination, quantity (concentration) and quality (avidity) of neutralizing antibodies are the most important parameters. Specifically, an increase in avidity indicates germinal center formation, which is required for establishing long-term protection. For influenza, the classical hemagglutination inhibition (HI) assay, however, quantifies a combination of both, and to separately determine avidity requires high experimental effort. We developed from first principles a biophysical model of hemagglutination inhibition to infer IgG antibody avidities from measured HI titers and IgG concentrations. The model accurately describes the relationship between neutralizing antibody concentration/avidity and HI titer, and explains quantitative aspects of the HI assay, such as robustness to pipetting errors and detection limit. We applied our model to infer avidities against the pandemic 2009 H1N1 influenza virus in vaccinated patients (n = 45) after hematopoietic stem cell transplantation (HSCT) and validated our results with independent avidity measurements using an enzyme-linked immunosorbent assay with urea elution. Avidities inferred by the model correlated with experimentally determined avidities (ρ = 0.54, 95% CI = [0.31, 0.70], P < 10−4). The model predicted that increases in IgG concentration mainly contribute to the observed HI titer increases in HSCT patients and that immunosuppressive treatment is associated with lower baseline avidities. Since our approach requires only easy-to-establish measurements as input, we anticipate that it will help to disentangle causes for poor vaccination outcomes also in larger patient populations. This study demonstrates that biophysical modelling can provide quantitative insights into agglutination assays and complement experimental measurements to refine antibody response analyses. Influenza vaccines are assessed based on the induced antibody response, where antibody quantity (concentration) and antibody binding strength (avidity) determine the potency to neutralize the virus. In addition, an increase in avidity indicates a successful germinal center reaction, which is required for establishing long-term protection. However, the hemagglutination inhibition (HI) assay—traditionally used to assess influenza vaccines—measures a combination of both antibody concentration and avidity, and to separately determine avidity requires high experimental effort. We developed a biophysical model of the HI assay, which enables the inference of antibody avidities from measured HI titers and antibody concentrations. We applied our approach to a vaccinated population of immunocompromised patients after blood stem cell transplantation and validated our results experimentally. The model predicted that vaccination induced an increase in avidity in only a few patients and that patients under immunosuppressive treatment show lower baseline avidities. Since our approach requires only easily measurable data as input, it can facilitate the investigation of vaccine responses in larger populations. This study demonstrates that biophysical modelling can complement experimental data and provide additional details on agglutination experiments and antibody responses.
Collapse
Affiliation(s)
- Janina Linnik
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Swiss Institute for Bioinformatics, Basel, Switzerland
| | | | | | - Jörg Halter
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | - Adrian Egli
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- * E-mail: (AE); (JS)
| | - Jörg Stelling
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Swiss Institute for Bioinformatics, Basel, Switzerland
- * E-mail: (AE); (JS)
| |
Collapse
|
9
|
Eller MW, Siaw HMH, Dyer RB. Stability of HA2 Prefusion Structure and pH-Induced Conformational Changes in the HA2 Domain of H3N2 Hemagglutinin. Biochemistry 2021; 60:2623-2636. [PMID: 34435771 PMCID: PMC8485334 DOI: 10.1021/acs.biochem.1c00551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Influenza hemagglutinin is the fusion protein that mediates fusion of the viral and host membranes through a large conformational change upon acidification in the developing endosome. The "spring-loaded" model has long been used to describe the mechanism of hemagglutinin and other type 1 viral glycoproteins. This model postulates a metastable conformation of the HA2 subunit, caged from adopting a lower-free energy conformation by the HA1 subunit. Here, using a combination of biochemical and spectroscopic methods, we study a truncated construct of HA2 (HA2*, lacking the transmembrane domain) recombinantly expressed in Escherichia coli as a model for HA2 without the influence of HA1. Our data show that HA2* folds into a conformation like that of HA2 in full length HA and forms trimers. Upon acidification, HA2* undergoes a conformational change that is consistent with the change from pre- to postfusion HA2 in HA. This conformational change is fast and occurs on a time scale that is not consistent with aggregation. These results suggest that the prefusion conformation of HA2 is stable and the change to the postfusion conformation is due to protonation of HA2 itself and not merely uncaging by HA1.
Collapse
Affiliation(s)
- Micah W Eller
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Hew Ming Helen Siaw
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - R Brian Dyer
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
10
|
Universal Influenza Virus Neuraminidase Vaccine Elicits Protective Immune Responses against Human Seasonal and Pre-pandemic Strains. J Virol 2021; 95:e0075921. [PMID: 34160258 DOI: 10.1128/jvi.00759-21] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The hemagglutinin (HA) surface protein is the primary immune target for most influenza vaccines. The neuraminidase (NA) surface protein is often a secondary target for vaccine designs. In this study, computationally optimized broadly reactive antigen (COBRA) methodology was used to generate the N1-I NA vaccine antigen that was designed to cross-react with avian, swine, and human influenza viruses of the N1 NA subtype. The elicited antibodies bound to NA proteins derived from A/California/07/2009 (H1N1)pdm09, A/Brisbane/59/2007 (H1N1), A/Swine/North Carolina/154074/2015 (H1N1), and A/Viet Nam/1203/2004 (H5N1) influenza viruses, with NA-neutralizing activity against a broad panel of HXN1 influenza strains. Mice vaccinated with the N1-I COBRA NA vaccine were protected from mortality and viral lung titers were lower when challenged with four different viral challenges (A/California/07/2009, A/Brisbane/59/2007, A/Swine/North Carolina/154074/2015, and A/Viet Nam/1203/2004). Vaccinated mice had little to no weight loss against both homologous, but also cross-NA, genetic clade challenges. Lung viral titers were lower than the mock-vaccinated mice and, at times, equivalent to the homologous control. Thus, the N1-I COBRA NA antigen has the potential to be a complementary component in a multiantigen universal influenza virus vaccine formulation that also contains HA antigens. IMPORTANCE The development and distribution of a universal influenza vaccine would alleviate global economic and public health stress from annual influenza virus outbreaks. The influenza virus NA vaccine antigen allows for protection from multiple HA subtypes and virus host origins, but it has not been the focus of vaccine development. The N1-I NA antigen described here protected mice from direct challenge of four distinct influenza viruses and inhibited the enzymatic activity of an N1 influenza virus panel. The use of the NA antigen in combination with the HA antigen widens the breadth of protection against various virus strains. Therefore, this research opens the door to the development of a longer-lasting vaccine with increased protective breadth.
Collapse
|
11
|
Molecular evolution and characterization of hemagglutinin and neuraminidase of influenza A(H1N1)pdm09 viruses isolated in Beijing, China, during the 2017-2018 and 2018-2019 influenza seasons. Arch Virol 2020; 166:179-189. [PMID: 33145635 DOI: 10.1007/s00705-020-04869-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
We investigated and analysed the molecular evolution of hemagglutinin (HA) and neuraminidase (NA) of influenza A(H1N1)pdm09 virus during the 2017-2018 and 2018-2019 influenza seasons in Beijing, China. We collected and extracted RNA from influenza A(H1N1)pdm09 strains from Peking University People's Hospital and analyzed their HA and NA genes by RT-PCR and sequencing. Phylogenetic analysis of HA and NA sequences was used to compare the amino acid sequences of 51 strains with those of reference strains. All strains belonged to subclade 6B.1, with S162N and I216T substitutions (H1 numbering). Our strains differed from strain A/Michigan/45/2015, with the substitutions S91R, S181T and I312V in the HA antigenic epitope. An E189G mutation was detected in the 190 helix of the receptor binding region of HA. A new potential glycosylation site, 179 (NQT), which was not detected before the 2015 influenza season, was identified. Two strains were mutated at I223, the NA inhibitor resistance site. During 2012-2019, amino acids of HA and NA mutated over time. Co-occurrence mutations N146D, S200P, S202I and A273T in HA appeared along with Q51K, F74S and D416N in NA in six strains during two influenza seasons. Our work reveals the molecular changes and phylogenetic characteristics of influenza A(H1N1)pdm09 virus and suggests that a vaccine probably provides suboptimal protection. The biological characteristics of the new glycosylation and drug-resistance sites detected in this work need to be studied further. The co-occurrence of mutations in HA and NA might affect the characteristics of the virus and need to be given more attention.
Collapse
|
12
|
Budhadev D, Poole E, Nehlmeier I, Liu Y, Hooper J, Kalverda E, Akshath US, Hondow N, Turnbull WB, Pöhlmann S, Guo Y, Zhou D. Glycan-Gold Nanoparticles as Multifunctional Probes for Multivalent Lectin-Carbohydrate Binding: Implications for Blocking Virus Infection and Nanoparticle Assembly. J Am Chem Soc 2020; 142:18022-18034. [PMID: 32935985 DOI: 10.1021/jacs.0c06793] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multivalent lectin-glycan interactions are widespread in biology and are often exploited by pathogens to bind and infect host cells. Glycoconjugates can block such interactions and thereby prevent infection. The inhibition potency strongly depends on matching the spatial arrangement between the multivalent binding partners. However, the structural details of some key lectins remain unknown and different lectins may exhibit overlapping glycan specificity. This makes it difficult to design a glycoconjugate that can potently and specifically target a particular multimeric lectin for therapeutic interventions, especially under the challenging in vivo conditions. Conventional techniques such as surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) can provide quantitative binding thermodynamics and kinetics. However, they cannot reveal key structural information, e.g., lectin's binding site orientation, binding mode, and interbinding site spacing, which are critical to design specific multivalent inhibitors. Herein we report that gold nanoparticles (GNPs) displaying a dense layer of simple glycans are powerful mechanistic probes for multivalent lectin-glycan interactions. They can not only quantify the GNP-glycan-lectin binding affinities via a new fluorescence quenching method, but also reveal drastically different affinity enhancing mechanisms between two closely related tetrameric lectins, DC-SIGN (simultaneous binding to one GNP) and DC-SIGNR (intercross-linking with multiple GNPs), via a combined hydrodynamic size and electron microscopy analysis. Moreover, a new term, potential of assembly formation (PAF), has been proposed to successfully predict the assembly outcomes based on the binding mode between GNP-glycans and lectins. Finally, the GNP-glycans can potently and completely inhibit DC-SIGN-mediated augmentation of Ebola virus glycoprotein-driven cell entry (with IC50 values down to 95 pM), but only partially block DC-SIGNR-mediated virus infection. Our results suggest that the ability of a glycoconjugate to simultaneously block all binding sites of a target lectin is key to robust inhibition of viral infection.
Collapse
Affiliation(s)
- Darshita Budhadev
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Emma Poole
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research and Faculty of Biology and Psychology, University of Göttingen, Göttingen 37073, Germany
| | - Yuanyuan Liu
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - James Hooper
- School of Food Science & Nutrition and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Elizabeth Kalverda
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Uchangi Satyaprasad Akshath
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research and Faculty of Biology and Psychology, University of Göttingen, Göttingen 37073, Germany
| | - Yuan Guo
- School of Food Science & Nutrition and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dejian Zhou
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
13
|
Benhaim MA, Mangala Prasad V, Garcia NK, Guttman M, Lee KK. Structural monitoring of a transient intermediate in the hemagglutinin fusion machinery on influenza virions. SCIENCE ADVANCES 2020; 6:eaaz8822. [PMID: 32494683 PMCID: PMC7190341 DOI: 10.1126/sciadv.aaz8822] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/05/2020] [Indexed: 05/16/2023]
Abstract
The influenza virus hemagglutinin (HA) fusion protein has long been viewed as a "spring-loaded" fusion machine whereby activation at low pH initiates a rapid and irreversible cascade of conformational changes that drives the membrane fusion reaction. This mechanism has shaped our understanding of how type 1 viral fusion proteins function as a whole. Experimental limitations have hindered efforts to expand our mechanistic and structural understanding of viral membrane fusion. Here, we used pulse-labeling hydrogen/deuterium exchange mass spectrometry and cryo-electron tomography to monitor and characterize the structural dynamics of HA during fusion activation on intact virions. Our data reveal how concurrent reorganizations at the HA1 receptor binding domain interface and HA2 fusion subunit produce a dynamic fusion intermediate ensemble in full-length HA. The soluble HA ectodomain transitions directly to the postfusion state with no observable intermediate.
Collapse
Affiliation(s)
- M. A. Benhaim
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - V. Mangala Prasad
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - N. K. Garcia
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - M. Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - K. K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
- Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, WA, USA
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Corresponding author.
| |
Collapse
|
14
|
Wang L, Wang R, Wang L, Ben H, Yu L, Gao F, Shi X, Yin C, Zhang F, Xiang Y, Zhang L. Structural Basis for Neutralization and Protection by a Zika Virus-Specific Human Antibody. Cell Rep 2020; 26:3360-3368.e5. [PMID: 30893607 DOI: 10.1016/j.celrep.2019.02.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/22/2018] [Accepted: 02/13/2019] [Indexed: 12/26/2022] Open
Abstract
We previously reported a human monoclonal antibody, ZK2B10, capable of protection against Zika virus (ZIKV) infection and microcephaly in developing mouse embryos. Here, we report the structural features and mechanism of action of ZK2B10. The crystal structure at a resolution of 2.32 Å revealed that the epitope is located on the lateral ridge of DIII of the envelope glycoprotein. Cryo-EM structure with mature ZIKV showed that the antibody binds to DIIIs around the icosahedral 2-fold, 3-fold, and 5-fold axes, a distinct feature compared to those reported for DIII-specific antibodies. The binding of ZK2B10 to ZIKV has no detectable effect on viral attachment to target cells or on conformational changes of the E glycoprotein in the acidic environment, suggesting that ZK2B10 functions at steps between the formation of the fusion intermediate and membrane fusion. These results provide structural and mechanistic insights into how ZK2B10 mediates protection against ZIKV infection.
Collapse
Affiliation(s)
- Lin Wang
- Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ruoke Wang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lei Wang
- Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Haijing Ben
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lei Yu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Fei Gao
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xuanling Shi
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chibiao Yin
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Fuchun Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Ye Xiang
- Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Benhaim MA, Lee KK. New Biophysical Approaches Reveal the Dynamics and Mechanics of Type I Viral Fusion Machinery and Their Interplay with Membranes. Viruses 2020; 12:E413. [PMID: 32276357 PMCID: PMC7232462 DOI: 10.3390/v12040413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 12/27/2022] Open
Abstract
Protein-mediated membrane fusion is a highly regulated biological process essential for cellular and organismal functions and infection by enveloped viruses. During viral entry the membrane fusion reaction is catalyzed by specialized protein machinery on the viral surface. These viral fusion proteins undergo a series of dramatic structural changes during membrane fusion where they engage, remodel, and ultimately fuse with the host membrane. The structural and dynamic nature of these conformational changes and their impact on the membranes have long-eluded characterization. Recent advances in structural and biophysical methodologies have enabled researchers to directly observe viral fusion proteins as they carry out their functions during membrane fusion. Here we review the structure and function of type I viral fusion proteins and mechanisms of protein-mediated membrane fusion. We highlight how recent technological advances and new biophysical approaches are providing unprecedented new insight into the membrane fusion reaction.
Collapse
Affiliation(s)
- Mark A. Benhaim
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, USA;
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, USA;
- Biological Physics Structure and Design Program, University of Washington, Seattle, WA 98195-7610, USA
| |
Collapse
|
16
|
Kosik I, Angeletti D, Gibbs JS, Angel M, Takeda K, Kosikova M, Nair V, Hickman HD, Xie H, Brooke CB, Yewdell JW. Neuraminidase inhibition contributes to influenza A virus neutralization by anti-hemagglutinin stem antibodies. J Exp Med 2019; 216:304-316. [PMID: 30683737 PMCID: PMC6363425 DOI: 10.1084/jem.20181624] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/03/2018] [Accepted: 01/03/2019] [Indexed: 11/18/2022] Open
Abstract
Broadly neutralizing antibodies (Abs) that bind the influenza virus hemagglutinin (HA) stem may enable universal influenza vaccination. Here, we show that anti-stem Abs sterically inhibit viral neuraminidase (NA) activity against large substrates, with activity inversely proportional to the length of the fibrous NA stalk that supports the enzymatic domain. By modulating NA stalk length in recombinant IAVs, we show that anti-stem Abs inhibit virus release from infected cells by blocking NA, accounting for their in vitro neutralization activity. NA inhibition contributes to anti-stem Ab protection in influenza-infected mice, likely due at least in part to NA-mediated inhibition of FcγR-dependent activation of innate immune cells by Ab bound to virions. Food and Drug Administration-approved NA inhibitors enhance anti-stem-based Fc-dependent immune cell activation, raising the possibility of therapeutic synergy between NA inhibitors and anti-stem mAb treatment in humans.
Collapse
Affiliation(s)
- Ivan Kosik
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Davide Angeletti
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - James S Gibbs
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Matthew Angel
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD
| | - Martina Kosikova
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD
| | - Vinod Nair
- Electron Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT
| | - Heather D Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Hang Xie
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD
| | | | - Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| |
Collapse
|
17
|
Sicca F, Neppelenbroek S, Huckriede A. Effector mechanisms of influenza-specific antibodies: neutralization and beyond. Expert Rev Vaccines 2018; 17:785-795. [PMID: 30145912 DOI: 10.1080/14760584.2018.1516553] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Antibodies directed against influenza virus execute their protective function by exploiting a variety of effector mechanisms. Neutralizing antibodies have been thoroughly studied because of their pivotal role in preventing influenza virus infection and their presence in host serum is correlated with protection. Influenza antibodies can also exploit non-neutralizing effector mechanisms, which until recently have been largely overlooked. AREAS COVERED Here, we discuss the antibody response to influenza virus in its entire breadth. Neutralizing antibodies mostly target variable epitopes on influenza surface proteins and interfere with virus binding, fusion, or egress. Non-neutralizing antibodies instead usually target conserved epitopes which can be located on surface as well as internal proteins. They drive viral clearance via interaction of their Fc region with components of the innate immune system such as immune effector cells (e.g. NK cells, macrophages) or the complement system. EXPERT COMMENTARY Recent research has unraveled that influenza-specific antibodies target multiple proteins and make use of diverse effector mechanisms. Often these antibodies are cross-reactive among virus strains of the same subtype or even between subtypes. As such they are induced early in life and are boosted by regular encounters with virus or vaccine. Designing strategies to optimally exploit these pre-existing antibodies may represent the key for the development of new broadly protective influenza vaccines.
Collapse
Affiliation(s)
- Federica Sicca
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Sam Neppelenbroek
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Anke Huckriede
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| |
Collapse
|
18
|
Gallagher JR, McCraw DM, Torian U, Gulati NM, Myers ML, Conlon MT, Harris AK. Characterization of Hemagglutinin Antigens on Influenza Virus and within Vaccines Using Electron Microscopy. Vaccines (Basel) 2018; 6:E31. [PMID: 29799445 PMCID: PMC6027289 DOI: 10.3390/vaccines6020031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/11/2018] [Accepted: 05/21/2018] [Indexed: 01/08/2023] Open
Abstract
Influenza viruses affect millions of people worldwide on an annual basis. Although vaccines are available, influenza still causes significant human mortality and morbidity. Vaccines target the major influenza surface glycoprotein hemagglutinin (HA). However, circulating HA subtypes undergo continual variation in their dominant epitopes, requiring vaccines to be updated annually. A goal of next-generation influenza vaccine research is to produce broader protective immunity against the different types, subtypes, and strains of influenza viruses. One emerging strategy is to focus the immune response away from variable epitopes, and instead target the conserved stem region of HA. To increase the display and immunogenicity of the HA stem, nanoparticles are being developed to display epitopes in a controlled spatial arrangement to improve immunogenicity and elicit protective immune responses. Engineering of these nanoparticles requires structure-guided design to optimize the fidelity and valency of antigen presentation. Here, we review electron microscopy applied to study the 3D structures of influenza viruses and different vaccine antigens. Structure-guided information from electron microscopy should be integrated into pipelines for the development of both more efficacious seasonal and universal influenza vaccine antigens. The lessons learned from influenza vaccine electron microscopic research could aid in the development of novel vaccines for other pathogens.
Collapse
Affiliation(s)
- John R Gallagher
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA.
| | - Dustin M McCraw
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA.
| | - Udana Torian
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA.
| | - Neetu M Gulati
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA.
| | - Mallory L Myers
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA.
| | - Michael T Conlon
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA.
| | - Audray K Harris
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA.
| |
Collapse
|