1
|
Capoferri AA, Sklutuis R, Famuyiwa TO, Pathak S, Li R, Rausch JW, Luke BT, Hoh R, Deeks SG, Mellors JW, Coffin JM, Groebner JL, Romerio F, Kearney MF. In vivo detection of HIV-1 antisense transcripts in untreated and ART-treated individuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.06.627170. [PMID: 40093179 PMCID: PMC11908204 DOI: 10.1101/2024.12.06.627170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Natural antisense transcripts are expressed in eukaryotes, prokaryotes, and viruses and can possess regulatory functions at the transcriptional and/or post-transcriptional levels. In vitro studies have shown that HIV-1 antisense transcripts (AST) promote viral latency through epigenetic silencing of the proviral 5' long terminal repeat (LTR). However, expression of HIV-1 AST in vivo have not been convincingly demonstrated. Here, we used single RNA template amplification, detection, and sequencing to demonstrate expression of AST in unstimulated PBMC collected from people with HIV-1 (PWH). We found that AST had high genetic diversity that matched proviruses in cells from blood and lymph nodes. We measured a median of 26 copies of AST per 100 infected cells in PWH on ART and a median of 2 copies per 100 infected cells in PWH not on ART. The expression of HIV-1 AST in vivo is consistent with a potential regulatory role in regulation of HIV-1 expression.
Collapse
Affiliation(s)
- Adam A Capoferri
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD, USA
| | - Rachel Sklutuis
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD, USA
| | - Toluleke O Famuyiwa
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD, USA
| | - Sachi Pathak
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD, USA
| | - Rui Li
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jason W Rausch
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD, USA
| | - Brian T Luke
- Leidos Biomedical Research, Inc, Frederick National Laboratories for Cancer Research, Frederick, MD, USA
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, CA, USA
| | - John W Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| | - Jennifer L Groebner
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD, USA
| | - Fabio Romerio
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mary F Kearney
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
2
|
Krchlikova V, Lu Y, Sauter D. Viral influencers: deciphering the role of endogenous retroviral LTR12 repeats in cellular gene expression. J Virol 2025; 99:e0135124. [PMID: 39887236 PMCID: PMC11853044 DOI: 10.1128/jvi.01351-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
The human genome is like a museum of ancient retroviral infections. It contains a large number of endogenous retroviruses (ERVs) that bear witness to past integration events. About 5,000 of them are so-called long terminal repeat 12 (LTR12) elements. Compared with 20,000 human genes, this is a remarkable number. Although LTR12 elements can act as promoters or enhancers of cellular genes, the function of most of these retroviral elements has remained unclear. In our mini-review, we show that different LTR12 elements share many similarities, including common transcription factor binding sites. Furthermore, we summarize novel insights into the epigenetic mechanisms governing their silencing and activation. Specific examples of genes and pathways that are regulated by LTR12 loci are used to illustrate the regulatory network built by these repetitive elements. A particular focus is on their role in the regulation of antiviral immune responses, tumor cell proliferation, and senescence. Finally, we describe how a targeted activation of this fascinating ERV family could be used for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Veronika Krchlikova
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Yueshuang Lu
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Akkawi C, Feuillard J, Diaz FL, Belkhir K, Godefroy N, Peloponese JM, Mougel M, Laine S. Murine leukemia virus (MLV) P50 protein induces cell transformation via transcriptional regulatory function. Retrovirology 2023; 20:16. [PMID: 37700325 PMCID: PMC10496198 DOI: 10.1186/s12977-023-00631-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND The murine leukemia virus (MLV) has been a powerful model of pathogenesis for the discovery of genes involved in cancer. Its splice donor (SD')-associated retroelement (SDARE) is important for infectivity and tumorigenesis, but the mechanism remains poorly characterized. Here, we show for the first time that P50 protein, which is produced from SDARE, acts as an accessory protein that transregulates transcription and induces cell transformation. RESULTS By infecting cells with MLV particles containing SDARE transcript alone (lacking genomic RNA), we show that SDARE can spread to neighbouring cells as shown by the presence of P50 in infected cells. Furthermore, a role for P50 in cell transformation was demonstrated by CCK8, TUNEL and anchorage-independent growth assays. We identified the integrase domain of P50 as being responsible for transregulation of the MLV promoter using luciferase assay and RTqPCR with P50 deleted mutants. Transcriptomic analysis furthermore revealed that the expression of hundreds of cellular RNAs involved in cancerogenesis were deregulated in the presence of P50, suggesting that P50 induces carcinogenic processes via its transcriptional regulatory function. CONCLUSION We propose a novel SDARE-mediated mode of propagation of the P50 accessory protein in surrounding cells. Moreover, due to its transforming properties, P50 expression could lead to a cellular and tissue microenvironment that is conducive to cancer development.
Collapse
Affiliation(s)
- Charbel Akkawi
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France
| | - Jerome Feuillard
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France
| | - Felipe Leon Diaz
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France
| | - Khalid Belkhir
- ISEM, CNRS, EPHE, Université Montpellier, IRD, Montpellier, France
| | - Nelly Godefroy
- ISEM, CNRS, EPHE, Université Montpellier, IRD, Montpellier, France
| | | | - Marylene Mougel
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France.
| | - Sebastien Laine
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
4
|
Romerio F. Origin and functional role of antisense transcription in endogenous and exogenous retroviruses. Retrovirology 2023; 20:6. [PMID: 37194028 DOI: 10.1186/s12977-023-00622-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/30/2023] [Indexed: 05/18/2023] Open
Abstract
Most proteins expressed by endogenous and exogenous retroviruses are encoded in the sense (positive) strand of the genome and are under the control of regulatory elements within the 5' long terminal repeat (LTR). A number of retroviral genomes also encode genes in the antisense (negative) strand and their expression is under the control of negative sense promoters within the 3' LTR. In the case of the Human T-cell Lymphotropic Virus 1 (HTLV-1), the antisense protein HBZ has been shown to play a critical role in the virus lifecycle and in the pathogenic process, while the function of the Human Immunodeficiency Virus 1 (HIV-1) antisense protein ASP remains unknown. However, the expression of 3' LTR-driven antisense transcripts is not always demonstrably associated with the presence of an antisense open reading frame encoding a viral protein. Moreover, even in the case of retroviruses that do express an antisense protein, such as HTLV-1 and the pandemic strains of HIV-1, the 3' LTR-driven antisense transcript shows both protein-coding and noncoding activities. Indeed, the ability to express antisense transcripts appears to be phylogenetically more widespread among endogenous and exogenous retroviruses than the presence of a functional antisense open reading frame within these transcripts. This suggests that retroviral antisense transcripts may have originated as noncoding molecules with regulatory activity that in some cases later acquired protein-coding function. Here, we will review examples of endogenous and exogenous retroviral antisense transcripts, and the ways through which they benefit viral persistence in the host.
Collapse
Affiliation(s)
- Fabio Romerio
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Ha T, DiPrima M, Koparde V, Jailwala P, Ohnuki H, Feng JX, Palangat M, Larson D, Tosato G. Antisense transcription from lentiviral gene targeting linked to an integrated stress response in colorectal cancer cells. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:877-891. [PMID: 35694213 PMCID: PMC9163427 DOI: 10.1016/j.omtn.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/12/2022] [Indexed: 11/10/2022]
Abstract
Advances in gene therapy research have resulted in the successful development of new therapies for clinical use. Here, we explored a gene targeting approach to deplete ephrinB2 from colorectal cancer cells using an inducible lentiviral vector. EphrinB2, a transmembrane ephrin ligand, promotes colorectal cancer cell growth and viability and predicts poor patient survival when expressed at high levels in colorectal cancer tissues. We discovered that lentiviral vector integration and expression in the host DNA frequently drive divergent host gene transcription, generating antisense reads coupled with splicing events and generation of chimeric vector/host transcripts. Antisense transcription of host DNA was linked to development of an integrated stress response and cell death. Despite recent successes, off-target effects remain a concern in genetic medicine. Our results provide evidence that divergent gene transcription is a previously unrecognized off-target effect of lentiviral vector integration with built-in properties for regulation of gene expression.
Collapse
|
6
|
Miller RH, Zimmer A, Moutot G, Mesnard JM, Chazal N. Retroviral Antisense Transcripts and Genes: 33 Years after First Predicted, a Silent Retroviral Revolution? Viruses 2021; 13:2221. [PMID: 34835027 PMCID: PMC8622228 DOI: 10.3390/v13112221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/29/2022] Open
Abstract
Paradigm shifts throughout the history of microbiology have typically been ignored, or met with skepticism and resistance, by the scientific community. This has been especially true in the field of virology, where the discovery of a "contagium vivum fluidum", or infectious fluid remaining after excluding bacteria by filtration, was initially ignored because it did not coincide with the established view of microorganisms. Subsequent studies on such infectious agents, eventually termed "viruses", were met with skepticism. However, after an abundance of proof accumulated, viruses were eventually acknowledged as defined microbiological entities. Next, the proposed role of viruses in oncogenesis in animals was disputed, as was the unique mechanism of genome replication by reverse transcription of RNA by the retroviruses. This same pattern of skepticism holds true for the prediction of the existence of retroviral "antisense" transcripts and genes. From the time of their discovery, it was thought that retroviruses encoded proteins on only one strand of proviral DNA. However, in 1988, it was predicted that human immunodeficiency virus type 1 (HIV-1), and other retroviruses, express an antisense protein encoded on the DNA strand opposite that encoding the known viral proteins. Confirmation came quickly with the characterization of the antisense protein, HBZ, of the human T-cell leukemia virus type 1 (HTLV-1), and the finding that both the protein and its antisense mRNA transcript play key roles in viral replication and pathogenesis. However, acceptance of the existence, and potential importance, of a corresponding antisense transcript and protein (ASP) in HIV-1 infection and pathogenesis has lagged, despite gradually accumulating theoretical and experimental evidence. The most striking theoretical evidence is the finding that asp is highly conserved in group M viruses and correlates exclusively with subtypes, or clades, responsible for the AIDS pandemic. This review outlines the history of the major shifts in thought pertaining to the nature and characteristics of viruses, and in particular retroviruses, and details the development of the hypothesis that retroviral antisense transcripts and genes exist. We conclude that there is a need to accelerate studies on ASP, and its transcript(s), with the view that both may be important, and overlooked, targets in anti-HIV therapeutic and vaccine strategies.
Collapse
Affiliation(s)
| | - Alexis Zimmer
- DHVS—Département d’Histoire des Sciences de la Vie et de la Santé, Faculté de Médecine, Université de Strasbourg, 4 Rue Kirschleger, CEDEX, F-67085 Strasbourg, France;
| | - Gilles Moutot
- Centre d’Etudes Politiques et Sociales (CEPEL), Département de Sciences Humaines et Sociales, Université de Montpellier, 34090 Montpellier, France;
| | - Jean-Michel Mesnard
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France;
| | - Nathalie Chazal
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France;
| |
Collapse
|
7
|
Li R, Sklutuis R, Groebner JL, Romerio F. HIV-1 Natural Antisense Transcription and Its Role in Viral Persistence. Viruses 2021; 13:v13050795. [PMID: 33946840 PMCID: PMC8145503 DOI: 10.3390/v13050795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Natural antisense transcripts (NATs) represent a class of RNA molecules that are transcribed from the opposite strand of a protein-coding gene, and that have the ability to regulate the expression of their cognate protein-coding gene via multiple mechanisms. NATs have been described in many prokaryotic and eukaryotic systems, as well as in the viruses that infect them. The human immunodeficiency virus (HIV-1) is no exception, and produces one or more NAT from a promoter within the 3’ long terminal repeat. HIV-1 antisense transcripts have been the focus of several studies spanning over 30 years. However, a complete appreciation of the role that these transcripts play in the virus lifecycle is still lacking. In this review, we cover the current knowledge about HIV-1 NATs, discuss some of the questions that are still open and identify possible areas of future research.
Collapse
Affiliation(s)
- Rui Li
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Rachel Sklutuis
- HIV Dynamics and Replication Program, Host-Virus Interaction Branch, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (R.S.); (J.L.G.)
| | - Jennifer L. Groebner
- HIV Dynamics and Replication Program, Host-Virus Interaction Branch, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (R.S.); (J.L.G.)
| | - Fabio Romerio
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Correspondence:
| |
Collapse
|
8
|
Savoret J, Mesnard JM, Gross A, Chazal N. Antisense Transcripts and Antisense Protein: A New Perspective on Human Immunodeficiency Virus Type 1. Front Microbiol 2021; 11:625941. [PMID: 33510738 PMCID: PMC7835632 DOI: 10.3389/fmicb.2020.625941] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
It was first predicted in 1988 that there may be an Open Reading Frame (ORF) on the negative strand of the Human Immunodeficiency Virus type 1 (HIV-1) genome that could encode a protein named AntiSense Protein (ASP). In spite of some controversy, reports began to emerge some years later describing the detection of HIV-1 antisense transcripts, the presence of ASP in transfected and infected cells, and the existence of an immune response targeting ASP. Recently, it was established that the asp gene is exclusively conserved within the pandemic group M of HIV-1. In this review, we summarize the latest findings on HIV-1 antisense transcripts and ASP, and we discuss their potential functions in HIV-1 infection together with the role played by antisense transcripts and ASPs in some other viruses. Finally, we suggest pathways raised by the study of antisense transcripts and ASPs that may warrant exploration in the future.
Collapse
Affiliation(s)
- Juliette Savoret
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, Montpellier, France
| | - Jean-Michel Mesnard
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, Montpellier, France
| | - Antoine Gross
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, Montpellier, France
| | - Nathalie Chazal
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
9
|
Transcriptional Regulation of Genes by Ikaros Tumor Suppressor in Acute Lymphoblastic Leukemia. Int J Mol Sci 2020; 21:ijms21041377. [PMID: 32085659 PMCID: PMC7073093 DOI: 10.3390/ijms21041377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/27/2022] Open
Abstract
Regulation of oncogenic gene expression by transcription factors that function as tumor suppressors is one of the major mechanisms that regulate leukemogenesis. Understanding this complex process is essential for explaining the pathogenesis of leukemia as well as developing targeted therapies. Here, we provide an overview of the role of Ikaros tumor suppressor and its role in regulation of gene transcription in acute leukemia. Ikaros (IKZF1) is a DNA-binding protein that functions as a master regulator of hematopoiesis and the immune system, as well as a tumor suppressor in acute lymphoblastic leukemia (ALL). Genetic alteration or functional inactivation of Ikaros results in the development of high-risk leukemia. Ikaros binds to the specific consensus binding motif at upstream regulatory elements of its target genes, recruits chromatin-remodeling complexes and activates or represses transcription via chromatin remodeling. Over the last twenty years, a large number of Ikaros target genes have been identified, and the role of Ikaros in the regulation of their expression provided insight into the mechanisms of Ikaros tumor suppressor function in leukemia. Here we summarize the role of Ikaros in the regulation of the expression of the genes whose function is critical for cellular proliferation, development, and progression of acute lymphoblastic leukemia.
Collapse
|
10
|
Matsuoka M, Mesnard JM. HTLV-1 bZIP factor: the key viral gene for pathogenesis. Retrovirology 2020; 17:2. [PMID: 31915026 PMCID: PMC6950816 DOI: 10.1186/s12977-020-0511-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/02/2020] [Indexed: 12/26/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia-lymphoma (ATL) and inflammatory diseases. The HTLV-1 bZIP factor (HBZ) gene is constantly expressed in HTLV-1 infected cells and ATL cells. HBZ protein suppresses transcription of the tax gene through blocking the LTR recruitment of not only ATF/CREB factors but also CBP/p300. HBZ promotes transcription of Foxp3, CCR4, and T-cell immunoreceptor with Ig and ITIM domains (TIGIT). Thus, HBZ is critical for the immunophenotype of infected cells and ATL cells. HBZ also functions in its RNA form. HBZ RNA suppresses apoptosis and promotes proliferation of T cells. Since HBZ RNA is not recognized by cytotoxic T cells, HTLV-1 has a clever strategy for avoiding immune detection. HBZ plays central roles in maintaining infected T cells in vivo and determining their immunophenotype.
Collapse
Affiliation(s)
- Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan. .,Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | | |
Collapse
|
11
|
Mansour MR, He S, Li Z, Lobbardi R, Abraham BJ, Hug C, Rahman S, Leon TE, Kuang YY, Zimmerman MW, Blonquist T, Gjini E, Gutierrez A, Tang Q, Garcia-Perez L, Pike-Overzet K, Anders L, Berezovskaya A, Zhou Y, Zon LI, Neuberg D, Fielding AK, Staal FJT, Langenau DM, Sanda T, Young RA, Look AT. JDP2: An oncogenic bZIP transcription factor in T cell acute lymphoblastic leukemia. J Exp Med 2018; 215:1929-1945. [PMID: 29941549 PMCID: PMC6028512 DOI: 10.1084/jem.20170484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 03/14/2018] [Accepted: 05/30/2018] [Indexed: 01/14/2023] Open
Abstract
A substantial subset of patients with T cell acute lymphoblastic leukemia (T-ALL) develops resistance to steroids and succumbs to their disease. JDP2 encodes a bZIP protein that has been implicated as a T-ALL oncogene from insertional mutagenesis studies in mice, but its role in human T-ALL pathogenesis has remained obscure. Here we show that JDP2 is aberrantly expressed in a subset of T-ALL patients and is associated with poor survival. JDP2 is required for T-ALL cell survival, as its depletion by short hairpin RNA knockdown leads to apoptosis. Mechanistically, JDP2 regulates prosurvival signaling through direct transcriptional regulation of MCL1. Furthermore, JDP2 is one of few oncogenes capable of initiating T-ALL in transgenic zebrafish. Notably, thymocytes from rag2:jdp2 transgenic zebrafish express high levels of mcl1 and demonstrate resistance to steroids in vivo. These studies establish JDP2 as a novel oncogene in high-risk T-ALL and implicate overexpression of MCL1 as a mechanism of steroid resistance in JDP2-overexpressing cells.
Collapse
Affiliation(s)
- Marc R Mansour
- Department of Haematology, University College London Cancer Institute, London, England, UK
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Shuning He
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Zhaodong Li
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Riadh Lobbardi
- Molecular Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | | | - Clemens Hug
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Sunniyat Rahman
- Department of Haematology, University College London Cancer Institute, London, England, UK
| | - Theresa E Leon
- Department of Haematology, University College London Cancer Institute, London, England, UK
| | - You-Yi Kuang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
| | - Mark W Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Traci Blonquist
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Evisa Gjini
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Alejandro Gutierrez
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA
| | - Qin Tang
- Molecular Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | - Laura Garcia-Perez
- Department of Immunohematology, Leiden University Medical Center, Leiden, Netherlands
| | - Karin Pike-Overzet
- Department of Immunohematology, Leiden University Medical Center, Leiden, Netherlands
| | - Lars Anders
- Whitehead Institute for Biomedical Research, Cambridge, MA
| | - Alla Berezovskaya
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yi Zhou
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA
| | - Leonard I Zon
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA
| | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Adele K Fielding
- Department of Haematology, University College London Cancer Institute, London, England, UK
| | - Frank J T Staal
- Department of Immunohematology, Leiden University Medical Center, Leiden, Netherlands
| | - David M Langenau
- Molecular Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, Singapore
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
Melamed A, Yaguchi H, Miura M, Witkover A, Fitzgerald TW, Birney E, Bangham CR. The human leukemia virus HTLV-1 alters the structure and transcription of host chromatin in cis. eLife 2018; 7:36245. [PMID: 29941091 PMCID: PMC6019074 DOI: 10.7554/elife.36245] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/07/2018] [Indexed: 12/29/2022] Open
Abstract
Chromatin looping controls gene expression by regulating promoter-enhancer contacts, the spread of epigenetic modifications, and the segregation of the genome into transcriptionally active and inactive compartments. We studied the impact on the structure and expression of host chromatin by the human retrovirus HTLV-1. We show that HTLV-1 disrupts host chromatin structure by forming loops between the provirus and the host genome; certain loops depend on the critical chromatin architectural protein CTCF, which we recently discovered binds to the HTLV-1 provirus. We show that the provirus causes two distinct patterns of abnormal transcription of the host genome in cis: bidirectional transcription in the host genome immediately flanking the provirus, and clone-specific transcription in cis at non-contiguous loci up to >300 kb from the integration site. We conclude that HTLV-1 causes insertional mutagenesis up to the megabase range in the host genome in >104 persistently-maintained HTLV-1+ T-cell clones in vivo.
Collapse
Affiliation(s)
- Anat Melamed
- Division of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Hiroko Yaguchi
- Division of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Michi Miura
- Division of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Aviva Witkover
- Division of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Tomas W Fitzgerald
- The European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Ewan Birney
- The European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Charles Rm Bangham
- Division of Infectious Diseases, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Ge Z, Zhou X, Gu Y, Han Q, Li J, Chen B, Ge Q, Dovat E, Payne JL, Sun T, Song C, Dovat S. Ikaros regulation of the BCL6/BACH2 axis and its clinical relevance in acute lymphoblastic leukemia. Oncotarget 2018; 8:8022-8034. [PMID: 28030830 PMCID: PMC5352379 DOI: 10.18632/oncotarget.14038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/24/2016] [Indexed: 12/27/2022] Open
Abstract
B-Cell CLL/Lymphoma 6 (BCL6) is a proto-oncogene that is highly expressed in acute lymphoblastic leukemia (ALL). BTB and CNC Homology 1 Basic Leucine Zipper Transcription Factor 2 (BACH2) is a suppressor of transcription. The BACH2-BCL6 balance controls selection at the pre-B cell receptor checkpoint by regulating p53 expression. However, the underlying mechanism and the clinical relevance of the BCL6/BACH2 axis are unknown. Here, we found that Ikaros, a tumor suppressor encoded by IKZF1, directly binds to both the BCL6 and BACH2 promoters where it suppresses BCL6 and promotes BACH2 expression in B-cell ALL (B-ALL) cells. Casein kinase 2 (CK2) inhibitors increase Ikaros function thereby inhibiting BCL6 and promoting BACH2 expression in an Ikaros-dependent manner. We also found that the expression of BCL6 is higher while BACH2 expression is lower in patients with B-ALL than normal bone marrow control. High BCL6 and low BACH2 expression is associated with high leukemic cell proliferation, unfavorable clinical and laboratory features, and inferior outcomes. Moreover, IKZF1 deletion is associated with high BCL6 and low BACH2 expression in B-ALL patients. CK2 inhibitors increase Ikaros binding to the promoter of BCL6 and BACH2 and suppress BCL6 while promoting BACH2 expression in the primary B-ALL cells. Our data indicates that Ikaros regulates expression of the BCL6/BACH2 axis in B-ALL. High BCL6 and low BACH2 expression are associated with Ikaros dysregulation and have a potential effect on the development of B-ALL.
Collapse
Affiliation(s)
- Zheng Ge
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.,International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Xilian Zhou
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Yan Gu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Qi Han
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Baoan Chen
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.,International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Elanora Dovat
- Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA 17033, USA
| | - Jonathon L Payne
- Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA 17033, USA.,Loma Linda University School of Medicine, Department of Basic Sciences, Loma Linda, CA 92350, USA
| | - Tianyu Sun
- Department of Internal Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Chunhua Song
- International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.,Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA 17033, USA
| | - Sinisa Dovat
- International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.,Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA 17033, USA
| |
Collapse
|
14
|
Bifurcated BACH2 control coordinates mantle cell lymphoma survival and dispersal during hypoxia. Blood 2017; 130:763-776. [PMID: 28592433 DOI: 10.1182/blood-2017-02-767293] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/31/2017] [Indexed: 02/07/2023] Open
Abstract
BACH2, a B-cell-specific transcription factor, plays a critical role in oxidative stress-mediated drug resistance in mantle cell lymphoma (MCL); however, the biological functions of BACH2 and its regulation of B-cell malignancies in chronic hypoxic microenvironment have not been studied. Here, we found that silencing BACH2 led to not only increased tumor formation and colony formation but also increased tumor dispersal to spleen and bone marrow. Decreased BACH2 levels in patients were also correlated with bone marrow and gastrointestinal dispersal of MCL and blastoid subtypes of MCL. Unexpectedly, decreased BACH2 levels in dispersed MCL cells were due to direct transcriptional repression by hypoxia-induced factor 1α (HIF-1α) and increased heme-mediated protein degradation. In normoxic conditions, BACH2 was able to modulate HIF-1α degradation by suppressing prolyl hydroxylase 3 expression. Bifurcated BACH2 controls during hypoxia and normoxia coordinate not only MCL tumor dispersal but also drug resistance, including bortezomib resistance, via plasmacytic differentiation. Our data highlight an interactive relationship between tumor cells and local microenvironment and the mechanisms of B-cell transcription factor in the regulation of MCL dispersal.
Collapse
|
15
|
Manghera M, Magnusson A, Douville RN. The sense behind retroviral anti-sense transcription. Virol J 2017; 14:9. [PMID: 28088235 PMCID: PMC5237517 DOI: 10.1186/s12985-016-0667-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/09/2016] [Indexed: 12/15/2022] Open
Abstract
Retroviruses are known to rely extensively on the expression of viral proteins from the sense proviral genomic strand. Yet, the production of regulatory retroviral proteins from antisense-encoded viral genes is gaining research attention, due to their clinical significance. This report will discuss what is known about antisense transcription in Retroviridae, and provide new information about antisense transcriptional regulation through a comparison of Human Immunodeficiency Virus (HIV), Human T-cell Lymphotrophic Virus (HTLV-1) and endogenous retrovirus-K (ERVK) long terminal repeats (LTRs). We will attempt to demonstrate that the potential for antisense transcription is more widespread within retroviruses than has been previously appreciated, with this feature being the rule, rather than the exception.
Collapse
Affiliation(s)
- Mamneet Manghera
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Alycia Magnusson
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| | - Renée N Douville
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada. .,Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada.
| |
Collapse
|
16
|
Sokol M, Jessen KM, Pedersen FS. Utility of next-generation RNA-sequencing in identifying chimeric transcription involving human endogenous retroviruses. APMIS 2016; 124:127-39. [PMID: 26818267 DOI: 10.1111/apm.12477] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/12/2015] [Indexed: 12/13/2022]
Abstract
Several studies have shown that human endogenous retroviruses and endogenous retrovirus-like repeats (here collectively HERVs) impose direct regulation on human genes through enhancer and promoter motifs present in their long terminal repeats (LTRs). Although chimeric transcription in which novel gene isoforms containing retroviral and human sequence are transcribed from viral promoters are commonly associated with disease, regulation by HERVs is beneficial in other settings; for example, in human testis chimeric isoforms of TP63 induced by an ERV9 LTR protect the male germ line upon DNA damage by inducing apoptosis, whereas in the human globin locus the γ- and β-globin switch during normal hematopoiesis is mediated by complex interactions of an ERV9 LTR and surrounding human sequence. The advent of deep sequencing or next-generation sequencing (NGS) has revolutionized the way researchers solve important scientific questions and develop novel hypotheses in relation to human genome regulation. We recently applied next-generation paired-end RNA-sequencing (RNA-seq) together with chromatin immunoprecipitation with sequencing (ChIP-seq) to examine ERV9 chimeric transcription in human reference cell lines from Encyclopedia of DNA Elements (ENCODE). This led to the discovery of advanced regulation mechanisms by ERV9s and other HERVs across numerous human loci including transcription of large gene-unannotated genomic regions, as well as cooperative regulation by multiple HERVs and non-LTR repeats such as Alu elements. In this article, well-established examples of human gene regulation by HERVs are reviewed followed by a description of paired-end RNA-seq, and its application in identifying chimeric transcription genome-widely. Based on integrative analyses of RNA-seq and ChIP-seq, data we then present novel examples of regulation by ERV9s of tumor suppressor genes CADM2 and SEMA3A, as well as transcription of an unannotated region. Taken together, this article highlights the high suitability of contemporary sequencing methods in future analyses of human biology in relation to evolutionary acquired retroviruses in the human genome.
Collapse
Affiliation(s)
- Martin Sokol
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Finn Skou Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Liu B, Zhao X, Shen W, Kong X. Evidence for the antisense transcription in the proviral R29-127 strain of bovine immunodeficiency virus. Virol Sin 2016; 30:224-7. [PMID: 25912963 DOI: 10.1007/s12250-015-3559-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Bin Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | | | | | | |
Collapse
|
18
|
Permissive Sense and Antisense Transcription from the 5' and 3' Long Terminal Repeats of Human T-Cell Leukemia Virus Type 1. J Virol 2016; 90:3600-10. [PMID: 26792732 DOI: 10.1128/jvi.02634-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/12/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus, and, as such, its genome becomes chromosomally integrated following infection. The resulting provirus contains identical 5' and 3' peripheral long terminal repeats (LTRs) containing bidirectional promoters. Antisense transcription from the 3' LTR regulates expression of a single gene, hbz, while sense transcription from the 5' LTR controls expression of all other viral genes, including tax. Both the HBZ and Tax proteins are implicated in the development of adult T-cell leukemia (ATL), a T-cell malignancy caused by HTLV-1 infection. However, these proteins appear to harbor opposing molecular functions, indicating that they may act independently and at different time points prior to leukemogenesis. Here, we used bidirectional reporter constructs to test whether transcriptional interference serves as a mechanism that inhibits simultaneous expression of Tax and HBZ. We found that sense transcription did not interfere with antisense transcription from the 3' LTR and vice versa, even with strong transcription emanating from the opposing direction. Therefore, bidirectional transcription across the provirus might not restrict hbz or tax expression. Single-cell analyses revealed that antisense transcription predominates in the absence of Tax, which transactivates viral sense transcription. Interestingly, a population of Tax-expressing cells exhibited antisense but not activated sense transcription. Consistent with the ability of Tax to induce cell cycle arrest, this population was arrested in G(0)/G(1) phase. These results imply that cell cycle arrest inhibits Tax-mediated activation of sense transcription without affecting antisense transcription, which may be important for long-term viral latency. IMPORTANCE The chromosomally integrated form of the retrovirus human T-cell leukemia virus type 1 (HTLV-1) contains identical DNA sequences, known as long terminal repeats (LTRs), at its 5' and 3' ends. The LTRs modulate transcription in both forward (sense) and reverse (antisense) directions. We found that sense transcription from the 5' LTR does not interfere with antisense transcription from the 3' LTR, allowing viral genes encoded on opposite DNA strands to be simultaneously transcribed. Two such genes are tax and hbz, and while they are thought to function at different times during the course of infection to promote leukemogenesis of infected T cells, our results indicate that they can be simultaneously transcribed. We also found that the ability of Tax to induce cell cycle arrest inhibits its fundamental function of activating viral sense transcription but does not affect antisense transcription. This regulatory mechanism may be important for long-term HTLV-1 infection.
Collapse
|
19
|
Sokol M, Jessen KM, Pedersen FS. Human endogenous retroviruses sustain complex and cooperative regulation of gene-containing loci and unannotated megabase-sized regions. Retrovirology 2015; 12:32. [PMID: 25927889 PMCID: PMC4422309 DOI: 10.1186/s12977-015-0161-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/30/2015] [Indexed: 12/19/2022] Open
Abstract
Background Evidence suggests that some human endogenous retroviruses and endogenous retrovirus-like repeats (here collectively ERVs) regulate the expression of neighboring genes in normal and disease states; e.g. the human globin locus is regulated by an ERV9 that coordinates long-range gene switching during hematopoiesis and activates also intergenic transcripts. While complex transcription regulation is associated with integration of certain exogenous retroviruses, comparable regulation sustained by ERVs is less understood. Findings We analyzed ERV transcription using ERV9 consensus sequences and publically available RNA-sequencing, chromatin immunoprecipitation with sequencing (ChIP-seq) and cap analysis gene expression (CAGE) data from ENCODE. We discovered previously undescribed and advanced transcription regulation mechanisms in several human reference cell lines. We show that regulation by ERVs involves long-ranging activations including complex RNA splicing patterns, and transcription of large unannotated regions ranging in size from several hundred kb to around 1 Mb. Moreover, regulation was found to be cooperatively sustained in some loci by multiple ERVs and also non-LTR repeats. Conclusion Our analyses show that endogenous retroviruses sustain advanced transcription regulation in human cell lines, which shows similarities to complex insertional mutagenesis effects exerted by exogenous retroviruses. By exposing previously undescribed regulation effects, this study should prove useful for understanding fundamental transcription mechanisms resulting from evolutionary acquisition of retroviral sequence in the human genome. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0161-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Sokol
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, DK-8000, Denmark.
| | - Karen Margrethe Jessen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, DK-8000, Denmark.
| | - Finn Skou Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, DK-8000, Denmark.
| |
Collapse
|
20
|
Noncoding RNA Expression During Viral Infection: The Long and the Short of It. MICRORNAS AND OTHER NON-CODING RNAS IN INFLAMMATION 2015. [PMCID: PMC7123390 DOI: 10.1007/978-3-319-13689-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Construction of a reporter vector for analysis of bidirectional transcriptional activity of retrovirus LTR. Plasmid 2014; 74:45-51. [PMID: 24971710 DOI: 10.1016/j.plasmid.2014.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/10/2014] [Accepted: 06/16/2014] [Indexed: 01/09/2023]
Abstract
To study the transcriptional activity of the HIV-1 LTR, we constructed a vector containing Renilla and Firefly luciferase genes under the control of the LTR (wild-type or mutated version) and oriented in a manner that allowed them to be transcribed in opposite directions. We found that the HIV-1 LTR acted as a bidirectional promoter, which activity was controlled by NF-κB- and Sp1-binding sites in both orientations. We next analyzed with this reporter vector the bidirectional promoter activity of the HTLV-1 LTR and showed that this LTR also possessed a bidirectional transcriptional activity. Interestingly, Sp1-binding elements were also involved in the control of HTLV-1 bidirectional transcription. Moreover, both retroviral trans-activators, Tat and Tax, could preferentially activate sense transcription with no or limited effect on the extent of antisense transcription. We also cloned into this plasmid the MLV LTR and found that the LTR of a simple retrovirus also possessed bidirectional transcriptional activity. This reporter vector represents a powerful tool to analyze the bidirectional transcriptional activity of retrovirus LTRs.
Collapse
|
22
|
Sokol M, Wabl M, Ruiz IR, Pedersen FS. Novel principles of gamma-retroviral insertional transcription activation in murine leukemia virus-induced end-stage tumors. Retrovirology 2014; 11:36. [PMID: 24886479 PMCID: PMC4098794 DOI: 10.1186/1742-4690-11-36] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 04/28/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Insertional mutagenesis screens of retrovirus-induced mouse tumors have proven valuable in human cancer research and for understanding adverse effects of retroviral-based gene therapies. In previous studies, the assignment of mouse genes to individual retroviral integration sites has been based on close proximity and expression patterns of annotated genes at target positions in the genome. We here employed next-generation RNA sequencing to map retroviral-mouse chimeric junctions genome-wide, and to identify local patterns of transcription activation in T-lymphomas induced by the murine leukemia gamma-retrovirus SL3-3. Moreover, to determine epigenetic integration preferences underlying long-range gene activation by retroviruses, the colocalization propensity with common epigenetic enhancer markers (H3K4Me1 and H3K27Ac) of 6,117 integrations derived from end-stage tumors of more than 2,000 mice was examined. RESULTS We detected several novel mechanisms of retroviral insertional mutagenesis: bidirectional activation of mouse transcripts on opposite sides of a provirus including transcription of unannotated mouse sequence; sense/antisense-type activation of genes located on opposite DNA strands; tandem-type activation of distal genes that are positioned adjacently on the same DNA strand; activation of genes that are not the direct integration targets; combination-type insertional mutagenesis, in which enhancer activation, alternative chimeric splicing and retroviral promoter insertion are induced by a single retrovirus. We also show that irrespective of the distance to transcription start sites, the far majority of retroviruses in end-stage tumors colocalize with H3K4Me1 and H3K27Ac-enriched regions in murine lymphoid tissues. CONCLUSIONS We expose novel retrovirus-induced host transcription activation patterns that reach beyond a single and nearest annotated gene target. Awareness of this previously undescribed layer of complexity may prove important for elucidation of adverse effects in retroviral-based gene therapies. We also show that wild-type gamma-retroviruses are frequently positioned at enhancers, suggesting that integration into regulatory regions is specific and also subject to positive selection for sustaining long-range gene activation in end-stage tumors. Altogether, this study should prove useful for extrapolating adverse outcomes of retroviral vector therapies, and for understanding fundamental cellular regulatory principles and retroviral biology.
Collapse
Affiliation(s)
- Martin Sokol
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Matthias Wabl
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA
| | - Irene Rius Ruiz
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Finn Skou Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
23
|
Swaminathan S, Duy C, Müschen M. BACH2-BCL6 balance regulates selection at the pre-B cell receptor checkpoint. Trends Immunol 2014; 35:131-7. [PMID: 24332591 PMCID: PMC3943645 DOI: 10.1016/j.it.2013.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/16/2013] [Accepted: 11/10/2013] [Indexed: 11/21/2022]
Abstract
At the pre-B cell receptor (BCR) checkpoint, developing pre-B cells are selected for successful rearrangement of V(H)-DJ(H) gene segments and expression of a pre-BCR. Reduced stringency at this checkpoint may obstruct the B cell repertoire with nonfunctional B cell clones. Earlier studies have described that activation of B cell lymphoma/leukemia (BCL)6 by a functional pre-BCR mediates positive selection of pre-B cells that have passed the checkpoint. This concept is now further elaborated by the recent finding that the BTB and CNC homology 1 basic leucine zipper transcription factor 2 (BACH2) induces negative selection and opposes BCL6 function prior to the pre-BCR checkpoint. Here, we discuss the antagonism between BCL6 and BACH2 during early B cell development, as well as its implications in both repertoire selection and counter-selection of premalignant clones for leukemia suppression.
Collapse
Affiliation(s)
- Srividya Swaminathan
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Cihangir Duy
- Departments of Medicine and Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Markus Müschen
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
24
|
Deregulated Nras expression in knock-in animals harboring a gammaretroviral long terminal repeat at the Nras/Csde1 locus. PLoS One 2013; 8:e56029. [PMID: 23418499 PMCID: PMC3572152 DOI: 10.1371/journal.pone.0056029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/04/2013] [Indexed: 12/01/2022] Open
Abstract
To investigate mechanisms and phenotypic effects of insertional mutagenesis by gammaretroviruses, we have developed mouse lines containing a single Akv 1-99 long terminal repeat (LTR) and a floxed PGK/Tn5 neomycin cassette at the Nras proto-oncogene at positions previously identified as viral integration sites in Akv 1-99 induced tumors. The insert did not compromise the embryonic development, however, the cassette had an effect on Nras expression in all tissues analyzed. Cre-mediated excision of the PGK/Tn5 neomycin cassette in two of the lines caused upregulation of Nras. Altogether, the knock-in alleles are characterized by modulation of expression of the target gene from more than ten-fold upregulation to three-fold downregulation and exemplify various mechanisms of deregulation by insertional mutagenesis. LTR knock-in mice may serve as a tool to investigate mechanisms of retroviral insertional mutagenesis and as a way of constitutive or induced modulation of expression of a target gene.
Collapse
|
25
|
Kobayashi-Ishihara M, Yamagishi M, Hara T, Matsuda Y, Takahashi R, Miyake A, Nakano K, Yamochi T, Ishida T, Watanabe T. HIV-1-encoded antisense RNA suppresses viral replication for a prolonged period. Retrovirology 2012; 9:38. [PMID: 22569184 PMCID: PMC3410806 DOI: 10.1186/1742-4690-9-38] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/08/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent evidence proposes a novel concept that mammalian natural antisense RNAs play important roles in cellular homeostasis by regulating the expression of several genes. Identification and characterization of retroviral antisense RNA would provide new insights into mechanisms of replication and pathogenesis. HIV-1 encoded-antisense RNAs have been reported, although their structures and functions remain to be studied. We have tried to identify and characterize antisense RNAs of HIV-1 and their function in viral infection. RESULTS Characterization of transcripts of HEK293T cells that were transiently transfected with an expression plasmid with HIV-1NL4-3 DNA in the antisense orientation showed that various antisense transcripts can be expressed. By screening and characterizing antisense RNAs in HIV-1NL4-3-infected cells, we defined the primary structure of a major form of HIV-1 antisense RNAs, which corresponds to a variant of previously reported ASP mRNA. This 2.6 kb RNA was transcribed from the U3 region of the 3' LTR and terminated at the env region in acutely or chronically infected cell lines and acutely infected human peripheral blood mononuclear cells. Reporter assays clearly demonstrated that the HIV-1 LTR harbours promoter activity in the reverse orientation. Mutation analyses suggested the involvement of NF-κΒ binding sites in the regulation of antisense transcription. The antisense RNA was localized in the nuclei of the infected cells. The expression of this antisense RNA suppressed HIV-1 replication for more than one month. Furthermore, the specific knockdown of this antisense RNA enhanced HIV-1 gene expression and replication. CONCLUSIONS The results of the present study identified an accurate structure of the major form of antisense RNAs expressed from the HIV-1NL4-3 provirus and demonstrated its nuclear localization. Functional studies collectively demonstrated a new role of the antisense RNA in viral replication. Thus, we suggest a novel viral mechanism that self-limits HIV-1 replication and provides new insight into the viral life cycle.
Collapse
Affiliation(s)
- Mie Kobayashi-Ishihara
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Characterization of human endogenous retroviral elements in the blood of HIV-1-infected individuals. J Virol 2011; 86:262-76. [PMID: 22031938 DOI: 10.1128/jvi.00602-11] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We previously reported finding the RNA of a type K human endogenous retrovirus, HERV-K (HML-2), at high titers in the plasma of HIV-1-infected and cancer patients (R. Contreras-Galindo et al., J. Virol. 82:9329-9236, 2008.). The extent to which the HERV-K (HML-2) proviruses become activated and the nature of their activated viral RNAs remain important questions. Therefore, we amplified and sequenced the full-length RNA of the env gene of the type 1 and 2 HERV-K (HML-2) viruses collected from the plasma of seven HIV-1-infected patients over a period of 1 to 3 years and from five breast cancer patients in order to reconstruct the genetic evolution of these viruses. HERV-K (HML-2) RNA was found in plasma fractions of HIV-1 patients at a density of ∼1.16 g/ml that contained both immature and correctly processed HERV-K (HML-2) proteins and virus-like particles that were recognized by anti-HERV-K (HML-2) antibodies. RNA sequences from novel HERV-K (HML-2) proviruses were discovered, including K111, which is specifically active during HIV-1 infection. Viral RNA arose from complete proviruses and proviruses devoid of a 5' long terminal repeat, suggesting that the expression of HERV-K (HML-2) RNA in these patients may involve sense and antisense transcription. In HIV-1-infected individuals, the HERV-K (HML-2) viral RNA showed evidence of frequent recombination, accumulation of synonymous rather than nonsynonymous mutations, and conserved N-glycosylation sites, suggesting that some of the HERV-K (HML-2) viral RNAs have undergone reverse transcription and are under purifying selection. In contrast, HERV-K (HML-2) RNA sequences found in the blood of breast cancer patients showed no evidence of recombination and exhibited only sporadic viral mutations. This study suggests that HERV-K (HML-2) is active in HIV-1-infected patients, and the resulting RNA message reveals previously undiscovered HERV-K (HML-2) genomic sequences.
Collapse
|
27
|
Clerc I, Laverdure S, Torresilla C, Landry S, Borel S, Vargas A, Arpin-André C, Gay B, Briant L, Gross A, Barbeau B, Mesnard JM. Polarized expression of the membrane ASP protein derived from HIV-1 antisense transcription in T cells. Retrovirology 2011; 8:74. [PMID: 21929758 PMCID: PMC3182985 DOI: 10.1186/1742-4690-8-74] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/19/2011] [Indexed: 12/28/2022] Open
Abstract
Background Retroviral gene expression generally depends on a full-length transcript that initiates in the 5' LTR, which is either left unspliced or alternatively spliced. We and others have demonstrated the existence of antisense transcription initiating in the 3' LTR in human lymphotropic retroviruses, including HTLV-1, HTLV-2, and HIV-1. Such transcripts have been postulated to encode antisense proteins important for the establishment of viral infections. The antisense strand of the HIV-1 proviral DNA contains an ORF termed asp, coding for a highly hydrophobic protein. However, although anti-ASP antibodies have been described to be present in HIV-1-infected patients, its in vivo expression requires further support. The objective of this present study was to clearly demonstrate that ASP is effectively expressed in infected T cells and to provide a better characterization of its subcellular localization. Results We first investigated the subcellular localization of ASP by transfecting Jurkat T cells with vectors expressing ASP tagged with the Flag epitope to its N-terminus. Using immunofluorescence microscopy, we found that ASP localized to the plasma membrane in transfected Jurkat T cells, but with different staining patterns. In addition to an entire distribution to the plasma membrane, ASP showed an asymmetric localization and could also be detected in membrane connections between two cells. We then infected Jurkat T cells with NL4.3 virus coding for ASP tagged with the Flag epitope at its C-terminal end. By this approach, we were capable of showing that ASP is effectively expressed from the HIV-1 3' LTR in infected T cells, with an asymmetric localization of the viral protein at the plasma membrane. Conclusion These results demonstrate for the first time that ASP can be detected when expressed from full-length HIV-1 proviral DNA and that its localization is consistent with Jurkat T cells overexpressing ASP.
Collapse
Affiliation(s)
- Isabelle Clerc
- Université Montpellier 1, Centre d'Études d'Agents Pathogènes et Biotechnologies pour la Santé, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Schopman NC, Willemsen M, Liu YP, Bradley T, van Kampen A, Baas F, Berkhout B, Haasnoot J. Deep sequencing of virus-infected cells reveals HIV-encoded small RNAs. Nucleic Acids Res 2011; 40:414-27. [PMID: 21911362 PMCID: PMC3245934 DOI: 10.1093/nar/gkr719] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Small virus-derived interfering RNAs (viRNAs) play an important role in antiviral defence in plants, insects and nematodes by triggering the RNA interference (RNAi) pathway. The role of RNAi as an antiviral defence mechanism in mammalian cells has been obscure due to the lack of viRNA detection. Although viRNAs from different mammalian viruses have recently been identified, their functions and possible impact on viral replication remain unknown. To identify viRNAs derived from HIV-1, we used the extremely sensitive SOLiD(TM) 3 Plus System to analyse viRNA accumulation in HIV-1-infected T lymphocytes. We detected numerous small RNAs that correspond to the HIV-1 RNA genome. The majority of these sequences have a positive polarity (98.1%) and could be derived from miRNAs encoded by structured segments of the HIV-1 RNA genome (vmiRNAs). A small portion of the viRNAs is of negative polarity and most of them are encoded within the 3'-UTR, which may represent viral siRNAs (vsiRNAs). The identified vsiRNAs can potently repress HIV-1 production, whereas suppression of the vsiRNAs by antagomirs stimulate virus production. These results suggest that HIV-1 triggers the production of vsiRNAs and vmiRNAs to modulate cellular and/or viral gene expression.
Collapse
MESH Headings
- Base Sequence
- Cells, Cultured
- HIV-1/genetics
- High-Throughput Nucleotide Sequencing
- Humans
- MicroRNAs/chemistry
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Molecular Sequence Data
- RNA Interference
- RNA, Antisense/chemistry
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Transfer, Lys/chemistry
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sequence Analysis, RNA
Collapse
Affiliation(s)
- Nick C.T. Schopman
- Laboratory of Experimental Virology, Department of Medical Microbiology, Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Department of Genome Analysis, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ and Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Marcel Willemsen
- Laboratory of Experimental Virology, Department of Medical Microbiology, Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Department of Genome Analysis, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ and Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Department of Genome Analysis, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ and Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Ted Bradley
- Laboratory of Experimental Virology, Department of Medical Microbiology, Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Department of Genome Analysis, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ and Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Antoine van Kampen
- Laboratory of Experimental Virology, Department of Medical Microbiology, Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Department of Genome Analysis, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ and Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Frank Baas
- Laboratory of Experimental Virology, Department of Medical Microbiology, Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Department of Genome Analysis, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ and Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Department of Genome Analysis, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ and Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- *To whom correspondence should be addressed. Tel: +31 20 566 4822; Fax: +31 20 691 6531;
| | - Joost Haasnoot
- Laboratory of Experimental Virology, Department of Medical Microbiology, Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Department of Genome Analysis, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ and Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|