1
|
Wang W, Zhi L, Liu S, Zhao Y, Zhang Y, Qin Q, Huang X, Huang Y. Singapore grouper iridovirus VP018 abrogates the interferon response by targeting STING-TBK1-IRF3 axis. Int J Biol Macromol 2025; 311:144011. [PMID: 40339868 DOI: 10.1016/j.ijbiomac.2025.144011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/09/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Singapore grouper iridovirus (SGIV), causes high mortality rate in grouper aquaculture. Previous study showed that SGIV VP018 was a highly abundant virulence factor, but the potential mechanism underlying the actions of VP018 still remained largely uncertain. Here, we firstly demonstrated that VP018 was interacted with major capsid protein (MCP) and VP075, and recruited into viral assembly sites in SGIV infected cells. Of note, VP018 was identified as a novel iridoviral protein that interacted with TANK-binding kinase 1 (EcTBK1) and IFN regulatory factor 3 (EcIRF3) by yeast two-hybrid screening and co-immunoprecipitation assay. In addition, the adaptor protein stimulator of interferon genes (EcSTING) was also found to interact with VP018. Furthermore, VP018 degraded EcSTING, EcTBK1 and EcIRF3 proteins in vitro, and suppressed their induction of interferon response. VP018 also disrupted the formation of EcSTING-EcTBK1 and EcTBK1-EcIRF3 complexes, leading to the reduction of EcIRF3 nuclear translocation. In addition, VP018 negatively regulated the antiviral actions of EcSTING, EcTBK1 and EcIRF3 against red-spotted grouper nervous necrosis virus (RGNNV) infection. Together, our findings provided the evidence that VP018 was involved in SGIV assembly, but also firstly demonstrated that VP018 functioned as a novel immune evasion protein which antagonized the host antiviral response via STING-TBK1-IRF3 axis.
Collapse
Affiliation(s)
- Wenji Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China
| | - Linyong Zhi
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China
| | - Shanxing Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China
| | - Yin Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China
| | - Ya Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China.
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China.
| |
Collapse
|
2
|
Wang A, Peng Q, Fan H, Ji W, Lou J, Zhou X, Ren Y. Herpes simplex virus 1 encodes a STING antagonist that can be therapeutically targeted. Cell Rep Med 2025; 6:102051. [PMID: 40239620 PMCID: PMC12047521 DOI: 10.1016/j.xcrm.2025.102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/16/2025] [Accepted: 03/10/2025] [Indexed: 04/18/2025]
Abstract
Herpes simplex virus 1 (HSV-1) is a ubiquitous human pathogen that causes serious symptoms and is known for its strong interactions with host immunity. Here, we revealed that the HSV-1-encoded UL38 is a stimulator of interferon genes (STING) antagonist that interacts with STING to abrogate the STING-TANK-binding kinase 1 (TBK1)-interferon regulatory factor 3 (IRF3) interaction, thereby suppressing cyclic GMP-AMP synthase (cGAS)-STING-dependent immune signaling. Losing UL38's STING antagonist activity made HSV-1 incapable of immune evasion and less replicable and pathogenic in vivo. Moreover, on the basis of the UL38-interacting sequence within STING, we rationally designed a series of peptides to target the STING-UL38 interface of UL38 specifically. Among them, a peptide effectively disrupts the STING-UL38 interaction, which unlocks the UL38-suppressed immune response and shows potent therapeutic efficacy against HSV-1 infection in vivo. Therefore, our findings demonstrate that HSV-1 UL38 is a STING antagonist, and targeting the activity of UL38 is a promising strategy for the development of antivirals against this notorious virus.
Collapse
Affiliation(s)
- An Wang
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Peng
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Huidi Fan
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Wenting Ji
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jing Lou
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xi Zhou
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Yujie Ren
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Muhammad I, Contes K, Bility MT, Tang Q. Chasing Virus Replication and Infection: PAMP-PRR Interaction Drives Type I Interferon Production, Which in Turn Activates ISG Expression and ISGylation. Viruses 2025; 17:528. [PMID: 40284971 PMCID: PMC12031425 DOI: 10.3390/v17040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
The innate immune response, particularly the interferon-mediated pathway, serves as the first line of defense against viral infections. During virus infection, viral pathogen-associated molecular patterns (PAMPs) are recognized by host pattern recognition receptors (PRRs), triggering downstream signaling pathways. This leads to the activation of transcription factors like IRF3, IRF7, and NF-κB, which translocate to the nucleus and induce the production of type I interferons (IFN-α and IFN-β). Once secreted, type I interferons bind to their receptors (IFNARs) on the surfaces of infected and neighboring cells, activating the JAK-STAT pathway. This results in the formation of the ISGF3 complex (composed of STAT1, STAT2, and IRF9), which translocates to the nucleus and drives the expression of interferon-stimulated genes (ISGs). Some ISGs exert antiviral effects by directly or indirectly blocking infection and replication. Among these ISGs, ISG15 plays a crucial role in the ISGylation process, a ubiquitin-like modification that tags viral and host proteins, regulating immune responses and inhibiting viral replication. However, viruses have evolved counteractive strategies to evade ISG15-mediated immunity and ISGylation. This review first outlines the PAMP-PRR-induced pathways leading to the production of cytokines and ISGs, followed by a summary of ISGylation's role in antiviral defense and viral evasion mechanisms targeting ISG15 and ISGYlation.
Collapse
Affiliation(s)
| | | | | | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (I.M.); (K.C.); (M.T.B.)
| |
Collapse
|
4
|
Li K, Liu R, Liu Y, Gao L, Liu C, Zhang Y, Qi X, Cui H, Wang S, Chen Y, Duan Y, Gao Y, Wang X. Marek's disease virus protein kinase US3 inhibits DNA-sensing antiviral innate immunity via abrogating activation of NF-κB. Microbiol Spectr 2025; 13:e0234724. [PMID: 40042340 PMCID: PMC11960123 DOI: 10.1128/spectrum.02347-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/21/2025] [Indexed: 04/03/2025] Open
Abstract
Marek's disease virus (MDV) is an avian alphaherpesvirus associated with Marek's disease, an immunosuppressive and lymphoproliferative disease in chickens. The DNA sensing pathway mediates innate immune defense against infection by many DNA-containing pathogens, while viruses have evolved multiple strategies to evade the host immune response to survive in host cells. This study found that ectopic expression of MDV protein kinase US3 inhibited beta interferon (IFN-β) and interleukin-6 (IL-6) production induced by interferon-stimulatory and viral DNA. US3 was further shown to abolish the nuclear factor κB (NF-κB) activation. The US3 kinase activity was indispensable for its inhibitory function, as the kinase-dead US3 mutant (US3K220A) did not inhibit NF-κB activation. Further studies showed that US3 interacted with the Rel homology domains of the NF-κB subunits p65 and p50, which phosphorylated these transcription factors and blocked their nuclear translocation. Finally, US3 deficiency promoted IFN-β and IL-6 production, resulting in reduced viral replication and lower MDV-specific lesion incidence during MDV infection in chickens. Altogether, these findings reveal a novel mechanism for MDV to evade host antiviral immunity.IMPORTANCEMarek's disease virus (MDV) is an oncogenic avian alphaherpesvirus that causes an economically important disease affecting the health and welfare of poultry worldwide. Whereas human herpesviruses have been shown to evolve various strategies to inhibit the DNA sensing signaling for the evasion of the host's innate immunity, little is known regarding the mechanism for MDV to regulate this pathway. In this study, MDV US3 protein kinase was demonstrated to inhibit the activation of NF-κB in the DNA sensing pathway via binding to the Rel homology domains of the NF-κB subunits p65 and p50, which hyperphosphorylated these transcription factors and abolished their nuclear translocation. This is an important finding toward a better understanding of the functions of avian alphaherpesviruses encoded US3 protein kinase.
Collapse
Affiliation(s)
- Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Rui Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongzhen Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Suyan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuntong Chen
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulu Duan
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Oh SJ, Kim YY, Ma R, Choi ST, Choi SM, Cho JH, Hur JY, Yoo Y, Han K, Park H, Yun J, Shin OS. Pharmacological targeting of mitophagy via ALT001 improves herpes simplex virus 1 (HSV1)-mediated microglial inflammation and promotes amyloid β phagocytosis by restricting HSV1 infection. Theranostics 2025; 15:4890-4908. [PMID: 40303347 PMCID: PMC12036882 DOI: 10.7150/thno.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025] Open
Abstract
Rationale: One of the hallmarks of Alzheimer's disease (AD) is the accumulation of dysfunctional mitochondria. Herpes simplex virus type 1 (HSV1) may be a risk factor for the neuropathology linked to amyloid β (Aβ) accumulation. However, the mechanisms underlying HSV1-associated mitochondrial dysfunction in AD remain unclear. ALT001 is a novel drug that ameliorates AD-related cognitive impairment via ULK1/Rab9-mediated alternative mitophagy. In this study, we investigated the effects of ALT001 on the neurodegeneration-related microglial signatures associated with HSV1 infection. Methods: Molecular mechanisms and physiological functions of mitophagy was investigated in HSV1-infected microglia, including primary murine and human embryonic stem cell (ESC)-derived microglia (ES-MG), as well as in a microglia-neuron co-culture system. Microglial gene signatures following HSV1 infection in the presence or absence of ALT001 were analyzed using bulk RNA sequencing, and the effects of ALT001 on microglial phagocytosis and microglia-mediated immune responses were further evaluated by flow cytometry and cytokine profiles. Results: HSV1 infection inhibited PINK1/Parkin-mediated mitophagy via HSV1-encoded protein kinase US3, resulting in mitochondrial dysfunction in both human and mouse microglia. Furthermore, transcriptomic analysis of HSV1-infected microglia revealed an upregulation of distinct microglial genes associated with disease-associated microglia (DAM)-like phenotype and pro-inflammatory activity. Pharmacological targeting of mitophagy using ALT001 prevents mitochondrial damage caused by HSV1 through ULK1/Rab9-mediated pathway. Furthermore, ALT001-induced ULK1/Rab9-dependent mitophagy restricts HSV1 infection by activating interferon-mediated antiviral immunity. Consequently, ALT001 reduces HSV1-triggered neuroinflammation, recovers HSV1-altered microglial phagocytosis for Aβ, and efficiently reverses morphological and molecular abnormalities in HSV1-infected microglia by triggering mitophagy in ES-MG. ALT001 also suppressed HSV1-mediated Aβ accumulation and neurodegeneration in the microglia-neuron co-culture and cerebral organoid model. Conclusions: In this study, we identified a critical molecular link between HSV1 and AD-related microglial dysfunction. Furthermore, our findings provide an evidence that therapeutic targeting of alternative mitophagy via ALT001 effectively interfere with HSV1-induced microglial dysfunction and alleviate neurodegeneration.
Collapse
Affiliation(s)
- Soo-Jin Oh
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Seoul, Republic of Korea
| | - Young Yeon Kim
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Ruiying Ma
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Seoul, Republic of Korea
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seok Tae Choi
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Se Myeong Choi
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Jong Hyun Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Ji-Yeun Hur
- Department of Biological Sciences, Ajou University, Suwon, Republic of Korea
| | - Yongjin Yoo
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Seoul, Republic of Korea
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kihoon Han
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Seoul, Republic of Korea
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hosun Park
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Jeanho Yun
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Ok Sarah Shin
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Seoul, Republic of Korea
- Department of Convergence medicine, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| |
Collapse
|
6
|
Hu T, Gao S, Yu Z, Liu Y, Tang H, Xu Z, Zhu L, Zhao L, Ye G, Shi F. Rosmarinic Acid inhibits Pseudorabies Virus (PRV) infection by activating the cGAS-STING signaling pathway. BMC Microbiol 2025; 25:149. [PMID: 40098087 PMCID: PMC11912800 DOI: 10.1186/s12866-024-03732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/23/2024] [Indexed: 03/19/2025] Open
Abstract
Pseudorabies virus (PRV), a swine alphaherpesvirus, is a double-stranded DNA virus. It may infect various animals, especially pigs. PRV infection in pigs leads to high mortality rates, and causes huge economic lose for swine industry. Currently, there are few effective antiviral treatments available. Rosmarinic acid (RA), a hydrophilic phenolic compound, shows potential for inhibiting herpes simplex virus. Given that PRV is a member of the Herpesviridae family, this study investigated the antiviral effects of RA against PRV infection through both in vitro and in vivo, as well as the underlying molecular mechanisms. PK-15 cells were used to assess the cytotoxicity of RA in vitro, followed by an investigation of its anti-PRV activity. The study then explored how RA regulates the cGAS-STING signaling pathway, along with inflammatory and apoptotic factors in PRV-infected cells. Molecular docking and dynamics simulations further elucidated the binding interactions between RA and cGAS-STING, providing insight into how RA activates the cGAS-STING pathway against PRV infection. In vivo, the antiviral efficacy of RA was evaluated in a PRV-infected mouse model by assessing tissue viral genome copies, the innate immune cGAS-STING signaling pathway activation, and inflammatory and apoptotic responses. The results showed that RA exhibited a half-maximal cytotoxic concentration (CC50) of 26.23 µg/mL on PK-15 cells and a half-maximal inhibitory concentration (IC50) of 0.84 µg/mL against PRV, resulting in a selectivity index (SI) of 31.22. These findings suggest that RA is a highly effective and low-toxicity compound. RA significantly inhibited PRV adsorption, penetration, and replication within cells. Additionally, while PRV infection suppresses the cGAS-STING signaling pathway, RA treatment activates the innate immune response, enhances downstream antiviral effector IFN-β expression, and reduces inflammation and apoptosis in PRV-infected cells. Molecular docking results showed that the docking scores of cGAS_RA and STING_RA complexes were both less than - 5 kcal/mol, suggesting that RA binds well to cGAS and STING proteins. Molecular dynamics simulations, including RMSD, RMSF, and MM-GBSA analyses, confirmed the high binding stability of cGAS with RA, further validating the potential activity of RA as a cGAS agonist. In vivo studies revealed that RA dramatically lowered viral genome copies in various organs, activated the cGAS-STING signaling pathway, inhibited PRV-induced inflammation and apoptosis, alleviated clinical symptoms, and decreased mortality rate in PRV-infected mice. Overall, RA significantly inhibited PRV proliferation in vitro and in vivo, effectively reduced inflammation and apoptosis, and decreased the mortality rate in infected mice. The study supports the development of RA as an antiviral drug and emphasizes its potential as a candidate for PRV therapy.
Collapse
Affiliation(s)
- Tingting Hu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sihui Gao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhijie Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunhao Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
7
|
Mou T, Zhao Y, Jia J, Gao KC, Li SY, Kuang YQ. Immunogenicity and Protective Efficacy of an mRNA Vaccine Targeting HSV-2 UL41 in Mice. Vaccines (Basel) 2025; 13:271. [PMID: 40266094 PMCID: PMC11945300 DOI: 10.3390/vaccines13030271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Herpes simplex virus 2 (HSV-2) is the primary cause of sexually transmitted genital ulcerative diseases, for which no effective prophylactic vaccine is currently available. However, the identification of appropriate targets for an HSV-2 mRNA vaccine remains an area requiring further investigation. METHODS The immunogenicity and protective effects of an HSV-2 UL41 mRNA vaccine were evaluated in a BALB/c mouse model. The mice were intramuscularly immunized twice, followed by HSV-2 infection at 28 days post boost. Clinical signs were monitored daily, and the viral load and tissue inflammation were assessed on days 1, 4, and 7 post infection. Dendritic cell (DC) activation in spleen tissue was analyzed via transcriptome sequencing. RESULTS A comparison of the clinical, immunological, and pathological characteristics of the groups that were immunized with the UL41 mRNA vaccine and then infected with HSV2, along with the control groups, revealed that the vaccine elicited both cellular and humoral immunity, inhibited viral replication, suppressed the inflammatory response, and provided protective effects against the virus in vivo. Furthermore, in vitro assays of DC expansion revealed that the vaccine immunization increased the induction of DCs from splenic cells. Transcriptomic analysis of these DCs revealed the activation of immune signaling pathways. CONCLUSIONS Our study suggests that the UL41 mRNA vaccine may provide effective protection against HSV-2-related diseases and holds promise as a potential mRNA vaccine candidate.
Collapse
Affiliation(s)
| | | | | | | | | | - Yi-Qun Kuang
- Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China (Y.Z.)
| |
Collapse
|
8
|
Zeng Q, Chen Z, Li S, Huang Z, Ren Z, Ye C, Wang X, Zhou J, Liu K, Zheng K, Wang Y. HDAC6 deacetylates TRIM56 to negatively regulate cGAS-STING-mediated type I interferon responses. EMBO Rep 2025; 26:720-747. [PMID: 39747662 PMCID: PMC11811133 DOI: 10.1038/s44319-024-00358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Histone deacetylase HDAC6 has been implicated in regulating antiviral innate immunity. However, its precise function in response to DNA virus infection remains elusive. Herein, we find that HDAC6 deficiency promotes the activation of cGAS-STING signaling and type I interferon (IFN) production, both in vitro and in vivo, resulting in a decrease in HSV-1 infection. Mechanistically, HDAC6 deacetylates tripartite motif protein 56 (TRIM56) at K110 in mice, thereby impairing the monoubiquitination cGAS and its DNA binding ability. Overexpression of TRIM56 K110Q protects mice against HSV-1 infection. Notably, different amino acids at position 110 of TRIM56 in human and mouse cause species-specific IFN responses. Further, we show that during early stages of HSV-1 infection, the viral protein US3 phosphorylates HDAC6 to inhibit the cGAS-mediated antiviral response. Our results suggest that HDAC6 inhibits cGAS activation through TRIM56 deacetylation in a species-specific manner.
Collapse
Affiliation(s)
- Qiongzhen Zeng
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), 518020, Shenzhen, China
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, 510632, Guangzhou, China
| | - Zixin Chen
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Shan Li
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Ziwei Huang
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, 510632, Guangzhou, China
| | - Cuifang Ye
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, 510632, Guangzhou, China
| | - Xiao Wang
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), 518020, Shenzhen, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Kaisheng Liu
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), 518020, Shenzhen, China.
| | - Kai Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, 518055, Shenzhen, China.
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, 510632, Guangzhou, China.
| |
Collapse
|
9
|
Song Y, Zhao X, Chen Y, Yu X, Su T, Wang J, He T, Yin Z, Jia R, Zhao X, Zhou X, Li L, Zou Y, Li M, Zhang D, Zhang Y, Song X. The antiviral activity of myricetin against pseudorabies virus through regulation of the type I interferon signaling pathway. J Virol 2025; 99:e0156724. [PMID: 39601590 PMCID: PMC11784099 DOI: 10.1128/jvi.01567-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
The type I interferon signaling pathway constitutes a pivotal component of the innate immune response, encompassing the cGAS/STING and JAK/STAT pathways. Drugs that affect the body's innate immune response could potentially be used as broad-spectrum antivirals. In this study, the antiviral activities of 25 flavonoids against pseudorabies virus (PRV) were tested in PK-15 cells. Eight active flavonoids were identified, with IC50 values ranging from 23.24 to 323.09 µM. Subsequently, the regulatory effects of these flavonoids on the cGAS/STING pathway in PRV-infected cells were investigated. It was found that Myricetin significantly increased the transcriptional levels of cGAS, STING, IRF3, and IFN-β, which had been reduced by PRV infection. The regulation of the type I interferon signaling pathways by myricetin following PRV infection was further investigated through the production of cGAMP and the assessment of transcriptional and protein levels of pivotal genes and proteins. To confirm the activation of the innate immune response, a dual luciferase gene reporter study found that the expression of the IFN-β promoter in the myricetin-treated group was significantly elevated in a cellular model of type I interferon signaling pathway, and the contents of IFN-β were also significantly higher than those observed in the infected-untreated group in a PRV-infected mice model. Moreover, the transcriptional and protein levels of key genes and proteins in cell and mouse models exhibited analogous outcomes to those observed in PRV-infected cells. These findings suggest that myricetin can effectively activate the type I interferon signaling pathway, thereby enhancing the innate immune response during PRV infection. IMPORTANCE PRV, belonging to the Herpesviridae family, is an easily overlooked zoonotic pathogen that can threaten human health. The immunoprotective efficacy of conventional vaccines is significantly reduced due to the continuous mutation of the PRV genome, which constantly generates new viral strains. Therefore, there is a need to develop potent therapeutic drugs. PRV is capable of evading the host's natural immunity by suppressing the host's type I interferon signaling pathway, and the search for drugs that activate natural immunity can induce the body to produce type I IFN interferon and exert antiviral effects. Accordingly, the present study sought to identify active compounds from flavonoids that modulate the type I IFN interferon signaling pathway and thus inhibit the proliferation of PRV, which provides a new idea for the development of anti-PRV drugs from flavonoids that modulate the type I IFN interferon signaling pathway to enhance the body's antiviral immunity.
Collapse
Affiliation(s)
- Yizhen Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xufan Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yaqin Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingyue Yu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tianli Su
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Wang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tingke He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinhong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xun Zhou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingyue Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dongmei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yingying Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Shen Y, Zhao X, Zheng C, Chen Q. CRISPR-Mediated Construction of Gene-Knockout Mice for Investigating Antiviral Innate Immunity. Methods Mol Biol 2025; 2854:61-74. [PMID: 39192119 DOI: 10.1007/978-1-0716-4108-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
With the rapid development of CRISPR-Cas9 technology, gene editing has become a powerful tool for studying gene function. Specifically, in the study of the mechanisms by which natural immune responses combat viral infections, gene knockout mouse models have provided an indispensable platform. This article describes a detailed protocol for constructing gene knockout mice using the CRISPR-Cas9 system. This field focuses on the design of single-guide RNAs (sgRNAs) targeting the antiviral immune gene cGAS, embryo microinjection, and screening and verification of gene editing outcomes. Furthermore, this study provides methods for using cGAS gene knockout mice to analyze the role of specific genes in natural immune responses. Through this protocol, researchers can efficiently generate specific gene knockout mouse models, which not only helps in understanding the functions of the immune system but also offers a powerful experimental tool for exploring the mechanisms of antiviral innate immunity.
Collapse
Affiliation(s)
- Yangkun Shen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Xiangqian Zhao
- The Cancer Center, Union Hospital, Fujian Medical University, Fu Zhou, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Calgary, AB, Canada
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
11
|
You H, Zheng C. A Guideline Strategy for Identifying a Viral Gene/Protein Evading Antiviral Innate Immunity. Methods Mol Biol 2025; 2854:9-18. [PMID: 39192113 DOI: 10.1007/978-1-0716-4108-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Antiviral innate immunity is the first line of defence against viruses. The interferon (IFN) signaling pathway, the DNA damage response (DDR), apoptosis, endoplasmic reticulum (ER) stress, and autophagy are involved in antiviral innate immunity. Viruses abrogate the antiviral immune response of cells to replication in various ways. Viral genes/proteins play a key role in evading antiviral innate immunity. Here, we will discuss the interference of viruses with antiviral innate immunity and the strategy for identifying viral gene/protein immune evasion.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
Walch P, Broz P. Viral-bacterial co-infections screen in vitro reveals molecular processes affecting pathogen proliferation and host cell viability. Nat Commun 2024; 15:8595. [PMID: 39366977 PMCID: PMC11452664 DOI: 10.1038/s41467-024-52905-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
The broadening of accessible methodologies has enabled mechanistic insights into single-pathogen infections, yet the molecular mechanisms underlying co-infections remain largely elusive, despite their clinical frequency and relevance, generally exacerbating symptom severity and fatality. Here, we describe an unbiased in vitro screening of pairwise co-infections in a murine macrophage model, quantifying pathogen proliferation and host cell death in parallel over time. The screen revealed that the majority of interactions are antagonistic for both metrics, highlighting general patterns depending on the pathogen virulence strategy. We subsequently decipher two distinct molecular interaction points: Firstly, murine Adenovirus 3 modifies ASC-dependent inflammasome responses in murine macrophages, altering host cell death and cytokine production, thereby impacting secondary Salmonella infection. Secondly, murine Adenovirus 2 infection triggers upregulation of Mprip, a crucial mediator of phagocytosis, which in turn causes increased Yersinia uptake, specifically in virus pre-infected bone-marrow-derived macrophages. This work therefore encompasses both a first-of-its-kind systematic assessment of host-pathogen-pathogen interactions, and mechanistic insight into molecular mediators during co-infection.
Collapse
Affiliation(s)
- Philipp Walch
- University of Lausanne, Department of Immunobiology, Chemin des Boveresses 155, CH-1066, Epalinges, Switzerland
| | - Petr Broz
- University of Lausanne, Department of Immunobiology, Chemin des Boveresses 155, CH-1066, Epalinges, Switzerland.
| |
Collapse
|
13
|
Zhan Z, Chen H, Liao X, Wu S, Lei X, Xu Q, Cao H, Qin Q, Wei J. Singapore grouper iridovirus VP128 inhibits STING-TBK1 mediated signaling to evade antiviral immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109774. [PMID: 39019127 DOI: 10.1016/j.fsi.2024.109774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024]
Abstract
Singapore grouper iridovirus (SGIV) belongs to the family Iridoviridae and the genus Ranavirus, which is a large cytoplasmic DNA virus. Infection of grouper with SGIV can cause hemorrhage and swelling of the spleen of the fish. Previous work on genome annotation demonstrated that SGIV contained numerous uncharacterized or hypothetical open reading frames (ORFs), whose functions remained largely unknown. In the present study, the protein encoded by SGIV ORF128 (VP128) was identified. VP128 is predominantly localized within the endoplasmic reticulum (ER). Overexpression of VP128 significantly promoted SGIV replication. VP128 inhibited the interferon (IFN)-3 promoter activity and mRNA level of IFN-related genes induced by poly(I:C), Epinephelus coioides cyclic GMP/AMP synthase (EccGAS)/stimulator of IFN genes (EcSTING), and TANK-binding kinase 1 (EcTBK1). Moreover, VP128 interacted with EcSTING and EcTBK1. The interaction between VP128 and EcSTING was independent of any specific structural domain of EcSTING. Together, our results demonstrated that SGIV VP128 negatively regulated the IFN response by inhibiting EcSTING-EcTBK1 signaling for viral evasion.
Collapse
Affiliation(s)
- Zhouling Zhan
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hong Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xinyu Liao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Siting Wu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xiaoxia Lei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiongyue Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Helong Cao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, Guangzhou, 511400, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266000, China.
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, Guangzhou, 511400, China.
| |
Collapse
|
14
|
Bai L, Xu J, Zeng L, Zhang L, Zhou F. A review of HSV pathogenesis, vaccine development, and advanced applications. MOLECULAR BIOMEDICINE 2024; 5:35. [PMID: 39207577 PMCID: PMC11362470 DOI: 10.1186/s43556-024-00199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Herpes simplex virus (HSV), an epidemic human pathogen threatening global public health, gains notoriety for its complex pathogenesis that encompasses lytic infection of mucosal cells, latent infection within neurons, and periodic reactivation. This intricate interplay, coupled with HSV's sophisticated immune evasion strategies, gives rise to various diseases, including genital lesions, neonatal encephalitis, and cancer. Despite more than 70 years of relentless research, an effective preventive or therapeutic vaccine against HSV has yet to emerge, primarily due to the limited understanding of virus-host interactions, which in turn impedes the identification of effective vaccine targets. However, HSV's unique pathological features, including its substantial genetic load capacity, high replicability, transmissibility, and neurotropism, render it a promising candidate for various applications, spanning oncolytic virotherapy, gene and immune therapies, and even as an imaging tracer in neuroscience. In this review, we comprehensively update recent breakthroughs in HSV pathogenesis and immune evasion, critically summarize the progress made in vaccine candidate development, and discuss the multifaceted applications of HSV as a biological tool. Importantly, we highlight both success and challenges, emphasizing the critical need for intensified research into HSV, with the aim of providing deeper insights that can not only advance HSV treatment strategies but also broaden its application horizons.
Collapse
Affiliation(s)
- Lan Bai
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jiuzhi Xu
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Linghui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
| | - Long Zhang
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Fangfang Zhou
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
15
|
He W, Chang H, Li C, Wang C, Li L, Yang G, Chen J, Liu H. STRAP upregulates antiviral innate immunity against PRV by targeting TBK1. Virol J 2024; 21:197. [PMID: 39182136 PMCID: PMC11344311 DOI: 10.1186/s12985-024-02474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
Serine/threonine kinase receptor-associated protein (STRAP) serves as a scaffold protein and is engaged in a variety of cellular activities, although its importance in antiviral innate immunity is unknown. We discovered that STRAP works as an interferon (IFN)-inducible positive regulator, facilitating type I IFN signaling during pseudorabies virus infection. Mechanistically, STRAP interacts with TBK1 to activate type I IFN signaling. Both the CT and WD40 7 - 6 domains contribute to the function of STRAP. Furthermore, TBK1 competes with PRV-UL50 for binding to STRAP, and STRAP impedes the degradation of TBK1 mediated by PRV-UL50, thereby increasing the interaction between STRAP and TBK1. Overall, these findings reveal a previously unrecognized role for STRAP in innate antiviral immune responses during PRV infection. STRAP could be a potential therapeutic target for viral infectious diseases.
Collapse
Affiliation(s)
- Wenfeng He
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hongtao Chang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chen Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chenlong Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Longxi Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guoqing Yang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jing Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huimin Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China.
| |
Collapse
|
16
|
Blest HTW, Redmond A, Avissar J, Barker J, Bridgeman A, Fowler G, Chauveau L, Hertzog J, Vendrell I, Fischer R, Iversen MB, Jing L, Koelle DM, Paludan SR, Kessler BM, Crump CM, Rehwinkel J. HSV-1 employs UL56 to antagonize expression and function of cGAMP channels. Cell Rep 2024; 43:114122. [PMID: 38652659 DOI: 10.1016/j.celrep.2024.114122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/21/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
DNA sensing is important for antiviral immunity. The DNA sensor cGAS synthesizes 2'3'-cyclic GMP-AMP (cGAMP), a second messenger that activates STING, which induces innate immunity. cGAMP not only activates STING in the cell where it is produced but cGAMP also transfers to other cells. Transporters, channels, and pores (including SLC19A1, SLC46A2, P2X7, ABCC1, and volume-regulated anion channels (VRACs)) release cGAMP into the extracellular space and/or import cGAMP. We report that infection with multiple human viruses depletes some of these cGAMP conduits. This includes herpes simplex virus 1 (HSV-1) that targets SLC46A2, P2X7, and the VRAC subunits LRRC8A and LRRC8C for degradation. The HSV-1 protein UL56 is necessary and sufficient for these effects that are mediated at least partially by proteasomal turnover. UL56 thereby inhibits cGAMP uptake via VRAC, SLC46A2, and P2X7. Taken together, HSV-1 antagonizes intercellular cGAMP transfer. We propose that this limits innate immunity by reducing cell-to-cell communication via the immunotransmitter cGAMP.
Collapse
Affiliation(s)
- Henry T W Blest
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Alexander Redmond
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Jed Avissar
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Jake Barker
- Department of Pathology, University of Cambridge, CB2 1QP Cambridge, UK
| | - Anne Bridgeman
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Gerissa Fowler
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Lise Chauveau
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Jonny Hertzog
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Iolanda Vendrell
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marie B Iversen
- Department of Biomedicine, Aarhus University, Aarhus Aarhus C, Denmark
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA; Benaroya Research Institute, Seattle, WA 98101, USA
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus Aarhus C, Denmark
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Colin M Crump
- Department of Pathology, University of Cambridge, CB2 1QP Cambridge, UK
| | - Jan Rehwinkel
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK.
| |
Collapse
|
17
|
Sun F, Ma W, Wang H, He H. Tegument protein UL3 of bovine herpesvirus 1 suppresses antiviral IFN-I signaling by targeting STING for autophagic degradation. Vet Microbiol 2024; 291:110031. [PMID: 38412580 DOI: 10.1016/j.vetmic.2024.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
Bovine herpesvirus 1 (BoHV-1) is a highly contagious pathogen which causes infectious bovine rhinotracheitis in cattle worldwide. Although it has the ability to evade the host's antiviral innate immune response and establish persistent latent infections, the mechanisms are not fully understood, especially the function of the tegument protein to escape innate immunity and participate in viral replication. In this study, we showed that overexpression of tegument protein UL3 facilitates BoHV-1 replication and suppresses the expression of type-I interferon (IFN-I) and IFN-stimulated genes. Then, STING was identified as the target by which UL3 inhibits the IFN-I signaling pathway, and STING was degraded through the UL3-induced autophagy pathway. Furthermore, overexpression of UL3 promotes the expression of the autophagy-related protein ATG101, thereby inducing autophagy. Further study showed that UL3 enhances the interaction between ATG101 and STING, and then the degradation of STING was reversed following ATG101 silencing in UL3-overexpressing cells during BoHV-1 infection. Our research results demonstrate a novel function of UL3 in regulating host's antiviral response and provide a potential mechanism for BoHV-1 immune evasion.
Collapse
Affiliation(s)
- Fachao Sun
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, People's Republic of China
| | - Wenqing Ma
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, People's Republic of China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, People's Republic of China.
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, People's Republic of China; Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, People's Republic of China.
| |
Collapse
|
18
|
Samer C, McWilliam HE, McSharry BP, Velusamy T, Burchfield JG, Stanton RJ, Tscharke DC, Rossjohn J, Villadangos JA, Abendroth A, Slobedman B. Multi-targeted loss of the antigen presentation molecule MR1 during HSV-1 and HSV-2 infection. iScience 2024; 27:108801. [PMID: 38303725 PMCID: PMC10831258 DOI: 10.1016/j.isci.2024.108801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/18/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
The major histocompatibility complex (MHC), Class-I-related (MR1) molecule presents microbiome-synthesized metabolites to Mucosal-associated invariant T (MAIT) cells, present at sites of herpes simplex virus (HSV) infection. During HSV type 1 (HSV-1) infection there is a profound and rapid loss of MR1, in part due to expression of unique short 3 protein. Here we show that virion host shutoff RNase protein downregulates MR1 protein, through loss of MR1 transcripts. Furthermore, a third viral protein, infected cell protein 22, also downregulates MR1, but not classical MHC-I molecules. This occurs early in the MR1 trafficking pathway through proteasomal degradation. Finally, HSV-2 infection results in the loss of MR1 transcripts, and intracellular and surface MR1 protein, comparable to that seen during HSV-1 infection. Thus HSV coordinates a multifaceted attack on the MR1 antigen presentation pathway, potentially protecting infected cells from MAIT cell T cell receptor-mediated detection at sites of primary infection and reactivation.
Collapse
Affiliation(s)
- Carolyn Samer
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Hamish E.G. McWilliam
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Brian P. McSharry
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Thilaga Velusamy
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - James G. Burchfield
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Richard J. Stanton
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales
| | - David C. Tscharke
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Jamie Rossjohn
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jose A. Villadangos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Allison Abendroth
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Barry Slobedman
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
19
|
Zhang K, Huang Q, Li X, Zhao Z, Hong C, Sun Z, Deng B, Li C, Zhang J, Wang S. The cGAS-STING pathway in viral infections: a promising link between inflammation, oxidative stress and autophagy. Front Immunol 2024; 15:1352479. [PMID: 38426093 PMCID: PMC10902852 DOI: 10.3389/fimmu.2024.1352479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The host defence responses play vital roles in viral infection and are regulated by complex interactive networks. The host immune system recognizes viral pathogens through the interaction of pattern-recognition receptors (PRRs) with pathogen-associated molecular patterns (PAMPs). As a PRR mainly in the cytoplasm, cyclic GMP-AMP synthase (cGAS) senses and binds virus DNA and subsequently activates stimulator of interferon genes (STING) to trigger a series of intracellular signalling cascades to defend against invading pathogenic microorganisms. Integrated omic and functional analyses identify the cGAS-STING pathway regulating various host cellular responses and controlling viral infections. Aside from its most common function in regulating inflammation and type I interferon, a growing body of evidence suggests that the cGAS-STING signalling axis is closely associated with a series of cellular responses, such as oxidative stress, autophagy, and endoplasmic reticulum stress, which have major impacts on physiological homeostasis. Interestingly, these host cellular responses play dual roles in the regulation of the cGAS-STING signalling axis and the clearance of viruses. Here, we outline recent insights into cGAS-STING in regulating type I interferon, inflammation, oxidative stress, autophagy and endoplasmic reticulum stress and discuss their interactions with viral infections. A detailed understanding of the cGAS-STING-mediated potential antiviral effects contributes to revealing the pathogenesis of certain viruses and sheds light on effective solutions for antiviral therapy.
Collapse
Affiliation(s)
- Kunli Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qiuyan Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xinming Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ziqiao Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Chun Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zeyi Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Bo Deng
- Division of Nephrology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunling Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Jianfeng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Sutian Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
20
|
Liu X, Wang Y, Song T, Zheng Y, Zhang X, Li J, Li L, Augusto G, Sun F. Nonstructural protein VP2 of chicken anemia virus triggers IFN-β expression via host cGAS. Vet Microbiol 2023; 284:109842. [PMID: 37562113 DOI: 10.1016/j.vetmic.2023.109842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023]
Abstract
Chicken anemia virus (CAV) constitutes an important economic threat for the poultry industry. Advancing the understanding of the pathogenic process of CAV infection, we had previously demonstrated that CAV VP1 has the ability to inhibit expression of IFN-β via cGAS-STING signalling pathway. Here to go further to reveal this regulatory role of viral phosphatase VP2, we have performed protein-protein interaction assays with cGAS adaptors, as well as IFN-β induction screenings. Contrary to VP1, VP2 of CAV stimulates the expression of IFN-β, a regulatory effect more closely associated with cGAS (in the context of the cGAS-STING axis) than with STING, TBK1 or IRF7. The results reported here offer new insights about the molecular mechanisms that varied viral proteins act in a timely manner on the host during CAV infection.
Collapse
Affiliation(s)
- Xuelan Liu
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; International Immunology Center, Anhui Agricultural University, Hefei 230036, China
| | - Yuan Wang
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Tao Song
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; International Immunology Center, Anhui Agricultural University, Hefei 230036, China
| | - Yuting Zheng
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; International Immunology Center, Anhui Agricultural University, Hefei 230036, China
| | - Xiaowang Zhang
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; International Immunology Center, Anhui Agricultural University, Hefei 230036, China
| | - Jinnian Li
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lin Li
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Gilles Augusto
- The Jenner Institute, University of Oxford, OX3 7DQ Oxford, United Kingdom
| | - Feifei Sun
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
21
|
Wang L, Zhang L. The arms race between bacteria CBASS and bacteriophages. Front Immunol 2023; 14:1224341. [PMID: 37575224 PMCID: PMC10419184 DOI: 10.3389/fimmu.2023.1224341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
The Bacterial Cyclic oligonucleotide-Based Anti-phage Signaling System (CBASS) is an innate immune system that induces cell suicide to defend against phage infections. This system relies on cGAS/DncV-like nucleotidyltransferases (CD-NTase) to synthesize cyclic oligonucleotides (cOs) and CD-NTase-associated proteins (Caps) to execute cell death through DNA cleavage, membrane damage, and NAD depletion, thereby inhibiting phage replication. Ancillary proteins expressed in CBASS, in combination with CD-NTase, ensure the normal synthesis of cOs and prepare CD-NTase for full activation by binding to phage genomes, proteins, or other unknown products. To counteract cell death induced by CBASS, phage genes encode immune evasion proteins that curb Cap recognition of cOs, allowing for phage replication, assembly, and propagation in bacterial cells. This review provides a comprehensive understanding of CBASS immunity, comparing it with different bacterial immune systems and highlighting the interplay between CBASS and phage. Additionally, it explores similar immune escape methods based on shared proteins and action mechanisms between prokaryotic and eukaryotic viruses.
Collapse
Affiliation(s)
- Lan Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
22
|
Zhang X, Lan Q, Zhang M, Wang F, Shi K, Li X, Kuang E. Inhibition of AIM2 inflammasome activation by SOX/ORF37 promotes lytic replication of Kaposi's sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A 2023; 120:e2300204120. [PMID: 37364111 PMCID: PMC10318979 DOI: 10.1073/pnas.2300204120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Inflammasomes are one kind of important innate immune defense against viral and bacterial infections. Several inflammasome-forming sensors detect molecular patterns of invading pathogens and then trigger inflammasome activation and/or pyroptosis in infected cells, and viruses employ unique strategies to hijack or subvert inflammasome activation. Infection with herpesviruses induces the activation of diverse inflammasomes, including AIM2 and IFI16 inflammasomes; however, how Kaposi's sarcoma-associated herpesvirus (KSHV) counteracts inflammasome activation largely remains unclear. Here, we reveal that the KSHV ORF37-encoded SOX protein suppresses AIM2 inflammasome activation independent of its viral DNA exonuclease activity and host mRNA turnover. SOX interacts with the AIM2 HIN domain through the C-terminal Motif VII region and disrupts AIM2:dsDNA polymerization and ASC recruitment and oligomerization. The Y443A or F444A mutation of SOX abolishes the inhibition of AIM2 inflammasome without disrupting SOX nuclease activity, and a short SOX peptide is capable of inhibiting AIM2 inflammasome activation; consequently, infection with SOX-null, Y443A, or F444A Bac16 recombinant viruses results in robust inflammasome activation, suppressed lytic replication, and increased pyroptosis in human lymphatic endothelial cells in an AIM2-dependent manner. These results reveal that KSHV SOX suppresses AIM2 inflammasome activation to promote KSHV lytic replication and inhibit pyroptosis, representing a unique mechanism for evasion of inflammasome activation during KSHV lytic cycle.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
| | - Qingping Lan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
| | - Mingyu Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
| | - Fan Wang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
| | - Keyi Shi
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
| | - Xiaojuan Li
- College of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei430061, China
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong510080, China
| |
Collapse
|
23
|
Hao S, Zheng X, Zhu Y, Yao Y, Li S, Xu Y, Feng WH. African swine fever virus QP383R dampens type I interferon production by promoting cGAS palmitoylation. Front Immunol 2023; 14:1186916. [PMID: 37228597 PMCID: PMC10203406 DOI: 10.3389/fimmu.2023.1186916] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) recognizes viral DNA and synthesizes cyclic GMP-AMP (cGAMP), which activates stimulator of interferon genes (STING/MITA) and downstream mediators to elicit an innate immune response. African swine fever virus (ASFV) proteins can antagonize host immune responses to promote its infection. Here, we identified ASFV protein QP383R as an inhibitor of cGAS. Specifically, we found that overexpression of QP383R suppressed type I interferons (IFNs) activation stimulated by dsDNA and cGAS/STING, resulting in decreased transcription of IFNβ and downstream proinflammatory cytokines. In addition, we showed that QP383R interacted directly with cGAS and promoted cGAS palmitoylation. Moreover, we demonstrated that QP383R suppressed DNA binding and cGAS dimerization, thus inhibiting cGAS enzymatic functions and reducing cGAMP production. Finally, the truncation mutation analysis indicated that the 284-383aa of QP383R inhibited IFNβ production. Considering these results collectively, we conclude that QP383R can antagonize host innate immune response to ASFV by targeting the core component cGAS in cGAS-STING signaling pathways, an important viral strategy to evade this innate immune sensor.
Collapse
Affiliation(s)
- Siyuan Hao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaojie Zheng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingqi Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yao Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sihan Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yangyang Xu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen-hai Feng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Fritsch LE, Kelly C, Pickrell AM. The role of STING signaling in central nervous system infection and neuroinflammatory disease. WIREs Mech Dis 2023; 15:e1597. [PMID: 36632700 PMCID: PMC10175194 DOI: 10.1002/wsbm.1597] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/27/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023]
Abstract
The cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) synthase-Stimulator of Interferon Genes (cGAS-STING) pathway is a critical innate immune mechanism for detecting the presence of double-stranded DNA (dsDNA) and prompting a robust immune response. Canonical cGAS-STING activation occurs when cGAS, a predominantly cytosolic pattern recognition receptor, binds microbial DNA to promote STING activation. Upon STING activation, transcription factors enter the nucleus to cause the production of Type I interferons, inflammatory cytokines whose primary function is to prime the host for viral infection by producing a number of antiviral interferon-stimulated genes. While the pathway was originally described in viral infection, more recent studies have implicated cGAS-STING signaling in a number of different contexts, including autoimmune disease, cancer, injury, and neuroinflammatory disease. This review focuses on how our understanding of the cGAS-STING pathway has evolved over time with an emphasis on the role of STING-mediated neuroinflammation and infection in the nervous system. We discuss recent findings on how STING signaling contributes to the pathology of pain, traumatic brain injury, and stroke, as well as how mitochondrial DNA may promote STING activation in common neurodegenerative diseases. We conclude by commenting on the current knowledge gaps that should be filled before STING can be an effective therapeutic target in neuroinflammatory disease. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology Infectious Diseases > Molecular and Cellular Physiology Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Lauren E. Fritsch
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia, USA
| | - Colin Kelly
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia, USA
| | - Alicia M. Pickrell
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
25
|
Ma Z, Bai J, Jiang C, Zhu H, Liu D, Pan M, Wang X, Pi J, Jiang P, Liu X. Tegument protein UL21 of alpha-herpesvirus inhibits the innate immunity by triggering CGAS degradation through TOLLIP-mediated selective autophagy. Autophagy 2023; 19:1512-1532. [PMID: 36343628 PMCID: PMC10241001 DOI: 10.1080/15548627.2022.2139921] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
Alpha-herpesvirus causes lifelong infections and serious diseases in a wide range of hosts and has developed multiple strategies to counteract the host defense. Here, we demonstrate that the tegument protein UL21 (unique long region 21) in pseudorabies virus (PRV) dampens type I interferon signaling by triggering the degradation of CGAS (cyclic GMP-AMP synthase) through the macroautophagy/autophagy-lysosome pathway. Mechanistically, the UL21 protein scaffolds the E3 ligase UBE3C (ubiquitin protein ligase E3C) to catalyze the K27-linked ubiquitination of CGAS at Lys384, which is recognized by the cargo receptor TOLLIP (toll interacting protein) and degraded in the lysosome. Additionally, we show that the N terminus of UL21 in PRV is dominant in destabilizing CGAS-mediated innate immunity. Moreover, viral tegument protein UL21 in herpes simplex virus type 1 (HSV-1) also displays the conserved inhibitory mechanisms. Furthermore, by using PRV, we demonstrate the roles of UL21 in degrading CGAS to promote viral infection in vivo. Altogether, these findings describe a distinct pathway where alpha-herpesvirus exploits TOLLIP-mediated selective autophagy to evade host antiviral immunity, highlighting a new interface of interplay between the host and DNA virus.Abbreviations: 3-MA: 3-methyladenine; ACTB: actin beta; AHV-1: anatid herpesvirus 1; ATG7: autophagy related 7; ATG13: autophagy related 13; ATG101: autophagy related 101; BHV-1: bovine alphaherpesvirus 1; BNIP3L/Nix: BCL2 interacting protein 3 like; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CCDC50: coiled-coil domain containing 50; CCT2: chaperonin containing TCP1 subunit 2; CGAS: cyclic GMP-AMP synthase; CHV-2: cercopithecine herpesvirus 2; co-IP: co-immunoprecipitation; CQ: chloroquine; CRISPR: clustered regulatory interspaced short palindromic repeat; Cas9: CRISPR-associated system 9; CTD: C-terminal domain; Ctrl: control; DAPI: 4',6-diamidino-2-phenylindole; DBD: N-terminal DNA binding domain; DMSO: dimethyl sulfoxide; DYNLRB1: dynein light chain roadblock-type 1; EHV-1: equine herpesvirus 1; gB: glycoprotein B; GFP: green fluorescent protein; H&E: hematoxylin and eosin; HSV-1: herpes simplex virus 1; HSV-2: herpes simplex virus 2; IB: immunoblotting; IRF3: interferon regulatory factor 3; lenti: lentivirus; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MARCHF9: membrane associated ring-CH-type finger 9; MG132: cbz-leu-leu-leucinal; NBR1: NBR1 autophagy cargo receptor; NC: negative control; NEDD4L: NEDD4 like E3 ubiquitin protein ligase; NH4Cl: ammonium chloride; OPTN: optineurin; p-: phosphorylated; PFU: plaque-forming unit; Poly(dA:dT): Poly(deoxyadenylic-deoxythymidylic) acid; PPP1: protein phosphatase 1; PRV: pseudorabies virus; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RNF126: ring finger protein 126; RT-PCR: real-time polymerase chain reaction; sgRNA: single guide RNA; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1; TOLLIP: toll interacting protein; TRIM33: tripartite motif containing 33; UL16: unique long region 16; UL21: unique long region 21; UL54: unique long region 54; Ub: ubiquitin; UBE3C: ubiquitin protein ligase E3C; ULK1: unc-51 like autophagy activating kinase 1; Vec: vector; VSV: vesicular stomatitis virus; VZV: varicella-zoster virus; WCL: whole-cell lysate; WT: wild-type; Z-VAD: carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone.
Collapse
Affiliation(s)
- Zicheng Ma
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing210095, China
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing210095, China
| | - Chenlong Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing210095, China
| | - Huixin Zhu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing210095, China
| | - Depeng Liu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing210095, China
| | - Mengjiao Pan
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing210095, China
| | - Xianwei Wang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing210095, China
| | - Jiang Pi
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, the First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing210095, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xing Liu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
26
|
Chen J, Yuan X, Ma Z, Wang G, Wang Y, Cao H, Li X, Zheng SJ, Gao L. Chicken infectious anemia virus (CIAV) VP1 antagonizes type I interferon (IFN-I) production by inhibiting TBK1 phosphorylation. Virus Res 2023; 327:199077. [PMID: 36809820 DOI: 10.1016/j.virusres.2023.199077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Chicken infectious anemia virus (CIAV) infection induces immunosuppression or subclinical immunosuppression in chickens. CIAV infection has been reported to repress type I interferon (IFN-I) expression, but the underlying mechanisms are not yet understood. Here we reported that VP1, the capsid protein of CIAV, the major immunogenic protein that triggers the production of neutralizing antibodies in chickens, inhibited type I interferon (IFN-I) expression induced by cGAS-STING signaling. We showed that VP1 inhibited TBK1 phosphorylation and down stream signal transduction, leading to the inhibition of IFN-I expression. Subsequently, we demonstrated that VP1 interacted with TBK1. Finally, we clarified that aa 120-150 in VP1 was essential for VP1 to interact with TBK1 and inhibit cGAS-STING signaling. These findings will help us further understand the pathogenesis of CIAV in chickens.
Collapse
Affiliation(s)
- Juncheng Chen
- National Key Laboratory of Veterinary Public Health Security; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, #2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Xu Yuan
- National Key Laboratory of Veterinary Public Health Security; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, #2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Ziyue Ma
- National Key Laboratory of Veterinary Public Health Security; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, #2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Guoyan Wang
- National Key Laboratory of Veterinary Public Health Security; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, #2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Yongqiang Wang
- National Key Laboratory of Veterinary Public Health Security; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, #2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Hong Cao
- National Key Laboratory of Veterinary Public Health Security; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, #2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Xiaoqi Li
- College of Veterinary Medicine, China Agricultural University, #2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Shijun J Zheng
- National Key Laboratory of Veterinary Public Health Security; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, #2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Li Gao
- National Key Laboratory of Veterinary Public Health Security; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, #2 Yuan-Ming-Yuan West Road, Beijing 100193, China.
| |
Collapse
|
27
|
Ren J, Antony F, Rouse BT, Suryawanshi A. Role of Innate Interferon Responses at the Ocular Surface in Herpes Simplex Virus-1-Induced Herpetic Stromal Keratitis. Pathogens 2023; 12:437. [PMID: 36986359 PMCID: PMC10058014 DOI: 10.3390/pathogens12030437] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that primarily infects epithelial cells of the orofacial mucosa. After initial lytic replication, HSV-1 enters sensory neurons and undergoes lifelong latency in the trigeminal ganglion (TG). Reactivation from latency occurs throughout the host's life and is more common in people with a compromised immune system. HSV-1 causes various diseases depending on the site of lytic HSV-1 replication. These include herpes labialis, herpetic stromal keratitis (HSK), meningitis, and herpes simplex encephalitis (HSE). HSK is an immunopathological condition and is usually the consequence of HSV-1 reactivation, anterograde transport to the corneal surface, lytic replication in the epithelial cells, and activation of the host's innate and adaptive immune responses in the cornea. HSV-1 is recognized by cell surface, endosomal, and cytoplasmic pattern recognition receptors (PRRs) and activates innate immune responses that include interferons (IFNs), chemokine and cytokine production, as well as the recruitment of inflammatory cells to the site of replication. In the cornea, HSV-1 replication promotes type I (IFN-α/β) and type III (IFN-λ) IFN production. This review summarizes our current understanding of HSV-1 recognition by PRRs and innate IFN-mediated antiviral immunity during HSV-1 infection of the cornea. We also discuss the immunopathogenesis of HSK, current HSK therapeutics and challenges, proposed experimental approaches, and benefits of promoting local IFN-λ responses.
Collapse
Affiliation(s)
- Jiayi Ren
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| |
Collapse
|
28
|
Cheng M, Kanyema MM, Sun Y, Zhao W, Lu Y, Wang J, Li X, Shi C, Wang J, Wang N, Yang W, Jiang Y, Huang H, Yang G, Zeng Y, Wang C, Cao X. African Swine Fever Virus L83L Negatively Regulates the cGAS-STING-Mediated IFN-I Pathway by Recruiting Tollip To Promote STING Autophagic Degradation. J Virol 2023; 97:e0192322. [PMID: 36779759 PMCID: PMC9973008 DOI: 10.1128/jvi.01923-22] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 02/14/2023] Open
Abstract
African swine fever (ASF) is a devastating infectious disease of pigs caused by the African swine fever virus (ASFV), which poses a great danger to the global pig industry. Many viral proteins can suppress with interferon signaling to evade the host's innate immune responses. Therefore, the development of an effective vaccine against ASFV has been dampened. Recent studies have suggested that the L83L gene may be integrated into the host genome, weakening the host immune system, but the underlying mechanism is unknown. Our study found that L83L negatively regulates the cGAS-STING-mediated type I interferon (IFN-I) signaling pathway. Overexpression of L83L inhibited IFN-β promoter and ISRE activity, and knockdown of L83L induced higher transcriptional levels of interferon-stimulated genes (ISGs) and phosphorylation levels of IRF3 in primary porcine alveolar macrophages. Mechanistically, L83L interacted with cGAS and STING to promote autophagy-lysosomal degradation of STING by recruiting Tollip, thereby blocking the phosphorylation of the downstream signaling molecules TBK1, IRF3, and IκBα and reducing IFN-I production. Altogether, our study reveals a negative regulatory mechanism involving the L83L-cGAS-STING-IFN-I axis and provides insights into an evasion strategy involving autophagy and innate signaling pathways employed by ASFV. IMPORTANCE African swine fever virus (ASFV) is a large double-stranded DNA virus that primarily infects porcine macrophages. The ASFV genome encodes a large number of immunosuppressive proteins. Current options for the prevention and control of this pathogen remain pretty limited. Our study showed that overexpression of L83L inhibited the cGAS-STING-mediated type I interferon (IFN-I) signaling pathway. In contrast, the knockdown of L83L during ASFV infection enhanced IFN-I production in porcine alveolar macrophages. Additional analysis revealed that L83L protein downregulated IFN-I signaling by recruiting Tollip to promote STING autophagic degradation. Although L83L deletion has been reported to have little effect on viral replication, its immune evade mechanism has not been elucidated. The present study extends our understanding of the functions of ASFV-encoded pL83L and its immune evasion strategy, which may provide a new basis for developing a live attenuated vaccine for ASF.
Collapse
Affiliation(s)
- Mingyang Cheng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Makoye Mhozya Kanyema
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yu Sun
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Wenhui Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yiyuan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Junhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Xiaoxu Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yanlong Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| |
Collapse
|
29
|
Wang L, Li S, Wang K, Wang N, Liu Q, Sun Z, Wang L, Wang L, Liu Q, Song C, Yang Q. Spermine enhances antiviral and anticancer responses by stabilizing DNA binding with the DNA sensor cGAS. Immunity 2023; 56:272-288.e7. [PMID: 36724787 DOI: 10.1016/j.immuni.2023.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/25/2022] [Accepted: 01/04/2023] [Indexed: 02/03/2023]
Abstract
Self-nonself discrimination is vital for the immune system to mount responses against pathogens while maintaining tolerance toward the host and innocuous commensals during homeostasis. Here, we investigated how indiscriminate DNA sensors, such as cyclic GMP-AMP synthase (cGAS), make this self-nonself distinction. Screening of a small-molecule library revealed that spermine, a well-known DNA condenser associated with viral DNA, markedly elevates cGAS activation. Mechanistically, spermine condenses DNA to enhance and stabilize cGAS-DNA binding, optimizing cGAS and downstream antiviral signaling. Spermine promotes condensation of viral, but not host nucleosome, DNA. Deletion of viral DNA-associated spermine, by propagating virus in spermine-deficient cells, reduced cGAS activation. Spermine depletion subsequently attenuated cGAS-mediated antiviral and anticancer immunity. Collectively, our results reveal a pathogenic DNA-associated molecular pattern that facilitates nonself recognition, linking metabolism and pathogen recognition.
Collapse
Affiliation(s)
- Lina Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Siru Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Kai Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Na Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Qiaoling Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Zhen Sun
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Li Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Lulu Wang
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian, Liaoning 116024, China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Chengli Song
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Qingkai Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China.
| |
Collapse
|
30
|
Du Y, Hu Z, Luo Y, Wang HY, Yu X, Wang RF. Function and regulation of cGAS-STING signaling in infectious diseases. Front Immunol 2023; 14:1130423. [PMID: 36825026 PMCID: PMC9941744 DOI: 10.3389/fimmu.2023.1130423] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
The efficacious detection of pathogens and prompt induction of innate immune signaling serve as a crucial component of immune defense against infectious pathogens. Over the past decade, DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) and its downstream signaling adaptor stimulator of interferon genes (STING) have emerged as key mediators of type I interferon (IFN) and nuclear factor-κB (NF-κB) responses in health and infection diseases. Moreover, both cGAS-STING pathway and pathogens have developed delicate strategies to resist each other for their survival. The mechanistic and functional comprehension of the interplay between cGAS-STING pathway and pathogens is opening the way for the development and application of pharmacological agonists and antagonists in the treatment of infectious diseases. Here, we briefly review the current knowledge of DNA sensing through the cGAS-STING pathway, and emphatically highlight the potent undertaking of cGAS-STING signaling pathway in the host against infectious pathogenic organisms.
Collapse
Affiliation(s)
- Yang Du
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yien Luo
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Helen Y. Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong-Fu Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
31
|
Zhang L, Zhang L, Li F, Liu W, Tai Z, Yang J, Zhang H, Tuo J, Yu C, Xu Z. When herpes simplex virus encephalitis meets antiviral innate immunity. Front Immunol 2023; 14:1118236. [PMID: 36742325 PMCID: PMC9896518 DOI: 10.3389/fimmu.2023.1118236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023] Open
Abstract
Herpes simplex virus (HSV) is the most common pathogen of infectious encephalitis, accounting for nearly half of the confirmed cases of encephalitis. Its clinical symptoms are often atypical. HSV PCR in cerebrospinal fluid is helpful for diagnosis, and the prognosis is usually satisfactory after regular antiviral treatment. Interestingly, some patients with recurrent encephalitis have little antiviral effect. HSV PCR in cerebrospinal fluid is negative, but glucocorticoid has a significant effect after treatment. Specific antibodies, such as the NMDA receptor antibody, the GABA receptor antibody, and even some unknown antibodies, can be isolated from cerebrospinal fluid, proving that the immune system contributes to recurrent encephalitis, but the specific mechanism is still unclear. Based on recent studies, we attempt to summarize the relationship between herpes simplex encephalitis and innate immunity, providing more clues for researchers to explore this field further.
Collapse
Affiliation(s)
- Linhai Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Lijia Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Fangjing Li
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wanyu Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhenzhen Tai
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Juan Yang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Haiqing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jinmei Tuo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China,*Correspondence: Jinmei Tuo, ; Changyin Yu, ; Zucai Xu,
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China,*Correspondence: Jinmei Tuo, ; Changyin Yu, ; Zucai Xu,
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China,*Correspondence: Jinmei Tuo, ; Changyin Yu, ; Zucai Xu,
| |
Collapse
|
32
|
Krawczyk E, Kangas C, He B. HSV Replication: Triggering and Repressing STING Functionality. Viruses 2023; 15:226. [PMID: 36680267 PMCID: PMC9864509 DOI: 10.3390/v15010226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Herpes simplex virus (HSV) has persisted within human populations due to its ability to establish both lytic and latent infection. Given this, human hosts have evolved numerous immune responses to protect against HSV infection. Critical in this defense against HSV, the host protein stimulator of interferon genes (STING) functions as a mediator of the antiviral response by inducing interferon (IFN) as well as IFN-stimulated genes. Emerging evidence suggests that during HSV infection, dsDNA derived from either the virus or the host itself ultimately activates STING signaling. While a complex regulatory circuit is in operation, HSV has evolved several mechanisms to neutralize the STING-mediated antiviral response. Within this review, we highlight recent progress involving HSV interactions with the STING pathway, with a focus on how STING influences HSV replication and pathogenesis.
Collapse
Affiliation(s)
| | | | - Bin He
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
33
|
Ding J, Dai Y, Zhu J, Fan X, Zhang H, Tang B. Research advances in cGAS-stimulator of interferon genes pathway and central nervous system diseases: Focus on new therapeutic approaches. Front Mol Neurosci 2022; 15:1050837. [PMID: 36618820 PMCID: PMC9817143 DOI: 10.3389/fnmol.2022.1050837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Cyclic GMP-AMP synthase (cGAS), a crucial innate immune sensor, recognizes cytosolic DNA and induces stimulator of interferon genes (STING) to produce type I interferon and other proinflammatory cytokines, thereby mediating innate immune signaling. The cGAS-STING pathway is involved in the regulation of infectious diseases, anti-tumor immunity, and autoimmune diseases; in addition, it plays a key role in the development of central nervous system (CNS) diseases. Therapeutics targeting the modulation of cGAS-STING have promising clinical applications. Here, we summarize the cGAS-STING signaling mechanism and the recent research on its role in CNS diseases.
Collapse
Affiliation(s)
- Jiao Ding
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yijie Dai
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiahui Zhu
- Department of Neurology, The Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuemei Fan
- Department of Neurology, The Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Zhang
- Department of Neurology, The Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Hao Zhang,
| | - Bo Tang
- Department of Neurology, The Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Bo Tang,
| |
Collapse
|
34
|
Liu R, Gao L, Yang F, Li X, Liu C, Qi X, Cui H, Zhang Y, Wang S, Wang X, Gao Y, Li K. Duck Enteritis Virus Protein Kinase US3 Inhibits DNA Sensing Signaling by Phosphorylating Interferon Regulatory Factor 7. Microbiol Spectr 2022; 10:e0229922. [PMID: 36287016 PMCID: PMC9769898 DOI: 10.1128/spectrum.02299-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/02/2022] [Indexed: 01/07/2023] Open
Abstract
The cytosolic DNA sensing pathway mediates innate immune defense against infection by many DNA viruses; however, viruses have evolved multiple strategies to evade the host immune response. Duck enteritis virus (DEV) causes an acute and contagious disease with high mortality in waterfowl. The mechanisms employed by DEV to block the DNA sensing pathway are not well understood. Here, we sought to investigate the role of DEV US3, a serine/threonine protein kinase, in the inhibition of DNA sensing. We found that ectopic expression of DEV US3 significantly inhibited the production of IFN-β and expression of interferon-stimulated genes induced by interferon-stimulatory DNA and poly(dA-dT). US3 also inhibited viral DNA-triggered IFN-β activation and promoted DEV replication in duck embryo fibroblasts, while knockdown of US3 during DEV infection enhances the IFN-β response and suppresses viral replication. US3 inhibited the DNA-sensing signaling pathway by targeting interferon regulatory factor 7 (IRF7), and the kinase activity of US3 was indispensable for its inhibitory function. Furthermore, we found that US3 interacts with the activation domain of IRF7, phosphorylating IRF7, blocking its dimerization and nuclear translocation, and finally leading to the inhibition of IFN-β production. These findings expand our knowledge on DNA sensing in ducks and reveal a novel mechanism whereby DEV evades host antiviral immunity. IMPORTANCE Duck enteritis virus (DEV) is a duck alphaherpesvirus that causes an acute and contagious disease with high mortality, resulting in substantial economic losses in the commercial waterfowl industry. The evasion of DNA-sensing pathway-mediated antiviral innate immunity is essential for the persistent infection and replication for many DNA viruses. However, the strategies used by DEV to block the DNA-sensing pathway are not well understood. In this study, DEV US3 protein kinase was demonstrated to inhibit the DNA-sensing signaling via binding to the activation domain of interferon regulatory factor 7 (IRF7), which induced the hyperphosphorylation of IRF7 and abolished IRF7 dimerization and nuclear translocation. Our findings provide insights into how duck herpesviral kinase counteracts host antiviral innate immunity to ensure viral replication and spread.
Collapse
Affiliation(s)
- Rui Liu
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Gao
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fuchun Yang
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaohan Li
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changjun Liu
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaole Qi
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanping Zhang
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Suyan Wang
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaomei Wang
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yulong Gao
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Kai Li
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
35
|
Duck Enteritis Virus Inhibits the cGAS-STING DNA-Sensing Pathway To Evade the Innate Immune Response. J Virol 2022; 96:e0157822. [PMID: 36448809 PMCID: PMC9769366 DOI: 10.1128/jvi.01578-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cyclic GMP-AMP synthase (cGAS), a key DNA sensor, detects cytosolic viral DNA and activates the adaptor protein stimulator of interferon genes (STING) to initiate interferon (IFN) production and host innate antiviral responses. Duck enteritis virus (DEV) is a duck alphaherpesvirus that causes an acute and contagious disease with high mortality in waterfowl. In the present study, we found that DEV inhibits host innate immune responses during the late phase of viral infection. Furthermore, we screened DEV proteins for their ability to inhibit the cGAS-STING DNA-sensing pathway and identified multiple viral proteins, including UL41, US3, UL28, UL53, and UL24, which block IFN-β activation through this pathway. The DEV tegument protein UL41, which exhibited the strongest inhibitory effect, selectively downregulated the expression of interferon regulatory factor 7 (IRF7) by reducing its mRNA accumulation, thereby inhibiting the DNA-sensing pathway. Ectopic expression of UL41 markedly reduced viral DNA-triggered IFN-β production and promoted viral replication, whereas deficiency of UL41 in the context of DEV infection increased the IFN-β response to DEV and suppressed viral replication. In addition, ectopic expression of IRF7 inhibited the replication of the UL41-deficient virus, whereas IRF7 knockdown facilitated its replication. This study is the first report identifying multiple viral proteins encoded by a duck DNA virus, which inhibit the cGAS-STING DNA-sensing pathway. These findings expand our knowledge of DNA sensing in ducks and reveal a mechanism through which DEV antagonizes the host innate immune response. IMPORTANCE Duck enteritis virus (DEV) is a duck alphaherpesvirus that causes an acute and contagious disease with high mortality, resulting in substantial economic losses in the commercial waterfowl industry. The evasion of DNA-sensing pathway-mediated antiviral innate immunity is essential for the persistent infection and replication of many DNA viruses. However, the mechanisms used by DEV to modulate the DNA-sensing pathway remain poorly understood. In the present study, we found that DEV encodes multiple viral proteins to inhibit the cGAS-STING DNA-sensing pathway. The DEV tegument protein UL41 selectively diminished the accumulation of interferon regulatory factor 7 (IRF7) mRNA, thereby inhibiting the DNA-sensing pathway. Loss of UL41 potently enhanced the IFN-β response to DEV and impaired viral replication in ducks. These findings provide insights into the host-virus interaction during DEV infection and help develop new live attenuated vaccines against DEV.
Collapse
|
36
|
Engineering antiviral immune-like systems for autonomous virus detection and inhibition in mice. Nat Commun 2022; 13:7629. [PMID: 36494373 PMCID: PMC9734111 DOI: 10.1038/s41467-022-35425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The ongoing COVID-19 pandemic has demonstrated that viral diseases represent an enormous public health and economic threat to mankind and that individuals with compromised immune systems are at greater risk of complications and death from viral diseases. The development of broad-spectrum antivirals is an important part of pandemic preparedness. Here, we have engineer a series of designer cells which we term autonomous, intelligent, virus-inducible immune-like (ALICE) cells as sense-and-destroy antiviral system. After developing a destabilized STING-based sensor to detect viruses from seven different genera, we have used a synthetic signal transduction system to link viral detection to the expression of multiple antiviral effector molecules, including antiviral cytokines, a CRISPR-Cas9 module for viral degradation and the secretion of a neutralizing antibody. We perform a proof-of-concept study using multiple iterations of our ALICE system in vitro, followed by in vivo functionality testing in mice. We show that dual output ALICESaCas9+Ab system delivered by an AAV-vector inhibited viral infection in herpetic simplex keratitis (HSK) mouse model. Our work demonstrates that viral detection and antiviral countermeasures can be paired for intelligent sense-and-destroy applications as a flexible and innovative method against virus infection.
Collapse
|
37
|
Zhang Y, Gao X, Yang X, Wang Y, Wang W, Huang X, Qin Q, Huang Y. Singapore Grouper Iridovirus VP131 Drives Degradation of STING-TBK1 Pathway Proteins and Negatively Regulates Antiviral Innate Immunity. J Virol 2022; 96:e0068222. [PMID: 36190239 PMCID: PMC9599571 DOI: 10.1128/jvi.00682-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/09/2022] [Indexed: 12/29/2022] Open
Abstract
Iridoviruses are large DNA viruses which cause great economic losses to the aquaculture industry and serious threats to ecological diversity worldwide. Singapore grouper iridovirus (SGIV), a novel member of the genus Ranavirus, causes high mortality in grouper aquaculture. Previous work on genome annotation demonstrated that SGIV contained numerous uncharacterized or hypothetical open reading frames (ORFs), whose functions remained largely unknown. Here, we reported that the protein encoded by SGIV ORF131R (VP131) was localized predominantly within the endoplasmic reticulum (ER). Ectopic expression of GFP-VP131 significantly enhanced SGIV replication, while VP131 knockdown decreased viral infection in vitro, suggesting that VP131 functioned as a proviral factor during SGIV infection. Overexpression of GFP-VP131 inhibited the interferon (IFN)-1 promoter activity and mRNA level of IFN-related genes induced by poly(I:C), Epinephelus coioides cyclic GMP/AMP synthase (EccGAS)/stimulator of IFN genes (EcSTING), TANK-binding kinase 1 (EcTBK1), or melanoma differentiation-associated gene 5 (EcMDA5), whereas such activation induced by mitochondrial antiviral signaling protein (EcMAVS) was not affected. Moreover, VP131 interacted with EcSTING and degraded EcSTING through both the autophagy-lysosome pathway and ubiquitin-proteasome pathway, and targeted for the K63-linked ubiquitination. Of note, we also found that EcSTING significantly accelerated the formation of GFP-VP131 aggregates in co-transfected cells. Finally, GFP-VP131 inhibited EcSTING- or EcTBK1-induced antiviral activity upon red-spotted grouper nervous necrosis virus (RGNNV) infection. Together, our results demonstrated that the SGIV VP131 negatively regulated the IFN response by inhibiting EcSTING-EcTBK1 signaling for viral evasion. IMPORTANCE STING has been identified as a critical factor participating in the innate immune response which recruits and phosphorylates TBK1 and IFN regulatory factor 3 (IRF3) to induce IFN production and defend against viral infection. However, viruses also distort the STING-TBK1 pathway to negatively regulate the IFN response and facilitate viral replication. Here, we reported that SGIV VP131 interacted with EcSTING within the ER and degraded EcSTING, leading to the suppression of IFN production and the promotion of SGIV infection. These results for the first time demonstrated that fish iridovirus evaded the host antiviral response via abrogating the STING-TBK1 signaling pathway.
Collapse
Affiliation(s)
- Ya Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaolin Gao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xinmei Yang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yu Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wenji Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
38
|
De Falco F, Cutarelli A, Catoi AF, Uberti BD, Cuccaro B, Roperto S. Bovine delta papillomavirus E5 oncoprotein negatively regulates the cGAS-STING signaling pathway in cattle in a spontaneous model of viral disease. Front Immunol 2022; 13:937736. [PMID: 36311756 PMCID: PMC9597257 DOI: 10.3389/fimmu.2022.937736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022] Open
Abstract
Persistent infection and tumorigenesis by papillomaviruses (PVs) require viral manipulation of various cellular processes, including those involved in innate immune responses. The cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) pathway has emerged as an essential innate immune sensing system, that recognizes DNA and trigger potent antiviral effector responses. In this study, we found that bovine PV (BPV) E5 protein, the major oncoprotein of bovine delta PVs, interacts with STING but not with cGAS in a spontaneous BPV infection of neoplastic urothelial cells of cattle. Real-time RT-PCR revealed a significant reduction in both cGAS and STING transcripts in E5-expressing cells. Furthermore, western blot (WB) analysis failed to detect any variation in the expression of interferon-inducible protein 16 (IFI16), an upstream effector of the STING pathway. A ternary complex composed of E5/STING/IFI16 was also observed. Co-immunoprecipitation studies showed that STING interacts with a protein network composed of total and phosphorylated TANK-binding kinase 1 (TBK1), total and phosphorylated interferon regulatory factor 3 (IRF3), IRF7, IKKα, IKKβ, IKKϵ, ELKS, MEKK3, and TAK1. RT-qPCR revealed a significant reduction in TBK1 mRNA levels in BPV-infected cells. WB analysis revealed significantly reduced expression levels of pTBK1, which is essential for the activation and phosphorylation of IRF3, a prerequisite for the latter to enter the nucleus to activate type 1 IFN genes. WB also revealed significantly down-expression of IKKα, IKKβ, IKKϵ, and overexpression of IRF7, ELKS, MEKK3, and TAK1in BPV-positive urothelial cells compared with that in uninfected healthy cells. Phosphorylated p65 (p-p65) was significantly reduced in both the nuclear and cytosolic compartments of BPV-infected cells compared with that in uninfected urothelial cells. Our results suggest that the innate immune signaling pathway mediated by cGAS-STING is impaired in cells infected with BPV. Therefore, effective immune responses are not elicited against these viruses, which facilitates persistent viral infection and subsequent tumorigenesis.
Collapse
Affiliation(s)
- Francesca De Falco
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Anna Cutarelli
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Adriana Florinela Catoi
- Physiopathology Department, Faculty of Medicine “Iuliu Hatieganu”, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Bianca Cuccaro
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Sante Roperto
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Napoli, Italy
- *Correspondence: Sante Roperto,
| |
Collapse
|
39
|
Cui S, Wang Y, Gao X, Xin T, Wang X, Yu H, Chen S, Jiang Y, Chen Q, Jiang F, Wang D, Guo X, Jia H, Zhu H. African swine fever virus M1249L protein antagonizes type I interferon production via suppressing phosphorylation of TBK1 and degrading IRF3. Virus Res 2022; 319:198872. [PMID: 35853521 DOI: 10.1016/j.virusres.2022.198872] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/26/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS) is a major DNA sensor. The recognition of cytosolic DNA by cGAS triggers a robust innate immune response that restricts the replication of diverse viral pathogens through the type I interferon (IFN) and nuclear factor-κB (NF-κB) pathways. African swine fever virus (ASFV) is a large and complex DNA virus reported to strongly inhibit the cGAS-STING signaling pathway. Herein, 12 ASFV structural proteins were screened to determine their effects on the cGAS-STING pathway. Ectopic expression of the ASFV caspid protein M1249L significantly inhibited the IFN-β promoter activity induced by the cGAS-STING pathway in a dose-dependent manner. And it could also downregulate the levels of IFN-β and several interferon-stimulating genes (ISGs) induced by cGAS-STING and 2'3'-cGAMP. Moreover, ASFV M1249L also suppressed phosphorylation of TBK1 by cGAS and STING overexpression. Further study showed that M1249L co-localized and interacted with interferon regulatory factor 3 (IRF3), which led to induce IRF3 degradation by lysosomal pathway. Taken together, our study revealed a novel strategy utilized by ASFV for cGAS-STING-related immune evasion.
Collapse
Affiliation(s)
- Shuai Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xintao Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Xin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xixi Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hainan Yu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shiyu Chen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yajun Jiang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing Chen
- Beijing University of Agriculture, Beijing, China
| | - Fei Jiang
- China Animal Disease Control Center, Beijing, China
| | - Dongyue Wang
- China Animal Disease Control Center, Beijing, China
| | - Xiaoyu Guo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Hongfei Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
40
|
Abstract
Many viruses induce shutoff of host gene expression (host shutoff) as a strategy to take over cellular machinery and evade host immunity. Without host shutoff activity, these viruses generally replicate poorly in vivo, attesting to the importance of this antiviral strategy. In this review, we discuss one particularly advantageous way for viruses to induce host shutoff: triggering widespread host messenger RNA (mRNA) decay. Viruses can trigger increased mRNA destruction either directly, by encoding RNA cleaving or decapping enzymes, or indirectly, by activating cellular RNA degradation pathways. We review what is known about the mechanism of action of several viral RNA degradation factors. We then discuss the consequences of widespread RNA degradation on host gene expression and on the mechanisms of immune evasion, highlighting open questions. Answering these questions is critical to understanding how viral RNA degradation factors regulate host gene expression and how this process helps viruses evade host responses and replicate.
Collapse
Affiliation(s)
- Léa Gaucherand
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, and Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA;
| | - Marta Maria Gaglia
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, and Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA;
| |
Collapse
|
41
|
Post-Translational Modifications of cGAS-STING: A Critical Switch for Immune Regulation. Cells 2022; 11:cells11193043. [PMID: 36231006 PMCID: PMC9563579 DOI: 10.3390/cells11193043] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 09/24/2022] [Indexed: 12/02/2022] Open
Abstract
Innate immune mechanisms initiate immune responses via pattern-recognition receptors (PRRs). Cyclic GMP-AMP synthase (cGAS), a member of the PRRs, senses diverse pathogenic or endogenous DNA and activates innate immune signaling pathways, including the expression of stimulator of interferon genes (STING), type I interferon, and other inflammatory cytokines, which, in turn, instructs the adaptive immune response development. This groundbreaking discovery has rapidly advanced research on host defense, cancer biology, and autoimmune disorders. Since cGAS/STING has enormous potential in eliciting an innate immune response, understanding its functional regulation is critical. As the most widespread and efficient regulatory mode of the cGAS-STING pathway, post-translational modifications (PTMs), such as the covalent linkage of functional groups to amino acid chains, are generally considered a regulatory mechanism for protein destruction or renewal. In this review, we discuss cGAS-STING signaling transduction and its mechanism in related diseases and focus on the current different regulatory modalities of PTMs in the control of the cGAS-STING-triggered innate immune and inflammatory responses.
Collapse
|
42
|
Ge Z, Ding S. Regulation of cGAS/STING signaling and corresponding immune escape strategies of viruses. Front Cell Infect Microbiol 2022; 12:954581. [PMID: 36189363 PMCID: PMC9516114 DOI: 10.3389/fcimb.2022.954581] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Innate immunity is the first line of defense against invading external pathogens, and pattern recognition receptors (PRRs) are the key receptors that mediate the innate immune response. Nowadays, there are various PRRs in cells that can activate the innate immune response by recognizing pathogen-related molecular patterns (PAMPs). The DNA sensor cGAS, which belongs to the PRRs, plays a crucial role in innate immunity. cGAS detects both foreign and host DNA and generates a second-messenger cGAMP to mediate stimulator of interferon gene (STING)-dependent antiviral responses, thereby exerting an antiviral immune response. However, the process of cGAS/STING signaling is regulated by a wide range of factors. Multiple studies have shown that viruses directly target signal transduction proteins in the cGAS/STING signaling through viral surface proteins to impede innate immunity. It is noteworthy that the virus utilizes these cGAS/STING signaling regulators to evade immune surveillance. Thus, this paper mainly summarized the regulatory mechanism of the cGAS/STING signaling pathway and the immune escape mechanism of the corresponding virus, intending to provide targeted immunotherapy ideas for dealing with specific viral infections in the future.
Collapse
Affiliation(s)
- Zhe Ge
- School of Sport, Shenzhen University, Shenzhen, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- *Correspondence: Shuzhe Ding,
| |
Collapse
|
43
|
Ko CN, Zang S, Zhou Y, Zhong Z, Yang C. Nanocarriers for effective delivery: modulation of innate immunity for the management of infections and the associated complications. J Nanobiotechnology 2022; 20:380. [PMID: 35986268 PMCID: PMC9388998 DOI: 10.1186/s12951-022-01582-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Innate immunity is the first line of defense against invading pathogens. Innate immune cells can recognize invading pathogens through recognizing pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs). The recognition of PAMPs by PRRs triggers immune defense mechanisms and the secretion of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. However, sustained and overwhelming activation of immune system may disrupt immune homeostasis and contribute to inflammatory disorders. Immunomodulators targeting PRRs may be beneficial to treat infectious diseases and their associated complications. However, therapeutic performances of immunomodulators can be negatively affected by (1) high immune-mediated toxicity, (2) poor solubility and (3) bioactivity loss after long circulation. Recently, nanocarriers have emerged as a very promising tool to overcome these obstacles owning to their unique properties such as sustained circulation, desired bio-distribution, and preferred pharmacokinetic and pharmacodynamic profiles. In this review, we aim to provide an up-to-date overview on the strategies and applications of nanocarrier-assisted innate immune modulation for the management of infections and their associated complications. We first summarize examples of important innate immune modulators. The types of nanomaterials available for drug delivery, as well as their applications for the delivery of immunomodulatory drugs and vaccine adjuvants are also discussed.
Collapse
|
44
|
Kazmierski J, Elsner C, Döhner K, Xu S, Ducroux A, Pott F, Jansen J, Thorball CW, Zeymer O, Zhou X, Fedorov R, Fellay J, Löffler MW, Weber ANR, Sodeik B, Goffinet C. A Baseline Cellular Antiviral State Is Maintained by cGAS and Its Most Frequent Naturally Occurring Variant rs610913. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:535-547. [PMID: 35851540 DOI: 10.4049/jimmunol.2100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 05/13/2022] [Indexed: 10/17/2023]
Abstract
Upon recognition of aberrantly located DNA, the innate immune sensor cyclic GMP-AMP synthase (cGAS) activates stimulator of IFN genes (STING)/IFN regulatory factor (IRF)3-driven antiviral responses. In this study, we characterized the ability of a specific variant of the human cGAS-encoding gene MB21D1, rs610913, to alter cGAS-mediated DNA sensing and viral infection. rs610913 is a frequent G>T polymorphism resulting in a P261H exchange in the cGAS protein. Data from the International Collaboration for the Genomics of HIV suggested that rs610913 nominally associates with HIV-1 acquisition in vivo. Molecular modeling of cGAS(P261H) hinted toward the possibility for an additional binding site for a potential cellular cofactor in cGAS dimers. However, cGAS(wild-type [WT]) or cGAS(P261H)-reconstituted THP-1 cGAS knockout cells shared steady-state expression of IFN-stimulated genes, as opposed to cells expressing the enzymatically inactive cGAS(G212A/S213A). Accordingly, cGAS(WT) and cGAS(P261H) cells were less susceptible to lentiviral transduction and infection with HIV-1, HSV-1, and Chikungunya virus as compared with cGAS knockout or cGAS(G212A/S213A) cells. Upon DNA challenge, innate immune activation appeared to be mildly reduced upon expression of cGAS(P261H) compared with cGAS(WT). Finally, DNA challenge of PBMCs from donors homozygously expressing rs610913 provoked a trend toward a slightly reduced type I IFN response as compared with PBMCs from GG donors. Taken together, the steady-state activity of cGAS maintains a baseline antiviral state rendering cells more refractory to IFN-stimulated gene-sensitive viral infections. rs610913 failed to grossly differ phenotypically from the WT gene, suggesting that cGAS(P261H) and WT cGAS share a similar ability to sense viral infections in vivo.
Collapse
Affiliation(s)
- Julia Kazmierski
- Institute of Virology, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Carina Elsner
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Katinka Döhner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Shuting Xu
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Aurélie Ducroux
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Fabian Pott
- Institute of Virology, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Jenny Jansen
- Institute of Virology, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Christian W Thorball
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ole Zeymer
- Institute for Biophysical Chemistry, Research Division for Structural Biochemistry, Hannover Medical School, Hannover, Germany
- RESIST-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Xiaoyi Zhou
- Institute for Biophysical Chemistry, Research Division for Structural Biochemistry, Hannover Medical School, Hannover, Germany
- RESIST-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Roman Fedorov
- Institute for Biophysical Chemistry, Research Division for Structural Biochemistry, Hannover Medical School, Hannover, Germany
- RESIST-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Markus W Löffler
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
- iFIT-Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Alexander N R Weber
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- iFIT-Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
- CMFI-Cluster of Excellence (EXC 2124) "Controlling Microbes to Fight Infection," University of Tübingen, Tübingen, Germany; and
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
- RESIST-Cluster of Excellence, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover-Braunschweig Partner Site, Hannover, Germany
| | - Christine Goffinet
- Institute of Virology, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| |
Collapse
|
45
|
Deng L, Xu Z, Li F, Zhao J, Jian Z, Deng H, Lai S, Sun X, Geng Y, Zhu L. Insights on the cGAS-STING Signaling Pathway During Herpesvirus Infections. Front Immunol 2022; 13:931885. [PMID: 35844623 PMCID: PMC9284214 DOI: 10.3389/fimmu.2022.931885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Herpesviruses belong to large double-stranded DNA viruses. They are under a wide range of hosts and establish lifelong infection, which creates a burden on human health and animal health. Innate immunity is the host’s innate defense ability. Activating the innate immune signaling pathway and producing type I interferon is the host’s first line of defense against infectious pathogens. Emerging evidence indicates that the cGAS-STING signaling pathway plays an important role in the innate immunity in response to herpesvirus infections. In parallel, because of the constant selective pressure imposed by host immunity, herpesvirus also evolves to target the cGAS-STING signaling pathway to inhibit or escape the innate immune responses. In the current review, we insight on the classical cGAS-STING signaling pathway. We describe the activation of cGAS-STING signaling pathway during herpesvirus infections and strategies of herpesvirus targeting this pathway to evade host antiviral response. Furthermore, we outline the immunotherapy boosting cGAS-STING signaling pathway.
Collapse
Affiliation(s)
- Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Fengqin Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Animal Science, Xichang University, Xichang, China
| | - Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Ling Zhu,
| |
Collapse
|
46
|
Zheng W, Xia N, Zhang J, Cao Q, Jiang S, Luo J, Wang H, Chen N, Zhang Q, Meurens F, Zhu J. African Swine Fever Virus Structural Protein p17 Inhibits cGAS-STING Signaling Pathway Through Interacting With STING. Front Immunol 2022; 13:941579. [PMID: 35844609 PMCID: PMC9283692 DOI: 10.3389/fimmu.2022.941579] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
African swine fever virus (ASFV) encodes more than 150 proteins, which establish complex interactions with the host for the benefit of the virus in order to evade the host’s defenses. However, currently, there is still a lack of information regarding the roles of the viral proteins in host cells. Here, our data demonstrated that ASFV structural protein p17 exerts a negative regulatory effect on cGAS-STING signaling pathway and the STING signaling dependent anti-HSV1 and anti-VSV functions. Further, the results indicated that ASFV p17 was located in ER and Golgi apparatus, and interacted with STING. ASFV p17 could interfere the STING to recruit TBK1 and IKKϵ through its interaction with STING. It was also suggested that the transmembrane domain (amino acids 39–59) of p17 is required for interacting with STING and inhibiting cGAS-STING pathway. Additionally, with the p17 specific siRNA, the ASFV induced IFN-β, ISG15, ISG56, IL-6 and IL-8 gene transcriptions were upregulated in ASFV infected primary porcine alveolar macrophages (PAMs). Taken together, ASFV p17 can inhibit the cGAS-STING pathway through its interaction with STING and interference of the recruitment of TBK1 and IKKϵ. Our work establishes the role of p17 in the immune evasion and thus provides insights on ASFV pathogenesis.
Collapse
Affiliation(s)
- Wanglong Zheng
- College Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Nengwen Xia
- College Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiajia Zhang
- College Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Qi Cao
- College Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Sen Jiang
- College Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jia Luo
- College Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hui Wang
- College Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Nanhua Chen
- College Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Quan Zhang
- College Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - François Meurens
- BIOEPAR, INRAE, Oniris, Nantes, France
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jianzhong Zhu
- College Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Jianzhong Zhu,
| |
Collapse
|
47
|
Nuclear soluble cGAS senses double-stranded DNA virus infection. Commun Biol 2022; 5:433. [PMID: 35538147 PMCID: PMC9090744 DOI: 10.1038/s42003-022-03400-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
The DNA sensor cGAS detects cytosolic DNA and instigates type I interferon (IFN) expression. Recent studies find that cGAS also localizes in the nucleus and binds the chromatin. Despite the mechanism controlling nuclear cGAS activation is well elucidated, whether nuclear cGAS participates in DNA sensing is unclear. Here, we report that herpes simplex virus 1 (HSV-1) infection caused the release of cGAS from the chromatin into the nuclear soluble fraction. Like its cytosolic counterpart, the leaked nuclear soluble cGAS also sensed viral DNA, produced cGAMP, and induced mRNA expression of type I IFN and interferon-stimulated genes. Consistently, the nuclear soluble cGAS limited HSV-1 infection. Furthermore, enzyme-deficient mutation (D307A) or cGAS inhibitor RU.251 abolished nuclear cGAS-mediated innate immune responses, suggesting that enzymatic activity is also required for nuclear soluble cGAS. Taken all together, our study demonstrates that nuclear soluble cGAS acts as a nuclear DNA sensor detecting nuclear-replicating DNA viruses.
Collapse
|
48
|
Kong Z, Yin H, Wang F, Liu Z, Luan X, Sun L, Liu W, Shang Y. Pseudorabies virus tegument protein UL13 recruits RNF5 to inhibit STING-mediated antiviral immunity. PLoS Pathog 2022; 18:e1010544. [PMID: 35584187 PMCID: PMC9154183 DOI: 10.1371/journal.ppat.1010544] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/31/2022] [Accepted: 04/22/2022] [Indexed: 12/21/2022] Open
Abstract
Pseudorabies virus (PRV) has evolved various immune evasion mechanisms that target host antiviral immune responses. However, it is unclear whether and how PRV encoded proteins modulate the cGAS-STING axis for immune evasion. Here, we show that PRV tegument protein UL13 inhibits STING-mediated antiviral signaling via regulation of STING stability. Mechanistically, UL13 interacts with the CDN domain of STING and recruits the E3 ligase RING-finger protein 5 (RNF5) to promote K27-/K29-linked ubiquitination and degradation of STING. Consequently, deficiency of RNF5 enhances host antiviral immune responses triggered by PRV infection. In addition, mutant PRV lacking UL13 impaired in antagonism of STING-mediated production of type I IFNs and shows attenuated pathogenicity in mice. Our findings suggest that PRV UL13 functions as an antagonist of IFN signaling via a novel mechanism by targeting STING to persistently evade host antiviral responses. Induction of type I interferons mediated by cGAS-STING axis is critical for host against DNA virus infection whereas herpesviruses employ multiple strategies to antagonize this signaling pathway for immune evasion. Herein, our findings provide strong evidence that PRV tegument protein UL13 functions as a suppressor of STING-mediated antiviral response via recruitment of E3 ligase RNF5 to induce K27-/K29-linked ubiquitination and degradation of STING. Therefore, our study reveals a novel evasion strategy of PRV against host defense and suggests UL13 could be a promising target for development of gene-deleted vaccine for pseudorabies.
Collapse
Affiliation(s)
- Zhengjie Kong
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| | - Hongyan Yin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| | - Fan Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| | - Zhen Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| | - Xiaohan Luan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingli Shang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
- Institute of Immunology, Shandong Agricultural University, Taian, Shandong, China
- * E-mail:
| |
Collapse
|
49
|
Koelle DM, Dong L, Jing L, Laing KJ, Zhu J, Jin L, Selke S, Wald A, Varon D, Huang ML, Johnston C, Corey L, Posavad CM. HSV-2-Specific Human Female Reproductive Tract Tissue Resident Memory T Cells Recognize Diverse HSV Antigens. Front Immunol 2022; 13:867962. [PMID: 35432373 PMCID: PMC9009524 DOI: 10.3389/fimmu.2022.867962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/07/2022] [Indexed: 01/05/2023] Open
Abstract
Antigen-specific TRM persist and protect against skin or female reproductive tract (FRT) HSV infection. As the pathogenesis of HSV differs between humans and model organisms, we focus on humans with well-characterized recurrent genital HSV-2 infection. Human CD8+ TRM persisting at sites of healed human HSV-2 lesions have an activated phenotype but it is unclear if TRM can be cultivated in vitro. We recovered HSV-specific TRM from genital skin and ectocervix biopsies, obtained after recovery from recurrent genital HSV-2, using ex vivo activation by viral antigen. Up to several percent of local T cells were HSV-reactive ex vivo. CD4 and CD8 T cell lines were up to 50% HSV-2-specific after sorting-based enrichment. CD8 TRM displayed HLA-restricted reactivity to specific HSV-2 peptides with high functional avidities. Reactivity to defined peptides persisted locally over several month and was quite subject-specific. CD4 TRM derived from biopsies, and from an extended set of cervical cytobrush specimens, also recognized diverse HSV-2 antigens and peptides. Overall we found that HSV-2-specific TRM are abundant in the FRT between episodes of recurrent genital herpes and maintain competency for expansion. Mucosal sites are accessible for clinical monitoring during immune interventions such as therapeutic vaccination.
Collapse
Affiliation(s)
- David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Translational Research, Benaroya Research Institute, Seattle, WA, United States
| | - Lichun Dong
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Kerry J. Laing
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Jia Zhu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Lei Jin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Stacy Selke
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Epidemiology, University of Washington, Seattle, WA, United States
| | - Dana Varon
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Christine Johnston
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Lawrence Corey
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Christine M. Posavad
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
50
|
Chen H, Jiang L, Chen S, Hu Q, Huang Y, Wu Y, Chen W. HBx inhibits DNA sensing signaling pathway via ubiquitination and autophagy of cGAS. Virol J 2022; 19:55. [PMID: 35346247 PMCID: PMC8962493 DOI: 10.1186/s12985-022-01785-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyclic GMP-AMP synthase (cGAS) is a crucial DNA sensor and plays an important role in host antiviral innate immune responses. During hepatitis B virus (HBV) infection, the cGAS signaling pathway can suppress HBV replication. As an important regulatory protein of HBV, hepatitis B virus X protein (HBx) may serve as an antagonistic character to the cGAS/STING signaling pathway. In this study, we aim to investigate the functional role of HBx in the cGAS/STING signaling pathway. METHODS The effects of HBx on IFN-β promoter activity were measured by Dual-luciferase reporter assays. Ubiquitination and autophagy were analyzed by Western-blot and Co-immunoprecipitation assays. RESULTS Our results show that HBx down-regulates IFN-I production by directly promoting ubiquitination and autophagy degradation of cGAS. CONCLUSIONS HBV can antagonize host cGAS DNA sensing to promote HBV replication and provide novel insights to develop novel approaches against HBV infection.
Collapse
Affiliation(s)
- Hong Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjing Road, Yuzhong District, Chongqing, 400010, China
| | - Linshan Jiang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjing Road, Yuzhong District, Chongqing, 400010, China
| | - Shu Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjing Road, Yuzhong District, Chongqing, 400010, China
| | - Qin Hu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjing Road, Yuzhong District, Chongqing, 400010, China
| | - Ying Huang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Wu
- Clinical Medicine Research Centre, Liuzhou People's Hospital, Guangxi Medical University, Liuzhou, China.
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjing Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|