1
|
Losay VA, Damania B. Unraveling the Kaposi Sarcoma-Associated Herpesvirus (KSHV) Lifecycle: An Overview of Latency, Lytic Replication, and KSHV-Associated Diseases. Viruses 2025; 17:177. [PMID: 40006930 PMCID: PMC11860327 DOI: 10.3390/v17020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus and the etiological agent of several diseases. These include the malignancies Kaposi sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman disease (MCD), as well as the inflammatory disorder KSHV inflammatory cytokine syndrome (KICS). The KSHV lifecycle is characterized by two phases: a default latent phase and a lytic replication cycle. During latency, the virus persists as an episome within host cells, expressing a limited subset of viral genes to evade immune surveillance while promoting cellular transformation. The lytic phase, triggered by various stimuli, results in the expression of the full viral genome, production of infectious virions, and modulation of the tumor microenvironment. Both phases of the KSHV lifecycle play crucial roles in driving viral pathogenesis, influencing oncogenesis and immune evasion. This review dives into the intricate world of the KSHV lifecycle, focusing on the molecular mechanisms that drive its latent and lytic phases, their roles in disease progression, and current therapeutic strategies.
Collapse
Affiliation(s)
- Victor A. Losay
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Longworth S, Damania B. Modulation of Cell Cycle Kinases by Kaposi's Sarcoma-Associated Herpesvirus. J Med Virol 2025; 97:e70157. [PMID: 39804127 PMCID: PMC12009514 DOI: 10.1002/jmv.70157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/12/2024] [Accepted: 12/22/2024] [Indexed: 04/22/2025]
Abstract
The cell cycle is governed by kinase activity that coordinates progression through a series of regulatory checkpoints, preventing the division of damaged cells. The Kaposi's sarcoma-associated herpesvirus (KSHV) encodes multiple genes that modulate or co-opt the activity of these kinases, shaping the cellular environment to promote viral persistence. By advancing the cell cycle, KSHV facilitates latent replication and subsequent transmission of viral genomes to daughter cells, while also contributing to the establishment of multiple cancer types. Conversely, during viral lytic replication, KSHV extends the resting phase of the cell cycle to prevent cellular DNA synthesis that would otherwise compete for essential replication precursors. This review will examine the mechanisms KSHV has evolved to control the kinase activity regulating host cell cycle progression.
Collapse
Affiliation(s)
- Steven Longworth
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Chen Q, Li X, Quan L, Zhou R, Liu X, Cheng L, Sarid R, Kuang E. FoxK1 and FoxK2 cooperate with ORF45 to promote late lytic replication of Kaposi's sarcoma-associated herpesvirus. J Virol 2024; 98:e0077924. [PMID: 39494902 PMCID: PMC11650984 DOI: 10.1128/jvi.00779-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Lytic replication is essential for persistent infection of Kaposi's sarcoma-associated herpesvirus (KSHV) and the pathogenesis of related diseases, and many cellular pathways are hijacked by KSHV proteins to initiate and control the lytic replication of this virus. However, the mechanism involved in KSHV lytic replication from the early to the late phases remains largely undetermined. We previously revealed that KSHV open reading frame 45 (ORF45) plays important roles in late transcription and translation. In the present study, we revealed that the Forkhead box proteins FoxK1 and FoxK2 are ORF45-binding proteins and are essential for KSHV lytic gene expression and virion production, and that depletion of FoxK1 or FoxK2 significantly suppresses the expression of many late viral genes. FoxK1 and FoxK2 directly bind to the promoters of several late viral genes, ORF45 augments the promoter binding and transcriptional activity of FoxK1 and FoxK2, and then FoxK1 or FoxK2 cooperates with ORF45 to promote late viral gene expression. Our findings suggest that ORF45 interacts with FoxK1 and FoxK2 and promotes their occupancy on a cluster of late viral promoters and their subsequent transcriptional activity; consequently, FoxK1 and FoxK2 promote late viral gene expression to facilitate KSHV lytic replication.IMPORTANCEThe forkhead box proteins FoxK1 and FoxK2 can act as transcriptional inhibitors or activators to regulate several important processes, including aerobic glycolysis, metabolism, autophagy, and antiviral responses. However, the subversion and functions of FoxK1 and FoxK2 during KSHV infection and the pathogenesis of related diseases remain unknown. Here, we revealed that ORF45 binds to FoxK1 and FoxK2 and increases their transcriptional activity during KSHV lytic replication; consequently, FoxK1 and FoxK2 bind to late viral promoters and cooperate with ORF45 to promote late lytic gene expression. Our findings reveal two new ORF45 partners and a new function of ORF45 in which it utilizes FoxK1 and FoxK2 to promote transcription during late KSHV lytic replication.
Collapse
Affiliation(s)
- Qingyang Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaojuan Li
- College of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, China
| | - Li Quan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Rihong Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiangpeng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lu Cheng
- School of Life Science, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ronit Sarid
- School of Graduate Studies, The Mina and Everard Goodman Faculty of Life Sciences & Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Komaki S, Inagaki T, Kumar A, Izumiya Y. The Role of vIL-6 in KSHV-Mediated Immune Evasion and Tumorigenesis. Viruses 2024; 16:1900. [PMID: 39772207 PMCID: PMC11680145 DOI: 10.3390/v16121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA gamma herpesvirus. Like other herpesviruses, KSHV establishes a latent infection with limited gene expression, while KSHV occasionally undergoes the lytic replication phase, which produces KSHV progenies and infects neighboring cells. KSHV genome encodes 80+ open reading frames. One of the KSHV genes, K2, encodes viral interleukin 6 (vIL-6), a homolog of human IL-6 (hIL-6), mainly expressed in the lytic phase of the virus. vIL-6 plays a crucial role in regulating the expression of other viral genes and is also associated with inducing angiogenesis, cell survival, and immune evasion, which is suggested to promote the development of KSHV-associated diseases. This review summarizes the current knowledge on vIL-6. We focus on the vIL-6 regarding its protein structure, transcriptional regulation, cell signaling pathways, and contribution to the KSHV-associated diseases.
Collapse
Affiliation(s)
- Somayeh Komaki
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Tomoki Inagaki
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Ashish Kumar
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Yoshihiro Izumiya
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
5
|
Cano P, Seltzer T, Seltzer J, Peng A, Landis J, Pluta L, Dittmer DP. Viral Load Measurements for Kaposi Sarcoma Herpesvirus (KSHV/HHV8): Review and an Updated Assay. J Med Virol 2024; 96:e70105. [PMID: 39648698 PMCID: PMC12042282 DOI: 10.1002/jmv.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/26/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024]
Abstract
"When you can measure what you are speaking about, and express it in numbers, you know something about it." is a famous quote attributed to Lord Kelvin. This sentiment puts viral load measurements at the center of virology. Viral load, or more precisely, DNA copy number measurements, are also used to follow infections with human herpesviruses, such as Kaposi sarcoma herpesvirus (KSHV) and Epstein-Barr Virus (EBV). EBV and KSHV are associated with human cancers, and determining their DNA copy numbers in the context of cancer prediction and progression on therapy is of fundamental scientific and translational interest. Yet, there is no generally accepted assay for KSHV DNA quantitation, and KSHV viral load is not used in clinical decision-making. Here, we review the history of KSHV DNA detection assays, explore factors that affect sensitivity and specificity, and describe an automated, high-throughput, real-time quantitative polymerase chain reaction (PCR) assay for KSHV and EBV. In conjunction with a digital PCR assay using the same primer/probe combination, we describe how to determine the absolute KSHV genome copy numbers in plasma, peripheral blood mononuclear cells, saliva, and other easily accessible body fluids.
Collapse
Affiliation(s)
- Patricio Cano
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, 450 West Dr. Rm #12-046, CB#7295, Chapel Hill, NC 27599
| | - Tischan Seltzer
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, 450 West Dr. Rm #12-046, CB#7295, Chapel Hill, NC 27599
| | - Jedediah Seltzer
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, 450 West Dr. Rm #12-046, CB#7295, Chapel Hill, NC 27599
| | - Alice Peng
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, 450 West Dr. Rm #12-046, CB#7295, Chapel Hill, NC 27599
| | - Justin Landis
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, 450 West Dr. Rm #12-046, CB#7295, Chapel Hill, NC 27599
| | - Linda Pluta
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, 450 West Dr. Rm #12-046, CB#7295, Chapel Hill, NC 27599
| | - Dirk P. Dittmer
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, 450 West Dr. Rm #12-046, CB#7295, Chapel Hill, NC 27599
| |
Collapse
|
6
|
Prazsák I, Tombácz D, Fülöp Á, Torma G, Gulyás G, Dörmő Á, Kakuk B, McKenzie Spires L, Toth Z, Boldogkői Z. KSHV 3.0: a state-of-the-art annotation of the Kaposi's sarcoma-associated herpesvirus transcriptome using cross-platform sequencing. mSystems 2024; 9:e0100723. [PMID: 38206015 PMCID: PMC10878076 DOI: 10.1128/msystems.01007-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a large, oncogenic DNA virus belonging to the gammaherpesvirus subfamily. KSHV has been extensively studied with various high-throughput RNA-sequencing approaches to map the transcription start and end sites, the splice junctions, and the translation initiation sites. Despite these efforts, the comprehensive annotation of the viral transcriptome remains incomplete. In the present study, we generated a long-read sequencing data set of the lytic and latent KSHV transcriptome using native RNA and direct cDNA-sequencing methods. This was supplemented with Cap Analysis of Gene Expression sequencing based on a short-read platform. We also utilized data sets from previous publications for our analysis. As a result of this combined approach, we have identified a number of novel viral transcripts and RNA isoforms and have either corroborated or improved the annotation of previously identified viral RNA molecules, thereby notably enhancing our comprehension of the transcriptomic architecture of the KSHV genome. We also evaluated the coding capability of transcripts previously thought to be non-coding by integrating our data on the viral transcripts with translatomic information from other publications.IMPORTANCEDeciphering the viral transcriptome of Kaposi's sarcoma-associated herpesvirus is of great importance because we can gain insight into the molecular mechanism of viral replication and pathogenesis, which can help develop potential targets for antiviral interventions. Specifically, the identification of substantial transcriptional overlaps by this work suggests the existence of a genome-wide interference between transcriptional machineries. This finding indicates the presence of a novel regulatory layer, potentially controlling the expression of viral genes.
Collapse
Affiliation(s)
- István Prazsák
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ádám Fülöp
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gábor Torma
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gábor Gulyás
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ákos Dörmő
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Balázs Kakuk
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Lauren McKenzie Spires
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Zsolt Boldogkői
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
7
|
Li S, Wang M, Van Sciver N, Szymula A, Tumuluri VS, George A, Ramachandran A, Raina K, Costa CN, Zhao B, Kazemian M, Simas JP, Kaye KM. Kaposi's sarcoma herpesvirus latency-associated nuclear antigen broadly regulates viral gene expression and is essential for lytic infection. PLoS Pathog 2024; 20:e1011907. [PMID: 38232124 PMCID: PMC10793894 DOI: 10.1371/journal.ppat.1011907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) is a leading cause of malignancy in AIDS and current therapies are limited. Like all herpesviruses, KSHV infection can be latent or lytic. KSHV latency-associated nuclear antigen (LANA) is essential for viral genome persistence during latent infection. LANA also maintains latency by antagonizing expression and function of the KSHV lytic switch protein, RTA. Here, we find LANA null KSHV is not capable of lytic replication, indicating a requirement for LANA. While LANA promoted both lytic and latent gene expression in cells partially permissive for lytic infection, it repressed expression in non-permissive cells. Importantly, forced RTA expression in non-permissive cells led to induction of lytic infection and LANA switched to promote, rather than repress, most lytic viral gene expression. When basal viral gene expression levels were high, LANA promoted expression, but repressed expression at low basal levels unless RTA expression was forcibly induced. LANA's effects were broad, but virus gene specific, extending to an engineered, recombinant viral GFP under control of host EF1α promoter, but not to host EF1α. Together, these results demonstrate that, in addition to its essential role in genome maintenance, LANA broadly regulates viral gene expression, and is required for high levels of lytic gene expression during lytic infection. Strategies that target LANA are expected to abolish KSHV infection.
Collapse
Affiliation(s)
- Shijun Li
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mengbo Wang
- Department of Computer Science, Purdue University, West Lafayette, Indiana
| | - Nicholas Van Sciver
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Agnieszka Szymula
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vinayak Sadasivam Tumuluri
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Athira George
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Akshaya Ramachandran
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Komal Raina
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Catarina N. Costa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research, Palma de Cima, Portugal
| | - Bo Zhao
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Majid Kazemian
- Department of Computer Science, Purdue University, West Lafayette, Indiana
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - J. Pedro Simas
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research, Palma de Cima, Portugal
| | - Kenneth M. Kaye
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
8
|
Inagaki T, Wang KH, Kumar A, Izumiya C, Miura H, Komaki S, Davis RR, Tepper CG, Katano H, Shimoda M, Izumiya Y. KSHV vIL-6 enhances inflammatory responses by epigenetic reprogramming. PLoS Pathog 2023; 19:e1011771. [PMID: 37934757 PMCID: PMC10656005 DOI: 10.1371/journal.ppat.1011771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/17/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) inflammatory cytokine syndrome (KICS) is a newly described chronic inflammatory disease condition caused by KSHV infection and is characterized by high KSHV viral load and sustained elevations of serum KSHV-encoded IL-6 (vIL-6) and human IL-6 (hIL-6). KICS has significant immortality and greater risks of other complications, including malignancies. Although prolonged inflammatory vIL-6 exposure by persistent KSHV infection is expected to have key roles in subsequent disease development, the biological effects of prolonged vIL-6 exposure remain elusive. Using thiol(SH)-linked alkylation for the metabolic (SLAM) sequencing and Cleavage Under Target & Release Using Nuclease analysis (CUT&RUN), we studied the effect of prolonged vIL-6 exposure in chromatin landscape and resulting cytokine production. The studies showed that prolonged vIL-6 exposure increased Bromodomain containing 4 (BRD4) and histone H3 lysine 27 acetylation co-occupancies on chromatin, and the recruitment sites were frequently co-localized with poised RNA polymerase II with associated enzymes. Increased BRD4 recruitment on promoters was associated with increased and prolonged NF-κB p65 binding after the lipopolysaccharide stimulation. The p65 binding resulted in quicker and sustained transcription bursts from the promoters; this mechanism increased total amounts of hIL-6 and IL-10 in tissue culture. Pretreatment with the BRD4 inhibitors, OTX015 and MZ1, eliminated the enhanced inflammatory cytokine production. These findings suggest that persistent vIL-6 exposure may establish a chromatin landscape favorable for the reactivation of inflammatory responses in monocytes. This epigenetic memory may explain the greater risk of chronic inflammatory disease development in KSHV-infected individuals.
Collapse
Affiliation(s)
- Tomoki Inagaki
- Department of Dermatology, School of Medicine, the University of California Davis (UC Davis), Sacramento, California, United States of America
| | - Kang-Hsin Wang
- Department of Dermatology, School of Medicine, the University of California Davis (UC Davis), Sacramento, California, United States of America
| | - Ashish Kumar
- Department of Dermatology, School of Medicine, the University of California Davis (UC Davis), Sacramento, California, United States of America
| | - Chie Izumiya
- Department of Dermatology, School of Medicine, the University of California Davis (UC Davis), Sacramento, California, United States of America
| | - Hiroki Miura
- Department of Dermatology, School of Medicine, the University of California Davis (UC Davis), Sacramento, California, United States of America
| | - Somayeh Komaki
- Department of Dermatology, School of Medicine, the University of California Davis (UC Davis), Sacramento, California, United States of America
| | - Ryan R. Davis
- Department of Pathology and Laboratory Medicine, School of Medicine, UC Davis, Sacramento, California, United States of America
| | - Clifford G. Tepper
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, California, United States of America
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Michiko Shimoda
- Department of Dermatology, School of Medicine, the University of California Davis (UC Davis), Sacramento, California, United States of America
| | - Yoshihiro Izumiya
- Department of Dermatology, School of Medicine, the University of California Davis (UC Davis), Sacramento, California, United States of America
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, California, United States of America
| |
Collapse
|
9
|
Shimoda M, Inagaki T, Davis RR, Merleev A, Tepper CG, Maverakis E, Izumiya Y. Virally encoded interleukin-6 facilitates KSHV replication in monocytes and induction of dysfunctional macrophages. PLoS Pathog 2023; 19:e1011703. [PMID: 37883374 PMCID: PMC10602306 DOI: 10.1371/journal.ppat.1011703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus and the etiologic agent of Kaposi's sarcoma and hyperinflammatory lymphoproliferative disorders. Understanding the mechanism by which KSHV increases the infected cell population is crucial for curing KSHV-associated diseases. Using scRNA-seq, we demonstrate that KSHV preferentially infects CD14+ monocytes, sustains viral lytic replication through the viral interleukin-6 (vIL-6), which activates STAT1 and 3, and induces an inflammatory gene expression program. To study the role of vIL-6 in monocytes upon KSHV infection, we generated recombinant KSHV with premature stop codon (vIL-6(-)) and its revertant viruses (vIL-6(+)). Infection of the recombinant viruses shows that both vIL-6(+) and vIL-6(-) KSHV infection induced indistinguishable host anti-viral response with STAT1 and 3 activations in monocytes; however, vIL-6(+), but not vIL-6(-), KSHV infection promoted the proliferation and differentiation of KSHV-infected monocytes into macrophages. The macrophages derived from vIL-6(+) KSHV infection showed a distinct transcriptional profile of elevated IFN-pathway activation with immune suppression and were compromised in T-cell stimulation function compared to those from vIL-6(-) KSHV infection or uninfected control. Notably, a viral nuclear long noncoding RNA (PAN RNA), which is required for sustaining KSHV gene expression, was substantially reduced in infected primary monocytes upon vIL-6(-) KSHV infection. These results highlight the critical role of vIL-6 in sustaining KSHV transcription in primary monocytes. Our findings also imply a clever strategy in which KSHV utilizes vIL-6 to secure its viral pool by expanding infected monocytes via differentiating into longer-lived dysfunctional macrophages. This mechanism may facilitate KSHV to escape from host immune surveillance and to support a lifelong infection.
Collapse
Affiliation(s)
- Michiko Shimoda
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
- UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
| | - Tomoki Inagaki
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Ryan R. Davis
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Alexander Merleev
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Clifford G. Tepper
- UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, California, United States of America
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
- UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
| | - Yoshihiro Izumiya
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
- UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| |
Collapse
|
10
|
Inagaki T, Wang KH, Kumar A, Izumiya C, Miura H, Komaki S, Davis RR, Tepper CG, Katano H, Shimoda M, Izumiya Y. KSHV vIL-6 Enhances Inflammatory Responses by Epigenetic Reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.25.546454. [PMID: 37503036 PMCID: PMC10370004 DOI: 10.1101/2023.06.25.546454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) inflammatory cytokine syndrome (KICS) is a newly described chronic inflammatory disease condition caused by KSHV infection and is characterized by high KSHV viral load and sustained elevations of serum KSHV-encoded IL-6 (vIL-6) and human IL-6 (hIL-6). KICS has significant immortality and possesses greater risks of having other complications, which include malignancies. Although prolonged inflammatory vIL-6 exposure by persistent KSHV infection is expected to have key roles in subsequent disease development, the biological effects of prolonged vIL-6 exposure remain elusive. Using thiol-Linked Alkylation for the Metabolic Sequencing and Cleavage Under Target & Release Using Nuclease analysis, we studied the effect of prolonged vIL-6 exposure in chromatin landscape and resulting cytokine production. The studies showed that prolonged vIL-6 exposure increased Bromodomain containing 4 (BRD4) and histone H3 lysine 27 acetylation co-occupancies on chromatin, and the recruitment sites were frequently co-localized with poised RNAPII with associated enzymes. Increased BRD4 recruitment on promoters was associated with increased and prolonged NF-κB p65 binding after the lipopolysaccharide stimulation. The p65 binding resulted in quicker and sustained transcription bursts from the promoters; this mechanism increased total amounts of hIL-6 and IL-10 in tissue culture. Pretreatment with the BRD4 inhibitor, OTX015, eliminated the enhanced inflammatory cytokine production. These findings suggest that persistent vIL-6 exposure may establish a chromatin landscape favorable for the reactivation of inflammatory responses in monocytes. This epigenetic memory may explain the greater risk of chronic inflammatory disease development in KSHV-infected individuals.
Collapse
Affiliation(s)
- Tomoki Inagaki
- Department of Dermatology, School of Medicine, the University of California Davis (UC Davis), Sacramento, California USA
| | - Kang-Hsin Wang
- Department of Dermatology, School of Medicine, the University of California Davis (UC Davis), Sacramento, California USA
| | - Ashish Kumar
- Department of Dermatology, School of Medicine, the University of California Davis (UC Davis), Sacramento, California USA
| | - Chie Izumiya
- Department of Dermatology, School of Medicine, the University of California Davis (UC Davis), Sacramento, California USA
| | - Hiroki Miura
- Department of Dermatology, School of Medicine, the University of California Davis (UC Davis), Sacramento, California USA
| | - Somayeh Komaki
- Department of Dermatology, School of Medicine, the University of California Davis (UC Davis), Sacramento, California USA
| | - Ryan R. Davis
- Department of Pathology and Laboratory Medicine, School of Medicine, UC Davis, Sacramento, California USA
| | - Clifford G. Tepper
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, California USA
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Michiko Shimoda
- Department of Dermatology, School of Medicine, the University of California Davis (UC Davis), Sacramento, California USA
| | - Yoshihiro Izumiya
- Department of Dermatology, School of Medicine, the University of California Davis (UC Davis), Sacramento, California USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, California USA
| |
Collapse
|
11
|
Moore LN, Holmes DL, Sharma A, Landazuri Vinueza J, Lagunoff M. Bcl-xL is required to protect endothelial cells latently infected with KSHV from virus induced intrinsic apoptosis. PLoS Pathog 2023; 19:e1011385. [PMID: 37163552 PMCID: PMC10202281 DOI: 10.1371/journal.ppat.1011385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/22/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Kaposi's Sarcoma herpesvirus (KSHV) is the etiologic agent of Kaposi's Sarcoma (KS), a highly vascularized tumor common in AIDS patients and many countries in Africa. KSHV is predominantly in the latent state in the main KS tumor cell, the spindle cell, a cell expressing endothelial cell markers. To identify host genes important for KSHV latent infection of endothelial cells we previously used a global CRISPR/Cas9 screen to identify genes necessary for the survival or proliferation of latently infected cells. In this study we rescreened top hits and found that the highest scoring gene necessary for infected cell survival is the anti-apoptotic Bcl-2 family member Bcl-xL. Knockout of Bcl-xL or treatment with a Bcl-xL inhibitor leads to high levels of cell death in latently infected endothelial cells but not their mock counterparts. Cell death occurs through apoptosis as shown by increased PARP cleavage and activation of caspase-3/7. Knockout of the pro-apoptotic protein, Bax, eliminates the requirement for Bcl-xL. Interestingly, neither Bcl-2 nor Mcl-1, related and often redundant anti-apoptotic proteins of the Bcl-2 protein family, are necessary for the survival of latently infected endothelial cells, likely due to their lack of expression in all the endothelial cell types we have examined. Bcl-xL is not required for the survival of latently infected primary effusion lymphoma (PEL) cells or other cell types tested. Expression of the KSHV major latent locus alone in the absence of KSHV infection led to sensitivity to the absence of Bcl-xL, indicating that viral gene expression from the latent locus induces intrinsic apoptosis leading to the requirement for Bcl-xL in endothelial cells. The critical requirement of Bcl-xL during KSHV latency makes it an intriguing therapeutic target for KS tumors.
Collapse
Affiliation(s)
- Lyndsey N. Moore
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
| | - Daniel L. Holmes
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
| | - Anjali Sharma
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
| | | | - Michael Lagunoff
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
| |
Collapse
|
12
|
Shimoda M, Inagaki T, Davis RR, Merleev A, Tepper CG, Maverakis E, Izumiya Y. KSHV uses viral IL6 to expand infected immunosuppressive macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.531224. [PMID: 36945595 PMCID: PMC10028810 DOI: 10.1101/2023.03.05.531224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus and the etiologic agent of Kaposi's sarcoma and hyperinflammatory lymphoproliferative disorders. Understanding the mechanism by which KSHV increases the infected cell population is crucial for curing KSHV-associated diseases. Here we demonstrate that KSHV preferentially infects CD14 + monocytes and sustains viral replication through the viral interleukin-6 (vIL6)-mediated activation of STAT1 and 3. Using vIL6-sufficient and vIL6-deficient recombinant KSHV, we demonstrated that vIL6 plays a critical role in promoting the proliferation and differentiation of KSHV-infected monocytes into macrophages. The macrophages derived from vIL6-sufficient KSHV infection showed a distinct transcriptional profile of elevated IFN-pathway activation with immune suppression and were compromised in T-cell stimulation function compared to those from vIL6-deficient KSHV infection or uninfected control. These results highlight a clever strategy, in which KSHV utilizes vIL6 to secure its viral pool by expanding infected dysfunctional macrophages. This mechanism also facilitates KSHV to escape from host immune surveillance and to establish a lifelong infection. 160. Summary KSHV causes multiple inflammatory diseases, however, the underlying mechanism is not clear. Shimoda et al. demonstrate that KSHV preferentially infects monocytes and utilizes virally encoded interleukin-6 to expand and deregulate infected monocytes. This helps the virus escape from host immune surveillance.
Collapse
|
13
|
Endemic Kaposi's Sarcoma. Cancers (Basel) 2023; 15:cancers15030872. [PMID: 36765830 PMCID: PMC9913747 DOI: 10.3390/cancers15030872] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Kaposi's sarcoma (KS) is a common neoplasm in Eastern and central Africa reflecting the spread of human gammaherpesvirus-8 (HHV-8), now considered a necessary causal agent for the development of KS. The endemic KS subtype can follow an aggressive clinical course with ulcerative skin lesions with soft tissue invasion or even bone or visceral involvement. In the latter cases, a thorough imaging work-up and better follow-up schedules are warranted. As KS is a chronic disease, the therapeutic goal is to obtain sustainable remission in cutaneous and visceral lesions and a good quality of life. Watchful monitoring may be sufficient in localized cutaneous forms. Potential therapeutic modalities for symptomatic advanced KS include systemic chemotherapies, immunomodulators, immune checkpoint inhibitors, and antiangiogenic drugs.
Collapse
|
14
|
Wen KW, Wang L, Menke JR, Damania B. Cancers associated with human gammaherpesviruses. FEBS J 2022; 289:7631-7669. [PMID: 34536980 PMCID: PMC9019786 DOI: 10.1111/febs.16206] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/10/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023]
Abstract
Epstein-Barr virus (EBV; human herpesvirus 4; HHV-4) and Kaposi sarcoma-associated herpesvirus (KSHV; human herpesvirus 8; HHV-8) are human gammaherpesviruses that have oncogenic properties. EBV is a lymphocryptovirus, whereas HHV-8/KSHV is a rhadinovirus. As lymphotropic viruses, EBV and KSHV are associated with several lymphoproliferative diseases or plasmacytic/plasmablastic neoplasms. Interestingly, these viruses can also infect epithelial cells causing carcinomas and, in the case of KSHV, endothelial cells, causing sarcoma. EBV is associated with Burkitt lymphoma, classic Hodgkin lymphoma, nasopharyngeal carcinoma, plasmablastic lymphoma, lymphomatoid granulomatosis, leiomyosarcoma, and subsets of diffuse large B-cell lymphoma, post-transplant lymphoproliferative disorder, and gastric carcinoma. KSHV is implicated in Kaposi sarcoma, primary effusion lymphoma, multicentric Castleman disease, and KSHV-positive diffuse large B-cell lymphoma. Pathogenesis by these two herpesviruses is intrinsically linked to viral proteins expressed during the lytic and latent lifecycles. This comprehensive review intends to provide an overview of the EBV and KSHV viral cycles, viral proteins that contribute to oncogenesis, and the current understanding of the pathogenesis and clinicopathology of their related neoplastic entities.
Collapse
Affiliation(s)
- Kwun Wah Wen
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
| | - Linlin Wang
- Department of Laboratory Medicine, University of California, San Francisco, CA 94158
| | - Joshua R. Menke
- Department of Pathology, Stanford University, Palo Alto, CA 94304
| | - Blossom Damania
- Department of Microbiology & Immunology & Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
15
|
Human Gammaherpesvirus 8 Oncogenes Associated with Kaposi’s Sarcoma. Int J Mol Sci 2022; 23:ijms23137203. [PMID: 35806208 PMCID: PMC9266852 DOI: 10.3390/ijms23137203] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/01/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human gammaherpesvirus 8 (HHV-8), contains oncogenes and proteins that modulate various cellular functions, including proliferation, differentiation, survival, and apoptosis, and is integral to KSHV infection and oncogenicity. In this review, we describe the most important KSHV genes [ORF 73 (LANA), ORF 72 (vCyclin), ORF 71 or ORFK13 (vFLIP), ORF 74 (vGPCR), ORF 16 (vBcl-2), ORF K2 (vIL-6), ORF K9 (vIRF 1)/ORF K10.5, ORF K10.6 (vIRF 3), ORF K1 (K1), ORF K15 (K15), and ORF 36 (vPK)] that have the potential to induce malignant phenotypic characteristics of Kaposi’s sarcoma. These oncogenes can be explored in prospective studies as future therapeutic targets of Kaposi’s sarcoma.
Collapse
|
16
|
Lange PT, White MC, Damania B. Activation and Evasion of Innate Immunity by Gammaherpesviruses. J Mol Biol 2022; 434:167214. [PMID: 34437888 PMCID: PMC8863980 DOI: 10.1016/j.jmb.2021.167214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/20/2022]
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections in the vast majority of adults worldwide. Importantly, these viruses are associated with numerous malignancies and are responsible for significant human cancer burden. These virus-associated cancers are due, in part, to the ability of gammaherpesviruses to successfully evade the innate immune response throughout the course of infection. In this review, we will summarize the current understanding of how gammaherpesviruses are detected by innate immune sensors, how these viruses evade recognition by host cells, and how this knowledge can inform novel therapeutic approaches for these viruses and their associated diseases.
Collapse
Affiliation(s)
- Philip T Lange
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. https://twitter.com/langept
| | - Maria C White
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. https://twitter.com/maria_c_white
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
17
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV)-associated primary effusion lymphomas (PEL) are traditionally viewed as homogenous regarding viral transcription and lineage of origin, but so far this contention has not been explored at the single-cell level. Single-cell RNA sequencing of latently infected PEL supports the existence of multiple subpopulations even within a single cell line. At most 1% of the cells showed evidence of near-complete lytic transcription. The majority of cells only expressed the canonical viral latent transcripts: those originating from the latency locus, the viral interferon regulatory factor locus, and the viral lncRNA nut-1/Pan/T1.1; however, a significant fraction of cells showed various degrees of more permissive transcription, and some showed no evidence of KSHV transcripts whatsoever. Levels of viral interleukin-6 (IL-6)/K2 mRNA emerged as the most distinguishing feature to subset KSHV-infected PEL. One newly uncovered phenotype is the existence of BCBL-1 cells that readily adhered to fibronectin and that displayed mesenchymal lineage-like characteristics. IMPORTANCE Latency is the defining characteristic of the Herpesviridae and central to the tumorigenesis phenotype of Kaposi's sarcoma-associated herpesvirus (KSHV). KSHV-driven primary effusion lymphomas (PEL) rapidly develop resistance to therapy, suggesting tumor instability and plasticity. At any given time, a fraction of PEL cells spontaneously reactivate KSHV, suggesting transcriptional heterogeneity even within a clonal cell line under optimal growth conditions. This study employed single-cell mRNA sequencing to explore the within-population variability of KSHV transcription and how it relates to host cell transcription. Individual clonal PEL cells exhibited differing patterns of viral transcription. Most cells showed the canonical pattern of KSHV latency (LANA, vCyc, vFLIP, Kaposin, and vIRFs), but a significant fraction evidenced extended viral gene transcription, including of the viral IL-6 homolog, open reading frame K2. This study suggests new targets of intervention for PEL. It establishes a conceptual framework to design KSHV cure studies analogous to those for HIV.
Collapse
|
18
|
Choi YB, Cousins E, Nicholas J. Novel Functions and Virus-Host Interactions Implicated in Pathogenesis and Replication of Human Herpesvirus 8. Recent Results Cancer Res 2021; 217:245-301. [PMID: 33200369 DOI: 10.1007/978-3-030-57362-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human herpesvirus 8 (HHV-8) is classified as a γ2-herpesvirus and is related to Epstein-Barr virus (EBV), a γ1-herpesvirus. One important aspect of the γ-herpesviruses is their association with neoplasia, either naturally or in animal model systems. HHV-8 is associated with B-cell-derived primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD), endothelial-derived Kaposi's sarcoma (KS), and KSHV inflammatory cytokine syndrome (KICS). EBV is also associated with a number of B-cell malignancies, such as Burkitt's lymphoma, Hodgkin's lymphoma, and posttransplant lymphoproliferative disease, in addition to epithelial nasopharyngeal and gastric carcinomas. Despite the similarities between these viruses and their associated malignancies, the particular protein functions and activities involved in key aspects of virus biology and neoplastic transformation appear to be quite distinct. Indeed, HHV-8 specifies a number of proteins for which counterparts had not previously been identified in EBV, other herpesviruses, or even viruses in general, and these proteins are believed to play vital functions in virus biology and to be involved centrally in viral pathogenesis. Additionally, a set of microRNAs encoded by HHV-8 appears to modulate the expression of multiple host proteins to provide conditions conductive to virus persistence within the host and possibly contributing to HHV-8-induced neoplasia. Here, we review the molecular biology underlying these novel virus-host interactions and their potential roles in both virus biology and virus-associated disease.
Collapse
Affiliation(s)
- Young Bong Choi
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA.
| | - Emily Cousins
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| | - John Nicholas
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| |
Collapse
|
19
|
Lymphotropic Viruses: Chronic Inflammation and Induction of Cancers. BIOLOGY 2020; 9:biology9110390. [PMID: 33182552 PMCID: PMC7697807 DOI: 10.3390/biology9110390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022]
Abstract
Inflammation induced by transcription factors, including Signal Transducers and Activators of Transcription (STATs) and NF-κB, in response to microbial pathogenic infections and ligand dependent receptors stimulation are critical for controlling infections. However, uncontrolled inflammation induced by these transcription factors could lead to immune dysfunction, persistent infection, inflammatory related diseases and the development of cancers. Although the induction of innate immunity and inflammation in response to viral infection is important to control virus replication, its effects can be modulated by lymphotropic viruses including human T-cell leukemia virus type 1 (HTLV-1), Κaposi's sarcoma herpesvirus (KSHV), and Epstein Barr virus (EBV) during de novo infection as well as latent infection. These lymphotropic viruses persistently activate JAK-STAT and NF-κB pathways. Long-term STAT and NF-κB activation by these viruses leads to the induction of chronic inflammation, which can support the persistence of these viruses and promote virus-mediated cancers. Here, we review how HTLV-1, KSHV and EBV hijack the function of host cell surface molecules (CSMs), which are involved in the regulation of chronic inflammation, innate and adaptive immune responses, cell death and the restoration of tissue homeostasis. Thus, better understanding of CSMs-mediated chronic activation of STATs and NF-κB pathways in lymphotropic virus-infected cells may pave the way for therapeutic intervention in malignancies caused by lymphotropic viruses.
Collapse
|
20
|
Genetic Analyses of Contributions of Viral Interleukin-6 Interactions and Signaling to Human Herpesvirus 8 Productive Replication. J Virol 2020; 94:JVI.00909-20. [PMID: 32669340 DOI: 10.1128/jvi.00909-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/08/2020] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 8 (HHV-8) viral interleukin-6 (vIL-6) is a cytokine that is poorly secreted and localized largely to the endoplasmic reticulum (ER). It has been implicated, along with other HHV-8 proinflammatory and/or angiogenic viral proteins, in HHV-8-associated Kaposi's sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman's disease (MCD), in addition to an MCD-related disorder involving systemic elevation of proinflammatory cytokines, including vIL-6 and human IL-6 (hIL-6). In these diseases, lytic (productive) replication, in addition to viral latency, is believed to play a critical role. Proreplication activity of vIL-6 has been identified experimentally in PEL and endothelial cells, but the relative contributions of different vIL-6 interactions have not been established. Productive interactions of vIL-6 with the IL-6 signal transducer, gp130, can occur within the ER, but vIL-6 also interacts in the ER with a nonsignaling receptor called vitamin K epoxide reductase complex subunit 1 variant 2 (VKORC1v2), calnexin, and VKORC1v2- and calnexin-associated proteins UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) and glucosidase II (GlucII). Here, we report the systematic characterization of interaction-altered vIL-6 variants and the lytic phenotypes of recombinant viruses expressing selected variants. Our data identify the critical importance of vIL-6 and its ER-localized activity via gp130 to productive replication in inducible SLK (epithelial) cells, absence of detectable involvement of vIL-6 interactions with VKORC1v2, GlucII, or UGGT1, and the insufficiency and lack of direct contributory effects of extracellular signaling by vIL-6 or hIL-6. These findings, obtained through genetics-based approaches, complement and extend previous analyses of vIL-6 activity.IMPORTANCE Human herpesvirus 8 (HHV-8)-encoded viral interleukin-6 (vIL-6) was the first viral IL-6 homologue to be identified. Experimental and clinical evidence suggests that vIL-6 is important for the onset and/or progression of HHV-8-associated endothelial-cell and B-cell pathologies, including AIDS-associated Kaposi's sarcoma and multicentric Castleman's disease. The protein is unusual in its poor secretion from cells and its intracellular activity; it interacts, directly or indirectly, with a number of proteins beyond the IL-6 signal transducer, gp130, and can mediate activities through these interactions in the endoplasmic reticulum. Here, we report the characterization with respect to protein interactions and signal-transducing activity of a panel of vIL-6 variants and utilization of HHV-8 mutant viruses expressing selected variants in phenotypic analyses. Our findings establish the importance of vIL-6 in HHV-8 productive replication and the contributions of individual vIL-6-protein interactions to HHV-8 lytic biology. This work furthers understanding of the biological significance of vIL-6 and its unique intracellular interactions.
Collapse
|
21
|
Dangerous Liaisons: Gammaherpesvirus Subversion of the Immunoglobulin Repertoire. Viruses 2020; 12:v12080788. [PMID: 32717815 PMCID: PMC7472090 DOI: 10.3390/v12080788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
A common biologic property of the gammaherpesviruses Epstein–Barr Virus and Kaposi sarcoma herpesvirus is their use of B lymphocytes as a reservoir of latency in healthy individuals that can undergo oncogenic transformation later in life. Gammaherpesviruses (GHVs) employ an impressive arsenal of proteins and non-coding RNAs to reprogram lymphocytes for proliferative expansion. Within lymphoid tissues, the germinal center (GC) reaction is a hub of B cell proliferation and death. The goal of a GC is to generate and then select for a pool of immunoglobulin (Ig) genes that will provide a protective humoral adaptive immune response. B cells infected with GHVs are detected in GCs and bear the hallmark signatures of the mutagenic processes of somatic hypermutation and isotype class switching of the Ig genes. However, data also supports extrafollicular B cells as a reservoir engaged by GHVs. Next-generation sequencing technologies provide unprecedented detail of the Ig sequence that informs the natural history of infection at the single cell level. Here, we review recent reports from human and murine GHV systems that identify striking differences in the immunoglobulin repertoire of infected B cells compared to their uninfected counterparts. Implications for virus biology, GHV-associated cancers, and host immune dysfunction will be discussed.
Collapse
|
22
|
Li W, Wang Q, Qi X, Guo Y, Lu H, Chen Y, Lu Z, Yan Q, Zhu X, Jung JU, Tosato G, Gao SJ, Lu C. Viral interleukin-6 encoded by an oncogenic virus promotes angiogenesis and cellular transformation by enhancing STAT3-mediated epigenetic silencing of caveolin 1. Oncogene 2020; 39:4603-4618. [PMID: 32393833 PMCID: PMC7970339 DOI: 10.1038/s41388-020-1317-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 12/27/2022]
Abstract
Kaposi's sarcoma (KS) caused by oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) is a highly angiogenic and invasive vascular tumor and the most common AIDS-associated cancer. KSHV-encoded viral interleukin-6 (vIL-6) is implicated in the development of KSHV-induced malignancies; however, the mechanisms underlying vIL-6-induced angiogenesis and tumorigenesis remain undefined. Here, we show that vIL-6 promotes angiogenesis, cell proliferation, and invasion by downregulating caveolin 1 (CAV1) that plays a pivotal and versatile role in multiple cancer-associated processes. Mechanistically, vIL-6 signaling led to the phosphorylation and acetylation of STAT3 that targeted DNA methyltransferase 1 (DNMT1) in a sequential manner. Specifically, the vIL-6-induced phosphorylated form of STAT3 transcriptionally activated DNMT1 expression. Furthermore, vIL-6-induced acetylated form of STAT3 interacted with DNMT1 to form a transcription factor complex that bound to and methylated the CAV1 promoter, leading to CAV1 expression silencing. In fact, downregulation of CAV1 expression resulted in the activation of AKT signaling, promoting cell invasion, and growth transformation induced by KSHV. Finally, genetic deletion of vIL-6 from the KSHV genome abolished KSHV-induced cellular transformation and impaired angiogenesis. Our results reveal that vIL-6 epigenetically silences CAV1 expression to promote angiogenesis and tumorigenesis by regulating the formation of STAT3-DNMT1 complex. These novel findings define a mechanism by which KSHV inhibits the CAV1 pathway and establish the scientific basis for targeting this pathway to treat KSHV-associated cancers.
Collapse
Affiliation(s)
- Wan Li
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, 210029, PR China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China
| | - Qingxia Wang
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
| | - Xiaoyu Qi
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
| | - Yuanyuan Guo
- The College of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Hongmei Lu
- Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210036, PR China
| | - Yuheng Chen
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
| | - Zhongmou Lu
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
| | - Xiaofei Zhu
- Department of Laboratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China.
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Giovanna Tosato
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892-1906, USA
| | - Shou-Jiang Gao
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Chun Lu
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China.
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, 210029, PR China.
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China.
| |
Collapse
|
23
|
Campbell M, Yang WS, Yeh WW, Kao CH, Chang PC. Epigenetic Regulation of Kaposi's Sarcoma-Associated Herpesvirus Latency. Front Microbiol 2020; 11:850. [PMID: 32508765 PMCID: PMC7248258 DOI: 10.3389/fmicb.2020.00850] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic γ-herpesvirus that infects humans and exhibits a biphasic life cycle consisting of latent and lytic phases. Following entry into host cells, the KSHV genome undergoes circularization and chromatinization into an extrachromosomal episome ultimately leading to the establishment of latency. The KSHV episome is organized into distinct chromatin domains marked by variations in repressive or activating epigenetic modifications, including DNA methylation, histone methylation, and histone acetylation. Thus, the development of KSHV latency is believed to be governed by epigenetic regulation. In the past decade, interrogation of the KSHV epitome by genome-wide approaches has revealed a complex epigenetic mark landscape across KSHV genome and has uncovered the important regulatory roles of epigenetic modifications in governing the development of KSHV latency. Here, we highlight many of the findings regarding the role of DNA methylation, histone modification, post-translational modification (PTM) of chromatin remodeling proteins, the contribution of long non-coding RNAs (lncRNAs) in regulating KSHV latency development, and the role of higher-order episomal chromatin architecture in the maintenance of latency and the latent-to-lytic switch.
Collapse
Affiliation(s)
- Mel Campbell
- UC Davis Cancer Center, University of California, Davis, Davis, CA, United States
| | - Wan-Shan Yang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Wayne W Yeh
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chen-Hsuan Kao
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Ching Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
24
|
Kaposi's Sarcoma-Associated Herpesvirus Infection Induces the Expression of Neuroendocrine Genes in Endothelial Cells. J Virol 2020; 94:JVI.01692-19. [PMID: 31969437 DOI: 10.1128/jvi.01692-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/14/2020] [Indexed: 12/30/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with endothelial Kaposi's sarcoma (KS) in immunocompromised individuals. KS lesion cells exhibit many similarities to neuroendocrine (NE) cancers, such as highly vascular and red/purple tumor lesions, spindle-shaped cells, an insignificant role for classic oncogenes in tumor development, the release of bioactive amines, and indolent growth of the tumors. However, the mechanistic basis for the similarity of KS lesion endothelial cells to neuroendocrine tumors remains unknown. Next-generation sequencing and bioinformatics analysis in the present study demonstrate that endothelial cells latently infected with KSHV express several neuronal and NE genes. De novo infection of primary dermal endothelial cells with live and UV-inactivated KSHV demonstrated that viral gene expression is responsible for the upregulation of five selected NE genes (adrenomedullin 2 [ADM2], histamine receptor H1 [HRH1], neuron-specific enolase [NSE] [ENO2], neuronal protein gene product 9.5 [PGP9.5], and somatostatin receptor 1 [SSTR1]). Immunofluorescence and immunohistochemistry examinations demonstrated the robust expression of the NE genes HRH1 and NSE/ENO2 in KSHV-infected KS tissue samples and KS visceral tissue microarrays. Further analysis demonstrated that KSHV latent open reading frame K12 (ORFK12) gene (kaposin A)-mediated decreased host REST/NRSF (RE1-silencing transcription factor/neuron-restrictive silencer factor) protein, a neuronal gene transcription repressor protein, is responsible for NE gene expression in infected endothelial cells. The NE gene expression observed in KSHV-infected cells was recapitulated in uninfected endothelial cells by the exogenous expression of ORFK12 and by the treatment of cells with the REST inhibitor X5050. When the neuroactive ligand-activating receptor HRH1 and inhibitory SSTR1 were knocked out by CRISPR, HRH1 knockout (KO) significantly inhibited cell proliferation, while SSTR1 KO induced cell proliferation, thus suggesting that HRH1 and SSTR1 probably counteract each other in regulating KSHV-infected endothelial cell proliferation. These results demonstrate that the similarity of KS lesion cells to neuroendocrine tumors is probably a result of KSHV infection-induced transformation of nonneuronal endothelial cells into cells with neuroendocrine features. These studies suggest a potential role of neuroendocrine pathway genes in the pathobiological characteristics of KSHV-infected endothelial cells, including a potential mechanism of escape from the host immune system by the expression of immunologically privileged neuronal-site NE genes, and NE genes could potentially serve as markers for KSHV-infected KS lesion endothelial cells as well as novel therapeutic targets to control KS lesions.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) manipulates several cellular pathways for its survival advantage during its latency in the infected human host. Here, we demonstrate that KSHV infection upregulates the expression of genes related to neuronal and neuroendocrine (NE) functions that are characteristic of NE tumors, both in vitro and in KS patient tissues and the heterogeneity of neuroendocrine receptors having opposing roles in KSHV-infected cell proliferation. Induction of NE genes by KSHV could also provide a potential survival advantage, as the expression of proteins at immunologically privileged sites such as neurons on endothelial cells may be an avenue to escape host immune surveillance functions. The NE gene products identified here could serve as markers for KSHV-infected cells and could potentially serve as therapeutic targets to combat KSHV-associated KS.
Collapse
|
25
|
Fröhlich J, Grundhoff A. Epigenetic control in Kaposi sarcoma-associated herpesvirus infection and associated disease. Semin Immunopathol 2020; 42:143-157. [PMID: 32219477 PMCID: PMC7174275 DOI: 10.1007/s00281-020-00787-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is the etiologic agent of several malignancies of endothelial and B-cell origin. The fact that latently infected tumor cells in these malignancies do not express classical viral oncogenes suggests that pathogenesis of KSHV-associated disease results from multistep processes that, in addition to constitutive viral gene expression, may require accumulation of cellular alterations. Heritable changes of the epigenome have emerged as an important co-factor that contributes to the pathogenesis of many non-viral cancers. Since KSHV encodes a number of factors that directly or indirectly manipulate host cell chromatin, it is an intriguing possibility that epigenetic reprogramming also contributes to the pathogenesis of KSHV-associated tumors. The fact that heritable histone modifications have also been shown to regulate viral gene expression programs in KSHV-infected tumor cells underlines the importance of epigenetic control during latency and tumorigenesis. We here review what is presently known about the role of epigenetic regulation of viral and host chromatin in KSHV infection and discuss how viral manipulation of these processes may contribute to the development of KSHV-associated disease.
Collapse
Affiliation(s)
- Jacqueline Fröhlich
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Adam Grundhoff
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.
| |
Collapse
|
26
|
Weidner-Glunde M, Kruminis-Kaszkiel E, Savanagouder M. Herpesviral Latency-Common Themes. Pathogens 2020; 9:E125. [PMID: 32075270 PMCID: PMC7167855 DOI: 10.3390/pathogens9020125] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/09/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Latency establishment is the hallmark feature of herpesviruses, a group of viruses, of which nine are known to infect humans. They have co-evolved alongside their hosts, and mastered manipulation of cellular pathways and tweaking various processes to their advantage. As a result, they are very well adapted to persistence. The members of the three subfamilies belonging to the family Herpesviridae differ with regard to cell tropism, target cells for the latent reservoir, and characteristics of the infection. The mechanisms governing the latent state also seem quite different. Our knowledge about latency is most complete for the gammaherpesviruses due to previously missing adequate latency models for the alpha and beta-herpesviruses. Nevertheless, with advances in cell biology and the availability of appropriate cell-culture and animal models, the common features of the latency in the different subfamilies began to emerge. Three criteria have been set forth to define latency and differentiate it from persistent or abortive infection: 1) persistence of the viral genome, 2) limited viral gene expression with no viral particle production, and 3) the ability to reactivate to a lytic cycle. This review discusses these criteria for each of the subfamilies and highlights the common strategies adopted by herpesviruses to establish latency.
Collapse
Affiliation(s)
- Magdalena Weidner-Glunde
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland; (E.K.-K.); (M.S.)
| | | | | |
Collapse
|
27
|
Weed DJ, Damania B. Pathogenesis of Human Gammaherpesviruses: Recent Advances. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 6:166-174. [PMID: 33134035 PMCID: PMC7597832 DOI: 10.1007/s40588-019-00127-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF THIS REVIEW Human gammaherpesviruses have complex lifecycles that drive their pathogenesis. KSHV and EBV are the etiological agents of multiple cancers worldwide. There is no FDA-approved vaccine for either KSHV or EBV. This review will describe recent progress in understanding EBV and KSHV lifecycles during infection. RECENT FINDINGS Determining how latency is established, particularly how non-coding RNAs influence latent and lytic infection, is a rapidly growing area of investigation into how gammaherpesviruses successfully persist in the human population. Many factors have been identified as restrictors of reactivation from latency, especially innate immune antagonism. Finally, new host proteins that play a role in lytic replication have been identified. SUMMARY In this review we discuss recent findings over the last 5 years on both host and viral factors that are involved in EBV and KSHV pathogenesis.
Collapse
Affiliation(s)
- Darin J Weed
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| |
Collapse
|
28
|
Han YC, Chen TT. A pathway-focused RT-qPCR array study on immune relevant genes in rainbow trout (Oncorhynchus mykiss) harboring cecropin P1 transgene. FISH & SHELLFISH IMMUNOLOGY 2019; 89:1-11. [PMID: 30902722 DOI: 10.1016/j.fsi.2019.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Recently, our laboratory had produced five families of transgenic rainbow trout harboring cecropin P1 transgene, and via repeated challenge studies these fish exhibited a significant elevation of resistance to infection by microbial pathogens. By cDNA microarray and mRNA deep sequencing (mRNA-seq) analyses on two of the five families of cecropin P1 transgenic fish, differentially expressed genes (DEGs) relevant to the innate and adaptive immune pathways in three different immune-related tissues, (i.e. spleen, kidney and liver) were profiled. These results supported our hypothesis that in addition to its direct microbicidal activity, the transgene product of cecropin P1 induces immunomodulatory activity in the transgenic host. Here, we have adapted the technique of quantitative reverse transcription real time PCR (RT-qPCR) array to analyze the expression of genes relevant to the innate and adaptive immune pathways in the rest three families. A RT-qPCR array was constructed with oligonucleotide primers of fifty-two innate/adaptive immune relevant DEGs shown to be the most perturbed by cecropin P1 transgene product in previous studies. Messenger RNA isolated from the spleen, kidney and liver of transgenic fish and non-transgenic fish control were studied on this array. Results of RT-qPCR array revealed that statistically significant perturbations of gene expression were detected in pathways of cytokine/chemokine signaling, Toll-like receptor signaling, complement cascade, antigen processing/presentation, lysosomal phagocytosis and leukocyte trans-endothelial migration in the transgenic spleen; extracellular matrix (ECM) organization and leukocyte trans-endothelial migration pathways in the transgenic kidney; lysosomal activity pathway in the transgenic liver. Furthermore, genes related to the pathways of the peroxisome proliferator-activated receptors (PPAR) signaling, lipid metabolism process and arachidonic acid metabolism were also impacted in the transgenic liver. Findings of the current study are in good agreement with those discoveries in previous two transgenic families by cDNA microarray and mRNA-seq analyses.
Collapse
Affiliation(s)
- Yueh-Chiang Han
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, United States.
| | - Thomas T Chen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, United States.
| |
Collapse
|
29
|
In Vivo Models of Oncoproteins Encoded by Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2019; 93:JVI.01053-18. [PMID: 30867309 DOI: 10.1128/jvi.01053-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human oncogenic virus. KSHV utilizes its proteins to modify the cellular environment to promote viral replication and persistence. Some of these proteins are oncogenic, modulating cell proliferation, apoptosis, angiogenesis, genome stability, and immune responses, among other cancer hallmarks. These changes can lead to the development of KSHV-associated malignancies. In this Gem, we focus on animal models of oncogenic KSHV proteins that were developed to enable better understanding of KSHV tumorigenesis.
Collapse
|
30
|
Yan L, Majerciak V, Zheng ZM, Lan K. Towards Better Understanding of KSHV Life Cycle: from Transcription and Posttranscriptional Regulations to Pathogenesis. Virol Sin 2019; 34:135-161. [PMID: 31025296 PMCID: PMC6513836 DOI: 10.1007/s12250-019-00114-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/14/2019] [Indexed: 02/08/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8 (HHV-8), is etiologically linked to the development of Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. These malignancies often occur in immunosuppressed individuals, making KSHV infection-associated diseases an increasing global health concern with persistence of the AIDS epidemic. KSHV exhibits biphasic life cycles between latent and lytic infection and extensive transcriptional and posttranscriptional regulation of gene expression. As a member of the herpesvirus family, KSHV has evolved many strategies to evade the host immune response, which help the virus establish a successful lifelong infection. In this review, we summarize the current research status on the biology of latent and lytic viral infection, the regulation of viral life cycles and the related pathogenesis.
Collapse
Affiliation(s)
- Lijun Yan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Vladimir Majerciak
- National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Zhi-Ming Zheng
- National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
31
|
Butnaru M, Gaglia MM. Transcriptional and post-transcriptional regulation of viral gene expression in the gamma-herpesvirus Kaposi's sarcoma-associated herpesvirus. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 5:219-228. [PMID: 30854283 DOI: 10.1007/s40588-018-0102-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Purpose of review Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent of the AIDS-associated tumor Kaposi's sarcoma, is a complex virus that expresses ~90 proteins in a regulated temporal cascade during its replication cycle. Although KSHV relies on cellular machinery for gene expression, it also uses specialized regulators to control nearly every step of the process. In this review we discuss the current understanding of KSHV gene regulation. Recent findings High-throughput sequencing and a new robust system to mutate KSHV have paved the way for comprehensive studies of KSHV gene expression, leading to the characterization of new viral factors that control late gene expression and post-transcriptional steps of gene regulation. They have also revealed key aspects of chromatin-based control of gene expression in the latent and lytic cycle. Summary The combination of mutant analysis and high-throughput sequencing will continue to expand our model of KSHV gene regulation and point to potential new targets for anti-KSHV drugs.
Collapse
Affiliation(s)
- Matthew Butnaru
- Graduate Program in Biochemistry, Sackler School of Biomedical Sciences, Tufts University, Boston, MA, USA
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA, USA
| | - Marta M Gaglia
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
32
|
Abstract
Kaposi sarcoma (KS) gained public attention as an AIDS-defining malignancy; its appearance on the skin was a highly stigmatizing sign of HIV infection during the height of the AIDS epidemic. The widespread introduction of effective antiretrovirals to control HIV by restoring immunocompetence reduced the prevalence of AIDS-related KS, although KS does occur in individuals with well-controlled HIV infection. KS also presents in individuals without HIV infection in older men (classic KS), in sub-Saharan Africa (endemic KS) and in transplant recipients (iatrogenic KS). The aetiologic agent of KS is KS herpesvirus (KSHV; also known as human herpesvirus-8), and viral proteins can induce KS-associated cellular changes that enable the virus to evade the host immune system and allow the infected cell to survive and proliferate despite viral infection. Currently, most cases of KS occur in sub-Saharan Africa, where KSHV infection is prevalent owing to transmission by saliva in childhood compounded by the ongoing AIDS epidemic. Treatment for early AIDS-related KS in previously untreated patients should start with the control of HIV with antiretrovirals, which frequently results in KS regression. In advanced-stage KS, chemotherapy with pegylated liposomal doxorubicin or paclitaxel is the most common treatment, although it is seldom curative. In sub-Saharan Africa, KS continues to have a poor prognosis. Newer treatments for KS based on the mechanisms of its pathogenesis are being explored.
Collapse
Affiliation(s)
- Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Blossom Damania
- Department of Microbiology and Immunology, Lineberger Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - Jeffrey Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Mark Bower
- National Centre for HIV Malignancy, Chelsea & Westminster Hospital, London, UK
| | - Denise Whitby
- Leidos Biomedical Research, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
33
|
Hussein HAM, Okafor IB, Walker LR, Abdel-Raouf UM, Akula SM. Cellular and viral oncogenes: the key to unlocking unknowns of Kaposi's sarcoma-associated herpesvirus pathogenesis. Arch Virol 2018; 163:2633-2643. [PMID: 29936609 DOI: 10.1007/s00705-018-3918-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023]
Abstract
Oncogenic viruses carry an extensive arsenal of oncogenes for hijacking cellular pathways. Notably, variations in oncogenes among tumor-producing viruses give rise to different mechanisms for cellular transformation. Specifically, Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus able to infect and transform a variety of cell types. The oncogenicity of KSHV disseminates from the virus' ability to induce and encode a wide variety of both cellular and viral oncogenes. Such an array of cellular and viral oncogenes enables KSHV to induce the malignant phenotype of a KSHV-associated cancer. Evolutionarily, KSHV has acquired many oncogenic homologues capable of inducing cell proliferation, cell differentiation, cell survival, and immune evasion. Integration between inducing and encoding oncogenes plays a vital role in KSHV pathogenicity. KSHV is alleged to harbor the highest number of potential oncogenes by which a virus promotes cellular transformation and malignancy. Many KSHV inducing/encoding oncogenes are mainly expressed during the latent phase of KSHV infection, a period required for virus establishment of malignant cellular transformation. Elucidation of the exact mechanism(s) by which oncogenes promote KSHV pathogenicity would not only give rise to potential novel therapeutic targets/drugs but would also add to our understanding of cancer biology. The scope of this review is to examine the roles of the most important cellular and viral oncogenes involved in KSHV pathogenicity.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Ikenna B Okafor
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Lia R Walker
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Usama M Abdel-Raouf
- Faculty of Science, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
34
|
Hesser CR, Karijolich J, Dominissini D, He C, Glaunsinger BA. N6-methyladenosine modification and the YTHDF2 reader protein play cell type specific roles in lytic viral gene expression during Kaposi's sarcoma-associated herpesvirus infection. PLoS Pathog 2018; 14:e1006995. [PMID: 29659627 PMCID: PMC5919695 DOI: 10.1371/journal.ppat.1006995] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/26/2018] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
Methylation at the N6 position of adenosine (m6A) is a highly prevalent and reversible modification within eukaryotic mRNAs that has been linked to many stages of RNA processing and fate. Recent studies suggest that m6A deposition and proteins involved in the m6A pathway play a diverse set of roles in either restricting or modulating the lifecycles of select viruses. Here, we report that m6A levels are significantly increased in cells infected with the oncogenic human DNA virus Kaposi's sarcoma-associated herpesvirus (KSHV). Transcriptome-wide m6A-sequencing of the KSHV-positive renal carcinoma cell line iSLK.219 during lytic reactivation revealed the presence of m6A across multiple kinetic classes of viral transcripts, and a concomitant decrease in m6A levels across much of the host transcriptome. However, we found that depletion of the m6A machinery had differential pro- and anti-viral impacts on viral gene expression depending on the cell-type analyzed. In iSLK.219 and iSLK.BAC16 cells the pathway functioned in a pro-viral manner, as depletion of the m6A writer METTL3 and the reader YTHDF2 significantly impaired virion production. In iSLK.219 cells the defect was linked to their roles in the post-transcriptional accumulation of the major viral lytic transactivator ORF50, which is m6A modified. In contrast, although the ORF50 mRNA was also m6A modified in KSHV infected B cells, ORF50 protein expression was instead increased upon depletion of METTL3, or, to a lesser extent, YTHDF2. These results highlight that the m6A pathway is centrally involved in regulating KSHV gene expression, and underscore how the outcome of this dynamically regulated modification can vary significantly between cell types.
Collapse
Affiliation(s)
- Charles R. Hesser
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States of America
| | - John Karijolich
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, CA, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Dan Dominissini
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, United States of America
- Chaim Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, United States of America
- Howard Hughes Medical Institute, Durham, NC, United States of America
| | - Britt A. Glaunsinger
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States of America
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, CA, United States of America
- Howard Hughes Medical Institute, Durham, NC, United States of America
| |
Collapse
|
35
|
Sethuraman S, Gay LA, Jain V, Haecker I, Renne R. microRNA dependent and independent deregulation of long non-coding RNAs by an oncogenic herpesvirus. PLoS Pathog 2017; 13:e1006508. [PMID: 28715488 PMCID: PMC5531683 DOI: 10.1371/journal.ppat.1006508] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/27/2017] [Accepted: 07/02/2017] [Indexed: 02/07/2023] Open
Abstract
Kaposi’s sarcoma (KS) is a highly prevalent cancer in AIDS patients, especially in sub-Saharan Africa. Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiological agent of KS and other cancers like Primary Effusion Lymphoma (PEL). In KS and PEL, all tumors harbor latent KSHV episomes and express latency-associated viral proteins and microRNAs (miRNAs). The exact molecular mechanisms by which latent KSHV drives tumorigenesis are not completely understood. Recent developments have highlighted the importance of aberrant long non-coding RNA (lncRNA) expression in cancer. Deregulation of lncRNAs by miRNAs is a newly described phenomenon. We hypothesized that KSHV-encoded miRNAs deregulate human lncRNAs to drive tumorigenesis. We performed lncRNA expression profiling of endothelial cells infected with wt and miRNA-deleted KSHV and identified 126 lncRNAs as putative viral miRNA targets. Here we show that KSHV deregulates host lncRNAs in both a miRNA-dependent fashion by direct interaction and in a miRNA-independent fashion through latency-associated proteins. Several lncRNAs that were previously implicated in cancer, including MEG3, ANRIL and UCA1, are deregulated by KSHV. Our results also demonstrate that KSHV-mediated UCA1 deregulation contributes to increased proliferation and migration of endothelial cells. KS is the most prevalent cancer associated with AIDS in sub-Saharan Africa, and is also common in males not affected by AIDS. KSHV manipulates human cells by targeting protein-coding genes and cell signaling. Here we show that KSHV alters the expression of hundreds of human lncRNAs, a broad class of regulatory molecules involved in a variety of cellular pathways including cell cycle and apoptosis. KSHV uses both latency proteins and miRNAs to target lncRNAs. miRNA-mediated targeting of lncRNAs is a novel regulatory mechanism of gene expression. Given that most herpesviruses encode miRNAs, this mechanism might be a common theme during herpesvirus infections. Understanding lncRNA deregulation by KSHV will help decipher the important molecular mechanisms underlying viral pathogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Sunantha Sethuraman
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Lauren Appleby Gay
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Vaibhav Jain
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Irina Haecker
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
36
|
Nayar U, Sadek J, Reichel J, Hernandez-Hopkins D, Akar G, Barelli PJ, Sahai MA, Zhou H, Totonchy J, Jayabalan D, Niesvizky R, Guasparri I, Hassane D, Liu Y, Sei S, Shoemaker RH, Warren JD, Elemento O, Kaye KM, Cesarman E. Identification of a nucleoside analog active against adenosine kinase-expressing plasma cell malignancies. J Clin Invest 2017; 127:2066-2080. [PMID: 28504647 PMCID: PMC5451239 DOI: 10.1172/jci83936] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 03/16/2017] [Indexed: 12/22/2022] Open
Abstract
Primary effusion lymphoma (PEL) is a largely incurable malignancy of B cell origin with plasmacytic differentiation. Here, we report the identification of a highly effective inhibitor of PEL. This compound, 6-ethylthioinosine (6-ETI), is a nucleoside analog with toxicity to PEL in vitro and in vivo, but not to other lymphoma cell lines tested. We developed and performed resistome analysis, an unbiased approach based on RNA sequencing of resistant subclones, to discover the molecular mechanisms of sensitivity. We found different adenosine kinase-inactivating (ADK-inactivating) alterations in all resistant clones and determined that ADK is required to phosphorylate and activate 6-ETI. Further, we observed that 6-ETI induces ATP depletion and cell death accompanied by S phase arrest and DNA damage only in ADK-expressing cells. Immunohistochemistry for ADK served as a biomarker approach to identify 6-ETI-sensitive tumors, which we documented for other lymphoid malignancies with plasmacytic features. Notably, multiple myeloma (MM) expresses high levels of ADK, and 6-ETI was toxic to MM cell lines and primary specimens and had a robust antitumor effect in a disseminated MM mouse model. Several nucleoside analogs are effective in treating leukemias and T cell lymphomas, and 6-ETI may fill this niche for the treatment of PEL, plasmablastic lymphoma, MM, and other ADK-expressing cancers.
Collapse
Affiliation(s)
| | | | | | | | - Gunkut Akar
- Department of Pathology and Laboratory Medicine
| | | | - Michelle A. Sahai
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
| | - Hufeng Zhou
- Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Ruben Niesvizky
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | | | - Duane Hassane
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Yifang Liu
- Department of Pathology and Laboratory Medicine
| | - Shizuko Sei
- Viral Vector Toxicology Section, Laboratory of Human Toxicology and Pharmacology, SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Robert H. Shoemaker
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | | | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
| | - Kenneth M. Kaye
- Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
37
|
Quantitative Analysis of the KSHV Transcriptome Following Primary Infection of Blood and Lymphatic Endothelial Cells. Pathogens 2017; 6:pathogens6010011. [PMID: 28335496 PMCID: PMC5371899 DOI: 10.3390/pathogens6010011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/07/2017] [Accepted: 03/15/2017] [Indexed: 12/14/2022] Open
Abstract
The transcriptome of the Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV8) after primary latent infection of human blood (BEC), lymphatic (LEC) and immortalized (TIME) endothelial cells was analyzed using RNAseq, and compared to long-term latency in BCBL-1 lymphoma cells. Naturally expressed transcripts were obtained without artificial induction, and a comprehensive annotation of the KSHV genome was determined. A set of unique coding sequence (UCDS) features and a process to resolve overlapping transcripts were developed to accurately quantitate transcript levels from specific promoters. Similar patterns of KSHV expression were detected in BCBL-1 cells undergoing long-term latent infections and in primary latent infections of both BEC and LEC cultures. High expression levels of poly-adenylated nuclear (PAN) RNA and spliced and unspliced transcripts encoding the K12 Kaposin B/C complex and associated microRNA region were detected, with an elevated expression of a large set of lytic genes in all latently infected cultures. Quantitation of non-overlapping regions of transcripts across the complete KSHV genome enabled for the first time accurate evaluation of the KSHV transcriptome associated with viral latency in different cell types. Hierarchical clustering applied to a gene correlation matrix identified modules of co-regulated genes with similar correlation profiles, which corresponded with biological and functional similarities of the encoded gene products. Gene modules were differentially upregulated during latency in specific cell types indicating a role for cellular factors associated with differentiated and/or proliferative states of the host cell to influence viral gene expression.
Collapse
|
38
|
Expression of the Antisense-to-Latency Transcript Long Noncoding RNA in Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2017; 91:JVI.01698-16. [PMID: 27928018 DOI: 10.1128/jvi.01698-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/30/2016] [Indexed: 01/08/2023] Open
Abstract
The regulation of latency is central to herpesvirus biology. Recent transcriptome-wide surveys have uncovered evidence for promiscuous transcription across the entirety of the Kaposi's sarcoma-associated herpesvirus (KSHV) genome and postulated the existence of multiple viral long noncoding RNAs (lncRNAs). Next-generation sequencing studies are highly dependent on the specific experimental approach and particular algorithms of analysis and therefore benefit from independent confirmation of the results. The antisense-to-latency transcript (ALT) lncRNA was discovered by genome-tiling microarray (Chandriani et al., J Virol 86:7934-7942, 2010, https://doi.org/10.1128/JVI.00645-10). To characterize ALT in detail, we physically isolated this lncRNA by a strand-specific hybrid capture assay and then employed transcriptome sequencing and novel reverse transcription-PCR (RT-PCR) assays to distinguish all RNA species in the KSHV latency region. These methods confirm that ALT initiates at positions 120739/121012 and encodes a single splice site, which is shared with the 3'-coterminal K14-vGPCR/ORF74 mRNA, terminating at 130873 (GenBank accession number GQ994935), resulting in an ∼10,000-nucleotide transcript. No shorter ALT isoforms were identified. This study also identified a novel intron within the LANA 5' untranslated region using a splice acceptor at 127888. In summary, ALT joins PAN/nut1/T1.1 as a bona fide lncRNA of KSHV with potentially important roles in viral gene regulation and pathogenesis. IMPORTANCE Increasing data support the importance of noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and lncRNAs, which have been shown to exert critical regulatory functions without coding for recognizable proteins. Defining the sequences of these ncRNAs is essential for future studies aiming to functionally characterize a specific ncRNA. Most lncRNA studies are highly dependent on high-throughput sequencing and bioinformatic analyses, few studies follow up on the initial predictions, and analyses are at times discordant. The manuscript characterizes one key viral lncRNA, ALT, by physically isolating ALT and by a sequencing-independent assay. It provides for a simple assay to monitor lncRNA expression in experimental and clinical samples. ALT is expressed antisense to the major viral latency transcripts encoding LANA as well as the viral miRNAs and thus has the potential to regulate this key part of the viral life cycle.
Collapse
|
39
|
The KSHV K1 Protein Modulates AMPK Function to Enhance Cell Survival. PLoS Pathog 2016; 12:e1005985. [PMID: 27829024 PMCID: PMC5102384 DOI: 10.1371/journal.ppat.1005985] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/07/2016] [Indexed: 12/27/2022] Open
Abstract
Kaposi’s sarcoma herpesvirus (KSHV) is the etiologic agent of Kaposi’s sarcoma (KS) as well as two lymphoproliferative diseases, primary effusion lymphoma and multicentric Castleman’s disease. KSHV encodes viral proteins, such as K1, that alter signaling pathways involved in cell survival. Expression of K1 has been reported to transform rodent fibroblasts, and K1 transgenic mice develop multiple tumors, suggesting that K1 has an important role in KSHV pathogenesis. We found that cells infected with a KSHV virus containing a WT K1 gene had a survival advantage under conditions of nutrient deprivation compared to cells infected with KSHV K1 mutant viruses. 5’ adenosine monophosphate-activated protein kinase (AMPK) responds to nutrient deprivation by maintaining energy homeostasis, and AMPK signaling has been shown to promote cell survival in various types of cancers. Under conditions of AMPK inhibition, we also observed that cells infected with KSHV containing a WT K1 gene had a survival advantage compared to KSHV K1 mutant virus infected cells. To explore the underpinnings of this phenotype, we identified K1-associated cellular proteins by tandem affinity purification and mass spectrometry. We found that the KSHV K1 protein associates with the gamma subunit of AMPK (AMPKγ1). We corroborated this finding by independently confirming that K1 co-immunoprecipitates with AMPKγ1. Co-immunoprecipitations of wild-type K1 (K1WT) or K1 domain mutants and AMPKγ1, revealed that the K1 N-terminus is important for the association between K1 and AMPKγ1. We propose that the KSHV K1 protein promotes cell survival via its association with AMPKγ1 following exposure to stress. Infectious agents such as Kaposi’s sarcoma associated herpesvirus (KSHV) are etiologic agents of human cancer. KSHV-infected cells must survive various environmental stresses. Cells infected with KSHV express viral proteins that alter normal cellular processes to promote cell survival and viral persistence. We found that the KSHV K1 protein promotes survival under conditions of cellular stress, and that this survival advantage is at least partially dependent on the association of K1 and the cellular protein AMP-activated protein kinase (AMPK). We also observed increased AMPK activity in K1-expressing cells compared to EV following exposure to metabolic stress. Several reports suggest that AMPK signaling may contribute to tumor development by promoting cell survival. Our results suggest that KSHV K1 modulates cellular AMPK function to enhance the survival of KSHV-infected cells in order to promote viral persistence.
Collapse
|
40
|
Abere B, Schulz TF. KSHV non-structural membrane proteins involved in the activation of intracellular signaling pathways and the pathogenesis of Kaposi's sarcoma. Curr Opin Virol 2016; 20:11-19. [DOI: 10.1016/j.coviro.2016.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 11/30/2022]
|
41
|
Juillard F, Tan M, Li S, Kaye KM. Kaposi's Sarcoma Herpesvirus Genome Persistence. Front Microbiol 2016; 7:1149. [PMID: 27570517 PMCID: PMC4982378 DOI: 10.3389/fmicb.2016.01149] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/11/2016] [Indexed: 12/17/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) has an etiologic role in Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. These diseases are most common in immunocompromised individuals, especially those with AIDS. Similar to all herpesviruses, KSHV infection is lifelong. KSHV infection in tumor cells is primarily latent, with only a small subset of cells undergoing lytic infection. During latency, the KSHV genome persists as a multiple copy, extrachromosomal episome in the nucleus. In order to persist in proliferating tumor cells, the viral genome replicates once per cell cycle and then segregates to daughter cell nuclei. KSHV only expresses several genes during latent infection. Prominent among these genes, is the latency-associated nuclear antigen (LANA). LANA is responsible for KSHV genome persistence and also exerts transcriptional regulatory effects. LANA mediates KSHV DNA replication and in addition, is responsible for segregation of replicated genomes to daughter nuclei. LANA serves as a molecular tether, bridging the viral genome to mitotic chromosomes to ensure that KSHV DNA reaches progeny nuclei. N-terminal LANA attaches to mitotic chromosomes by binding histones H2A/H2B at the surface of the nucleosome. C-terminal LANA binds specific KSHV DNA sequence and also has a role in chromosome attachment. In addition to the essential roles of N- and C-terminal LANA in genome persistence, internal LANA sequence is also critical for efficient episome maintenance. LANA’s role as an essential mediator of virus persistence makes it an attractive target for inhibition in order to prevent or treat KSHV infection and disease.
Collapse
Affiliation(s)
- Franceline Juillard
- Departments of Medicine, Brigham and Women's Hospital, Harvard Medical School Boston, MA, USA
| | - Min Tan
- Departments of Medicine, Brigham and Women's Hospital, Harvard Medical School Boston, MA, USA
| | - Shijun Li
- Departments of Medicine, Brigham and Women's Hospital, Harvard Medical School Boston, MA, USA
| | - Kenneth M Kaye
- Departments of Medicine, Brigham and Women's Hospital, Harvard Medical School Boston, MA, USA
| |
Collapse
|
42
|
The K1 Protein of Kaposi's Sarcoma-Associated Herpesvirus Augments Viral Lytic Replication. J Virol 2016; 90:7657-66. [PMID: 27307571 PMCID: PMC4988170 DOI: 10.1128/jvi.03102-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/20/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The K1 gene product of Kaposi's sarcoma-associated herpesvirus (KSHV) is encoded by the first open reading frame (ORF) of the viral genome. To investigate the role of the K1 gene during the KSHV life cycle, we constructed a set of recombinant viruses that contained either wild-type (WT) K1, a deleted K1 ORF (KSHVΔK1), stop codons within the K1 ORF (KSHV-K15×STOP), or a revertant K1 virus (KSHV-K1REV). We report that the recombinant viruses KSHVΔK1 and KSHV-K15×STOP displayed significantly reduced lytic replication compared to WT KSHV and KSHV-K1REV upon reactivation from latency. Additionally, cells infected with the recombinant viruses KSHVΔK1 and KSHV-K15×STOP also yielded smaller amounts of infectious progeny upon reactivation than did WT KSHV- and KSHV-K1REV-infected cells. Upon reactivation from latency, WT KSHV- and KSHV-K1REV-infected cells displayed activated Akt kinase, as evidenced by its phosphorylation, while cells infected with viruses deleted for K1 showed reduced phosphorylation and activation of Akt kinase. Overall, our results suggest that K1 plays an important role during the KSHV life cycle. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of three human malignancies, and KSHV K1 is a signaling protein that has been shown to be involved in cellular transformation and to activate the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR pathway. In order to investigate the role of the K1 protein in the life cycle of KSHV, we constructed recombinant viruses that were deficient for K1. We found that K1 deletion viruses displayed reduced lytic replication compared to the WT virus and also yielded smaller numbers of infectious progeny. We report that K1 plays an important role in the life cycle of KSHV.
Collapse
|
43
|
Abstract
Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) is an oncogenic human herpesvirus. KSHV is associated with three cancers in the human population: KS, primary effusion lymphoma (PEL), and multicentric Castleman’s disease (MCD). KS is the leading cause of cancer in HIV-infected individuals. In this review, we discuss the most recent discoveries behind the mechanisms of KSHV latency maintenance and lytic replication. We also review current therapies for KSHV-associated cancers.
Collapse
Affiliation(s)
- Nathan J Dissinger
- Lineberger Comprehensive Cancer Center and Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center and Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
44
|
Fellahi S, Harrak ME, Kuhn JH, Sebbar G, Bouaiti EA, Khataby K, Fihri OF, Houadfi ME, Ennaji MM. Comparison of SYBR green I real-time RT-PCR with conventional agarose gel-based RT-PCR for the diagnosis of infectious bronchitis virus infection in chickens in Morocco. BMC Res Notes 2016; 9:231. [PMID: 27106608 PMCID: PMC4841946 DOI: 10.1186/s13104-016-2037-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/11/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND A rapid, sensitive, and specific molecular method for the diagnosis of infectious bronchitis virus (IBV) infection is important in curbing infectious bronchitis outbreaks in Morocco and other countries. METHODS In this study, an easy-to-perform SYBR green I real-time reverse transcriptase polymerase chain reaction (RT-PCR) targeting the nucleocapsid gene of IBV was developed and compared with conventional agarose gel-based RT-PCR for the detection of IBV infection. RESULTS We found that the SYBR green I real-time RT-PCR was at least 10 times more sensitive than the agarose gel electrophoresis detection method. The assay exhibited high specificity for IBV infection. All negative controls, such as Newcastle disease virus, infectious bursal disease virus, and avian influenza virus, were not detected. CONCLUSION The SYBR green I real-time RT-PCR test described herein can be used to rapidly distinguish IBV from other respiratory pathogens, which is important for diagnosis and control of infectious bronchitis outbreaks in Morocco. The test is a valuable and useful method as a routine assay for diagnosis of clinical IBV infection in commercial chickens.
Collapse
Affiliation(s)
- Siham Fellahi
- />Unit of Avian Pathology, Agronomic and Veterinary Institute Hassan II, B.P. 6202, Rabat, Morocco
- />Laboratory of Virology, Microbiology and Quality/Ecotoxicology & Biodiversity, Faculty of Sciences and Techniques-University Hassan II Mohammedia, PO Box 146, Quartier Yasmina-Mohammedia, 20650 Casablanca, Morocco
| | - Mehdi El Harrak
- />Laboratory of Molecular Biology-Society of Biological Products and Veterinary Pharmaceuticals (Biopharma), B.P. 4569, Km 2, Route de Casa, Rabat, Morocco
| | - Jens H. Kuhn
- />Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702 USA
| | - Ghizlane Sebbar
- />Laboratory of Molecular Biology-Society of Biological Products and Veterinary Pharmaceuticals (Biopharma), B.P. 4569, Km 2, Route de Casa, Rabat, Morocco
| | - El Arbi Bouaiti
- />Laboratory of Epidemiology and Clinical Research. Faculty of Medicine, B.P. 1014, 4, Avenue Ibn Battouta, Rabat, Morocco
| | - Khadija Khataby
- />Laboratory of Virology, Microbiology and Quality/Ecotoxicology & Biodiversity, Faculty of Sciences and Techniques-University Hassan II Mohammedia, PO Box 146, Quartier Yasmina-Mohammedia, 20650 Casablanca, Morocco
| | - Ouafae Fassi Fihri
- />Unit of Avian Pathology, Agronomic and Veterinary Institute Hassan II, B.P. 6202, Rabat, Morocco
| | - Mohammed El Houadfi
- />Unit of Avian Pathology, Agronomic and Veterinary Institute Hassan II, B.P. 6202, Rabat, Morocco
| | - My Mustapha Ennaji
- />Laboratory of Virology, Microbiology and Quality/Ecotoxicology & Biodiversity, Faculty of Sciences and Techniques-University Hassan II Mohammedia, PO Box 146, Quartier Yasmina-Mohammedia, 20650 Casablanca, Morocco
| |
Collapse
|
45
|
Kaposi's Sarcoma-Associated Herpesvirus Interleukin-6 Modulates Endothelial Cell Movement by Upregulating Cellular Genes Involved in Migration. mBio 2015; 6:e01499-15. [PMID: 26646010 PMCID: PMC4676281 DOI: 10.1128/mbio.01499-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of human Kaposi’s sarcoma, a tumor that arises from endothelial cells, as well as two B cell lymphoproliferative diseases, primary effusion lymphoma and multicentric Castleman’s disease. KSHV utilizes a variety of mechanisms to evade host immune responses and promote cellular transformation and growth in order to persist for the life of the host. A viral homolog of human interleukin-6 (hIL-6) named viral interleukin-6 (vIL-6) is encoded by KSHV and expressed in KSHV-associated cancers. Similar to hIL-6, vIL-6 is secreted, but the majority of vIL-6 is retained within the endoplasmic reticulum, where it can initiate functional signaling through part of the interleukin-6 receptor complex. We sought to determine how intracellular vIL-6 modulates the host endothelial cell environment by analyzing vIL-6’s impact on the endothelial cell transcriptome. vIL-6 significantly altered the expression of many cellular genes associated with cell migration. In particular, vIL-6 upregulated the host factor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) at the protein and message levels. CEACAM1 has been implicated in tumor invasion and metastasis and promotes migration and vascular remodeling in endothelial cells. We report that vIL-6 upregulates CEACAM1 by a STAT3-dependent mechanism and that CEACAM1 promotes vIL-6-mediated migration. Furthermore, latent and de novo KSHV infections of endothelial cells also induce CEACAM1 expression. Collectively, our data suggest that vIL-6 modulates endothelial cell migration by upregulating the expression of cellular factors, including CEACAM1. Kaposi’s sarcoma-associated herpesvirus (KSHV) is linked with the development of three human malignancies, Kaposi’s sarcoma, multicentric Castleman’s disease, and primary effusion lymphoma. KSHV expresses many factors that enable the virus to manipulate the host environment in order to persist and induce disease. The viral interleukin-6 (vIL-6) produced by KSHV is structurally and functionally homologous to the human cytokine interleukin-6, except that vIL-6 is secreted slowly and functions primarily from inside the host cell. To investigate the unique intracellular role of vIL-6, we analyzed the impact of vIL-6 on endothelial cell gene expression. We report that vIL-6 significantly alters the expression of genes associated with cell movement, including that for CEACAM1. The gene for CEACAM1 was upregulated by vIL-6 and by latent and primary KSHV infection and promotes vIL-6-mediated endothelial cell migration. This work advances the field’s understanding of vIL-6 function and its contribution to KSHV pathogenesis.
Collapse
|
46
|
Sousa-Squiavinato ACM, Silvestre RN, Elgui De Oliveira D. Biology and oncogenicity of the Kaposi sarcoma herpesvirus K1 protein. Rev Med Virol 2015; 25:273-85. [PMID: 26192396 DOI: 10.1002/rmv.1843] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 12/30/2022]
Abstract
The Kaposi sarcoma-associated herpesvirus (KSHV), or human herpesvirus 8, is a gammaherpesvirus etiologically linked to the development of Kaposi sarcoma, primary effusion lymphomas, and multicentric Castleman disease in humans. KSHV is unique among other human herpesviruses because of the elevated number of viral products that mimic human cellular proteins, such as a viral cyclin, a viral G protein-coupled receptor, anti-apoptotic proteins (e.g., v-bcl2 and v-FLIP), viral interferon regulatory factors, and CC chemokine viral homologues. Several KSHV products have oncogenic properties, including the transmembrane K1 glycoprotein. KSHV K1 is encoded in the viral ORFK1, which is the most variable portion of the viral genome, commonly used to discriminate among viral genotypes. The extracellular region of K1 has homology with the light chain of lambda immunoglobulin, and its cytoplasmic region contains an immunoreceptor tyrosine-based activation motif (ITAM). KSHV K1 ITAM activates several intracellular signaling pathways, notably PI3K/AKT. Consequently, K1 expression inhibits proapoptotic proteins and increases the life-span of KSHV-infected cells. Another remarkable effect of K1 activity is the production of inflammatory cytokines and proangiogenic factors, such as vascular endothelial growth factor. KSHV K1 immortalizes primary human endothelial cells and transforms rodent fibroblasts in vitro; moreover, K1 induces tumors in vivo in transgenic mice expressing this viral protein. This review aims to consolidate and discuss the current knowledge on this intriguing KSHV protein, focusing on activities of K1 that can contribute to the pathogenesis of KSHV-associated human cancers.
Collapse
Affiliation(s)
| | - Renata Nacasaki Silvestre
- Viral Carcinogenesis and Cancer Biology Research Group (ViriCan) at Botucatu Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Deilson Elgui De Oliveira
- Viral Carcinogenesis and Cancer Biology Research Group (ViriCan) at Botucatu Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil.,Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
47
|
New Noncoding Lytic Transcripts Derived from the Epstein-Barr Virus Latency Origin of Replication, oriP, Are Hyperedited, Bind the Paraspeckle Protein, NONO/p54nrb, and Support Viral Lytic Transcription. J Virol 2015; 89:7120-32. [PMID: 25926645 DOI: 10.1128/jvi.00608-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/22/2015] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED We have previously shown that the Epstein-Barr virus (EBV) likely encodes hundreds of viral long noncoding RNAs (vlncRNAs) that are expressed during reactivation. Here we show that the EBV latency origin of replication (oriP) is transcribed bi-directionally during reactivation and that both leftward (oriPtLs) and rightward (oriPtRs) transcripts are largely localized in the nucleus. While the oriPtLs are most likely noncoding, at least some of the oriPtRs contain the BCRF1/vIL10 open reading frame. Nonetheless, oriPtR transcripts with long 5' untranslated regions may partially serve noncoding functions. Both oriPtL and oriPtR transcripts are expressed with late kinetics, and their expression is inhibited by phosphonoacetic acid. RNA sequencing (RNA-seq) analysis showed that oriPtLs and oriPtRs exhibited extensive "hyperediting" at their Family of Repeat (FR) regions. RNA secondary structure prediction revealed that the FR region of both oriPtLs and oriPtRs may form large evolutionarily conserved and thermodynamically stable hairpins. The double-stranded RNA-binding protein and RNA-editing enzyme ADAR was found to bind to oriPtLs, likely facilitating editing of the FR hairpin. Further, the multifunctional paraspeckle protein, NONO, was found to bind to oriPt transcripts, suggesting that oriPts interact with the paraspeckle-based innate antiviral immune pathway. Knockdown and ectopic expression of oriPtLs showed that it contributes to global viral lytic gene expression and viral DNA replication. Together, these results show that these new vlncRNAs interact with cellular innate immune pathways and that they help facilitate progression of the viral lytic cascade. IMPORTANCE Recent studies have revealed that the complexity of lytic herpesviral transcriptomes is significantly greater than previously appreciated with hundreds of viral long noncoding RNAs (vlncRNAs) being recently discovered. Work on cellular lncRNAs over the past several years has just begun to give us an initial appreciation for the array of functions they play in complex formation and regulatory processes in the cell. The newly identified herpesvirus lncRNAs are similarly likely to play a variety of different functions, although these functions are likely tailored to specific needs of the viral infection cycles. Here we describe novel transcripts derived from the EBV latency origin of replication. We show that they are hyperedited, that they interact with a relatively newly appreciated antiviral pathway, and that they play a role in facilitating viral lytic gene expression. These investigations are a starting point to unraveling the complex arena of vlncRNA function in herpesvirus lytic replication.
Collapse
|
48
|
Gramolelli S, Schulz TF. The role of Kaposi sarcoma-associated herpesvirus in the pathogenesis of Kaposi sarcoma. J Pathol 2015; 235:368-80. [PMID: 25212381 DOI: 10.1002/path.4441] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/05/2014] [Accepted: 09/06/2014] [Indexed: 01/07/2023]
Abstract
Kaposi sarcoma (KS) is an unusual vascular tumour caused by an oncogenic-herpesvirus, Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV 8). KS lesions are characterized by an abundant inflammatory infiltrate, the presence of KSHV-infected endothelial cells that show signs of aberrant differentiation, as well as faulty angiogenesis/ vascularization. Here we discuss the molecular mechanisms that lead to the development of these histological features of KS, with an emphasis on the viral proteins that are responsible for their development.
Collapse
Affiliation(s)
- Silvia Gramolelli
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany; German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | | |
Collapse
|
49
|
Abstract
MiRNAs regulate gene expression by binding predominantly to the 3' untranslated region (UTR) of target transcripts to prevent their translation and/or induce target degradation. In addition to the more than 1200 human miRNAs, human DNA tumor viruses such as Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) encode miRNAs. Target predictions indicate that each miRNA targets hundreds of transcripts, many of which are regulated by multiple miRNAs. Thus, target identification is a big challenge for the field. Most methods used currently investigate single miRNA-target interactions and are not able to analyze complex miRNA-target networks. To overcome these challenges, cross-linking and immunoprecipitation (CLIP), a recently developed method to study direct RNA-protein interactions in living cells, has been successfully applied to miRNA target analysis. It utilizes Argonaute (Ago)-immunoprecipitation to isolate native Ago-miRNA-mRNA complexes. In four recent publications, two variants of the CLIP method (HITS-CLIP and PAR-CLIP) were utilized to determine the targetomes of human and viral miRNAs in cells infected with the gamma-herpesviruses KSHV and EBV, which are associated with a number of human cancers. Here, we briefly introduce herpesvirus-encoded miRNAs and then focus on how CLIP technology has largely impacted our understanding of viral miRNAs in viral biology and pathogenesis.
Collapse
Affiliation(s)
- Irina Haecker
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, Shands Cancer Center, Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
50
|
Kaposi's sarcoma-associated herpesvirus microRNAs repress breakpoint cluster region protein expression, enhance Rac1 activity, and increase in vitro angiogenesis. J Virol 2015; 89:4249-61. [PMID: 25631082 DOI: 10.1128/jvi.03687-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED MicroRNAs (miRNAs) are small, ∼ 22-nucleotide-long RNAs that regulate gene expression posttranscriptionally. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes 12 pre-miRNAs during latency, and the functional significance of these microRNAs during KSHV infection and their cellular targets have been emerging recently. Using a previously reported microarray profiling analysis, we identified breakpoint cluster region mRNA (Bcr) as a cellular target of the KSHV miRNA miR-K12-6-5p (miR-K6-5). Bcr protein levels were repressed in human umbilical vein endothelial cells (HUVECs) upon transfection with miR-K6-5 and during KSHV infection. Luciferase assays wherein the Bcr 3' untranslated region (UTR) was cloned downstream of a luciferase reporter showed repression in the presence of miR-K6-5, and mutation of one of the two predicted miR-K6-5 binding sites relieved this repression. Furthermore, inhibition or deletion of miR-K6-5 in KSHV-infected cells showed increased Bcr protein levels. Together, these results show that Bcr is a direct target of the KSHV miRNA miR-K6-5. To understand the functional significance of Bcr knockdown in the context of KSHV-associated disease, we hypothesized that the knockdown of Bcr, a negative regulator of Rac1, might enhance Rac1-mediated angiogenesis. We found that HUVECs transfected with miR-K6-5 had increased Rac1-GTP levels and tube formation compared to HUVECs transfected with control miRNAs. Knockdown of Bcr in latently KSHV-infected BCBL-1 cells increased the levels of viral RTA, suggesting that Bcr repression by KSHV might aid lytic reactivation. Together, our results reveal a new function for both KSHV miRNAs and Bcr in KSHV infection and suggest that KSHV miRNAs, in part, promote angiogenesis and lytic reactivation. IMPORTANCE Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) infection is linked to multiple human cancers and lymphomas. KSHV encodes small nucleic acids (microRNAs) that can repress the expression of specific human genes, the biological functions of which are still emerging. This report uses a variety of approaches to show that a KSHV microRNA represses the expression of the human gene called breakpoint cluster region (Bcr). Repression of Bcr correlated with the activation of a protein previously shown to cause KS-like lesions in mice (Rac1), an increase in KS-associated phenotypes (tube formation in endothelial cells and vascular endothelial growth factor [VEGF] synthesis), and modification of the life cycle of the virus (lytic replication). Our results suggest that KSHV microRNAs suppress host proteins and contribute to KS-associated pathogenesis.
Collapse
|