1
|
Deng Y, Navarro-Forero S, Yang Z. Temporal expression classes and functions of vaccinia virus and mpox (monkeypox) virus genes. mBio 2025; 16:e0380924. [PMID: 40111027 PMCID: PMC11980589 DOI: 10.1128/mbio.03809-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Poxviruses comprise pathogens that are highly pathogenic to humans and animals, causing diseases such as smallpox and mpox (formerly monkeypox). The family also contains members developed as vaccine vectors and oncolytic agents to fight other diseases. Vaccinia virus is the prototype poxvirus and the vaccine used to eradicate smallpox. Poxvirus genes follow a cascade temporal expression pattern, categorized into early, intermediate, and late stages using distinct transcription factors. This review comprehensively summarized the temporal expression classification of over 200 vaccinia virus genes. The relationships between expression classes and functions, as well as different branches of immune responses, were discussed. Based on the vaccinia virus orthologs, we classified the temporal expression classes of all the mpox virus genes, including a few that were not previously annotated with orthologs in vaccinia viruses. Additionally, we reviewed the functions of all vaccinia virus genes based on the up-to-date published papers. This review provides a readily usable resource for researchers working on poxvirus biology, medical countermeasures, and poxvirus utility development.
Collapse
Affiliation(s)
- Yining Deng
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Santiago Navarro-Forero
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Zhilong Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Huang IH, Lai GC, Chao TL, Liu WD, Chang SY, Chang SC. Monkeypox virus H3L protein as the target antigen for developing neutralizing antibody and serological assay. Appl Microbiol Biotechnol 2025; 109:80. [PMID: 40172630 PMCID: PMC11965195 DOI: 10.1007/s00253-025-13466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025]
Abstract
The large number of atypical monkeypox (Mpox) cases caused by emerging monkeypox virus (MPXV) strains was recently found in countries and regions where the Mpox was not reported before. Diagnostic tools and therapeutic agents are important countermeasures for preventing Mpox outbreak. H3L protein is the important surface antigen of MPXV for binding to host cell receptors and mediating viral infection. A broad range of murine anti-MPXV H3L monoclonal antibodies (mAbs) recognizing various binding epitopes have been generated in the study. The rapid test composed of the mAbs 4-2A and 3-3F can specifically detect H3L protein and MPXV virion. The mAb 3-3F exhibited strong MPXV neutralizing activity in a complement-dependent manner. Notably, 3-3F binds to a unique epitope within residues 35-89 of H3L protein. The serum samples collected from Mpox patients barely bound to the N-terminal portion of H3L protein ranging from 2 to 89 residues, indicating that the content of the 3-3F-like antibody is very low in Mpox patient sera. In contrast, the seropositivity was mostly observed using the C-terminal portion of H3L protein ranging from 185 to 282 residues as the target antigen in the immunoblot analysis. Taken together, the anti-MPXV H3L mAb can be developed as the Mpox diagnostic and therapeutic agents. Furthermore, H3L protein is the promising biomarker for serological analysis. KEY POINTS: •Anti-H3L mAbs can cross-react with H3L proteins in MPXV and VACV virions. •The LFIA rapid test using the mAbs 4-2A and 3-3F can specifically detect MPXV. •MPXV was neutralized by mAb 3-3F in a complement-dependent manner.
Collapse
Affiliation(s)
- I-Hsiang Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Guan-Chun Lai
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Wang-Da Liu
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
- Department of Medicine, National Taiwan University Cancer Center, Taipei , 106, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
| | - Shih-Chung Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan.
- Center of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
3
|
Nikitin VN, Merkuleva IA, Shcherbakov DN. Monoclonal Antibodies in Light of Mpox Outbreak: Current Research, Therapeutic Targets, and Animal Models. Antibodies (Basel) 2025; 14:20. [PMID: 40136469 PMCID: PMC11939467 DOI: 10.3390/antib14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
The rapid rise in monkeypox virus infections among humans from 2022 to 2024 has captured the attention of the global healthcare community. In light of the lack of mandatory vaccination and limited data on next-generation vaccines for monkeypox prevention, the urgent development of therapeutic agents has become a priority. One promising approach involves the use of neutralizing monoclonal antibodies. This review highlights significant advancements in the search for antibodies against human pathogenic orthopoxviruses, particularly focusing on their potential application against the monkeypox virus. We also analyze viral proteins that serve as targets for identifying therapeutic antibodies capable of neutralizing a wide range of viruses. Finally, we deemed it essential to address the challenges associated with selecting an animal model that can adequately reflect the infectious process of each orthopoxvirus species in humans.
Collapse
Affiliation(s)
| | - Iuliia A. Merkuleva
- State Research Center of Virology and Biotechnology Vector, Rospotrebnadzor, Koltsovo 630559, Russia; (V.N.N.); (D.N.S.)
| | | |
Collapse
|
4
|
Teffera M, Boshra H, Bowden TR, Babiuk S. Which Proteins? The Challenge of Identifying the Protective Antigens for Next-Generation Capripoxvirus Vaccines. Vaccines (Basel) 2025; 13:219. [PMID: 40266091 PMCID: PMC11946534 DOI: 10.3390/vaccines13030219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 04/24/2025] Open
Abstract
Sheeppox, goatpox, and lumpy skin disease continue to negatively impact the sheep, goat, and cattle industries in countries where these diseases are present and threaten to spread into new regions. Effective vaccines are available for disease control and eradication. However, commercial vaccines are based on live attenuated virus isolates and therefore it is not currently possible to differentiate between infected and vaccinated animals (DIVA), which severely limits the use of these vaccines in countries that are free from disease and at risk of an incursion. The development of next-generation vaccines, including recombinant protein, viral-vectored, and mRNA, has been limited due to the lack of understanding of the protective antigen(s) of capripoxviruses. The complexity of capripoxviruses, with up to 156 open reading frames, makes the identification of protective antigen(s) difficult. This paper identifies the most promising antigens by first considering the membrane-associated proteins and then further selecting proteins based on immunogenicity and their role in immunity by comparing them to known orthopoxvirus homologues. From the 156 potential antigens, 13 have been identified as being the most likely to be protective. Further evaluation of these proteins, as immunogens, would be required to identify the optimal combination of immunodominant antigen(s) for the development of next-generation capripoxvirus vaccines.
Collapse
Affiliation(s)
- Mahder Teffera
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada;
| | - Hani Boshra
- Department of Pathology, Fundamental and Applied Research for Animals and Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium;
| | - Timothy R. Bowden
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness (ACDP), East Geelong, VIC 3219, Australia;
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada;
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
5
|
Ren Z, Li M, Chen J, Gong X, Song S, Li D, Yang M, Yu J, Asghar S, Cui Y, Niu S, Liao Z, Jiang Y, Liu J, Li Y, Zhang B, Zhao W, Peng J, Yang Y, Shen C. Identification of mpox M1R and B6R monoclonal and bispecific antibodies that efficiently neutralize authentic mpox virus. Emerg Microbes Infect 2024; 13:2401931. [PMID: 39233480 DOI: 10.1080/22221751.2024.2401931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
In 2022, the monkeypox virus (mpox virus, MPXV) exhibited global dissemination across six continents, representing a notable challenge owing to the scarcity of targeted antiviral interventions. Passive immunotherapy, such as the use of monoclonal antibodies (mAbs) and bispecific antibodies (bsAbs), has emerged as a promising option for antiviral regimens. Here, we generated several mAbs against M1R and B6R of MPXV, and subsequently characterized the antiviral activity of these antibodies both in vitro and in vivo. Two neutralizing mAbs, M1H11 and M3B2, targeting M1R, and one B6R-specific mAb, B7C9, were identified. They exhibited varying antiviral efficacy against vaccinia virus (VACV) in vitro and in vivo. A cocktail comprising M1H11 and M3B2 demonstrated a superior protective effect in vivo. A bsAb, Bis-M1M3, was engineered by conjugating the fragment crystallizable (Fc) region of the human-mouse chimeric engineered M1H11 with the single-chain fragment variable (scFv) of M3B2. In mice challenged with MPXV, Bis-M1M3 showed a notable protective effects. Analysis of neutralization mechanism showed that these mAbs and Bis-M1M3 exerted virus-neutralizing effects before the virus infects cells. In vivo pharmacokinetic experiments showed that Bis-M1M3 has a long half-life in rhesus macaques. This study provides crucial insights for further research on broad-spectrum antiviral drugs against MPXV and other orthopoxviruses.
Collapse
Affiliation(s)
- Zuning Ren
- State Key Laboratory of Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Mengjun Li
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jiayin Chen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaohua Gong
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Shuo Song
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Delin Li
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China
| | - Minghui Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Jianhai Yu
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Sadia Asghar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Yanxin Cui
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Shiyu Niu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Zhonghui Liao
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Yushan Jiang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jiahui Liu
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yuqing Li
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Bao Zhang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jie Peng
- State Key Laboratory of Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Chenguang Shen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Key Laboratory of Infectious Diseases Research in South China, Southern Medical University, Ministry of Education, People's Republic of China
| |
Collapse
|
6
|
Liang CY, Chao TL, Chao CS, Liu WD, Cheng YC, Chang SY, Chang SC. Monkeypox virus A29L protein as the target for specific diagnosis and serological analysis. Appl Microbiol Biotechnol 2024; 108:522. [PMID: 39570405 PMCID: PMC11582270 DOI: 10.1007/s00253-024-13361-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/30/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
The unexpected monkeypox (Mpox) outbreak has been reported in many non-endemic countries and regions since May 2022. The mutant strains of Mpox virus (MPXV) were found with higher infectivity and greater capability for sustained human-to-human transmission, posing a significant public health threat. MPXV A29L, a protein homolog of vaccinia virus (VACV) A27L, plays an important role in viral attachment to host cell membranes. Therefore, MPXV A29L is considered the diagnostic target and the potential vaccine candidate for eliciting neutralizing antibodies and protective immune responses. In response to the escalating Mpox outbreak, three monoclonal antibodies (mAbs) (2-9B, 3-8G, and 2-5H) targeting the different domains of MPXV A29L have been developed in the study. Among them, 2-5H is highly specific for MPXV A29L without exhibiting cross-reactivity with VACV A27L. The antibody pairing composed of 2-5H and 3-8G has been developed as the lateral flow immunochromatographic assay for specific detection of MPXV A29L. However, these three mAbs were unable to inhibit A29L binding to heparin column or prevent MPXV infection in the neutralization test assays. The results of the serological assays using the truncated A29L fragments as the antigens showed that the Mpox patient sera contained significantly lower levels of antibodies targeting the N-terminal 1-34 residues of A29L, suggesting that the N-terminal portion of A29L is less immunogenic upon natural infection. KEY POINTS: • MAbs 2-9B, 3-8G, and 2-5H neither interrupted A29L binding to heparin nor neutralized MPXV. • The LFIA composed of 3-8G and 2-5H can specifically distinguish MPXV A29L from VACV A27L. • Mpox patient sera contained lower levels of antibodies targeting the N-terminal portion of A29L.
Collapse
Affiliation(s)
- Chia-Yu Liang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Chong-Syun Chao
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Wang-Da Liu
- Department of Internal Medicine, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, 100, Taiwan
- Department of Medicine, National Taiwan University Cancer Center, Taipei 106, Taiwan
| | - Yu-Chen Cheng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
- Department of Laboratory Medicine, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, 100, Taiwan.
| | - Shih-Chung Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan.
- Center of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
7
|
Riccardo V, Pablo GC. Neutralization Determinants on Poxviruses. Viruses 2023; 15:2396. [PMID: 38140637 PMCID: PMC10747254 DOI: 10.3390/v15122396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Smallpox was a highly contagious disease caused by the variola virus. The disease affected millions of people over thousands of years and variola virus ranked as one of the deadliest viruses in human history. The complete eradication of smallpox in 1980, a major triumph in medicine, was achieved through a global vaccination campaign using a less virulent poxvirus, vaccinia virus. Despite this success, the herd immunity established by this campaign has significantly waned, and concerns are rising about the potential reintroduction of variola virus as a biological weapon or the emergence of zoonotic poxviruses. These fears were further fueled in 2022 by a global outbreak of monkeypox virus (mpox), which spread to over 100 countries, thereby boosting interest in developing new vaccines using molecular approaches. However, poxviruses are complex and creating modern vaccines against them is challenging. This review focuses on the structural biology of the six major neutralization determinants on poxviruses (D8, H3, A27, L1, B5, and A33), the localization of epitopes targeted by neutralizing antibodies, and their application in the development of subunit vaccines.
Collapse
Affiliation(s)
| | - Guardado-Calvo Pablo
- Structural Biology of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, F-75015 Paris, France;
| |
Collapse
|
8
|
Peng F, Hu N, Liu Y, Xing C, Luo L, Li X, Wang J, Chen G, Xiao H, Liu C, Shen B, Feng J, Qiao C. Functional epitopes and neutralizing antibodies of vaccinia virus. Front Microbiol 2023; 14:1255935. [PMID: 37954238 PMCID: PMC10634548 DOI: 10.3389/fmicb.2023.1255935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Smallpox is an infectious disease caused by the variola virus, and it has a high mortality rate. Historically it has broken out in many countries and it was a great threat to human health. Smallpox was declared eradicated in 1980, and Many countries stopped nation-wide smallpox vaccinations at that time. In recent years the potential threat of bioterrorism using smallpox has led to resumed research on the treatment and prevention of smallpox. Effective ways of preventing and treating smallpox infection have been reported, including vaccination, chemical drugs, neutralizing antibodies, and clinical symptomatic therapies. Antibody treatments include anti-sera, murine monoclonal antibodies, and engineered humanized or human antibodies. Engineered antibodies are homologous, safe, and effective. The development of humanized and genetically engineered antibodies against variola virus via molecular biology and bioinformatics is therefore a potentially fruitful prospect with respect to field application. Natural smallpox virus is inaccessible, therefore most research about prevention and/or treatment of smallpox were done using vaccinia virus, which is much safer and highly homologous to smallpox. Herein we summarize vaccinia virus epitope information reported to date, and discuss neutralizing antibodies with potential value for field application.
Collapse
Affiliation(s)
- Fenghao Peng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Naijing Hu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Yingjun Liu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cong Xing
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Guojiang Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - He Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Chenghua Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Beifen Shen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
9
|
Xia A, Wang X, He J, Wu W, Jiang W, Xue S, Zhang Q, Gao Y, Han Y, Li Y, Peng X, Xie M, Mayer CT, Liu J, Hua C, Sha Y, Xu W, Huang J, Ying T, Jiang S, Xie Y, Cai Q, Lu L, Silva IT, Yuan Z, Zhang Y, Wang Q. Cross-reactive antibody response to Monkeypox virus surface proteins in a small proportion of individuals with and without Chinese smallpox vaccination history. BMC Biol 2023; 21:205. [PMID: 37784185 PMCID: PMC10546712 DOI: 10.1186/s12915-023-01699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 09/11/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND After the eradication of smallpox in China in 1979, vaccination with the vaccinia virus (VACV) Tiantan strain for the general population was stopped in 1980. As the monkeypox virus (MPXV) is rapidly spreading in the world, we would like to investigate whether the individuals with historic VACV Tiantan strain vaccination, even after more than 40 years, could still provide ELISA reactivity and neutralizing protection; and whether the unvaccinated individuals have no antibody reactivity against MPXV at all. RESULTS We established serologic ELISA to measure the serum anti-MPXV titer by using immunodominant MPXV surface proteins, A35R, B6R, A29L, and M1R. A small proportion of individuals (born before 1980) with historic VACV Tiantan strain vaccination exhibited serum ELISA cross-reactivity against these MPXV surface proteins. Consistently, these donors also showed ELISA seropositivity and serum neutralization against VACV Tiantan strain. However, surprisingly, some unvaccinated young adults (born after 1980) also showed potent serum ELISA activity against MPXV proteins, possibly due to their past infection by some self-limiting Orthopoxvirus (OPXV). CONCLUSIONS We report the serum ELISA cross-reactivity against MPXV surface protein in a small proportion of individuals both with and without VACV Tiantan strain vaccination history. Combined with our serum neutralization assay against VACV and the recent literature about mice vaccinated with VACV Tiantan strain, our study confirmed the anti-MPXV cross-reactivity and cross-neutralization of smallpox vaccine using VACV Tiantan strain. Therefore, it is necessary to restart the smallpox vaccination program in high risk populations.
Collapse
Affiliation(s)
- Anqi Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaojie Wang
- The Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jiaying He
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Weiyu Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Song Xue
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qianqian Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yidan Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yuru Han
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yaming Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaofang Peng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Minxiang Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Christian T Mayer
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jie Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Chen Hua
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yiou Sha
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jinghe Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qiliang Cai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Israel T Silva
- Laboratory of Bioinformatics and Computational Biology, A. C. Camargo Cancer Center, São Paulo, SP, 01509-010, Brazil.
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yixiao Zhang
- The Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Gao F, He C, Liu M, Yuan P, Tian S, Zheng M, Zhang L, Zhou X, Xu F, Luo J, Li X. Cross-reactive immune responses to monkeypox virus induced by MVA vaccination in mice. Virol J 2023; 20:126. [PMID: 37337226 PMCID: PMC10278293 DOI: 10.1186/s12985-023-02085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/28/2023] [Indexed: 06/21/2023] Open
Abstract
Mpox (monkeypox) infection cases increased recently in non-Mpox outbreak areas, potentially causing an international threat. The desire to defend against a potential outbreak has led to renewed efforts to develop Mpox vaccines. In this report, mice were immunized with various doses of modified vaccinia virus Ankara (MVA) to evaluate the cross-reactive immune response of MVA immunization against protective antigens of the current monkeypox virus. We demonstrated that MVA induced specific antibodies against protective antigens (A29, A35, B6, M1, H3, and I1), mediating the neutralization abilities against the MVA and the monkeypox virus (MPXV). Moreover, recombinant protective antigens of the MPXV elicited cross-binding and cross-neutralizing activities for MVA. Hence, the MVA induced cross-reactive immune responses, which may guide future efforts to develop vaccines against the recent MPXV. Notably, compared to the other protective antigens, the predominant A29 and M1 antigens mediated higher cross-neutralizing immune responses against the MVA, which could serve as antigen targets for novel orthologous orthopoxvirus vaccine.
Collapse
Affiliation(s)
- Feixia Gao
- Shanghai Institute of Biological Products, Shanghai, China
| | - Cheng He
- Shanghai Institute of Biological Products, Shanghai, China
| | - Min Liu
- Shanghai Institute of Biological Products, Shanghai, China
| | - Ping Yuan
- Shanghai Institute of Biological Products, Shanghai, China
| | - Shihua Tian
- Shanghai Institute of Biological Products, Shanghai, China
| | - Mei Zheng
- Shanghai Institute of Biological Products, Shanghai, China
| | - Linya Zhang
- Shanghai Institute of Biological Products, Shanghai, China
| | - Xu Zhou
- Shanghai Institute of Biological Products, Shanghai, China
| | | | - Jian Luo
- Shanghai Institute of Biological Products, Shanghai, China.
| | - Xiuling Li
- Shanghai Institute of Biological Products, Shanghai, China.
| |
Collapse
|
11
|
Zhang Y, Zhou Y, Pei R, Chen X, Wang Y. Potential threat of human pathogenic orthopoxviruses to public health and control strategies. JOURNAL OF BIOSAFETY AND BIOSECURITY 2023; 5:1-7. [PMID: 36624850 PMCID: PMC9811937 DOI: 10.1016/j.jobb.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023] Open
Abstract
Orthopoxviruses (OPXVs) belong to a group of nucleo-cytoplasmic large DNA viruses. Human pathogenic OPXVs (hpOPXVs) include at least five viruses, among which smallpox virus and monkeypox virus are the most dangerous viral pathogens. Both viruses are classified as category-one human infectious pathogens in China. Although smallpox was globally eradicated in the 1980 s, it is still a top biosecurity threat owing to the possibility of either being leaked to the outside world from a laboratory or being weaponized by terrorists. Beginning in early May 2022, a sudden outbreak of monkeypox was concurrently reported in more than 100 disparate geographical areas, representing a public health emergency of international concern, as declared by the World Health Organization (WHO). In this review, we present the reasons for hpOPXVs such as monkeypox virus presenting a potential threat to public health. We then systematically review the historical and recent development of vaccines and drugs against smallpox and monkeypox. In the final section, we highlight the importance of viromics studies as an integral part of a forward defense strategy to eliminate the potential threat to public health from emerging or re-emerging hpOPXVs and their variants.
Collapse
Affiliation(s)
- Yongli Zhang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences. 44 Hongshancelu Avenue, Wuhan 430071, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences. 44 Hongshancelu Avenue, Wuhan 430071, China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences. 44 Hongshancelu Avenue, Wuhan 430071, China
| | - Xinwen Chen
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences. 44 Hongshancelu Avenue, Wuhan 430071, China,Innovation Center for Pathogen Research, Guangzhou Laboratory, Guangzhou 510320, China
| | - Yun Wang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences. 44 Hongshancelu Avenue, Wuhan 430071, China,Corresponding author
| |
Collapse
|
12
|
Yang L, Chen Y, Li S, Zhou Y, Zhang Y, Pei R, Chen X, Wang Y. Immunization of mice with vaccinia virus Tiantan strain yields antibodies cross-reactive with protective antigens of monkeypox virus. Virol Sin 2023; 38:162-164. [PMID: 36272712 PMCID: PMC9580254 DOI: 10.1016/j.virs.2022.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
•The first study describing the cross-reactivity of antibodies elicited by a Chinese smallpox vaccine against MPXV. •Mice immunized with vaccinia virus Tiantan strain yield antibodies cross-reactive with MPXV protective antigens. •Cross-reactivities of VTT-elicited antibodies against monkeypox protective antigens are ranging from 33% to 94%.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingshan Chen
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sha Li
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yongli Zhang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xinwen Chen
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Innovation Center for Pathogen Research, Guangzhou Laboratory, Guangzhou, 510320, China.
| | - Yun Wang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
13
|
Xiang Y, White A. Monkeypox virus emerges from the shadow of its more infamous cousin: family biology matters. Emerg Microbes Infect 2022; 11:1768-1777. [PMID: 35751396 PMCID: PMC9278444 DOI: 10.1080/22221751.2022.2095309] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
Abstract
Monkeypox virus (MPXV) is closely related to the infamous variola (smallpox) virus, causing a febrile rash illness in humans similar to but milder than smallpox. In the twentieth century, human monkeypox had been mostly a rare zoonotic disease confined to forested areas in West and Central Africa. However, the case number and geographic range have increased significantly in this century, coincided with the waning of the smallpox vaccine-induced immunity in the global population. The outbreak of human monkeypox in multiple countries since May 2022 has been unusual in its large case number and the absence of direct links to endemic countries, raising concerns for a possible change in monkeypox transmission pattern that could pose a greater global threat. Here, we review aspects of MPXV biology that are relevant for risk assessment and preparedness for a monkeypox epidemic, with an emphasis on recent progress in understanding of the virus host range, evolutionary potential, and neutralization targets.
Collapse
Affiliation(s)
- Yan Xiang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Addison White
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
14
|
Hurisa TT, Chen G, Jia H, Xiang FY, He XB, Jing ZZ. Evaluation of antibody responses against the whole virions of goatpox and sheeppox viruses after subcutaneous immunization of rabbits. Heliyon 2022; 8:e11745. [PMID: 36439728 PMCID: PMC9681629 DOI: 10.1016/j.heliyon.2022.e11745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/04/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Antibody development is the integral process of generating and characterizing an antibody. It commences by inoculating the antigen of interest into laboratory animals, allowing the immune system develops large quantities of antibodies. This was aimed at developing antibodies against the virion of Goatpox and Sheeppox virus vaccines. The ability of Goatpox and Sheeppox vaccines was assessed. Regarding this study, the antibody titers against both Goatpox and Sheeppox viruses was increased in the same manner. The amount of IgG was determined to be 2.29 μg/μl and 2.18 μg/μl against virions of Goatpox virus and Sheeppox respectively. The purified IgG was analyzed by SDS-PAGE. Different bands of the purified antibodies were clearly visualized, and the molecular weight of IgG was estimated to be 67 kDa and 25 kDa. Additionally, antigen/antibody binding was confirmed by Western blot using GTPV A27 antigen. No significant differences in antibody titers were observed between the two groups (p < 0, 05).
Collapse
Affiliation(s)
- Takele Tesgera Hurisa
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Guohua Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Huaijie Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Fang Yong Xiang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Xiao-Bing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Zhi-Zhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| |
Collapse
|
15
|
New p35 (H3L) Epitope Involved in Vaccinia Virus Neutralization and Its Deimmunization. Viruses 2022; 14:v14061224. [PMID: 35746695 PMCID: PMC9227246 DOI: 10.3390/v14061224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 01/07/2023] Open
Abstract
Vaccinia virus (VACV) is a promising oncolytic agent because it exhibits many characteristic features of an oncolytic virus. However, its effectiveness is limited by the strong antiviral immune response induced by this virus. One possible approach to overcome this limitation is to develop deimmunized recombinant VACV. It is known that VACV p35 is a major protein for B- and T-cell immune response. Despite the relevance of p35, its epitope structure remains insufficiently studied. To determine neutralizing epitopes, a panel of recombinant p35 variants was designed, expressed, and used for mice immunization. Plaque-reduction neutralization tests demonstrated that VACV was only neutralized by sera from mice that were immunized with variants containing both N- and C- terminal regions of p35. This result was confirmed by the depletion of anti-p35 mice sera with recombinant p35 variants. At least nine amino acid residues affecting the immunogenic profile of p35 were identified. Substitutions of seven residues led to disruption of B-cell epitopes, whereas substitutions of two residues resulted in the recognition of the mutant p35 solely by non-neutralizing antibodies.
Collapse
|
16
|
Ahsendorf HP, Diesterbeck US, Hotop SK, Winkler M, Brönstrup M, Czerny CP. Characterisation of an Anti-Vaccinia Virus F13 Single Chain Fragment Variable from a Human Anti-Vaccinia Virus-Specific Recombinant Immunoglobulin Library. Viruses 2022; 14:v14020197. [PMID: 35215792 PMCID: PMC8879190 DOI: 10.3390/v14020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/30/2022] Open
Abstract
Vaccinia virus (VACV) belongs to the genus Orthopoxvirus of the family Poxviridae. There are four different forms of infectious virus particles: intracellular mature virus (IMV), intracellular en-veloped virus (IEV), cell-associated enveloped virus (CEV) and extracellular enveloped virus (EEV). The F13 protein occupies the inner side of the CEV- and EEV-membranes and the outer side of the IEV-membranes. It plays an important role in wrapping progress and EEV production. We constructed a human single-chain fragment variable (scFv) library with a diversity of ≥4 × 108 independent colonies using peripheral blood from four vaccinated donors. One anti-F13 scFv was isolated and characterised after three rounds of panning. In Western blotting assays, the scFv 3E2 reacted with the recombinant F13VACV protein with a reduction of binding under denatured and reduced conditions. Two antigenic binding sites (139-GSIHTIKTLGVYSDY-153 and 169-AFNSAKNSWLNL-188) of scFv 3E2 were mapped using a cellulose membrane encompassing 372 15-mere peptides with 12 overlaps covering the whole F13 protein. No neutralisation capa-bilities were observed either in the presence or absence of complement. In conclusion, the con-struction of recombinant immunoglobulin libraries is a promising strategy to isolate specific scFvs to enable the study of the host-pathogen interaction.
Collapse
Affiliation(s)
- Henrike P. Ahsendorf
- Division of Microbiology and Animal Hygiene, Department of Animal Sciences, University of Göttingen, Burckhardtweg 2, 37077 Göttingen, Germany; (H.P.A.); (C.-P.C.)
| | - Ulrike S. Diesterbeck
- Division of Microbiology and Animal Hygiene, Department of Animal Sciences, University of Göttingen, Burckhardtweg 2, 37077 Göttingen, Germany; (H.P.A.); (C.-P.C.)
- Correspondence:
| | - Sven-Kevin Hotop
- Helmholtz Centre for Infection Research, Inhoffenstraβe 7, 38124 Braunschweig, Germany; (S.-K.H.); (M.B.)
| | - Michael Winkler
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany;
| | - Mark Brönstrup
- Helmholtz Centre for Infection Research, Inhoffenstraβe 7, 38124 Braunschweig, Germany; (S.-K.H.); (M.B.)
| | - Claus-Peter Czerny
- Division of Microbiology and Animal Hygiene, Department of Animal Sciences, University of Göttingen, Burckhardtweg 2, 37077 Göttingen, Germany; (H.P.A.); (C.-P.C.)
| |
Collapse
|
17
|
Diesterbeck US, Ahsendorf HP, Frenzel A, Sharifi AR, Schirrmann T, Czerny CP. Characterization of an In Vivo Neutralizing Anti-Vaccinia Virus D8 Single-Chain Fragment Variable (scFv) from a Human Anti-Vaccinia Virus-Specific Recombinant Library. Vaccines (Basel) 2021; 9:vaccines9111308. [PMID: 34835240 PMCID: PMC8619513 DOI: 10.3390/vaccines9111308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
A panel of potent neutralizing antibodies are protective against orthopoxvirus (OPXV) infections. For the development of OPXV-specific recombinant human single-chain antibodies (scFvs), the IgG repertoire of four vaccinated donors was amplified from peripheral B-lymphocytes. The resulting library consisted of ≥4 × 108 independent colonies. The immuno-screening against vaccinia virus (VACV) Elstree revealed a predominant selection of scFv clones specifically binding to the D8 protein. The scFv-1.2.2.H9 was engineered into larger human scFv-Fc-1.2.2.H9 and IgG1-1.2.2.H9 formats to improve the binding affinity and to add effector functions within the human immune response. Similar binding kinetics were calculated for scFv-1.2.2.H9 and scFv-Fc-1.2.2.H9 (1.61 nM and 7.685 nM, respectively), whereas, for IgG1-1.2.2.H9, the Michaelis-Menten kinetics revealed an increased affinity of 43.8 pM. None of the purified recombinant 1.2.2.H9 formats were able to neutralize VACV Elstree in vitro. After addition of 1% human complement, the neutralization of ≥50% of VACV Elstree was achieved with 0.0776 µM scFv-Fc-1.2.2.H9 and 0.01324 µM IgG1-1.2.2.H9, respectively. In an in vivo passive immunization NMRI mouse model, 100 µg purified scFv-1.2.2.H9 and the IgG1-1.2.2.H9 partially protected against the challenge with 4 LD50 VACV Munich 1, as 3/6 mice survived. In contrast, in the scFv-Fc-1.2.2.H9 group, only one mouse survived the challenge.
Collapse
Affiliation(s)
- Ulrike S. Diesterbeck
- Division of Microbiology and Animal Hygiene, Department of Animal Sciences, University of Göttingen, Burckhardtweg 2, 37077 Göttingen, Germany;
- Correspondence:
| | - Henrike P. Ahsendorf
- Division of Microbiology and Animal Hygiene, Department of Animal Sciences, University of Göttingen, Burckhardtweg 2, 37077 Göttingen, Germany;
| | - André Frenzel
- Yumab GmbH, Science Campus Braunschweig Sued, Inhoffenstr. 7, 38124 Braunschweig, Germany; (A.F.); (T.S.)
| | - Ahmad Reza Sharifi
- Center for Integrated Breeding Research, Department of Animal Sciences, University of Göttingen, Albrecht-Thaer-Weg 3, 37075 Göttingen, Germany;
| | - Thomas Schirrmann
- Yumab GmbH, Science Campus Braunschweig Sued, Inhoffenstr. 7, 38124 Braunschweig, Germany; (A.F.); (T.S.)
| | - Claus-Peter Czerny
- Division of Microbiology and Animal Hygiene, Department of Animal Sciences, University of Göttingen, Burckhardtweg 2, 37077 Göttingen, Germany;
| |
Collapse
|
18
|
Boonserm P, Puthong S, Wichai T, Noitang S, Khunrae P, Sooksai S, Komolpis K. Investigation of major amino acid residues of anti-norfloxacin monoclonal antibodies responsible for binding with fluoroquinolones. Sci Rep 2021; 11:17140. [PMID: 34433868 PMCID: PMC8387498 DOI: 10.1038/s41598-021-96466-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/10/2021] [Indexed: 12/03/2022] Open
Abstract
It is important to understand the amino acid residues that govern the properties of the binding between antibodies and ligands. We studied the binding of two anti-norfloxacins, anti-nor 132 and anti-nor 155, and the fluoroquinolones norfloxacin, enrofloxacin, ciprofloxacin, and ofloxacin. Binding cross-reactivities tested by an indirect competitive enzyme-linked immunosorbent assay indicated that anti-nor 132 (22–100%) had a broader range of cross-reactivity than anti-nor 155 (62–100%). These cross-reactivities correlated with variations in the numbers of interacting amino acid residues and their positions. Molecular docking was employed to investigate the molecular interactions between the fluoroquinolones and the monoclonal antibodies. Homology models of the heavy chain and light chain variable regions of each mAb 3D structure were docked with the fluoroquinolones targeting the crucial part of the complementarity-determining regions. The fluoroquinolone binding site of anti-nor 155 was a region of the HCDR3 and LCDR3 loops in which hydrogen bonds were formed with TYR (H:35), ASN (H:101), LYS (H:106), ASN (L:92), and ASN (L:93). These regions were further away in anti-nor 132 and could not contact the fluoroquinolones. Another binding region consisting of HIS (L:38) and ASP (H:100) was found for norfloxacin, enrofloxacin, and ciprofloxacin, whereas only ASP (H:100) was found for ofloxacin.
Collapse
Affiliation(s)
- Patamalai Boonserm
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Songchan Puthong
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Thanaporn Wichai
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Sajee Noitang
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Pongsak Khunrae
- King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Sarintip Sooksai
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand.
| | - Kittinan Komolpis
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand. .,Food Risk Hub, Research Unit of Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
19
|
Song K, Viskovska M. Design and Engineering of Deimmunized Vaccinia Viral Vectors. Biomedicines 2020; 8:E491. [PMID: 33187060 PMCID: PMC7697509 DOI: 10.3390/biomedicines8110491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022] Open
Abstract
Vaccinia viral (VV) vectors are increasingly used in oncolytic virus therapy and vaccine development for cancer and infectious diseases. However, their effectiveness is hindered by the strong anti-viral immune response induced by the viral vector. In this review, we discuss the strategies to deimmunize vaccinia viral vector. One approach is to mask the virus from the neutralization antibody responses by mapping and eliminating of B-cell epitopes on the viral membrane proteins. The recombinant VVs contain one or more viral glycoproteins with mutations in the neutralizing antibody epitopes, resulting in viral escape from neutralization. In addition, a regulator of complement activation (e.g., CD55) can be expressed on the surface of the virus particle, leading to increased resistance to complement-mediated neutralization.
Collapse
Affiliation(s)
| | - Mariya Viskovska
- Icell Kealex Therapeutics, 2450 Holcombe Blvd Suite J, JALBS@TMC, Houston, TX 77021, USA;
| |
Collapse
|
20
|
Species-Specific Conservation of Linear Antigenic Sites on Vaccinia Virus A27 Protein Homologs of Orthopoxviruses. Viruses 2019; 11:v11060493. [PMID: 31146446 PMCID: PMC6631127 DOI: 10.3390/v11060493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 11/24/2022] Open
Abstract
The vaccinia virus (VACV) A27 protein and its homologs, which are found in a large number of members of the genus Orthopoxvirus (OPXV), are targets of viral neutralization by host antibodies. We have mapped six binding sites (epitopes #1A: aa 32–39, #1B: aa 28–33, #1C: aa 26–31, #1D: 28–34, #4: aa 9–14, and #5: aa 68–71) of A27 specific monoclonal antibodies (mAbs) using peptide arrays. MAbs recognizing epitopes #1A–D and #4 neutralized VACV Elstree in a complement dependent way (50% plaque-reduction: 12.5–200 µg/mL). Fusion of VACV at low pH was blocked through inhibition of epitope #1A. To determine the sequence variability of the six antigenic sites, 391 sequences of A27 protein homologs available were compared. Epitopes #4 and #5 were conserved among most of the OPXVs, while the sequential epitope complex #1A–D was more variable and, therefore, responsible for species-specific epitope characteristics. The accurate and reliable mapping of defined epitopes on immuno-protective proteins such as the A27 of VACV enables phylogenetic studies and insights into OPXV evolution as well as to pave the way to the development of safer vaccines and chemical or biological antivirals.
Collapse
|
21
|
Kaltenbach DD, Jaishankar D, Hao M, Beer JC, Volin MV, Desai UR, Tiwari V. Sulfotransferase and Heparanase: Remodeling Engines in Promoting Virus Infection and Disease Development. Front Pharmacol 2018; 9:1315. [PMID: 30555321 PMCID: PMC6282075 DOI: 10.3389/fphar.2018.01315] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023] Open
Abstract
An extraordinary binding site generated in heparan sulfate (HS) structures, during its biosynthesis, provides a unique opportunity to interact with multiple protein ligands including viral proteins, and therefore adds tremendous value to this master molecule. An example of such a moiety is the sulfation at the C3 position of glucosamine residues in HS chain via 3-O sulfotransferase (3-OST) enzymes, which generates a unique virus-cell fusion receptor during herpes simplex virus (HSV) entry and spread. Emerging evidence now suggests that the unique patterns in HS sulfation assist multiple viruses in invading host cells at various steps of their life cycles. In addition, sulfated-HS structures are known to assist in invading host defense mechanisms and initiating multiple inflammatory processes; a critical event in the disease development. All these processes are detrimental for the host and therefore raise the question of how HS-sulfation is regulated. Epigenetic modulations have been shown to be implicated in these reactions during HSV infection as well as in HS modifying enzyme sulfotransferases, and therefore pose a critical component in answering it. Interestingly, heparanase (HPSE) activity is shown to be upregulated during virus infection and multiple other diseases assisting in virus replication to promote cell and tissue damage. These phenomena suggest that sulfotransferases and HPSE serve as key players in extracellular matrix remodeling and possibly generating unique signatures in a given disease. Therefore, identifying the epigenetic regulation of OST genes, and HPSE resulting in altered yet specific sulfation patterns in HS chain during virus infection, will be a significant a step toward developing potential diagnostic markers and designing novel therapies.
Collapse
Affiliation(s)
- Dominik D Kaltenbach
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Dinesh Jaishankar
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Meng Hao
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| | - Jacob C Beer
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Michael V Volin
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Umesh R Desai
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| | - Vaibhav Tiwari
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| |
Collapse
|
22
|
Meng X, Kaever T, Yan B, Traktman P, Zajonc DM, Peters B, Crotty S, Xiang Y. Characterization of murine antibody responses to vaccinia virus envelope protein A14 reveals an immunodominant antigen lacking of effective neutralization targets. Virology 2018; 518:284-292. [PMID: 29558682 PMCID: PMC5911218 DOI: 10.1016/j.virol.2018.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 01/08/2023]
Abstract
Vaccinia virus (VACV) A14 is a major envelope protein and a dominant antibody target in the smallpox vaccine. However, the role of anti-A14 antibodies in immunity against orthopoxviruses is unclear. Here, we characterized 22 A14 monoclonal antibodies (mAb) from two mice immunized with VACV. Epitope mapping showed that 21 mAbs targeted the C-terminal hydrophilic region, while one mAb recognized the middle region predicted to be across the viral envelope from the C-terminus. However, none of the mAbs bound to virions in studies with electron microscopy. Interestingly, some mAbs showed low VACV neutralization activities in the presence of complement and provided protection to SCID mice challenged with VACV ACAM2000. Our data showed that, although A14 is an immunodominant antigen in smallpox vaccine, its B cell epitopes are either enclosed within the virions or are inaccessible on virion surface. Anti-A14 antibodies, however, could contribute to protection against VACV through a complement-dependent pathway.
Collapse
Affiliation(s)
- Xiangzhi Meng
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Thomas Kaever
- Division of Vaccine Discovery La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Bo Yan
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Paula Traktman
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA; Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Dirk M Zajonc
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA; Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Bjoern Peters
- Division of Vaccine Discovery La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Shane Crotty
- Division of Vaccine Discovery La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA; Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yan Xiang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
23
|
Matho MH, Schlossman A, Gilchuk IM, Miller G, Mikulski Z, Hupfer M, Wang J, Bitra A, Meng X, Xiang Y, Kaever T, Doukov T, Ley K, Crotty S, Peters B, Hsieh-Wilson LC, Crowe JE, Zajonc DM. Structure-function characterization of three human antibodies targeting the vaccinia virus adhesion molecule D8. J Biol Chem 2018; 293:390-401. [PMID: 29123031 DOI: 10.1074/jbc.m117.814541] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/24/2017] [Indexed: 11/06/2022] Open
Abstract
Vaccinia virus (VACV) envelope protein D8 is one of three glycosaminoglycan adhesion molecules and binds to the linear polysaccharide chondroitin sulfate (CS). D8 is also a target for neutralizing antibody responses that are elicited by the smallpox vaccine, which has enabled the first eradication of a human viral pathogen and is a useful model for studying antibody responses. However, to date, VACV epitopes targeted by human antibodies have not been characterized at atomic resolution. Here, we characterized the binding properties of several human anti-D8 antibodies and determined the crystal structures of three VACV-mAb variants, VACV-66, VACV-138, and VACV-304, separately bound to D8. Although all these antibodies bound D8 with high affinity and were moderately neutralizing in the presence of complement, VACV-138 and VACV-304 also fully blocked D8 binding to CS-A, the low affinity ligand for D8. VACV-138 also abrogated D8 binding to the high-affinity ligand CS-E, but we observed residual CS-E binding was observed in the presence of VACV-304. Analysis of the VACV-138- and VACV-304-binding sites along the CS-binding crevice of D8, combined with different efficiencies of blocking D8 adhesion to CS-A and CS-E allowed us to propose that D8 has a high- and low-affinity CS-binding region within its central crevice. The crevice is amenable to protein engineering to further enhance both specificity and affinity of binding to CS-E. Finally, a wild-type D8 tetramer specifically bound to structures within the developing glomeruli of the kidney, which express CS-E. We propose that through structure-based protein engineering, an improved D8 tetramer could be used as a potential diagnostic tool to detect expression of CS-E, which is a possible biomarker for ovarian cancer.
Collapse
Affiliation(s)
| | | | - Iuliia M Gilchuk
- Department of Pediatrics, Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Greg Miller
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91126
| | - Zbigniew Mikulski
- Department of Pediatrics, Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | | | - Jing Wang
- Division of Cell Biology, La Jolla, California 92037
| | - Aruna Bitra
- Division of Cell Biology, La Jolla, California 92037
| | - Xiangzhi Meng
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Yan Xiang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Tom Kaever
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037
| | - Tzanko Doukov
- Stanford Synchrotron Radiation Lightsource, SLAC, Menlo Park, California 94025
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla, California 92037
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037; University of California San Diego, La Jolla, California 92037
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037
| | - Linda C Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91126
| | - James E Crowe
- Department of Pediatrics, Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Dirk M Zajonc
- Division of Cell Biology, La Jolla, California 92037; Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
24
|
Abstract
The existence of catalytic antibodies has been known for decades. Natural antibodies capable of cleaving nucleic acid, protein, and polysaccharide substrates have been described. Although the discovery of catalytic antibodies initially aroused great interest because of their promise for the development of new catalysts, their enzymatic performance has been disappointing due to low reaction rates. However, in the areas of infection and immunity, where processes often occur over much longer times and involve high antibody concentrations, even low catalytic rates have the potential to influence biological outcomes. In this regard, the presence of catalytic antibodies recognizing host antigens has been associated with several autoimmune diseases. Furthermore, naturally occurring catalytic antibodies to microbial determinants have been correlated with resistance to infection. Recently, there has been substantial interest in harnessing the power of antibody-mediated catalysis against microbial antigens for host defense. Additional work is needed, however, to better understand the prevalence, function, and structural basis of catalytic activity in antibodies. Here we review the available information and suggest that antibody-mediated catalysis is a fertile area for study with broad applications in infection and immunity.
Collapse
|
25
|
Belov S, Buneva VN, Nevinsky GA. How human IgGs against myelin basic protein (MBP) recognize oligopeptides and MBP. J Mol Recognit 2017; 30. [PMID: 28470769 DOI: 10.1002/jmr.2637] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/20/2017] [Accepted: 03/29/2017] [Indexed: 12/23/2022]
Abstract
Myelin basic protein (MBP) is a major protein of myelin-proteolipid shell of axons, and it plays an important role in pathogenesis of multiple sclerosis. In the literature, there are no data on how antibodies recognize different protein antigens including MBP. A stepwise increase in ligand complexity was used to estimate the relative contributions of virtually every amino acid residue (AA) of a specific 12-mer LSRFSWGAEGQK oligopeptide corresponding to immunodominant sequence of MBP to the light chains and to intact anti-MBP IgGs from sera of patients with multiple sclerosis. It was shown that the minimal ligands of the light chains of IgGs are many different free AAs (Kd = 0.51-0.016 M), and each free AA interacts with the specific subsite of the light chain intended for recognition of this AA in specific LSRFSW oligopeptide. A gradual transition from Leu to LSRFSWGAEGQK leads to an increase in the affinity from 10-1 to 2.3 × 10-4 M because of additive interactions of the light chain with 6 AAs of this oligopeptide and then the affinity reaches plateau. The contributions of 6 various AAs to the affinity of the oligopeptide are different (Kd , M): 0.71 (S), 0.44 (R), 0.14 (F), 0.17 (S), and 0.62 (W). Affinity of nonspecific oligopeptides to the light chains of IgGs is significantly lower. Intact MBP interacts with both light and heavy chains of IgGs demonstrating 192-fold higher affinity than the specific oligopeptide. It is a first quantitative analysis of the mechanism of proteins recognition by antibodies. The thermodynamic model was constructed to describe the interactions of IgGs with MBP. The data obtained can be very useful for understanding how antibodies against many different proteins can recognize these proteins.
Collapse
Affiliation(s)
- Sergey Belov
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Valentina N Buneva
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
26
|
Abstract
Vaccinia Virus (VACV) is an enveloped double stranded DNA virus and the active ingredient of the smallpox vaccine. The systematic administration of this vaccine led to the eradication of circulating smallpox (variola virus, VARV) from the human population. As a tribute to its success, global immunization was ended in the late 1970s. The efficacy of the vaccine is attributed to a robust production of protective antibodies against several envelope proteins of VACV, which cross-protect against infection with pathogenic VARV. Since global vaccination was ended, most children and young adults do not possess immunity against smallpox. This is a concern, since smallpox is considered a potential bioweapon. Although the smallpox vaccine is considered the gold standard of all vaccines and the targeted antigens have been widely studied, the epitopes that are targeted by the protective antibodies and their mechanism of binding had been, until recently, poorly characterized. Understanding the precise interaction between the antibodies and their epitopes will be helpful in the design of better vaccines against other diseases. In this review we will discuss the structural basis of recognition of the immunodominant VACV antigens A27, A33, D8, and L1 by protective antibodies and discuss potential implications regarding their protective capacity.
Collapse
Affiliation(s)
- Dirk M Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology (LJI), La Jolla, CA, 92037, USA.
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium.
| |
Collapse
|