1
|
Ferrufino C, Scannapieco A, Russo RM, Gonzalez FN, Salvador R, Dus Santos MJ. Reduction in Acute Bee Paralysis Virus Infection and Mortality in Honey Bees ( Apis mellifera) by RNA Interference Technology. INSECTS 2025; 16:453. [PMID: 40429166 PMCID: PMC12112043 DOI: 10.3390/insects16050453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 05/29/2025]
Abstract
In Argentina, various studies have reported the detection of multiple viruses in honey-producing and queen-rearing apiaries, with Aparavirus apisacutum, the causal agent of acute bee paralysis (ABP), demonstrating a particularly high prevalence. The potential of RNA interference (RNAi) as a strategy to control honey bee viruses has been explored, with initial findings indicating that RNAi could aid in mitigating the economic losses associated with viral infections. This study aimed to evaluate the effect of RNAi technology mediated by double-stranded RNA (dsRNA) on the dynamics of ABPV infection in adult honey bees. Fragments of the ABPV replicase and VP1 genes were used as templates for dsRNA synthesis via in vitro transcription. A gene silencing experiment was conducted through oral administration using five treatments: control, specific dsRNA + Virus, Virus alone, specific dsRNA alone, and non-specific dsRNA + virus. Bee survival was recorded over 10 days for all treatments, and samples were subsequently processed for viral quantification using quantitative real-time PCR. The oral administration of specific dsRNA reduced the viral replication curve, decreased the average viral loads and increased bee survival. This is the first report demonstrating the reduction in ABPV infection in adult honey bees through post-transcriptional gene silencing achieved via oral administration of dsRNA.
Collapse
Affiliation(s)
- Cecilia Ferrufino
- Instituto de Virología e Innovaciones Tecnológicas (IVIT) INTA-CONICET, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham 1686, Buenos Aires, Argentina; (C.F.); (F.N.G.)
| | - Alejandra Scannapieco
- Instituto de Genética Ewald A. Favret INTA-CONICET, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo Vinculado al IABIMO—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham 1686, Buenos Aires, Argentina; (A.S.); (R.M.R.)
| | - Romina María Russo
- Instituto de Genética Ewald A. Favret INTA-CONICET, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo Vinculado al IABIMO—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham 1686, Buenos Aires, Argentina; (A.S.); (R.M.R.)
| | - Fernanda Noemí Gonzalez
- Instituto de Virología e Innovaciones Tecnológicas (IVIT) INTA-CONICET, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham 1686, Buenos Aires, Argentina; (C.F.); (F.N.G.)
| | - Ricardo Salvador
- Instituto de Microbiología y Zoología Agrícola (IMyZA), Centro de investigaciones en Ciencias Agronómicas y Veterinarias (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham 1686, Buenos Aires, Argentina;
| | - María José Dus Santos
- Instituto de Virología e Innovaciones Tecnológicas (IVIT) INTA-CONICET, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham 1686, Buenos Aires, Argentina; (C.F.); (F.N.G.)
| |
Collapse
|
2
|
Rahman MA, Zereen F, Rana ML, Hossain MG, Shimada M, Saha S. Foot-and-mouth disease in Asia. Virus Res 2025; 351:199514. [PMID: 39689813 PMCID: PMC11770323 DOI: 10.1016/j.virusres.2024.199514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious transboundary disease prevalent across the Asian continent, affecting both wild and domestic artiodactyls. The disease is caused by a virus belonging to the Aphthovirus genus of the Picornaviridae family which is categorized into seven serotypes: C, O, A, SAT1, SAT2, SAT3, and Asia1. The virus spreads through direct and indirect contact, including semen, meat, fomites, ingestion, and aerosols. FMD has a severe economic impact due to the high morbidity and mortality, especially in young animals. Prevention of the disease relies on vaccination with the prevalent serotype(s) or the slaughter and destruction of affected animals. This review discusses the prevalence of various FMD virus (FMDV) serotypes across Asia, along with the transmission modes, pathogenesis, immune response, and immune suppression by FMDV. Additionally, the review explores FMD diagnosis, prevention, and control strategies, and highlights future opportunities for research aimed at developing strain-specific viral and bacterial combined vaccines.
Collapse
Affiliation(s)
- Md Abdur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh; Gono Bishwabidyalay, Dhaka, Bangladesh
| | - Farah Zereen
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh; Gono Bishwabidyalay, Dhaka, Bangladesh
| | - Md Liton Rana
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Md Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh.
| | - Masaru Shimada
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Sukumar Saha
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh.
| |
Collapse
|
3
|
Medina GN, Diaz San Segundo F. Virulence and Immune Evasion Strategies of FMDV: Implications for Vaccine Design. Vaccines (Basel) 2024; 12:1071. [PMID: 39340101 PMCID: PMC11436118 DOI: 10.3390/vaccines12091071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Foot-and-mouth disease (FMD) is globally recognized as a highly economically devastating and prioritized viral disease affecting livestock. Vaccination remains a crucial preventive measure against FMD. The improvement of current vaccine platforms could help control outbreaks, leading to the potential eradication of the disease. In this review, we describe the variances in virulence and immune responses among FMD-susceptible host species, specifically bovines and pigs, highlighting the details of host-pathogen interactions and their impact on the severity of the disease. This knowledge serves as an important foundation for translating our insights into the rational design of vaccines and countermeasure strategies, including the use of interferon as a biotherapeutic agent. Ultimately, in this review, we aim to bridge the gap between our understanding of FMDV biology and the practical approaches to control and potentially eradicate FMD.
Collapse
Affiliation(s)
- Gisselle N Medina
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Orient Point, NY 11957, USA
| | | |
Collapse
|
4
|
Menay F, Cocozza F, Gravisaco MJ, Elisei A, Re JI, Ferella A, Waldner C, Mongini C. Extracellular vesicles derived from antigen-presenting cells pulsed with foot and mouth virus vaccine-antigens act as carriers of viral proteins and stimulate B cell response. Front Immunol 2024; 15:1440667. [PMID: 39176090 PMCID: PMC11338771 DOI: 10.3389/fimmu.2024.1440667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Foot and mouth disease (FMD) is a highly contagious infection caused by FMD-virus (FMDV) that affects livestock worldwide with significant economic impact. The main strategy for the control is vaccination with FMDV chemically inactivated with binary ethylenimine (FMDVi). In FMDV infection and vaccination, B cell response plays a major role by providing neutralizing/protective antibodies in animal models and natural hosts. Extracellular vesicles (EVs) and small EVs (sEVs) such as exosomes are important in cellular communication. EVs secreted by antigen-presenting cells (APC) like dendritic cells (DCs) participate in the activation of B and T cells through the presentation of native antigen membrane-associated to B cells or by transferring MHC-peptide complexes to T cells and even complete antigens from DCs. In this study, we demonstrate for the first time that APC activated with the FMDVi O1 Campos vaccine-antigens secrete EVs expressing viral proteins/peptides that could stimulate FMDV-specific immune response. The secretion of EVs-FMDVi is a time-dependent process and can only be isolated within the first 24 h post-activation. These vesicles express classical EVs markers (CD9, CD81, and CD63), along with immunoregulatory molecules (MHC-II and CD86). With an average size of 155 nm, they belong to the category of EVs. Studies conducted in vitro have demonstrated that EVs-FMDVi express antigens that can stimulate a specific B cell response against FMDV, including both marginal zone B cells (MZB) and follicular B cells (FoB). These vesicles can also indirectly or directly affect T cells, indicating that they express both B and T epitopes. Additionally, lymphocyte expansion induced by EVs-FMDVi is greater in splenocytes that have previously encountered viral antigens in vivo. The present study sheds light on the role of EVs derived from APC in regulating the adaptive immunity against FMDV. This novel insight contributes to our current understanding of the immune mechanisms triggered by APC during the antiviral immune response. Furthermore, these findings may have practical implications for the development of new vaccine platforms, providing a rational basis for the design of more effective vaccines against FMDV and other viral diseases.
Collapse
Affiliation(s)
- Florencia Menay
- Laboratorio de Microvesículas, Exosomas y miRNA, Instituto de Virología y Innovaciones Tecnológicas (IVIT)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVYA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Federico Cocozza
- Institut National de la Santé et de la Recherche Médicale (INSERM-U932), Institut Curie, París, France
| | - Maria J. Gravisaco
- Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVYA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Analia Elisei
- Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVYA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Departamento de Patología, Servicio Nacional de Salud y Calidad Agroalimentaria (SENASA), Martinez, Buenos Aires, Argentina
| | - Javier Ignacio Re
- Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVYA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Alejandra Ferella
- Laboratorio de Microvesículas, Exosomas y miRNA, Instituto de Virología y Innovaciones Tecnológicas (IVIT)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVYA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Claudia Waldner
- Laboratorio de Inmunología Celular y Molecular, Centro de Estudios Farmacologicos y Botanicos (CEFYBO) CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Claudia Mongini
- Laboratorio de Microvesículas, Exosomas y miRNA, Instituto de Virología y Innovaciones Tecnológicas (IVIT)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVYA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
5
|
Attreed SE, Silva C, Rodriguez-Calzada M, Mogulothu A, Abbott S, Azzinaro P, Canning P, Skidmore L, Nelson J, Knudsen N, Medina GN, de los Santos T, Díaz-San Segundo F. Prophylactic treatment with PEGylated bovine IFNλ3 effectively bridges the gap in vaccine-induced immunity against FMD in cattle. Front Microbiol 2024; 15:1360397. [PMID: 38638908 PMCID: PMC11024232 DOI: 10.3389/fmicb.2024.1360397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Foot-and-mouth disease (FMD) is a vesicular disease of cloven-hoofed animals with devastating economic implications. The current FMD vaccine, routinely used in enzootic countries, requires at least 7 days to induce protection. However, FMD vaccination is typically not recommended for use in non-enzootic areas, underscoring the need to develop new fast-acting therapies for FMD control during outbreaks. Interferons (IFNs) are among the immune system's first line of defense against viral infections. Bovine type III IFN delivered by a replication defective adenovirus (Ad) vector has effectively blocked FMD in cattle. However, the limited duration of protection-usually only 1-3 days post-treatment (dpt)-diminishes its utility as a field therapeutic. Here, we test whether polyethylene glycosylation (PEGylation) of recombinant bovine IFNλ3 (PEGboIFNλ3) can extend the duration of IFN-induced prevention of FMDV infection in both vaccinated and unvaccinated cattle. We treated groups of heifers with PEGboIFNλ3 alone or in combination with an adenovirus-based FMD O1Manisa vaccine (Adt-O1M) at either 3 or 5 days prior to challenge with homologous wild type FMDV. We found that pre-treatment with PEGboIFNλ3 was highly effective at preventing clinical FMD when administered at either time point, with or without co-administration of Adt-O1M vaccine. PEGboIFNλ3 protein was detectable systemically for >10 days and antiviral activity for 4 days following administration. Furthermore, in combination with Adt-O1M vaccine, we observed a strong induction of FMDV-specific IFNγ+ T cell response, demonstrating its adjuvanticity when co-administered with a vaccine. Our results demonstrate the promise of this modified IFN as a pre-exposure prophylactic therapy for use in emergency outbreak scenarios.
Collapse
Affiliation(s)
- Sarah E. Attreed
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
| | - Christina Silva
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
| | - Monica Rodriguez-Calzada
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
- Oak Ridge Institute for Science and Education Plum Island Animal Disease Center Research Participation Program, Oak Ridge, TN, United States
| | - Aishwarya Mogulothu
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, United States
| | - Sophia Abbott
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
- Animal Biosciences and Biotechnology Laboratory, Northeast Area, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, United States
| | - Paul Azzinaro
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
| | | | | | - Jay Nelson
- Ambrx Biopharma, Inc., La Jolla, CA, United States
| | - Nick Knudsen
- Ambrx Biopharma, Inc., La Jolla, CA, United States
| | - Gisselle N. Medina
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
- National Bio-and Agro-Defense Facility, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS, United States
| | - Teresa de los Santos
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
| | - Fayna Díaz-San Segundo
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
- Office of Biodefense, Research Resources and Translational Research, National Institute of Allergy and Infectious Disease, Rockville, MD, United States
| |
Collapse
|
6
|
Gonzalez FN, Ferrufino C, Dus Santos MJ, Carignano HA. Complete genome sequence of deformed wing virus and black queen cell virus isolated from honeybees ( Apis mellifera) in Argentina. Microbiol Resour Announc 2024; 13:e0102523. [PMID: 38299840 DOI: 10.1128/mra.01025-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
We report the complete genome sequence of deformed wing virus and black queen cell virus isolated from Argentinean's honeybees. These sequence data will be valuable for future research on the viral variants present in the country and the development of strategies to control the spread of these viruses in apiaries.
Collapse
Affiliation(s)
- Fernanda N Gonzalez
- Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas, Hurlingham, Argentina
| | - Cecilia Ferrufino
- Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas, Hurlingham, Argentina
| | - María José Dus Santos
- Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas, Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Hugo A Carignano
- Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas, Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
7
|
Metwally S, Bkear N, Badr Y, Elshafey B, Alhag SK, Al-Shuraym LA, Batiha G, Fakhry B, Hamada R. A Newly Emerging Serotype A Strain in Foot-and-Mouth Disease Virus with Higher Severity and Mortality in Buffalo than in Cattle Calves in North Egypt. Vet Sci 2023; 10:488. [PMID: 37624275 PMCID: PMC10457878 DOI: 10.3390/vetsci10080488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
A severe foot-and-mouth disease (FMD) epidemic struck several Egyptian provinces recently, causing significant losses among animals even in vaccinated farms. This study indicated the existence of the newly emerging foot-and-mouth disease virus (FMDV) and first investigated its effect on the Egyptian water buffalo (Bubalus bubalis) and cattle calves in the Beheira province, north Egypt. Twenty tongue epithelial samples from diseased calves in five infected farms were randomly collected, prepared, and propagated using baby hamster kidney-21 (BHK-21) cells. Whole genomic RNA was extracted from the cells of the third passage. A FMDV genome was detected and serotyped using one-step reverse transcription polymerase chain reactions (RT-PCRs). Nucleotide sequencing of the purified serotype-specific PCR bands was performed, and a maximum likelihood phylogenetic tree based on 600 base pairs of VP1 was constructed. The results identified FMDV, serotype A in all infected samples, whereas the serotypes O and SAT2 were negative. The obtained 20 sequences were identical to each other and similar to the newly reported strain in Egypt that belongs to the Europe-South America (Euro-SA) topotype. The epidemiological and clinical parameters associated with such a strain were fully recorded by veterinarians and analyzed in a single infected farm including 70 cattle and buffalo calves. It caused higher peracute mortalities in buffalo (25.7%; 95% CI: 13-43) than in cattle (8.6%; 95% CI: 2-24) calves. Severe clinical signs such as dullness, hypothermia, bradycardia, and cardiac arrhythmia were common to both except in fatal cases, whereas hyperthermia and respiratory signs were prevalent in cattle calves. In conclusion, we first characterized the newly emerging FMDV in the calves of Beheira as more fatal and severe in buffalo than in cattle calves.
Collapse
Affiliation(s)
- Samy Metwally
- Division of Infectious Disease, Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; (N.B.); (Y.B.); (B.F.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo 113-8657, Japan
| | - Nabil Bkear
- Division of Infectious Disease, Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; (N.B.); (Y.B.); (B.F.)
| | - Yassien Badr
- Division of Infectious Disease, Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; (N.B.); (Y.B.); (B.F.)
| | - Besheer Elshafey
- Division of Internal Medicine, Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Sadeq K. Alhag
- Biology Department, College of Science and Arts, King Khalid University, Muhayl Asser 61913, Saudi Arabia;
| | - Laila A. Al-Shuraym
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Gaber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Bassant Fakhry
- Division of Infectious Disease, Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; (N.B.); (Y.B.); (B.F.)
| | - Rania Hamada
- Division of Clinical Pathology, Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
8
|
Wang L, Lin X, Sheng Y, Zhu H, Li Z, Su Z, Yu R, Zhang S. Synthesis of a crystalline zeolitic imidazole framework-8 nano-coating on single environment-sensitive viral particles for enhanced immune responses. NANOSCALE ADVANCES 2023; 5:1433-1449. [PMID: 36866262 PMCID: PMC9972853 DOI: 10.1039/d2na00767c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Encapsulating antigens with zeolitic imidazole framework-8 (ZIF-8) exhibits many advantages in vaccine development. However, most viral antigens with complex particulate structures are sensitive to pH or ionic strength, which cannot tolerate harsh synthesis conditions of ZIF-8. Balancing the viral integrity and the growth of ZIF-8 crystals is crucial for the successful encapsulation of these environment-sensitive antigens in ZIF-8. Here, we explored the synthesis of ZIF-8 on inactivated foot and mouth disease virus (known as 146S), which is easily disassociated into no immunogenic subunits under the existing ZIF-8 synthesis conditions. Our results showed that intact 146S could be encapsulated into ZIF-8 with high embedding efficiency by lowering the pH of the 2-MIM solution to 9.0. The size and morphology of 146S@ZIF-8 could be further optimized by increasing the amount of Zn2+ or adding cetyltrimethylammonium bromide (CTAB). 146S@ZIF-8 with a uniform diameter of about 49 nm could be synthesized by adding 0.01% CTAB, which was speculated to be composed of single 146S armored with nanometer-scale ZIF-8 crystal networks. Plenty of histidine on the 146S surface forms a unique His-Zn-MIM coordination in the near vicinity of 146S particles, which greatly increases the thermostability of 146S by about 5 °C, and the nano-scale ZIF-8 crystal coating exhibited extraordinary stability to resist EDTE-treatment. More importantly, the well-controlled size and morphology enabled 146S@ZIF-8(0.01% CTAB) to facilitate antigen uptake. The immunization of 146S@ZIF-8(4×Zn2+) or 146S@ZIF-8(0.01% CTAB) significantly enhanced the specific antibody titers and promoted the differentiation of memory T cells without adding another immunopotentiator. This study reported for the first time the strategy of the synthesis of crystalline ZIF-8 on an environment-sensitive antigen and demonstrated that the nano-size and appropriate morphology of ZIF-8 are crucial to exert adjuvant effects, thus expanding the application of MOFs in vaccine delivery.
Collapse
Affiliation(s)
- Liuyang Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University Chengdu 610041 China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China +86-10-82544958
| | - Xuan Lin
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China +86-10-82544958
| | - Yanan Sheng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China +86-10-82544958
| | - Hongyu Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China +86-10-82544958
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University Kiryu 376-8515 Japan
| | - Zhengjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China +86-10-82544958
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China +86-10-82544958
| | - Rong Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China +86-10-82544958
| |
Collapse
|
9
|
Zhou B, Huang H, Gui F, Bi S, Du H, Cao L. Enhancement of intestinal mucosal immunity and immune response to the foot-and-mouth disease vaccine by oral administration of danggui buxue decoction. Front Vet Sci 2022; 9:1045152. [PMID: 36425118 PMCID: PMC9679645 DOI: 10.3389/fvets.2022.1045152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
This study investigated the effect of Danggui Buxue decoction (DBD) on the immunity of an O-type foot-and-mouth disease (FMD) vaccine and intestinal mucosal immunity. SPF KM mice were continuously and orally administered DBD for 5 d and then inoculated with an O-type FMD vaccine. The contents of a specific IgG antibody and its isotypes IgG1, IgG2a, IgG2b, and IgG3 in serum and SIgA in duodenal mucosa were determined by ELISA at 1 and 3 W after the 2nd immunization. qRT-PCR was used to detect mRNA expression levels of IL-4, IL-10, IFN-γ, and IL-33 in the spleen, and mRNA expression levels of J-chain, pIgR, BAFF, APRIL, IL-10, IFN-γ and IL-33 in the duodenum. The results showed that compared with the control group, oral administration of DBD significantly increased levels of the anti-FMD virus (FMDV)-specific antibodies IgG, IgG1, and IgG2a in the serum of O-type FMD vaccine-immunized mice 1 W after the 2nd immunization (P < 0.05), upregulated mRNA expression levels of spleen lymphocyte cytokines IL-4 and IL-33 (P < 0.05), promoted the secretion of SIgA in duodenal mucosa (P < 0.05). The mRNA expression levels of J-chain, pIgR, BAFF, APRIL, IL-10, and IL-33 in duodenal tissues were upregulated (P < 0.05). This study indicates that DBD has a good promotion effect on the O-type FMD vaccine and the potential to be an oral immune booster.
Collapse
Affiliation(s)
- Bingxin Zhou
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Huan Huang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Fuxing Gui
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Shicheng Bi
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Rongchang, Chongqing, China
- Chongqing Engineering Research Center of Veterinary Medicine, Chongqing, China
| | - Hongxu Du
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
- Chongqing Engineering Research Center of Veterinary Medicine, Chongqing, China
- Chi Institute of Traditional Chinese Veterinary Medicine, Southwest University, Chongqing, China
| | - Liting Cao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
- Chongqing Engineering Research Center of Veterinary Medicine, Chongqing, China
- Chi Institute of Traditional Chinese Veterinary Medicine, Southwest University, Chongqing, China
- *Correspondence: Liting Cao
| |
Collapse
|
10
|
Di Giacomo S, Bucafusco D, Schammas JM, Pega J, Miraglia MC, Barrionuevo F, Capozzo AV, Perez-Filgueira DM. Assessment on Different Vaccine Formulation Parameters in the Protection against Heterologous Challenge with FMDV in Cattle. Viruses 2022; 14:v14081781. [PMID: 36016403 PMCID: PMC9416185 DOI: 10.3390/v14081781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Foot-and-mouth disease (FMD) remains one of the major threats to animal health worldwide. Its causative agent, the FMD virus (FMDV), affects cloven-hoofed animals, including farm animals and wildlife species, inflicting severe damage to the international trade and livestock industry. FMDV antigenic variability remains one of the biggest challenges for vaccine-based control strategies. The current study analyzed the host’s adaptive immune responses in cattle immunized with different vaccine protocols and investigated its associations with the clinical outcome after infection with a heterologous strain of FMDV. The results showed that antigenic payload, multivalency, and revaccination may impact on the clinical outcome after heterologous challenge with FMDV. Protection from the experimental infection was related to qualitative traits of the elicited antibodies, such as avidity, IgG isotype composition, and specificity diversity, modulating and reflecting the vaccine-induced maturation of the humoral response. The correlation analyses of the serum avidity obtained per vaccinated individual might suggest that conventional vaccination can induce high-affinity immunoglobulins against conserved epitopes even within different FMDV serotypes. Cross-reaction among strains by these high-affinity antibodies may support further protection against a heterologous infection with FMDV.
Collapse
|
11
|
EXPLORING THE USE OF THE ERYTHROCYTE SEDIMENTATION RATE AS AN INFLAMMATORY MARKER FOR FREE-RANGING WILDLIFE: A CASE STUDY IN AFRICAN BUFFALO (SYNCERUS CAFFER). J Wildl Dis 2022; 58:298-308. [PMID: 35276000 DOI: 10.7589/jwd-d-21-00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/03/2021] [Indexed: 11/20/2022]
Abstract
Measuring inflammatory markers is critical to evaluating both recent infection status and overall human and animal health; however, there are relatively few techniques that do not require specialized equipment or personnel for detecting inflammation among wildlife. Such techniques are useful in that they help determine individual and population-level inflammatory status without the infrastructure and reagents that many more-specific assays require. One such technique, known as the erythrocyte sedimentation rate (ESR), is a measure of how quickly erythrocytes (red blood cells) settle in serum, with a faster rate indicating a general, underlying inflammatory process is occurring. The technique is simple, inexpensive, and can be performed in the field without specialized equipment. We took advantage of a population of African buffalo (Syncerus caffer), well studied from June 2014 to May 2017, to understand the utility of ESR in an important wildlife species. When ESR was compared with other markers of immunity in African buffalo, it correlated to known measures of inflammation. We found that a faster ESR was significantly positively correlated with increased total globulin levels and significantly negatively correlated with increased red blood cell count and albumin levels. We then evaluated if ESR correlated to the incidence of five respiratory pathogens and infection with two tick-borne pathogens in African buffalo. Our results suggest that elevated ESR is associated with the incidence of bovine viral diarrhea virus infection, parainfluenza virus, and Mannheimia haemolytica infections as well as concurrent Anaplasma marginale and Anaplasma centrale coinfection. These findings suggest that ESR is a useful field test as an inflammatory marker in individuals and herds, helping us better monitor overall health status in wild populations.
Collapse
|
12
|
Saravanan S, Guleria N, Ranjitha HB, Sreenivasa BP, Hosamani M, Prieto C, Umapathi V, Santosh HK, Behera S, Dhanesh VV, Krishna GS, Gopinath S, Kolte A, Bayry J, Sanyal A, Basagoudanavar SH. Induction of antiviral and cell mediated immune responses significantly reduce viral load in an acute foot-and-mouth disease virus infection in cattle. Genomics 2021; 113:4254-4266. [PMID: 34757126 DOI: 10.1016/j.ygeno.2021.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/22/2021] [Accepted: 10/27/2021] [Indexed: 11/27/2022]
Abstract
Foot-and-mouth disease virus (FMDV) causes a severe infection in ruminant animals. Here we present an in-depth transcriptional analysis of soft-palate tissue from cattle experimentally infected with FMDV. The differentially expressed genes from two Indian cattle (Bos indicus) breeds (Malnad Gidda and Hallikar) and Holstein Friesian (HF) crossbred calves, highlighted the activation of metabolic processes, mitochondrial functions and significant enrichment of innate antiviral immune response pathways in the indigenous calves. The results of RT-qPCR based validation of 12 genes was in alignment with the transcriptome data. The indigenous calves showing lesser virus load, elicited early neutralizing antibodies and IFN-γ immune responses. This study revealed that induction of potent innate antiviral response and cell mediated immunity in indigenous cattle, especially Malnad Gidda, significantly restricted FMDV replication during acute infection. These data highlighting the molecular processes associated with host-pathogen interactions, could aid in the conception of novel strategies to prevent and control FMDV infection in cattle.
Collapse
Affiliation(s)
- S Saravanan
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | - Neha Guleria
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | - H B Ranjitha
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | - B P Sreenivasa
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | | | - Carlos Prieto
- Bioinformatics Service, Nucleus, University of Salamanca, Spain
| | - V Umapathi
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | - H K Santosh
- Department of Animal Husbandry and Veterinary Services Karnataka, India
| | - Subhasmita Behera
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | - V V Dhanesh
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | | | - Shreya Gopinath
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | - Atul Kolte
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru 560030, India
| | - Jagadeesh Bayry
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad 678623, India
| | - Aniket Sanyal
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | | |
Collapse
|
13
|
Marrero Diaz de Villegas R, Seki C, Mattion NM, König GA. Functional and in silico Characterization of Neutralizing Interactions Between Antibodies and the Foot-and-Mouth Disease Virus Immunodominant Antigenic Site. Front Vet Sci 2021; 8:554383. [PMID: 34026880 PMCID: PMC8137985 DOI: 10.3389/fvets.2021.554383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 02/19/2021] [Indexed: 12/04/2022] Open
Abstract
Molecular knowledge of virus–antibody interactions is essential for the development of better vaccines and for a timely assessment of the spread and severity of epidemics. For foot-and-mouth disease virus (FMDV) research, in particular, computational methods for antigen–antibody (Ag–Ab) interaction, and cross-antigenicity characterization and prediction are critical to design engineered vaccines with robust, long-lasting, and wider response against different strains. We integrated existing structural modeling and prediction algorithms to study the surface properties of FMDV Ags and Abs and their interaction. First, we explored four modeling and two Ag–Ab docking methods and implemented a computational pipeline based on a reference Ag–Ab structure for FMDV of serotype C, to be used as a source protocol for the study of unknown interaction pairs of Ag–Ab. Next, we obtained the variable region sequence of two monoclonal IgM and IgG antibodies that recognize and neutralize antigenic site A (AgSA) epitopes from South America serotype A FMDV and developed two peptide ELISAs for their fine epitope mapping. Then, we applied the previous Ag–Ab molecular structure modeling and docking protocol further scored by functional peptide ELISA data. This work highlights a possible different behavior in the immune response of IgG and IgM Ab isotypes. The present method yielded reliable Ab models with differential paratopes and Ag interaction topologies in concordance with their isotype classes. Moreover, it demonstrates the applicability of computational prediction techniques to the interaction phenomena between the FMDV immunodominant AgSA and Abs, and points out their potential utility as a metric for virus-related, massive Ab repertoire analysis or as a starting point for recombinant vaccine design.
Collapse
Affiliation(s)
- Ruben Marrero Diaz de Villegas
- Instituto de Agrobiotecnología y Biología Molecular, Instituto Nacional de Tecnología Agropecuaria, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Cristina Seki
- Centro de Virología Animal, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Abierta Interamericana, Buenos Aires, Argentina
| | - Nora M Mattion
- Centro de Virología Animal, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Abierta Interamericana, Buenos Aires, Argentina
| | - Guido A König
- Instituto de Agrobiotecnología y Biología Molecular, Instituto Nacional de Tecnología Agropecuaria, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| |
Collapse
|
14
|
Li K, Wang C, Yang F, Cao W, Zhu Z, Zheng H. Virus-Host Interactions in Foot-and-Mouth Disease Virus Infection. Front Immunol 2021; 12:571509. [PMID: 33717061 PMCID: PMC7952751 DOI: 10.3389/fimmu.2021.571509] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/18/2021] [Indexed: 01/12/2023] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals, which has been regarded as a persistent challenge for the livestock industry in many countries. Foot-and-mouth disease virus (FMDV) is the etiological agent of FMD that can spread rapidly by direct and indirect transmission. FMDV is internalized into host cell by the interaction between FMDV capsid proteins and cellular receptors. When the virus invades into the cells, the host antiviral system is quickly activated to suppress the replication of the virus and remove the virus. To retain fitness and host adaptation, various viruses have evolved multiple elegant strategies to manipulate host machine and circumvent the host antiviral responses. Therefore, identification of virus-host interactions is critical for understanding the host defense against virus infections and the pathogenesis of the viral infectious diseases. This review elaborates on the virus-host interactions during FMDV infection to summarize the pathogenic mechanisms of FMD, and we hope it can provide insights for designing effective vaccines or drugs to prevent and control the spread of FMD and other diseases caused by picornaviruses.
Collapse
Affiliation(s)
- Kangli Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Congcong Wang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
15
|
Wong CL, Yong CY, Ong HK, Ho KL, Tan WS. Advances in the Diagnosis of Foot-and-Mouth Disease. Front Vet Sci 2020; 7:477. [PMID: 32974392 PMCID: PMC7473413 DOI: 10.3389/fvets.2020.00477] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/26/2020] [Indexed: 11/13/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a devastating livestock disease caused by foot-and-mouth disease virus (FMDV). Outbreaks of this disease in a country always result in conspicuous economic losses to livestock industry and subsequently lead to serious socioeconomic damages due to the immediate imposition of trade embargo. Rapid and accurate diagnoses are imperative to control this infectious virus. In the current review, enzyme-linked immunosorbent assay (ELISA)-based methods used in FMD diagnosis are extensively reviewed, particularly the sandwich, liquid-phase blocking, and solid-phase competition ELISA. The differentiation of infected animals from vaccinated animals using ELISA-based methods is also highlighted, in which the role of 3ABC polyprotein as a marker is reviewed intensively. Recently, more studies are focusing on the molecular diagnostic methods, which detect the viral nucleic acids based on reverse transcription-polymerase chain reaction (RT-PCR) and RT-loop-mediated isothermal amplification (RT-LAMP). These methods are generally more sensitive because of their ability to amplify a minute amount of the viral nucleic acids. In this digital era, the RT-PCR and RT-LAMP are progressing toward the mobile versions, aiming for on-site FMDV diagnosis. Apart from RT-PCR and RT-LAMP, another diagnostic assay specifically designed for on-site diagnosis is the lateral flow immunochromatographic test strips. These test strips have some distinct advantages over other diagnostic methods, whereby the assay often does not require the aid of an external device, which greatly lowers the cost per test. In addition, the on-site diagnostic test can be easily performed by untrained personnel including farmers, and the results can be obtained in a few minutes. Lastly, the use of FMDV diagnostic assays for progressive control of the disease is also discussed critically.
Collapse
Affiliation(s)
- Chuan Loo Wong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chean Yeah Yong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hui Kian Ong
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
16
|
Gnazzo V, Quattrocchi V, Soria I, Pereyra E, Langellotti C, Pedemonte A, Lopez V, Marangunich L, Zamorano P. Mouse model as an efficacy test for foot-and-mouth disease vaccines. Transbound Emerg Dis 2020; 67:2507-2520. [PMID: 32320534 DOI: 10.1111/tbed.13591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/01/2022]
Abstract
Protection against foot-and-mouth disease virus (FMDV) has been linked to the development of a humoral response. In Argentina, the official control tests for assessing the potency of FMD vaccines are protection against podal generalization (PPG) and expected percentage of protection (EPP) curves built with quantitative data of antibodies determined by liquid-phase blocking ELISA (lpELISA). The results of these tests are used to accept or discard vaccines at the batch level. In this report, a mouse model was assessed as an alternative efficacy control for FMDV vaccines. To this aim, groups of cattle (n = 18) and BALB/c mice (n = 16) were inoculated with commercial FMDV vaccines and bleedings were performed 60 days post vaccination (dpv) in cattle and 21 dpv in mice. Specific FMDV antibody titres were measured in both species by a standardized lpELISA. A statistically significant association between antibody levels in cattle and mice has already been demonstrated. However, some vaccines have been misclassified since they were considered protective based on lpELISA results but did not induce good protection in cattle upon challenge. For this reason, other immunological parameters were evaluated to improve the prediction of protection in mice, without the need of using infective virus. In addition, antibody titres by lpELISA, the IgG2b/IgG1 isotype ratio and the Avidity Index were identified as good predictors, resulting in an optimal predictive model of protection. This mouse model could be a simple and economic alternative for testing FMD vaccines since the disadvantages of high costs and facility requirements associated with the use of large animals are overcome.
Collapse
Affiliation(s)
- Victoria Gnazzo
- Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y Los Reseros, Buenos Aires, Argentina
| | - Valeria Quattrocchi
- Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y Los Reseros, Buenos Aires, Argentina
| | - Ivana Soria
- Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y Los Reseros, Buenos Aires, Argentina
| | - Erica Pereyra
- Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y Los Reseros, Buenos Aires, Argentina
| | - Cecilia Langellotti
- Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y Los Reseros, Buenos Aires, Argentina
| | - Andrea Pedemonte
- Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y Los Reseros, Buenos Aires, Argentina
| | - Virginia Lopez
- Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y Los Reseros, Buenos Aires, Argentina
| | - Laura Marangunich
- Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y Los Reseros, Buenos Aires, Argentina
| | - Patricia Zamorano
- Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y Los Reseros, Buenos Aires, Argentina
| |
Collapse
|
17
|
Mansilla FC, Turco CS, Miraglia MC, Bessone FA, Franco R, Pérez-Filgueira M, Sala JM, Capozzo AV. The role of viral particle integrity in the serological assessment of foot-and-mouth disease virus vaccine-induced immunity in swine. PLoS One 2020; 15:e0232782. [PMID: 32369529 PMCID: PMC7199947 DOI: 10.1371/journal.pone.0232782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
The efficacy of foot-and-mouth disease virus (FMDV) inactivated vaccines is mainly dependent on the integrity of the whole (146S) viral particles. If the intact capsids disassemble to 12S subunits, antibodies against internal-not protective epitopes, may be induced. Serological correlates with protection may be hampered if antibodies against internal epitopes are measured. Here we compared the performance of different ELISAs with the virus-neutralization test (VNT) that measures antibodies against exposed epitopes. Sera from pigs immunized with one dose of an expired commercial FMDV vaccine were used. This vaccine contained about 50% of O1/Campos and over 90% of A24/Cruzeiro strains total antigen as whole 146S particles. Specific-total antibodies were measured with the standard liquid-phase blocking ELISA (LPBE). We also developed an indirect ELISA (IE) using sucrose gradient purified 146S particles as capture antigen to titrate total antibodies, IgM, IgG1 and IgG2. A good correlation was found between VNT titers and IgG-ELISAs for A24/Cruzeiro, with the lowest correlation coefficient estimated for IgG2 titers. For O1/Campos, however, the presence of antibodies against epitopes different from those of the whole capsid, elicited by the presence of 12S particles in the vaccine, hampered the correlation between LPBE and VNT, which was improved by using purified O1/Campos 146S-particles for the liquid-phase of the LPBE. Interestingly, 146S particles but not 12S were efficiently bound to the ELISA plates, confirming the efficiency of the IE to detect antibodies against exposed epitopes. Our results indicate that any serological test assessing total antibodies or IgG1 against epitopes exposed in intact 146S-particles correlate with the levels of serum neutralizing antibodies in vaccinated pigs, and might potentially replace the VNT, upon validation. We recommend that antigen used for serological assays aimed to measure protective antibodies against FMDV should be controlled to ensure the preservation of 146S viral particles.
Collapse
Affiliation(s)
- Florencia Celeste Mansilla
- IVIT, Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Cecilia Soledad Turco
- IVIT, Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - María Cruz Miraglia
- IVIT, Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | | | - Raúl Franco
- Estación Experimental Agropecuaria "Marcos Juárez", INTA, Marcos Juarez, Córdoba, Argentina
| | - Mariano Pérez-Filgueira
- IVIT, Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Juan Manuel Sala
- Estación Experimental Agropecuaria "Mercedes", INTA, Merdeces, Corrientes, Argentina
| | - Alejandra Victoria Capozzo
- IVIT, Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
18
|
Stenfeldt C, Arzt J. The Carrier Conundrum; A Review of Recent Advances and Persistent Gaps Regarding the Carrier State of Foot-and-Mouth Disease Virus. Pathogens 2020; 9:E167. [PMID: 32121072 PMCID: PMC7157498 DOI: 10.3390/pathogens9030167] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
The existence of a prolonged, subclinical phase of foot-and-mouth disease virus (FMDV) infection in cattle was first recognized in the 1950s. Since then, the FMDV carrier state has been a subject of controversy amongst scientists and policymakers. A fundamental conundrum remains in the discordance between the detection of infectious FMDV in carriers and the apparent lack of contagiousness to in-contact animals. Although substantial progress has been made in elucidating the causal mechanisms of persistent FMDV infection, there are still critical knowledge gaps that need to be addressed in order to elucidate, predict, prevent, and model the risks associated with the carrier state. This is further complicated by the occurrence of a distinct form of neoteric subclinical infection, which is indistinguishable from the carrier state in field scenarios, but may have substantially different epidemiological properties. This review summarizes the current state of knowledge of the FMDV carrier state and identifies specific areas of research in need of further attention. Findings from experimental investigations of FMDV pathogenesis are discussed in relation to experience gained from field studies of foot-and-mouth disease.
Collapse
Affiliation(s)
- Carolina Stenfeldt
- Foreign Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Plum Island animal Disease Center, Orient, NY 11957, USA
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Plum Island animal Disease Center, Orient, NY 11957, USA
| |
Collapse
|
19
|
Foot-and-Mouth Disease Virus: Immunobiology, Advances in Vaccines and Vaccination Strategies Addressing Vaccine Failures-An Indian Perspective. Vaccines (Basel) 2019; 7:vaccines7030090. [PMID: 31426368 PMCID: PMC6789522 DOI: 10.3390/vaccines7030090] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
A mass vaccination campaign in India seeks to control and eventually eradicate foot-and-mouth disease (FMD). Biosanitary measures along with FMD monitoring are being conducted along with vaccination. The implementation of the FMD control program has drastically reduced the incidence of FMD. However, cases are still reported, even in regions where vaccination is carried out regularly. Control of FMD outbreaks is difficult when the virus remains in circulation in the vaccinated population. Various FMD risk factors have been identified that are responsible for FMD in vaccinated areas. The factors are discussed along with strategies to address these challenges. The current chemically inactivated trivalent vaccine formulation containing strains of serotype O, A, and Asia 1 has limitations including thermolability and induction of only short-term immunity. Advantages and disadvantages of several new-generation alternate vaccine formulations are discussed. It is unfeasible to study every incidence of FMD in vaccinated animals/areas in such a big country as India with its huge livestock population. However, at the same time, it is absolutely necessary to identify the precise reason for vaccination failure. Failure to vaccinate is one reason for the occurrence of FMD in vaccinated areas. FMD epidemiology, emerging and re-emerging virus strains, and serological status over the past 10 years are discussed to understand the impact of vaccination and incidences of vaccination failure in India. Other factors that are important in vaccination failure that we discuss include disrupted herd immunity, health status of animals, FMD carrier status, and FMD prevalence in other species. Recommendations to boost the search of alternate vaccine formulation, strengthen the veterinary infrastructure, bolster the real-time monitoring of FMD, as well as a detailed investigation and documentation of every case of vaccination failure are provided with the goal of refining the control program.
Collapse
|
20
|
Immune Response and Partial Protection against Heterologous Foot-and-Mouth Disease Virus Induced by Dendrimer Peptides in Cattle. J Immunol Res 2018; 2018:3497401. [PMID: 29854834 PMCID: PMC5960557 DOI: 10.1155/2018/3497401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/08/2017] [Accepted: 11/29/2017] [Indexed: 11/17/2022] Open
Abstract
Synthetic peptides mimicking protective B- and T-cell epitopes are good candidates for safer, more effective FMD vaccines. Nevertheless, previous studies of immunization with linear peptides showed that they failed to induce solid protection in cattle. Dendrimeric peptides displaying two or four copies of a peptide corresponding to the B-cell epitope VP1 [136–154] of type O FMDV (O/UKG/11/2001) linked through thioether bonds to a single copy of the T-cell epitope 3A [21–35] (termed B2T and B4T, resp.) afforded protection in vaccinated pigs. In this work, we show that dendrimeric peptides B2T and B4T can elicit specific humoral responses in cattle and confer partial protection against the challenge with a heterologous type O virus (O1/Campos/Bra/58). This protective response correlated with the induction of specific T-cells as well as with an anamnestic antibody response upon virus challenge, as shown by the detection of virus-specific antibody-secreting cells (ASC) in lymphoid tissues distal from the inoculation point.
Collapse
|
21
|
Barrionuevo F, Di Giacomo S, Bucafusco D, Ayude A, Schammas J, Miraglia MC, Capozzo A, Borca MV, Perez-Filgueira M. Systemic antibodies administered by passive immunization prevent generalization of the infection by foot-and-mouth disease virus in cattle after oronasal challenge. Virology 2018; 518:143-151. [PMID: 29481985 DOI: 10.1016/j.virol.2018.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 10/17/2022]
Abstract
The role of passively transferred sera in the protection against aerogenous foot-and-mouth disease (FMD) virus infection in cattle was evaluated using vaccine-induced immune serum preparations obtained at 7 and 26 days post-vaccination (dpv). We showed that circulating antibodies were sufficient to prevent disease generalization after oronasal infection in animals passively transferred with 26-dpv serum but not with the 7-dpv serum. Conversely, conventional FMD vaccination provided clinical protection at 7 dpv, promoting fast and robust antibody responses upon challenge and even though antibody titers were similar to those found in animals passively immunized with 7-dpv serum. These results demonstrate that presence of antigen-specific antibodies is critical to prevent the dissemination of the virus within the animal. Conventional FMD vaccination additionally promoted the deployment of rapid, high titer and isotype-switched antibody responses at systemic and mucosal levels after infection, thus conferring protection even in the presence of low pre-challenge antibody titers.
Collapse
Affiliation(s)
- Florencia Barrionuevo
- Instituto de Virología, CICVyA, INTA, N Repetto y De Los Reseros s/n, Hurlingham (1686), Buenos Aires, Argentina; CONICET, Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina.
| | - Sebastián Di Giacomo
- Instituto de Virología, CICVyA, INTA, N Repetto y De Los Reseros s/n, Hurlingham (1686), Buenos Aires, Argentina.
| | - Danilo Bucafusco
- Instituto de Virología, CICVyA, INTA, N Repetto y De Los Reseros s/n, Hurlingham (1686), Buenos Aires, Argentina; CONICET, Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina.
| | - Andrea Ayude
- Instituto de Virología, CICVyA, INTA, N Repetto y De Los Reseros s/n, Hurlingham (1686), Buenos Aires, Argentina.
| | - Juan Schammas
- Instituto de Virología, CICVyA, INTA, N Repetto y De Los Reseros s/n, Hurlingham (1686), Buenos Aires, Argentina.
| | - M Cruz Miraglia
- Instituto de Virología, CICVyA, INTA, N Repetto y De Los Reseros s/n, Hurlingham (1686), Buenos Aires, Argentina; CONICET, Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina.
| | - Alejandra Capozzo
- Instituto de Virología, CICVyA, INTA, N Repetto y De Los Reseros s/n, Hurlingham (1686), Buenos Aires, Argentina; CONICET, Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina.
| | - Manuel V Borca
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY, USA.
| | - Mariano Perez-Filgueira
- Instituto de Virología, CICVyA, INTA, N Repetto y De Los Reseros s/n, Hurlingham (1686), Buenos Aires, Argentina; CONICET, Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina.
| |
Collapse
|
22
|
Sala JM, Trotta MV, Mansilla FC, Pérez-Filgueira M, Caspe SG, Capozzo AV. Alternatives for the serological assessment of foot-and-mouth disease vaccine immunity in buffaloes ( Bubalus bubalis). JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2017.1335641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Juan Manuel Sala
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria de Mercedes, Corrientes, Argentina
| | - Myrian Vanesa Trotta
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Hurlingham, Argentina
| | - Florencia Celeste Mansilla
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Hurlingham, Argentina
| | - Mariano Pérez-Filgueira
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Sergio Gastón Caspe
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria de Mercedes, Corrientes, Argentina
| | - Alejandra Victoria Capozzo
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| |
Collapse
|
23
|
Abubakar M, Manzoor S, Ahmed A. Interplay of foot and mouth disease virus with cell-mediated and humoral immunity of host. Rev Med Virol 2017; 28. [PMID: 29282795 DOI: 10.1002/rmv.1966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 11/08/2022]
Abstract
Foot and mouth disease virus (FMDV) causes a communicable disease of cloven hoofed animals, resulting in major economic losses during disease outbreaks. Like other members of the Picornaviridae FMDV has a relatively short infectious cycle; initiation of infection and dissemination, with production of infectious virions occurs in less than a week. The components of innate immunity as well as cell-mediated and humoral immunity play a crucial role in control of FMDV. However, it has been shown in vitro using a mouse model that FMDV has evolved certain mechanisms to counteract host immune responses ensuring its survival and spread. The viral leader proteinase, L pro, deters interferon beta (IFN-β) mRNA synthesis, thus, inhibiting host cell translation. Another viral proteinase, 3C pro, disrupts host cell transcription by cleaving histone H3. A transient lymphopenia in swine as a consequence of FMDV infection has also been observed, but the mechanism involved and viral protein(s) associated with this process are not clearly understood. In this review, we have covered the interaction of FMDV with different immune cells including lymphocytes and antigen presenting cells and their consequences.
Collapse
Affiliation(s)
| | | | - Afshan Ahmed
- FAO FMD Project (GCP/PAK/123/USA), Islamabad, Pakistan
| |
Collapse
|
24
|
Soria I, Quattrocchi V, Langellotti C, Gammella M, Digiacomo S, Garcia de la Torre B, Andreu D, Montoya M, Sobrino F, Blanco E, Zamorano P. Dendrimeric peptides can confer protection against foot-and-mouth disease virus in cattle. PLoS One 2017; 12:e0185184. [PMID: 28949998 PMCID: PMC5614567 DOI: 10.1371/journal.pone.0185184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/07/2017] [Indexed: 11/29/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) causes a highly contagious disease in cloven-hoofed animals. A synthetic vaccine candidate consisting of dendrimeric peptides harbouring two copies of a B-epitope [VP1(136–154)] linked to a T-cell epitope [3A(21–35)] of FMDV confers protection to type O FMDV challenge in pigs. Herein we show in cattle that novel dendrimeric peptides bearing a T-cell epitope [VP1(21–40] and two or four copies of a B-cell epitope [VP1(135–160)] from type O1 Campos FMDV (termed B2T and B4T, respectively) elicited FMDV specific immune responses to similar levels to a commercial vaccine. Animals were challenged with FMDV and 100% of vaccinated cattle with B2T or B4T were protected to podal generalization. Moreover, bovines immunized with B4T were completely protected (with no clinical signs) against FMDV challenge after three vaccine doses, which was associated with titers of viral neutralizing antibodies in serum higher than those of B2T group (p< 0.05) and levels of opsonic antibodies similar to those of animals immunized with one dose of FMDV commercial vaccine. Bovines vaccinated with both dendrimeric peptides presented high levels of IgG1 anti FMDV in sera and in mucosa. When IgA in nasal secretions was measured, 20% or 40% of the animals in B2T or B4T groups respectively, showed anti-FMDV IgA titers. In addition, B2T and B4T peptides evoked similar consistent T cell responses, being recognized in vitro by lymphocytes from most of the immunized cattle in the proliferation assay, and from all animals in the IFN-γ production assay. Taken together, these results support the potential of dendrimers B2T or B4T in cattle as a highly valuable, cost-effective FMDV candidate vaccine with DIVA potential.
Collapse
Affiliation(s)
- Ivana Soria
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail: (PZ); (IS); (FS)
| | - Valeria Quattrocchi
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Buenos Aires, Argentina
| | - Cecilia Langellotti
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariela Gammella
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Buenos Aires, Argentina
| | - Sebastian Digiacomo
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Buenos Aires, Argentina
| | | | - David Andreu
- Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu-Fabra, Barcelona, Spain
| | - Maria Montoya
- The Pirbright Institute, Ash Road, Woking, Surrey, United Kingdom
| | - Francisco Sobrino
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Madrid, Spain
- * E-mail: (PZ); (IS); (FS)
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Patricia Zamorano
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail: (PZ); (IS); (FS)
| |
Collapse
|
25
|
Kenney M, Waters RA, Rieder E, Pega J, Perez-Filguera M, Golde WT. Enhanced sensitivity in detection of antiviral antibody responses using biotinylation of foot-and-mouth disease virus (FMDV) capsids. J Immunol Methods 2017; 450:1-9. [PMID: 28689695 DOI: 10.1016/j.jim.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/23/2017] [Accepted: 07/05/2017] [Indexed: 01/28/2023]
Abstract
Analysis of the immune response to infection of livestock by foot-and-mouth disease virus (FMDV) is most often reported as the serum antibody response to the virus. While measurement of neutralizing antibody has been sensitive and specific, measurements of the quality of the antibody response are less robust. Determining the immunoglobulin (Ig) isotype of the serum antibody response provides a deeper understanding of the biology of the response and more sensitive methods for these assays will facilitate analyses of B cell mediated immunity. We tested the hypothesis that using the virus as the molecular probe could be achieved by adding tags to the surface of the FMDV capsid, and that would enhance sensitivity in assays for anti-FMDV antibody responses. The use of a FLAG-tagged virus in these assays failed to yield improvement whereas chemically biotinylating the virus capsid resulted in significant enhancement of the signal. Here we describe methods using biotinylated virus for measuring anti-viral antibody in serum and antibody secreting cells (ASCs) in blood that are sensitive and specific. Finally, we describe using the biotinylated virus in flow cytometry where such assays should greatly enhance the analysis of anti-virus antibody producing B cells, allowing the investigator to focus on only the FMDV specific B cells when analyzing the development of the B cell response to either infection or vaccination.
Collapse
Affiliation(s)
- Mary Kenney
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY 11944, United States
| | - Ryan A Waters
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY 11944, United States
| | - Elizabeth Rieder
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY 11944, United States
| | - Juan Pega
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Mariano Perez-Filguera
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - William T Golde
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY 11944, United States.
| |
Collapse
|
26
|
The B Cell Response to Foot-and-Mouth Disease Virus in Cattle following Sequential Vaccination with Multiple Serotypes. J Virol 2017; 91:JVI.02157-16. [PMID: 28228594 DOI: 10.1128/jvi.02157-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/12/2017] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is a highly contagious viral disease. Antibodies are pivotal in providing protection against FMDV infection. Serological protection against one FMDV serotype does not confer interserotype protection. However, some historical data have shown that interserotype protection can be induced following sequential FMDV challenge with multiple FMDV serotypes. In this study, we have investigated the kinetics of the FMDV-specific antibody-secreting cell (ASC) response following homologous and heterologous inactivated FMDV vaccination regimes. We have demonstrated that the kinetics of the B cell response are similar for all four FMDV serotypes tested following a homologous FMDV vaccination regime. When a heterologous vaccination regime was used with the sequential inoculation of three different inactivated FMDV serotypes (O, A, and Asia1 serotypes) a B cell response to FMDV SAT1 and serotype C was induced. The studies also revealed that the local lymphoid tissue had detectable FMDV-specific ASCs in the absence of circulating FMDV-specific ASCs, indicating the presence of short-lived ASCs, a hallmark of a T-independent 2 (TI-2) antigenic response to inactivated FMDV capsid.IMPORTANCE We have demonstrated the development of intraserotype response following a sequential vaccination regime of four different FMDV serotypes. We have found indication of short-lived ASCs in the local lymphoid tissue, further evidence of a TI-2 response to FMDV.
Collapse
|
27
|
Reduced humoral immunity and atypical cell-mediated immunity in response to vaccination in cows naturally infected with bovine leukemia virus. Vet Immunol Immunopathol 2016; 182:125-135. [PMID: 27863543 DOI: 10.1016/j.vetimm.2016.10.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/27/2016] [Accepted: 10/21/2016] [Indexed: 11/20/2022]
Abstract
Bovine leukemia virus (BLV) is a retrovirus that is widely distributed across US dairy herds: over 83% of herds are BLV-infected and within-herd infection rates can approach 50%. BLV infection reduces both animal longevity and milk production and can interfere with normal immune health. With such a high prevalence of BLV infection in dairy herds, it is essential to understand the circumstances by which BLV negatively affects the immune system of infected cattle. To address this question, BLV- and BLV+ adult, lactating Holstein dairy cows were vaccinated with Bovi-Shield GOLD® FP® 5 L5 HB and their immune response to vaccination was measured over the course of 28days. On day 0 prior to vaccination and days 7, 14 and 28 post-vaccination, fresh PBMCs were characterized for T and B cell ratios in the periphery. Plasma was collected to measure titers of IgM, IgG1 and IgG2 produced against bovine herpesvirus 1 (BHV1), Leptospira hardjo and L. pomona, as well as to characterize neutralizing antibody titers produced against BHV1 and bovine viral diarrhea virus types 1 and 2. On day 18 post-vaccination, PBMCs were cultured in the presence of BHV1 and flow cytometry was used to determine IFNγ production by CD4+, CD8+ and γδ T cells and to investigate CD25 and MHCII expression on B cells. BLV+ cows produced significantly lower titers of IgM against BHV1, L. hardjo and L. pomona and produced lower titers of IgG2 against BHV1. γδ T cells from BLV+ cows displayed a hyper reactive response to stimulation in vitro, although no differences were observed in CD4+ or CD8+ T cell activation. Finally, B cells from BLV+ cows exhibited higher CD25 expression and reduced MHCII expression in response to stimulation in vitro. All together, data from this study support the hypothesis that BLV+ cows fail to respond to vaccination as strongly as BLV- cows and, consequently, may have reduced protective immunity when compared to healthy BLV- cows.
Collapse
|
28
|
Diaz-San Segundo F, Montiel NA, Sturza DF, Perez-Martin E, Hickman D, Ramirez-Medina E, Grubman MJ, de Los Santos T. Combination of Adt-O1Manisa and Ad5-boIFNλ3 induces early protective immunity against foot-and-mouth disease in cattle. Virology 2016; 499:340-349. [PMID: 27743960 DOI: 10.1016/j.virol.2016.09.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 11/15/2022]
Abstract
Foot-and-mouth-disease (FMD) remains the most infectious livestock disease worldwide. Although commercially available inactivated or adenovirus-vectored-vaccines (Ad5-FMD) are effective, they require 5-7 days to induce protection. Therefore, new control strategies that stimulate rapid immune responses are needed. Expression of bovine interferon λ3 using the Ad5-vector platform (Ad5-boIFNλ3) is able to delay disease in cattle, but clinical signs appear at 9 days after challenge. We hypothesized that combination of Ad5-boIFNλ3 and Ad5-FMD could induce immediate and lasting protection against FMD. Cattle were vaccinated with an Ad5-FMD, Ad5-boIFNλ3, or the combination of both, followed by challenge at three days post-immunization. All animals treated with Ad5-FMD combined with Ad5-boIFNλ3 were fully protected against FMD, despite the absence of systemic neutralizing antibodies or antiviral activity at the time of challenge. Induction of a strong cell-mediated immune response suggested that Ad5-boIFNλ3 is able to act as an adjuvant of Ad5-FMD vaccine in cattle.
Collapse
Affiliation(s)
- Fayna Diaz-San Segundo
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY 11944, USA; Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, USA
| | - Nestor A Montiel
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY 11944, USA; Oak Ridge Institute for Science and Education, Plum Island Animal Disease Center Research Participation Program, Oak Ridge, TN 37831, USA
| | - Diego F Sturza
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY 11944, USA; Oak Ridge Institute for Science and Education, Plum Island Animal Disease Center Research Participation Program, Oak Ridge, TN 37831, USA
| | - Eva Perez-Martin
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY 11944, USA; Oak Ridge Institute for Science and Education, Plum Island Animal Disease Center Research Participation Program, Oak Ridge, TN 37831, USA
| | - Danielle Hickman
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY 11944, USA
| | - Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY 11944, USA; Oak Ridge Institute for Science and Education, Plum Island Animal Disease Center Research Participation Program, Oak Ridge, TN 37831, USA
| | - Marvin J Grubman
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY 11944, USA
| | - Teresa de Los Santos
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY 11944, USA.
| |
Collapse
|
29
|
Eschbaumer M, Stenfeldt C, Rekant SI, Pacheco JM, Hartwig EJ, Smoliga GR, Kenney MA, Golde WT, Rodriguez LL, Arzt J. Systemic immune response and virus persistence after foot-and-mouth disease virus infection of naïve cattle and cattle vaccinated with a homologous adenovirus-vectored vaccine. BMC Vet Res 2016; 12:205. [PMID: 27634113 PMCID: PMC5025598 DOI: 10.1186/s12917-016-0838-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 09/10/2016] [Indexed: 12/31/2022] Open
Abstract
Background In order to investigate host factors associated with the establishment of persistent foot-and-mouth disease virus (FMDV) infection, the systemic response to vaccination and challenge was studied in 47 steers. Eighteen steers that had received a recombinant FMDV A vaccine 2 weeks earlier and 29 non-vaccinated steers were challenged by intra-nasopharyngeal deposition of FMDV A24. For up to 35 days after challenge, host factors including complete blood counts with T lymphocyte subsets, type I/III interferon (IFN) activity, neutralizing and total FMDV-specific antibody titers in serum, as well as antibody-secreting cells (in 6 non-vaccinated animals) were characterized in the context of viral infection dynamics. Results Vaccination generally induced a strong antibody response. There was a transient peak of FMDV-specific serum IgM in non-vaccinated animals after challenge, while IgM levels in vaccinated animals did not increase further. Both groups had a lasting increase of specific IgG and neutralizing antibody after challenge. Substantial systemic IFN activity in non-vaccinated animals coincided with viremia, and no IFN or viremia was detected in vaccinated animals. After challenge, circulating lymphocytes decreased in non-vaccinated animals, coincident with viremia, IFN activity, and clinical disease, whereas lymphocyte and monocyte counts in vaccinated animals were unaffected by vaccination but transiently increased after challenge. The CD4+/CD8+ T cell ratio in non-vaccinated animals increased during acute infection, driven by an absolute decrease of CD8+ cells. Conclusions The incidence of FMDV persistence was 61.5 % in non-vaccinated and 54.5 % in vaccinated animals. Overall, the systemic factors examined were not associated with the FMDV carrier/non-carrier divergence; however, significant differences were identified between responses of non-vaccinated and vaccinated cattle. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0838-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Eschbaumer
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA.,Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN, USA
| | - Carolina Stenfeldt
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA.,Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN, USA
| | - Steven I Rekant
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA.,Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN, USA
| | - Juan M Pacheco
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA
| | - Ethan J Hartwig
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA
| | - George R Smoliga
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA
| | - Mary A Kenney
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA
| | - William T Golde
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA
| | - Luis L Rodriguez
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA
| | - Jonathan Arzt
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA.
| |
Collapse
|
30
|
Puentes R, De Brun L, Algorta A, Da Silva V, Mansilla F, Sacco G, Llambí S, Capozzo AV. Evaluation of serological response to foot-and-mouth disease vaccination in BLV infected cows. BMC Vet Res 2016; 12:119. [PMID: 27329153 PMCID: PMC4915103 DOI: 10.1186/s12917-016-0749-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/16/2016] [Indexed: 12/24/2022] Open
Abstract
Background Bovine Leukemia Virus (BLV) produces disorders on the immune system in naturally infected animals, which may counteract the development of immunity after vaccination. The aim of this study was to investigate whether healthy and BLV infected cattle elicited similar humoral responses after foot and mouth disease (FMD) immunization. In a field study, 35 Holstein heifers were selected based on their BLV serological status and immunized with a single dose of a commercial bivalent oil-based FMD vaccine. Serum samples were collected at 0, 15, 60, 165 and 300 days post vaccination (dpv). Results Total anti-A24/Cruzeiro antibodies, IgM, IgG1, IgG2 titers and avidity index of specific antibodies were determined by ELISA. Although only marginally significant differences were found between groups in terms of total antibodies, anti-FMD IgM and IgG1 titers were significantly lower in heifers infected with BLV at the 15 dpv (p < 0.01). Animals that became infected during the study did not show differences to the BLV negative group. Conclusions Cattle infected with BLV at the time of immunization may elicit a low-magnitude serological response to a commercial Foot-and-mouth disease vaccine.
Collapse
Affiliation(s)
- Rodrigo Puentes
- Immunology Area - Department of Microbiological Sciences, Faculty of Veterinary, University of the Republic (UdelaR), Montevideo, Uruguay.
| | - Laureana De Brun
- Immunology Area - Department of Microbiological Sciences, Faculty of Veterinary, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Agustina Algorta
- Immunology Area - Department of Microbiological Sciences, Faculty of Veterinary, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Valeria Da Silva
- Immunology Area - Department of Microbiological Sciences, Faculty of Veterinary, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Florencia Mansilla
- Centre of Veterinary Sciences and Agronomic Investigations, INTA, Virology Institute, Buenos Aires, Argentina
| | | | - Silvia Llambí
- Genetics Area, Faculty of Veterinary, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Alejandra V Capozzo
- Centre of Veterinary Sciences and Agronomic Investigations, INTA, Virology Institute, Buenos Aires, Argentina.,CONICET - National Council of Scientific and Technological Research, Buenos Aires, Argentina
| |
Collapse
|
31
|
Robinson L, Knight-Jones TJD, Charleston B, Rodriguez LL, Gay CG, Sumption KJ, Vosloo W. Global Foot-and-Mouth Disease Research Update and Gap Analysis: 6 - Immunology. Transbound Emerg Dis 2016; 63 Suppl 1:56-62. [DOI: 10.1111/tbed.12518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2016] [Indexed: 01/26/2023]
Affiliation(s)
| | | | | | - L. L. Rodriguez
- Plum Island Animal Disease Center; ARS; USDA; Greenport NY USA
| | - C. G. Gay
- Agricultural Research Service; USDA; National Program 103-Animal Health; Beltsville MD USA
| | - K. J. Sumption
- European Commission for the Control of FMD (EuFMD); FAO; Rome Italy
| | - W. Vosloo
- Australian Animal Health Laboratory; CSIRO-Biosecurity Flagship; Geelong VIC Australia
| |
Collapse
|
32
|
Grant CFJ, Carr BV, Singanallur NB, Morris J, Gubbins S, Hudelet P, Ilott M, Charreyre C, Vosloo W, Charleston B. The B-cell response to foot-and-mouth-disease virus in cattle following vaccination and live-virus challenge. J Gen Virol 2016; 97:2201-2209. [PMID: 27260141 PMCID: PMC5042126 DOI: 10.1099/jgv.0.000517] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Antibodies play a pivotal role against viral infection, and maintenance of protection is dependent on plasma and memory B-cells. Understanding antigen-specific B-cell responses in cattle is essential to inform future vaccine design. We have previously defined T-cell-dependent and -independent B-cell responses in cattle, as a prelude to investigating foot-and-mouth-disease-virus (FMDV)-specific B-cell responses. In this study, we have used an FMDV O-serotype vaccination (O1-Manisa or O SKR) and live-virus challenge (FMDV O SKR) to investigate the homologous and heterologous B-cell response in cattle following both vaccination and live-virus challenge. The FMDV O-serotype vaccines were able to induce a cross-reactive plasma-cell response, specific for both O1-Manisa and O SKR, post-vaccination. Post-FMDV O SKR live-virus challenge, the heterologous O1-Manisa vaccination provided cross-protection against O SKR challenge and cross-reactive O SKR-specific plasma cells were induced. However, vaccination and live-virus challenge were not able to induce a detectable FMDV O-serotype-specific memory B-cell response in any of the cattle. The aim of new FMDV vaccines should be to induce memory responses and increased duration of immunity in cattle.
Collapse
Affiliation(s)
| | | | | | | | | | - Pascal Hudelet
- Merial Animal Health Ltd, 254 Rue Marcel Mérieux, 69007 Lyon, France
| | | | | | - Wilna Vosloo
- CSIRO, 5 Portarlington Road, Geelong, VIC 3220, Australia
| | | |
Collapse
|
33
|
Differential Persistence of Foot-and-Mouth Disease Virus in African Buffalo Is Related to Virus Virulence. J Virol 2016; 90:5132-5140. [PMID: 26962214 DOI: 10.1128/jvi.00166-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/07/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Foot-and-mouth disease (FMD) virus (FMDV) circulates as multiple serotypes and strains in many regions of endemicity. In particular, the three Southern African Territories (SAT) serotypes are maintained effectively in their wildlife reservoir, the African buffalo, and individuals may harbor multiple SAT serotypes for extended periods in the pharyngeal region. However, the exact site and mechanism for persistence remain unclear. FMD in buffaloes offers a unique opportunity to study FMDV persistence, as transmission from carrier ruminants has convincingly been demonstrated for only this species. Following coinfection of naive African buffaloes with isolates of three SAT serotypes from field buffaloes, palatine tonsil swabs were the sample of choice for recovering infectious FMDV up to 400 days postinfection (dpi). Postmortem examination identified infectious virus for up to 185 dpi and viral genomes for up to 400 dpi in lymphoid tissues of the head and neck, focused mainly in germinal centers. Interestingly, viral persistence in vivo was not homogenous, and the SAT-1 isolate persisted longer than the SAT-2 and SAT-3 isolates. Coinfection and passage of these SAT isolates in goat and buffalo cell lines demonstrated a direct correlation between persistence and cell-killing capacity. These data suggest that FMDV persistence occurs in the germinal centers of lymphoid tissue but that the duration of persistence is related to virus replication and cell-killing capacity. IMPORTANCE Foot-and-mouth disease virus (FMDV) causes a highly contagious acute vesicular disease in domestic livestock and wildlife species. African buffaloes (Syncerus caffer) are the primary carrier hosts of FMDV in African savannah ecosystems, where the disease is endemic. We have shown that the virus persists for up to 400 days in buffaloes and that there is competition between viruses during mixed infections. There was similar competition in cell culture: viruses that killed cells quickly persisted more efficiently in passaged cell cultures. These results may provide a mechanism for the dominance of particular viruses in an ecosystem.
Collapse
|
34
|
Ni Z, Yang F, Cao W, Zhang X, Jin Y, Mao R, Du X, Li W, Guo J, Liu X, Zhu Z, Zheng H. Differential gene expression in porcine SK6 cells infected with wild-type and SAP domain-mutant foot-and-mouth disease virus. Virol Sin 2016; 31:249-57. [PMID: 27097918 DOI: 10.1007/s12250-015-3709-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/03/2016] [Indexed: 01/05/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious disease in livestock. The viral proteinase L(pro) of FMDV is involved in pathogenicity, and mutation of the L(pro) SAP domain reduces FMDV pathogenicity in pigs. To determine the gene expression profiles associated with decreased pathogenicity in porcine cells, we performed transcriptome analysis using next-generation sequencing technology and compared differentially expressed genes in SK6 cells infected with FMDV containing L(pro) with either a wild-type or mutated version of the SAP domain. This analysis yielded 1,853 genes that exhibited a ≥ 2-fold change in expression and was validated by real-time quantitative PCR detection of several differentially expressed genes. Many of the differentially expressed genes correlated with antiviral responses corresponded to genes associated with transcription factors, immune regulation, cytokine production, inflammatory response, and apoptosis. Alterations in gene expression profiles may be responsible for the variations in pathogenicity observed between the two FMDV variants. Our results provided genes of interest for the further study of antiviral pathways and pathogenic mechanisms related to FMDV L(pro).
Collapse
Affiliation(s)
- Zixin Ni
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.,College of Veterinary Medicine, China Agricultural University, Beijing, 100083, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Xiangle Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Ye Jin
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Ruoqing Mao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Xiaoli Du
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Weiwei Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Jianhong Guo
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
35
|
Zhu Z, Yang F, Zhang K, Cao W, Jin Y, Wang G, Mao R, Li D, Guo J, Liu X, Zheng H. Comparative Proteomic Analysis of Wild-Type and SAP Domain Mutant Foot-and-Mouth Disease Virus-Infected Porcine Cells Identifies the Ubiquitin-Activating Enzyme UBE1 Required for Virus Replication. J Proteome Res 2015; 14:4194-206. [DOI: 10.1021/acs.jproteome.5b00310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zixiang Zhu
- State Key Laboratory of Veterinary
Etiological Biology, National Foot and Mouth Diseases Reference Laboratory,
Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory of Veterinary
Etiological Biology, National Foot and Mouth Diseases Reference Laboratory,
Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Keshan Zhang
- State Key Laboratory of Veterinary
Etiological Biology, National Foot and Mouth Diseases Reference Laboratory,
Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory of Veterinary
Etiological Biology, National Foot and Mouth Diseases Reference Laboratory,
Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ye Jin
- State Key Laboratory of Veterinary
Etiological Biology, National Foot and Mouth Diseases Reference Laboratory,
Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guoqing Wang
- State Key Laboratory of Veterinary
Etiological Biology, National Foot and Mouth Diseases Reference Laboratory,
Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ruoqing Mao
- State Key Laboratory of Veterinary
Etiological Biology, National Foot and Mouth Diseases Reference Laboratory,
Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Li
- State Key Laboratory of Veterinary
Etiological Biology, National Foot and Mouth Diseases Reference Laboratory,
Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianhong Guo
- State Key Laboratory of Veterinary
Etiological Biology, National Foot and Mouth Diseases Reference Laboratory,
Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary
Etiological Biology, National Foot and Mouth Diseases Reference Laboratory,
Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary
Etiological Biology, National Foot and Mouth Diseases Reference Laboratory,
Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
36
|
Systemic Foot-and-Mouth Disease Vaccination in Cattle Promotes Specific Antibody-Secreting Cells at the Respiratory Tract and Triggers Local Anamnestic Responses upon Aerosol Infection. J Virol 2015; 89:9581-90. [PMID: 26157128 DOI: 10.1128/jvi.01082-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Foot-and-mouth disease (FMD) is a highly contagious viral disease affecting biungulate species. Commercial vaccines, formulated with inactivated FMD virus (FMDV), are regularly used worldwide to control the disease. Here, we studied the generation of antibody responses in local lymphoid tissues along the respiratory system in vaccinated and further aerosol-infected cattle. Animals immunized with a high-payload monovalent FMD vaccine developed high titers of neutralizing antibodies at 7 days postvaccination (dpv), reaching a plateau at 29 dpv. FMDV-specific antibody-secreting cells (ASC), predominantly IgM, were evident at 7 dpv in the prescapular lymph node (LN) draining the vaccination site and in distal LN draining the respiratory mucosa, although in lower numbers. At 29 dpv, a significant switch to IgG1 was clear in prescapular LN, while FMDV-specific ASC were detected in all lymphoid tissues draining the respiratory tract, mostly as IgM-secreting cells. None of the animals (n = 10) exhibited FMD symptoms after oronasal challenge at 30 dpv. Three days postinfection, a large increase in ASC numbers and rapid isotype switches to IgG1 were observed, particularly in LN-draining virus replication sites already described. These results indicate for the first time that systemic FMD vaccination in cattle effectively promotes the presence of anti-FMDV ASC in lymphoid tissues associated with the respiratory system. Oronasal infection triggered an immune reaction compatible with a local anamnestic response upon contact with the replicating FMDV, suggesting that FMD vaccination induces the circulation of virus-specific B lymphocytes, including memory B cells that differentiate into ASC soon after contact with the infective virus. IMPORTANCE Over recent decades, world animal health organizations as well as national sanitary authorities have supported the use of vaccination as an essential component of the official FMD control programs in both endemic and disease-free settings. Very few works studied the local immunity induced by FMD vaccines at the respiratory mucosa, and local responses induced in vaccinated animals after aerosol infection have not been described yet. In this work, we demonstrate for the first time that systemic FMD vaccination (i) induced the early presence of active antigen-specific ASC along the respiratory tract and (ii) prompted a rapid local antibody response in the respiratory mucosa, triggered upon oronasal challenge and congruent with a memory B-cell response. This information may help to understand novel aspects of protective responses induced by current FMD vaccines as well as to provide alternative parameters to establish protection efficiency for new vaccine developments.
Collapse
|
37
|
Bucafusco D, Di Giacomo S, Pega J, Schammas JM, Cardoso N, Capozzo AV, Perez-Filgueira M. Foot-and-mouth disease vaccination induces cross-reactive IFN-γ responses in cattle that are dependent on the integrity of the 140S particles. Virology 2015; 476:11-18. [DOI: 10.1016/j.virol.2014.11.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/10/2014] [Accepted: 11/20/2014] [Indexed: 11/28/2022]
|
38
|
Habiela M, Seago J, Perez-Martin E, Waters R, Windsor M, Salguero FJ, Wood J, Charleston B, Juleff N. Laboratory animal models to study foot-and-mouth disease: a review with emphasis on natural and vaccine-induced immunity. J Gen Virol 2014; 95:2329-2345. [PMID: 25000962 PMCID: PMC4202264 DOI: 10.1099/vir.0.068270-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/04/2014] [Indexed: 12/24/2022] Open
Abstract
Laboratory animal models have provided valuable insight into foot-and-mouth disease virus (FMDV) pathogenesis in epidemiologically important target species. While not perfect, these models have delivered an accelerated time frame to characterize the immune responses in natural hosts and a platform to evaluate therapeutics and vaccine candidates at a reduced cost. Further expansion of these models in mice has allowed access to genetic mutations not available for target species, providing a powerful and versatile experimental system to interrogate the immune response to FMDV and to target more expensive studies in natural hosts. The purpose of this review is to describe commonly used FMDV infection models in laboratory animals and to cite examples of when these models have failed or successfully provided insight relevant for target species, with an emphasis on natural and vaccine-induced immunity.
Collapse
Affiliation(s)
- Mohammed Habiela
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Julian Seago
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK
| | | | - Ryan Waters
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK
| | - Miriam Windsor
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK
| | - Francisco J. Salguero
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7TE, UK
| | - James Wood
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | | | - Nicholas Juleff
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK
| |
Collapse
|
39
|
Bucafusco D, Di Giacomo S, Pega J, Juncos MS, Schammas JM, Pérez-Filgueira M, Capozzo AV. Influence of antibodies transferred by colostrum in the immune responses of calves to current foot-and-mouth disease vaccines. Vaccine 2014; 32:6576-82. [DOI: 10.1016/j.vaccine.2014.06.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/05/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
|
40
|
Afifi NA, Shihata IM, El-zorba HY, Ismail IM. Effect of Imidocarb dipropionate on the immune response to Foot and Mouth Disease vaccine in healthy and anaplasmosis-infected calves. Vet World 2014. [DOI: 10.14202/vetworld.2014.162-167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|