1
|
Träger LK, Degen M, Pereira J, Durairaj J, Teixeira R, Hiller S, Huguenin-Dezot N. Structural basis for cooperative ssDNA binding by bacteriophage protein filament P12. Nucleic Acids Res 2025; 53:gkaf132. [PMID: 40052821 PMCID: PMC11886824 DOI: 10.1093/nar/gkaf132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 03/10/2025] Open
Abstract
Protein-primed DNA replication is a unique mechanism, bioorthogonal to other known DNA replication modes. It relies on specialised single-stranded DNA (ssDNA)-binding proteins (SSBs) to stabilise ssDNA intermediates by unknown mechanisms. Here, we present the structural and biochemical characterisation of P12, an SSB from bacteriophage PRD1. High-resolution cryo-electron microscopy reveals that P12 forms a unique, cooperative filament along ssDNA. Each protomer binds the phosphate backbone of 6 nucleotides in a sequence-independent manner, protecting ssDNA from nuclease degradation. Filament formation is driven by an intrinsically disordered C-terminal tail, facilitating cooperative binding. We identify residues essential for ssDNA interaction and link the ssDNA-binding ability of P12 to toxicity in host cells. Bioinformatic analyses place the P12 fold as a distinct branch within the OB-like fold family. This work offers new insights into protein-primed DNA replication and lays a foundation for biotechnological applications.
Collapse
Affiliation(s)
- Lena K Träger
- Department of Biosystems Science and Engineering, ETH Zurich, Schanzenstrasse 44, 4056 Basel, Switzerland
| | - Morris Degen
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Joana Pereira
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Basel, Elisabethenstrasse 43, 4051 Basel, Switzerland
| | - Janani Durairaj
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Basel, Elisabethenstrasse 43, 4051 Basel, Switzerland
| | | | - Sebastian Hiller
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Nicolas Huguenin-Dezot
- Department of Biosystems Science and Engineering, ETH Zurich, Schanzenstrasse 44, 4056 Basel, Switzerland
| |
Collapse
|
2
|
Mäntynen S, Sundberg LR, Oksanen HM, Poranen MM. Half a Century of Research on Membrane-Containing Bacteriophages: Bringing New Concepts to Modern Virology. Viruses 2019; 11:E76. [PMID: 30669250 PMCID: PMC6356626 DOI: 10.3390/v11010076] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/14/2022] Open
Abstract
Half a century of research on membrane-containing phages has had a major impact on virology, providing new insights into virus diversity, evolution and ecological importance. The recent revolutionary technical advances in imaging, sequencing and lipid analysis have significantly boosted the depth and volume of knowledge on these viruses. This has resulted in new concepts of virus assembly, understanding of virion stability and dynamics, and the description of novel processes for viral genome packaging and membrane-driven genome delivery to the host. The detailed analyses of such processes have given novel insights into DNA transport across the protein-rich lipid bilayer and the transformation of spherical membrane structures into tubular nanotubes, resulting in the description of unexpectedly dynamic functions of the membrane structures. Membrane-containing phages have provided a framework for understanding virus evolution. The original observation on membrane-containing bacteriophage PRD1 and human pathogenic adenovirus has been fundamental in delineating the concept of "viral lineages", postulating that the fold of the major capsid protein can be used as an evolutionary fingerprint to trace long-distance evolutionary relationships that are unrecognizable from the primary sequences. This has brought the early evolutionary paths of certain eukaryotic, bacterial, and archaeal viruses together, and potentially enables the reorganization of the nearly immeasurable virus population (~1 × 1031) on Earth into a reasonably low number of groups representing different architectural principles. In addition, the research on membrane-containing phages can support the development of novel tools and strategies for human therapy and crop protection.
Collapse
Affiliation(s)
- Sari Mäntynen
- Center of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA.
| | - Lotta-Riina Sundberg
- Center of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Minna M Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
3
|
Membrane-Containing Icosahedral Bacteriophage PRD1: The Dawn of Viral Lineages. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:85-109. [DOI: 10.1007/978-3-030-14741-9_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
4
|
Bam35 Tectivirus Intraviral Interaction Map Unveils New Function and Localization of Phage ORFan Proteins. J Virol 2017; 91:JVI.00870-17. [PMID: 28747494 DOI: 10.1128/jvi.00870-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/17/2017] [Indexed: 11/20/2022] Open
Abstract
The family Tectiviridae comprises a group of tailless, icosahedral, membrane-containing bacteriophages that can be divided into two groups by their hosts, either Gram-negative or Gram-positive bacteria. While the first group is composed of PRD1 and nearly identical well-characterized lytic viruses, the second one includes more variable temperate phages, like GIL16 or Bam35, whose hosts are Bacillus cereus and related Gram-positive bacteria. In the genome of Bam35, nearly half of the 32 annotated open reading frames (ORFs) have no homologs in databases (ORFans), being putative proteins of unknown function, which hinders the understanding of their biology. With the aim of increasing knowledge about the viral proteome, we carried out a comprehensive yeast two-hybrid analysis of all the putative proteins encoded by the Bam35 genome. The resulting protein interactome comprised 76 unique interactions among 24 proteins, of which 12 have an unknown function. These results suggest that the P17 protein is the minor capsid protein of Bam35 and P24 is the penton protein, with the latter finding also being supported by iterative threading protein modeling. Moreover, the inner membrane transglycosylase protein P26 could have an additional structural role. We also detected interactions involving nonstructural proteins, such as the DNA-binding protein P1 and the genome terminal protein (P4), which was confirmed by coimmunoprecipitation of recombinant proteins. Altogether, our results provide a functional view of the Bam35 viral proteome, with a focus on the composition and organization of the viral particle.IMPORTANCE Tailless viruses of the family Tectiviridae can infect commensal and pathogenic Gram-positive and Gram-negative bacteria. Moreover, they have been proposed to be at the evolutionary origin of several groups of large eukaryotic DNA viruses and self-replicating plasmids. However, due to their ancient origin and complex diversity, many tectiviral proteins are ORFans of unknown function. Comprehensive protein-protein interaction (PPI) analysis of viral proteins can eventually disclose biological mechanisms and thus provide new insights into protein function unattainable by studying proteins one by one. Here we comprehensively describe intraviral PPIs among tectivirus Bam35 proteins determined using multivector yeast two-hybrid screening, and these PPIs were further supported by the results of coimmunoprecipitation assays and protein structural models. This approach allowed us to propose new functions for known proteins and hypothesize about the biological role of the localization of some viral ORFan proteins within the viral particle that will be helpful for understanding the biology of tectiviruses infecting Gram-positive bacteria.
Collapse
|
5
|
Gall AM, Shisler JL, Mariñas BJ. Characterizing Bacteriophage PR772 as a Potential Surrogate for Adenovirus in Water Disinfection: A Comparative Analysis of Inactivation Kinetics and Replication Cycle Inhibition by Free Chlorine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2522-2529. [PMID: 26820824 DOI: 10.1021/acs.est.5b04713] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Elucidating mechanisms by which pathogenic waterborne viruses become inactivated by drinking water disinfectants would facilitate the development of sensors to detect infectious viruses and novel disinfection strategies to provide safe water. Using bacteriophages as surrogates for human pathogenic viruses could assist in elucidating these mechanisms; however, an appropriate viral surrogate for human adenovirus (HAdV), a medium-sized virus with a double-stranded DNA genome, needs to be identified. Here, we characterized the inactivation kinetics of bacteriophage PR772, a member of the Tectiviridae family with many similarities in structure and replication to HAdV. The inactivation of PR772 and HAdV by free chlorine had similar kinetics that could be represented with a model previously developed for HAdV type 2 (HAdV-2). We developed and tested a quantitative assay to analyze several steps in the PR772 replication cycle to determine if both viruses being inactivated at similar rates resulted from similar replication cycle events being inhibited. Like HAdV-2, we observed that PR772 inactivated by free chlorine still attached to host cells, and viral DNA synthesis and early and late gene transcription were inhibited. Consequently, free chlorine exposure inhibited a replication cycle event that was post-binding but took place prior to early gene synthesis for both PR772 and HAdV-2.
Collapse
Affiliation(s)
- Aimee M Gall
- Department of Civil and Environmental Engineering, ‡Department of Microbiology and College of Medicine, and §Safe Global Water Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Joanna L Shisler
- Department of Civil and Environmental Engineering, ‡Department of Microbiology and College of Medicine, and §Safe Global Water Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Benito J Mariñas
- Department of Civil and Environmental Engineering, ‡Department of Microbiology and College of Medicine, and §Safe Global Water Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Non-structural proteins P17 and P33 are involved in the assembly of the internal membrane-containing virus PRD1. Virology 2015; 482:225-33. [PMID: 25880114 DOI: 10.1016/j.virol.2015.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/30/2014] [Accepted: 03/22/2015] [Indexed: 11/24/2022]
Abstract
Bacteriophage PRD1, which has been studied intensively at the structural and functional levels, still has some gene products with unknown functions and certain aspects of the PRD1 assembly process have remained unsolved. In this study, we demonstrate that the phage-encoded non-structural proteins P17 and P33, either individually or together, complement the defect in a temperature-sensitive GroES mutant of Escherichia coli for host growth and PRD1 propagation. Confocal microscopy of fluorescent fusion proteins revealed co-localisation between P33 and P17 as well as between P33 and the host chaperonin GroEL. A fluorescence recovery after photobleaching assay demonstrated that the diffusion of the P33 fluorescent fusion protein was substantially slower in E. coli than theoretically calculated, presumably resulting from intermolecular interactions. Our results indicate that P33 and P17 function in procapsid assembly, possibly in association with the host chaperonin complex GroEL/GroES.
Collapse
|
7
|
Hong C, Oksanen HM, Liu X, Jakana J, Bamford DH, Chiu W. A structural model of the genome packaging process in a membrane-containing double stranded DNA virus. PLoS Biol 2014; 12:e1002024. [PMID: 25514469 PMCID: PMC4267777 DOI: 10.1371/journal.pbio.1002024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/03/2014] [Indexed: 02/01/2023] Open
Abstract
Two crucial steps in the virus life cycle are genome encapsidation to form an infective virion and genome exit to infect the next host cell. In most icosahedral double-stranded (ds) DNA viruses, the viral genome enters and exits the capsid through a unique vertex. Internal membrane-containing viruses possess additional complexity as the genome must be translocated through the viral membrane bilayer. Here, we report the structure of the genome packaging complex with a membrane conduit essential for viral genome encapsidation in the tailless icosahedral membrane-containing bacteriophage PRD1. We utilize single particle electron cryo-microscopy (cryo-EM) and symmetry-free image reconstruction to determine structures of PRD1 virion, procapsid, and packaging deficient mutant particles. At the unique vertex of PRD1, the packaging complex replaces the regular 5-fold structure and crosses the lipid bilayer. These structures reveal that the packaging ATPase P9 and the packaging efficiency factor P6 form a dodecameric portal complex external to the membrane moiety, surrounded by ten major capsid protein P3 trimers. The viral transmembrane density at the special vertex is assigned to be a hexamer of heterodimer of proteins P20 and P22. The hexamer functions as a membrane conduit for the DNA and as a nucleating site for the unique vertex assembly. Our structures show a conformational alteration in the lipid membrane after the P9 and P6 are recruited to the virion. The P8-genome complex is then packaged into the procapsid through the unique vertex while the genome terminal protein P8 functions as a valve that closes the channel once the genome is inside. Comparing mature virion, procapsid, and mutant particle structures led us to propose an assembly pathway for the genome packaging apparatus in the PRD1 virion.
Collapse
Affiliation(s)
- Chuan Hong
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hanna M. Oksanen
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Xiangan Liu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Joanita Jakana
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dennis H. Bamford
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Wah Chiu
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
8
|
Mattila S, Oksanen HM, Bamford JKH. Probing protein interactions in the membrane-containing virus PRD1. J Gen Virol 2014; 96:453-462. [PMID: 25316797 DOI: 10.1099/vir.0.069187-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PRD1 is a Gram-negative bacteria infecting complex tailless icosahedral virus with an inner membrane. This type virus of the family Tectiviridae contains at least 18 structural protein species, of which several are membrane associated. Vertices of the PRD1 virion consist of complexes recognizing the host cell, except for one special vertex through which the genome is packaged. Despite extensive knowledge of the overall structure of the PRD1 virion and several individual proteins at the atomic level, the locations and interactions of various integral membrane proteins and membrane-associated proteins still remain a mystery. Here, we demonstrated that blue native PAGE can be used to probe protein-protein interactions in complex membrane-containing viruses. Using this technique and PRD1 as a model, we identified the known PRD1 multiprotein vertex structure composed of penton protein P31, spike protein P5, receptor-binding protein P2 and stabilizing protein P16 linking the vertex to the internal membrane. Our results also indicated that two transmembrane proteins, P7 and P14, involved in viral nucleic acid delivery, make a complex. In addition, we performed a zymogram analysis using mutant particles devoid of the special vertex that indicated that the lytic enzyme P15 of PRD1 was not part of the packaging vertex, thus contradicting previously published results.
Collapse
Affiliation(s)
- Sari Mattila
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, PO Box 35, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Hanna M Oksanen
- Department of Biosciences and Institute of Biotechnology, PO Box 56, University of Helsinki, 00014 Helsinki, Finland
| | - Jaana K H Bamford
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, PO Box 35, University of Jyväskylä, 40014 Jyväskylä, Finland
| |
Collapse
|
9
|
Butcher SJ, Manole V, Karhu NJ. Lipid-containing viruses: bacteriophage PRD1 assembly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:365-77. [PMID: 22297522 DOI: 10.1007/978-1-4614-0980-9_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PRD1 is a tailless icosahedrally symmetric virus containing an internal lipid membrane beneath the protein capsid. Its linear dsDNA genome and covalently attached terminal proteins are delivered into the cell where replication occurs via a protein-primed mechanism. Extensive studies have been carried out to decipher the roles of the 37 viral proteins in PRD1 assembly, their association in virus particles and lately, especially the functioning of the unique packaging machinery that translocates the genome into the procapsid. These issues will be addressed in this chapter especially in the context of the structure of PRD1. We will also discuss the major challenges still to be addressed in PRD1 assembly.
Collapse
Affiliation(s)
- Sarah J Butcher
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
10
|
Ziedaite G, Kivelä HM, Bamford JKH, Bamford DH. Purified membrane-containing procapsids of bacteriophage PRD1 package the viral genome. J Mol Biol 2009; 386:637-47. [PMID: 19150363 DOI: 10.1016/j.jmb.2008.12.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 12/17/2008] [Accepted: 12/22/2008] [Indexed: 11/29/2022]
Abstract
Icosahedral-tailed double-stranded DNA (dsDNA) bacteriophages and herpesviruses translocate viral DNA into a preformed procapsid in an ATP-driven reaction by a packaging complex that operates at a portal vertex. A similar packaging system operates in the tailless dsDNA phage PRD1 (Tectiviridae family), except that there is an internal membrane vesicle in the procapsid. The unit-length linear dsDNA genome with covalently linked 5'-terminal proteins enters the procapsid through a unique vertex. Two small integral membrane proteins, P20 and P22, provide a conduit for DNA translocation. The packaging machinery also contains the packaging ATPase P9 and the packaging efficiency factor P6. Here we describe a method used to obtain purified packaging-competent PRD1 procapsids. The optimized in vitro packaging system allowed efficient packaging of defined DNA substrates. We determined that the genome terminal protein P8 is necessary for packaging and provided an estimation of the packaging rate.
Collapse
Affiliation(s)
- Gabija Ziedaite
- Department of Biological and Environmental Sciences and Institute of Biotechnology, University of Helsinki, PO Box 56, FIN-00014 Helsinki, Finland
| | | | | | | |
Collapse
|
11
|
Krupovič M, Cvirkaitė-Krupovič V, Bamford DH. Identification and functional analysis of the Rz/Rz1-like accessory lysis genes in the membrane-containing bacteriophage PRD1. Mol Microbiol 2008; 68:492-503. [DOI: 10.1111/j.1365-2958.2008.06165.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Genetics for Pseudoalteromonas provides tools to manipulate marine bacterial virus PM2. J Bacteriol 2007; 190:1298-307. [PMID: 18083813 DOI: 10.1128/jb.01639-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The genetic manipulation of marine double-stranded DNA (dsDNA) bacteriophage PM2 (Corticoviridae) has been limited so far. The isolation of an autonomously replicating DNA element of Pseudoalteromonas haloplanktis TAC125 and construction of a shuttle vector replicating in both Escherichia coli and Pseudoalteromonas enabled us to design a set of conjugative shuttle plasmids encoding tRNA suppressors for amber mutations. Using a host strain carrying a suppressor plasmid allows the introduction and analysis of nonsense mutations in PM2. Here, we describe the isolation and characterization of a suppressor-sensitive PM2 sus2 mutant deficient in the structural protein P10. To infect and replicate, PM2 delivers its 10-kbp genome across the cell envelopes of two gram-negative Pseudoalteromonas species. The events leading to the internalization of the circular supercoiled dsDNA are puzzling. In a poorly understood process that follows receptor recognition, the virion capsid disassembles and the internal membrane fuses with the host outer membrane. While beginning to unravel the mechanism of this process, we found that protein P10 plays an essential role in the host cell penetration.
Collapse
|
13
|
Abstract
Structural comparisons between bacteriophage PRD1 and adenovirus have revealed an evolutionary relationship that has contributed significantly to current ideas on virus phylogeny. However, the structural organization of the receptor-binding spike complex and how the different symmetry mismatches are mediated between the spike-complex proteins are not clear. We determined the architecture of the PRD1 spike complex by using electron microscopy and three-dimensional image reconstruction of a series of PRD1 mutants. We constructed an atomic model for the full-length P5 spike protein by using comparative modeling. P5 was shown to be bound directly to the penton base protein P31. P5 and the receptor-binding protein P2 form two separate spikes, interacting with each other near the capsid shell. P5, with a tumor necrosis factor-like head domain, may have been responsible for host recognition before capture of the current receptor-binding protein P2.
Collapse
Affiliation(s)
- Juha T. Huiskonen
- Department of Biological and Environmental Sciences, Institute of Biotechnology, P.O. Box 65 (Viikinkaani 1), University of Helsinki, FI-0014, Helsinki, Finland
| | - Violeta Manole
- Department of Biological and Environmental Sciences, Institute of Biotechnology, P.O. Box 65 (Viikinkaani 1), University of Helsinki, FI-0014, Helsinki, Finland
| | - Sarah J. Butcher
- Department of Biological and Environmental Sciences, Institute of Biotechnology, P.O. Box 65 (Viikinkaani 1), University of Helsinki, FI-0014, Helsinki, Finland
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
14
|
Karhu NJ, Ziedaite G, Bamford DH, Bamford JKH. Efficient DNA packaging of bacteriophage PRD1 requires the unique vertex protein P6. J Virol 2007; 81:2970-9. [PMID: 17202207 PMCID: PMC1865968 DOI: 10.1128/jvi.02211-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The assembly of bacteriophage PRD1 proceeds via formation of empty procapsids containing an internal lipid membrane, into which the linear double-stranded DNA genome is subsequently packaged. The packaging ATPase P9 and other putative packaging proteins have been shown to be located at a unique vertex of the PRD1 capsid. Here, we describe the isolation and characterization of a suppressor-sensitive PRD1 mutant deficient in the unique vertex protein P6. Protein P6 was found to be an essential part of the PRD1 packaging machinery; its absence leads to greatly reduced packaging efficiency. Lack of P6 was not found to affect particle assembly, because in the P6-deficient mutant infection, wild-type (wt) amounts of particles were produced, although most were empty. P6 was determined not to be a specificity factor, as the few filled particles seen in the P6-deficient infection contained only PRD1-specific DNA. The presence of P6 was not necessary for retention of DNA in the capsid once packaging had occurred, and P6-deficient DNA-containing particles were found to be stable and infectious, albeit not as infectious as wt PRD1 virions. A packaging model for bacteriophage PRD1, based on previous results and those obtained in this study, is presented.
Collapse
Affiliation(s)
- Nelli J Karhu
- Department of Biological and Environmental Science, Institute of Biotechnology, University of Helsinki, Biocenter 2, Viikinkaari 5, FIN-00014 University of Helsinki, Finland
| | | | | | | |
Collapse
|
15
|
Poranen MM, Ravantti JJ, Grahn AM, Gupta R, Auvinen P, Bamford DH. Global changes in cellular gene expression during bacteriophage PRD1 infection. J Virol 2006; 80:8081-8. [PMID: 16873264 PMCID: PMC1563795 DOI: 10.1128/jvi.00065-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Virus-induced changes in cellular gene expression and host physiology have been studied extensively. Still, there are only a few analyses covering the entire viral replication cycle and whole-host gene pool expression at the resolution of a single gene. Here we report changes in Escherichia coli gene expression during bacteriophage PRD1 infection using microarray technology. Relative mRNA levels were systematically measured for over 99% of the host open reading frames throughout the infection cycle. Although drastic modifications could be detected in the expression of individual genes, global changes at the whole-genome level were moderate. Notably, the majority of virus-induced changes took place only after the synthesis of virion components, indicating that there is no major reprogramming of the host during early infection. The most highly induced genes encoded chaparones and other stress-inducible proteins.
Collapse
Affiliation(s)
- Minna M Poranen
- Institute of Biotechnology, Viikki Biocenter, P.O. Box 56 (Viikinkaari 5), 00014 University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
16
|
Krupovic M, Vilen H, Bamford JKH, Kivelä HM, Aalto JM, Savilahti H, Bamford DH. Genome characterization of lipid-containing marine bacteriophage PM2 by transposon insertion mutagenesis. J Virol 2006; 80:9270-8. [PMID: 16940538 PMCID: PMC1563929 DOI: 10.1128/jvi.00536-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 06/27/2006] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage PM2 presently is the only member of the Corticoviridae family. The virion consists of a protein-rich lipid vesicle, which is surrounded by an icosahedral protein capsid. The lipid vesicle encloses a supercoiled circular double-stranded DNA genome of 10,079 bp. PM2 belongs to the marine phage community and is known to infect two gram-negative Pseudoalteromonas species. In this study, we present a characterization of the PM2 genome made using the in vitro transposon insertion mutagenesis approach. Analysis of 101 insertion mutants yielded information on the essential and dispensable regions of the PM2 genome and led to the identification of several new genes. A number of lysis-deficient mutants as well as mutants displaying delayed- and/or incomplete-lysis phenotypes were identified. This enabled us to identify novel lysis-associated genes with no resemblance to those previously described from other bacteriophage systems. Nonessential genome regions are discussed in the context of PM2 genome evolution.
Collapse
Affiliation(s)
- Mart Krupovic
- Department of Biological and Environmental Sciences, Institute of Biotechnology, Viikki Biocenter 2, P.O. Box 56 (Viikinkaari 5), FIN-00014 University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
17
|
Ziedaite G, Daugelavicius R, Bamford JKH, Bamford DH. The Holin protein of bacteriophage PRD1 forms a pore for small-molecule and endolysin translocation. J Bacteriol 2005; 187:5397-405. [PMID: 16030234 PMCID: PMC1196050 DOI: 10.1128/jb.187.15.5397-5405.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PRD1 is a bacteriophage with an icosahedral outer protein layer surrounding the viral membrane, which encloses the linear double-stranded DNA genome. PRD1 infects gram-negative cells harboring a conjugative IncP plasmid. Here we studied the lytic functions of PRD1. Using infected cells and plasmid-borne lysis genes, we demonstrated that a two-component lysis system (holin-endolysin) operates to release progeny phage particles from the host cell. Monitoring of ion fluxes and the ATP content of the infected cells allowed us to build a model of the sequence of lysis-related physiological changes. A decrease in the intracellular level of ATP is the earliest indicator of cell lysis, followed by the leakage of K+ from the cytosol approximately 20 min prior to the decrease in culture turbidity. However, the K+ efflux does not immediately lead to the depolarization of the cytoplasmic membrane or leakage of the intracellular ATP. These effects are observed only approximately 5 to 10 min prior to cell lysis. Similar results were obtained using cells expressing the holin and endolysin genes from plasmids.
Collapse
Affiliation(s)
- Gabija Ziedaite
- Biocenter 2, P.O. Box 56 (Viikinkaari 5), FIN-00014 University of Helsinki, Finland
| | | | | | | |
Collapse
|
18
|
Saren AM, Ravantti JJ, Benson SD, Burnett RM, Paulin L, Bamford DH, Bamford JKH. A snapshot of viral evolution from genome analysis of the tectiviridae family. J Mol Biol 2005; 350:427-40. [PMID: 15946683 DOI: 10.1016/j.jmb.2005.04.059] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Revised: 04/22/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
The origin, evolution and relationships of viruses are all fascinating topics. Current thinking in these areas is strongly influenced by the tailed double-stranded (ds) DNA bacteriophages. These viruses have mosaic genomes produced by genetic exchange and so new natural isolates are quite dissimilar to each other, and to laboratory strains. Consequently, they are not amenable to study by current tools for phylogenetic analysis. Less attention has been paid to the Tectiviridae family, which embraces icosahedral dsDNA bacterial viruses with an internal lipid membrane. It includes viruses, such as PRD1, that infect Gram-negative bacteria, as well as viruses like Bam35 with Gram-positive hosts. Although PRD1 and Bam35 have closely related virion morphology and genome organization, they have no detectable sequence similarity. There is strong evidence that the Bam35 coat protein has the "double-barrel trimer" arrangement of PRD1 that was first observed in adenovirus and is predicted to occur in other viruses with large facets. It is very likely that a single ancestral virus gave rise to this very large group of viruses. The unprecedented degree of conservation recently observed for two Bam35-like tectiviruses made it important to investigate those infecting Gram-negative bacteria. The DNA sequences for six PRD1-like isolates (PRD1, PR3, PR4, PR5, L17, PR772) have now been determined. Remarkably, these bacteriophages, isolated at distinctly different dates and global locations, have almost identical genomes. The discovery of almost invariant genomes for the two main Tectiviridae groups contrasts sharply with the situation in the tailed dsDNA bacteriophages. Notably, it permits a sequence analysis of the isolates revealing that the tectiviral proteins can be dissected into a slowly evolving group descended from the ancestor, the viral self, and a more rapidly changing group reflecting interactions with the host.
Collapse
Affiliation(s)
- Ari-Matti Saren
- Institute of Biotechnology, University of Helsinki, PO Box 56 (Viikinkaari 4), FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
19
|
Strömsten NJ, Bamford DH, Bamford JKH. In vitro DNA packaging of PRD1: a common mechanism for internal-membrane viruses. J Mol Biol 2005; 348:617-29. [PMID: 15826659 DOI: 10.1016/j.jmb.2005.03.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 03/01/2005] [Accepted: 03/01/2005] [Indexed: 10/25/2022]
Abstract
PRD1 is the type virus of the Tectiviridae family. Its linear double-stranded DNA genome has covalently attached terminal proteins and is surrounded by a membrane, which is further enclosed within an icosahedral protein capsid. Similar to tailed bacteriophages, PRD1 packages its DNA into a preformed procapsid. The PRD1 putative packaging ATPase P9 is a structural protein located at a unique vertex of the capsid. An in vitro system for packaging DNA into preformed empty procapsids was developed. The system uses cell extracts of overexpressed P9 protein and empty procapsids from a P9-deficient mutant virus infection and PRD1 DNA containing a LacZalpha-insert. The in vitro packaged virions produce distinctly blue plaques when plated on a suitable host. This is the first time that a viral genome is packaged in vitro into a membrane vesicle. Comparison of PRD1 P9 with putative packaging ATPase sequences from bacterial, archaeal and eukaryotic viruses revealed a new packaging ATPase-specific motif. Surprisingly the viruses having this packaging ATPase motif, and thus considered to be related, were the same as those recently grouped together using the coat protein fold and virion architecture. Our finding here strongly supports the idea that all these viruses infecting hosts in all domains of life had a common ancestor.
Collapse
Affiliation(s)
- Nelli J Strömsten
- Department of Biological and Environmental Sciences and Institute of Biotechnology, Biocenter 2, P.O. Box 56 (Viikinkaari 5), FIN-00014, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
20
|
Jaatinen ST, Viitanen SJ, Bamford DH, Bamford JKH. Integral membrane protein P16 of bacteriophage PRD1 stabilizes the adsorption vertex structure. J Virol 2004; 78:9790-7. [PMID: 15331712 PMCID: PMC514979 DOI: 10.1128/jvi.78.18.9790-9797.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The icosahedral membrane-containing double-stranded DNA bacteriophage PRD1 has a labile receptor binding spike complex at the vertices. This complex, which is analogous to that of adenovirus, is formed of the penton protein P31, the spike protein P5, and the receptor binding protein P2. Upon infection, the internal phage membrane transforms into a tubular structure that protrudes through a vertex and penetrates the cell envelope for DNA injection. We describe here a new class of PRD1 mutants lacking virion-associated integral membrane protein P16. P16 links the spike complex to the viral membrane and is necessary for spike stability. We also show that the unique vertex used for DNA packaging is intact in the P16-deficient particle, indicating that the 11 adsorption vertices and the 1 portal vertex are functionally and structurally distinct.
Collapse
Affiliation(s)
- Silja T Jaatinen
- Viikki Biocenter 2, P.O. Box 56 (Viikinkaari 5), FIN-00014 University of Helsinki, Finland
| | | | | | | |
Collapse
|
21
|
Ravantti JJ, Gaidelyte A, Bamford DH, Bamford JKH. Comparative analysis of bacterial viruses Bam35, infecting a gram-positive host, and PRD1, infecting gram-negative hosts, demonstrates a viral lineage. Virology 2003; 313:401-14. [PMID: 12954208 DOI: 10.1016/s0042-6822(03)00295-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Extra- and intracellular viruses in the biosphere outnumber their cellular hosts by at least one order of magnitude. How is this enormous domain of viruses organized? Sampling of the virosphere has been scarce and focused on viruses infecting humans, cultivated plants, and animals as well as those infecting well-studied bacteria. It has been relatively easy to cluster closely related viruses based on their genome sequences. However, it has been impossible to establish long-range evolutionary relationships as sequence homology diminishes. Recent advances in the evaluation of virus architecture by high-resolution structural analysis and elucidation of viral functions have allowed new opportunities for establishment of possible long-range phylogenic relationships-virus lineages. Here, we use a genomic approach to investigate a proposed virus lineage formed by bacteriophage PRD1, infecting gram-negative bacteria, and human adenovirus. The new member of this proposed lineage, bacteriophage Bam35, is morphologically indistinguishable from PRD1. It infects gram-positive hosts that evolutionarily separated from gram-negative bacteria more than one billion years ago. For example, it can be inferred from structural analysis of the coat protein sequence that the fold is very similar to that of PRD1. This and other observations made here support the idea that a common early ancestor for Bam35, PRD1, and adenoviruses existed.
Collapse
Affiliation(s)
- Janne J Ravantti
- Department of Computer Science, P.O. Box 26, (Teollisuuskatu 23), 00014 University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
22
|
Rydman PS, Bamford DH. Identification and mutational analysis of bacteriophage PRD1 holin protein P35. J Bacteriol 2003; 185:3795-803. [PMID: 12813073 PMCID: PMC161566 DOI: 10.1128/jb.185.13.3795-3803.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2003] [Accepted: 04/05/2003] [Indexed: 11/20/2022] Open
Abstract
Holin proteins are phage-induced integral membrane proteins which regulate the access of lytic enzymes to host cell peptidoglycan at the time of release of progeny viruses by host cell lysis. We describe the identification of the membrane-containing phage PRD1 holin gene (gene XXXV). The PRD1 holin protein (P35, 12.8 kDa) acts similarly to its functional counterpart from phage lambda (gene S), and the defect in PRD1 gene XXXV can be corrected by the presence of gene S of lambda. Several nonsense, missense, and insertion mutations in PRD1 gene XXXV were analyzed. These studies support the overall conclusion that the charged amino acids at the protein C terminus are involved in the timing of host cell lysis.
Collapse
Affiliation(s)
- Pia S Rydman
- Department of Biosciences and Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Finland
| | | |
Collapse
|
23
|
Gowen B, Bamford JKH, Bamford DH, Fuller SD. The tailless icosahedral membrane virus PRD1 localizes the proteins involved in genome packaging and injection at a unique vertex. J Virol 2003; 77:7863-71. [PMID: 12829826 PMCID: PMC161952 DOI: 10.1128/jvi.77.14.7863-7871.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The double-stranded DNA (dsDNA) virus PRD1 carries its genome in a membrane surrounded by an icosahedral protein shell. The shell contains 240 copies of the trimeric P3 protein arranged with a pseudo T = 25 triangulation that is reminiscent of the mammalian adenovirus. DNA packaging and infection are believed to occur through the vertices of the particle. We have used immunolabeling to define the distribution of proteins on the virion surface. Antibodies to protein P3 labeled the entire surface of the virus. Most of the 12 vertices labeled with antibodies directed against proteins P5, P2, and P31. These proteins are known to function in virus binding to the cell surface. Proteins P6, P11, and P20 were found on a single vertex per virion. The P6 and P20 proteins are believed to function in DNA packaging. Protein P11 is a pilot protein that is involved in a complex that mediates the early stages of DNA entry to the host cell. Labeling with antibodies to P5 or P2 did not affect the labeling of P6, the unique vertex protein. Labeling with antibodies to the unique vertex protein P6 interfered with the labeling by antibodies to the unique vertex protein P20. We conclude that PRD1 utilizes 11 of its vertices for initial receptor binding. It utilizes a single, unique vertex for both DNA packing during assembly and DNA delivery during infection.
Collapse
Affiliation(s)
- Brent Gowen
- The Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Henry Wellcome Building for Genomic Medicine, University of Oxford, Headington, Oxford OX3 7BN, United Kingdom
| | | | | | | |
Collapse
|
24
|
Strömsten NJ, Bamford DH, Bamford JKH. The unique vertex of bacterial virus PRD1 is connected to the viral internal membrane. J Virol 2003; 77:6314-21. [PMID: 12743288 PMCID: PMC155016 DOI: 10.1128/jvi.77.11.6314-6321.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Icosahedral double-stranded DNA (dsDNA) bacterial viruses are known to package their genomes into preformed procapsids via a unique portal vertex. Bacteriophage PRD1 differs from the more commonly known icosahedral dsDNA phages in that it contains an internal lipid membrane. The packaging of PRD1 is known to proceed via preformed empty capsids. Now, a unique vertex has been shown to exist in PRD1. We show in this study that this unique vertex extends to the virus internal membrane via two integral membrane proteins, P20 and P22. These small membrane proteins are necessary for the binding of the putative packaging ATPase P9, via another capsid protein, P6, to the virus particle.
Collapse
Affiliation(s)
- Nelli J Strömsten
- Department of Biosciences and Institute of Biotechnology, Biocenter 2, FIN-00014 University of Helsinki, Finland
| | | | | |
Collapse
|
25
|
Xu L, Benson SD, Butcher SJ, Bamford DH, Burnett RM. The receptor binding protein P2 of PRD1, a virus targeting antibiotic-resistant bacteria, has a novel fold suggesting multiple functions. Structure 2003; 11:309-22. [PMID: 12623018 DOI: 10.1016/s0969-2126(03)00023-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bacteriophage PRD1 is unusual, with an internal lipid membrane, but has striking resemblances to adenovirus that include receptor binding spikes. The PRD1 vertex complex contains P2, a 590 residue monomer that binds to receptors on antibiotic-resistant strains of E. coli and so is the functional counterpart to adenovirus fiber. P2 structures from two crystal forms, at 2.2 and 2.4 A resolution, reveal an elongated club-shaped molecule with a novel beta propeller "head" showing pseudo-6-fold symmetry. An extended loop with another novel fold forms a long "tail" containing a protruding proline-rich "fin." The head and fin structures are well suited to recognition and attachment, and the tail is likely to trigger the processes of vertex disassembly, membrane tube formation, and subsequent DNA injection.
Collapse
Affiliation(s)
- Lan Xu
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
26
|
Vilen H, Aalto JM, Kassinen A, Paulin L, Savilahti H. A direct transposon insertion tool for modification and functional analysis of viral genomes. J Virol 2003; 77:123-34. [PMID: 12477817 PMCID: PMC140628 DOI: 10.1128/jvi.77.1.123-134.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Advances in DNA transposition technology have recently generated efficient tools for various types of functional genetic analyses. We demonstrate here the power of the bacteriophage Mu-derived in vitro DNA transposition system for modification and functional characterization of a complete bacterial virus genome. The linear double-stranded DNA genome of Escherichia coli bacteriophage PRD1 was studied by insertion mutagenesis with reporter mini-Mu transposons that were integrated in vitro into isolated genomic DNA. After introduction into bacterial cells by electroporation, recombinant transposon-containing virus clones were identified by autoradiography or visual blue-white screening employing alpha-complementation of E. coli beta-galactosidase. Additionally, a modified transposon with engineered NotI sites at both ends was used to introduce novel restriction sites into the phage genome. Analysis of the transposon integration sites in the genomes of viable recombinant phage generated a functional map, collectively indicating genes and genomic regions essential and nonessential for virus propagation. Moreover, promoterless transposons defined the direction of transcription within several insert-tolerant genomic regions. These strategies for the analysis of viral genomes are of a general nature and therefore may be applied to functional genomics studies in all prokaryotic and eukaryotic cell viruses.
Collapse
Affiliation(s)
- Heikki Vilen
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
27
|
Grahn AM, Daugelavicius R, Bamford DH. Sequential model of phage PRD1 DNA delivery: active involvement of the viral membrane. Mol Microbiol 2002; 46:1199-209. [PMID: 12453208 DOI: 10.1046/j.1365-2958.2002.03250.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DNA translocation across the barriers of recipient cells is not well understood. Viral DNA delivery mechanisms offer an opportunity to obtain useful information in systems in which the process can be arrested to a number of stages. PRD1 is an icosahedral double-stranded (ds)DNA bacterial virus with an internal membrane. It is an atypical dsDNA phage, as any of the vertex spikes can be used for receptor recognition. In this report, we dissect the PRD1 DNA entry into a number of steps: (i) outer membrane (OM) penetration; (ii) peptidoglycan digestion; (iii) cytoplasmic membrane (CM) penetration; and (iv) DNA translocation. We present a model for PRD1 DNA entry proposing that the initial stage of entry is powered by the pressure build-up during DNA packaging. The viral protein P11 is shown to function as the first DNA delivery protein needed to penetrate the OM. We also report a DNA translocation machinery composed of at least three viral integral membrane proteins, P14, P18 and P32.
Collapse
Affiliation(s)
- A Marika Grahn
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Finland
| | | | | |
Collapse
|
28
|
Grahn AM, Daugelavicius R, Bamford DH. The small viral membrane-associated protein P32 is involved in bacteriophage PRD1 DNA entry. J Virol 2002; 76:4866-72. [PMID: 11967303 PMCID: PMC136160 DOI: 10.1128/jvi.76.10.4866-4872.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lipid-containing bacteriophage PRD1 infects a variety of gram-negative cells by injecting its linear double-stranded DNA genome into the host cell cytoplasm, while the protein capsid is left outside. The virus membrane and several structural proteins are involved in phage DNA entry. In this work we identified a new infectivity protein of PRD1. Disruption of gene XXXII resulted in a mutant phenotype defective in phage reproduction. The absence of the protein P32 did not compromise the particle assembly but led to a defect in phage DNA injection. In P32-deficient particles the phage membrane is unable to undergo a structural transformation from a spherical to a tubular form. Since P32(-) particles are able to increase the permeability of the host cell envelope to a degree comparable to that found with wild-type particles, we suggest that the tail-tube formation is needed to eject the DNA from the phage particle rather than to reach the host cell interior.
Collapse
Affiliation(s)
- A Marika Grahn
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
29
|
Rydman PS, Bamford DH. The lytic enzyme of bacteriophage PRD1 is associated with the viral membrane. J Bacteriol 2002; 184:104-10. [PMID: 11741849 PMCID: PMC134774 DOI: 10.1128/jb.184.1.104-110.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2001] [Accepted: 09/26/2001] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage PRD1 encodes two proteins (P7 and P15) that are associated with a muralytic activity. Protein P15 is a soluble beta-1,4-N-acetylmuramidase that causes phage-induced host cell lysis. We demonstrate here that P15 is also a structural component of the PRD1 virion and that it is connected to the phage membrane. Small viral membrane proteins P20 and P22 modulate incorporation of P15 into the virion and may connect it to the phage membrane. The principal muralytic protein involved in PRD1 DNA entry seems to be the putative lytic transglycosylase protein P7, as the absence of protein P15 did not delay initiation of phage DNA replication in the virus-host system used. The incorporation of two different lytic enzymes into virions may reflect the broad host range of bacteriophage PRD1.
Collapse
Affiliation(s)
- Pia S Rydman
- Department of Biosciences and Institute of Biotechnology, Viikki Biocenter, University of Helsinki, 00014 University of Helsinki, Finland
| | | |
Collapse
|
30
|
Rydman PS, Bamford JK, Bamford DH. A minor capsid protein P30 is essential for bacteriophage PRD1 capsid assembly. J Mol Biol 2001; 313:785-95. [PMID: 11697904 DOI: 10.1006/jmbi.2001.5068] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriophage PRD1 is a double-stranded DNA virus infecting Gram-negative hosts. It has a membrane component located in the interior of the isometric capsid. In addition to the major capsid protein P3, the capsid contains a 9 kDa protein P30. Protein P30 is proposed to be located between the adjacent facets of the icosahedral capsid and is required for stable capsid assembly. In its absence, an empty phage-specific membrane vesicle is formed. The major protein component of this vesicle is a phage-encoded assembly factor, protein P10, that is not present in the final structure.
Collapse
Affiliation(s)
- P S Rydman
- Department of Biosciences and Institute of Biotechnology Viikki Biocenter, University of Helsinki, 00014, Finland
| | | | | |
Collapse
|
31
|
Martín CS, Burnett RM, de Haas F, Heinkel R, Rutten T, Fuller SD, Butcher SJ, Bamford DH. Combined EM/X-ray imaging yields a quasi-atomic model of the adenovirus-related bacteriophage PRD1 and shows key capsid and membrane interactions. Structure 2001; 9:917-30. [PMID: 11591347 DOI: 10.1016/s0969-2126(01)00642-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The dsDNA bacteriophage PRD1 has a membrane inside its icosahedral capsid. While its large size (66 MDa) hinders the study of the complete virion at atomic resolution, a 1.65-A crystallographic structure of its major coat protein, P3, is available. Cryo-electron microscopy (cryo-EM) and three-dimensional reconstruction have shown the capsid at 20-28 A resolution. Striking architectural similarities between PRD1 and the mammalian adenovirus indicate a common ancestor. RESULTS The P3 atomic structure has been fitted into improved cryo-EM reconstructions for three types of PRD1 particles: the wild-type virion, a packaging mutant without DNA, and a P3-shell lacking the membrane and the vertices. Establishing the absolute EM scale was crucial for an accurate match. The resulting "quasi-atomic" models of the capsid define the residues involved in the major P3 interactions, within the quasi-equivalent interfaces and with the membrane, and show how these are altered upon DNA packaging. CONCLUSIONS The new cryo-EM reconstructions reveal the structure of the PRD1 vertex and the concentric packing of DNA. The capsid is essentially unchanged upon DNA packaging, with alterations limited to those P3 residues involved in membrane contacts. These are restricted to a few of the N termini along the icosahedral edges in the empty particle; DNA packaging leads to a 4-fold increase in the number of contacts, including almost all copies of the N terminus and the loop between the two beta barrels. Analysis of the P3 residues in each quasi-equivalent interface suggests two sites for minor proteins in the capsid edges, analogous to those in adenovirus.
Collapse
Affiliation(s)
- C S Martín
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Bamford JK, Bamford DH. A new mutant class, made by targeted mutagenesis, of phage PRD1 reveals that protein P5 connects the receptor binding protein to the vertex. J Virol 2000; 74:7781-6. [PMID: 10933684 PMCID: PMC112307 DOI: 10.1128/jvi.74.17.7781-7786.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage PRD1 and adenovirus share a number of structural and functional similarities, one of which is the vertex organization at the fivefold-symmetry positions. We developed an in vitro mutagenesis system for the linear PRD1 genome in order to make targeted mutations. The role of protein P5 in the vertex structure was examined by this method. Mutation in gene V revealed that protein P5 is essential. The absence of P5 did not compromise the particle assembly or DNA packaging but led to a deficient vertex structure where the receptor binding protein P2, in addition to protein P5, was missing. P5(-) particles also lost their DNA upon purification. Based on this and previously published information we propose a spatial model for the spike structure at the vertices. This resembles to the corresponding structure in adenovirus.
Collapse
Affiliation(s)
- J K Bamford
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| | | |
Collapse
|
33
|
Rydman PS, Bamford DH. Bacteriophage PRD1 DNA entry uses a viral membrane-associated transglycosylase activity. Mol Microbiol 2000; 37:356-63. [PMID: 10931330 DOI: 10.1046/j.1365-2958.2000.01996.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Amino acid sequence analyses have indicated that the amino-terminal part of bacteriophage PRD1 structural protein P7 carries a conserved transglycosylase domain. We analysed wild-type PRD1 and different mutant particles in zymograms and found a glycolytic activity that was associated with protein P7. This is the first time a putative bacteriophage or plasmid lytic transglycosylase has been shown to have an enzymatic activity. In the absence of protein P7, the phage DNA replication and host cell lysis were delayed. Gene VII of PRD1 is known to encode proteins P7 and P14. In this investigation, the open reading frame coding for P14 was mapped to the 3' end of gene VII. Proteins P7 and P14 probably form a heteromultimeric complex, which is located at the particle vertices and is involved in the early steps of the PRD1 life cycle
Collapse
Affiliation(s)
- P S Rydman
- Department of Biosciences and Institute of Biotechnology, Viikki Biocenter, University of Helsinki, PO Box 56 (Viikinkaari 5), FIN-00014, Finland
| | | |
Collapse
|
34
|
Grahn AM, Caldentey J, Bamford JK, Bamford DH. Stable packaging of phage PRD1 DNA requires adsorption protein P2, which binds to the IncP plasmid-encoded conjugative transfer complex. J Bacteriol 1999; 181:6689-96. [PMID: 10542170 PMCID: PMC94133 DOI: 10.1128/jb.181.21.6689-6696.1999] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/1999] [Accepted: 05/18/1999] [Indexed: 11/20/2022] Open
Abstract
The double-stranded DNA bacteriophage PRD1 uses an IncP plasmid-encoded conjugal transfer complex as a receptor. Plasmid functions in the PRD1 life cycle are restricted to phage adsorption and DNA entry. A single phage structural protein, P2, located at the fivefold capsid vertices, is responsible for PRD1 attachment to its host. The purified recombinant adsorption protein was judged to be monomeric by gel filtration, rate zonal centrifugation, analytical ultracentrifugation, and chemical cross-linking. It binds to its receptor with an apparent K(d) of 0.20 nM, and this binding prevents phage adsorption. P2-deficient particles are unstable and spontaneously release the DNA with concomitant formation of the tail-like structure originating from the phage membrane. We envisage the DNA to be packaged through one vertex, but the presence of P2 on the other vertices suggests a mechanism whereby the injection vertex is determined by P2 binding to the receptor.
Collapse
Affiliation(s)
- A M Grahn
- Department of Biosciences and Institute of Biotechnology, Viikki Biocenter, FIN-00014 University of Helsinki, Finland
| | | | | | | |
Collapse
|
35
|
Rydman PS, Caldentey J, Butcher SJ, Fuller SD, Rutten T, Bamford DH. Bacteriophage PRD1 contains a labile receptor-binding structure at each vertex. J Mol Biol 1999; 291:575-87. [PMID: 10448038 DOI: 10.1006/jmbi.1999.2978] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriophage PRD1 is a membrane-containing virus with an unexpected similarity to adenovirus. We mutagenized unassigned PRD1 genes to identify minor capsid proteins that could be structural or functional analogs to adenovirus proteins. We report here the identification of an amber mutant, sus525, in an essential PRD1 gene XXXI. The gene was cloned and the gene product was overexpressed and purified to near homogeneity. Analytical ultracentrifugation and gel filtration showed that P31 is a homopentamer of about 70 kDa. The protein was shown to be accessible on the virion surface and its absence in the sus525 particles led to the deficiency of two other viral coat proteins, protein P5 and the adsorption protein P2. Cryo-electron microscopy and image reconstruction of the sus525 particles indicate that these proteins are located on the capsid vertices, because in these particles the entire vertex structure was missing along with the peripentonal major capsid protein P3 trimers. Sus525 particles package DNA effectively but loose it upon purification. All of the PRD1 vertex structures are labile and potentially capable of mediating DNA delivery; this is in contrast to other dsDNA phages which employ a single vertex for packaging and delivery. We propose that this arises from a symmetry mismatch between protein P2 and the pentameric P31 in analogy to that between the adenovirus penton base and the receptor-binding spike.
Collapse
Affiliation(s)
- P S Rydman
- Department of Biosciences and Institute of Biotechnology Viikki Biocenter, University of Helsinki, Helsinki, FIN-00014, Finland
| | | | | | | | | | | |
Collapse
|
36
|
Caldentey J, Hänninen AL, Holopainen JM, Bamford JK, Kinnunen PK, Bamford DH. Purification and characterization of the assembly factor P17 of the lipid-containing bacteriophage PRD1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:549-58. [PMID: 10095794 DOI: 10.1046/j.1432-1327.1999.00202.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Assembly factors, proteins assisting the formation of viral structures, have been found in many viral systems. The gene encoding the assembly factor P17 of bacteriophage PRD1 has been cloned and expressed in Escherichia coli. P17 acts late in phage assembly, after capsid protein folding and multimerization, and sorting of membrane proteins has occurred. P17 has been purified to near homogeneity. It is a tetrameric protein displaying a rather high heat stability. The protein is largely in an alpha-helical conformation and possesses a putative leucine zipper which is not essential for protein function, as judged by in vitro mutagenesis and complementation analysis. Although heating does not cause structural changes in the conformation of the protein, the dissociation of the tetramer into smaller units is evident as diminished self-quenching of the fluorescently labeled P17. Similarly, dissociation of the tetramer is also obtained by dialysis of the protein against 6-M guanidine hydrochloride (GdnHCl) or 1% SDS. The reassembly of these smaller units upon cooling is evident from resonance energy transfer.
Collapse
Affiliation(s)
- J Caldentey
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
37
|
Daugelavicius R, Bamford JK, Bamford DH. Changes in host cell energetics in response to bacteriophage PRD1 DNA entry. J Bacteriol 1997; 179:5203-10. [PMID: 9260965 PMCID: PMC179381 DOI: 10.1128/jb.179.16.5203-5210.1997] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Double-stranded DNA bacteriophage PRD1 infects a variety of gram-negative bacteria harboring an IncP-type conjugative plasmid. The plasmid codes for the DNA transfer phage receptor complex in the cell envelope. Our goal was, by using a collection of mutant phage particles for which the variables are the DNA content and/or the presence of the receptor-binding protein, to obtain information on the energy requirements for DNA entry as well as on alterations in the cellular energetics taking place during the first stages of infection. We studied the fluxes of tetraphenylphosphonium (TPP+), phenyldicarbaundecaborane (PCB-), and K+ ions as well as ATP through the envelope of Salmonella typhimurium cells. The final level of the membrane voltage (delta psi) indicator TPP+ accumulated by the infected cells exceeds the initial level before the infection. Besides the effects on TPP+ accumulation, PRD1 induces the leakage of ATP and K+ from the cytosol. All these events were induced only by DNA-containing infectious particles and were cellular ATP and delta psi dependent. PRD1-caused changes in delta psi and in PCB- binding differ considerably from those observed in other bacteriophage infections studied. These results are in accordance with the presence of a specific channel engaged in phage PRD1 DNA transport.
Collapse
Affiliation(s)
- R Daugelavicius
- Department of Biosciences, Biocenter, University of Helsinki, Finland
| | | | | |
Collapse
|
38
|
Bamford DH, Caldentey J, Bamford JK. Bacteriophage PRD1: a broad host range DSDNA tectivirus with an internal membrane. Adv Virus Res 1995; 45:281-319. [PMID: 7793328 DOI: 10.1016/s0065-3527(08)60064-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- D H Bamford
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | |
Collapse
|
39
|
Caldentey J, Hänninen AL, Bamford DH. Gene XV of bacteriophage PRD1 encodes a lytic enzyme with muramidase activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 225:341-6. [PMID: 7925454 DOI: 10.1111/j.1432-1033.1994.00341.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacteriophage PRD1 is a lipid-containing virus that infects a variety of Gram-negative bacteria, including Escherichia coli. The phage lyses its host by virtue of a virally-encoded lytic enzyme, the synthesis of which has been assigned to gene XV on the basis of complementation analysis and experiments with mutant phages. We report here the cloning of gene XV into an expression plasmid and the purification of its product, protein P15, to near homogeneity. The purified protein P15, identified by N-terminal sequence analysis, showed a strong lytic activity against chloroform-treated Gram-negative cells. No activity against Gram-positive bacterial species could be detected. The pH optimum of the enzyme was between 7.0-8.0. Protein P15 was readily inactivated at temperatures above 4 degrees C, as well as by increasing the ionic strength of the buffers. The analysis of cell wall digests indicated that P15 is a glycosidase that cleaves the beta (1-4) linkage between N-acetylmuramic acid and N-acetylglucosamine, thus displaying muramidase activity.
Collapse
Affiliation(s)
- J Caldentey
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | |
Collapse
|
40
|
Johnson MD, Mindich L. Plasmid-directed assembly of the lipid-containing membrane of bacteriophage phi 6. J Bacteriol 1994; 176:4124-32. [PMID: 8021194 PMCID: PMC205612 DOI: 10.1128/jb.176.13.4124-4132.1994] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The nucleocapsid of bacteriophage phi 6 is enveloped within a lipid-containing membrane. The membrane is composed of proteins P3, P6, P9, P10, and P13 and phospholipids. The relationship between membrane protein P9 and morphogenetic protein P12 was studied in the absence of phage infection. cDNA copies of genes 9 and 12 were expressed on plasmids in Pseudomonas syringae pv. phaseolicola. Immunoblotting demonstrated the presence of protein P9 in strains carrying both gene 9 and gene 12 but not in strains with gene 9 alone. In the absence of P12, P9 was found to be unstable. Simultaneous synthesis of proteins P9 and P12 led to the formation of a low-density P9 particle having a buoyant density similar to that of precursor structures composed of phospholipid and proteins isolated from phi 6-infected cells. These results are consistent with results of previous genetic experiments suggesting that P9 and P12 are necessary and sufficient for the formation of the phi 6 envelope. Extensions of P9 at the C terminus do not impair particle formation; however, N-terminal extensions or C-terminal deletions that extend into the hydrophobic region of P9 do impair particle formation.
Collapse
Affiliation(s)
- M D Johnson
- Department of Microbiology, Public Health Research Institute, New York, New York 10016
| | | |
Collapse
|
41
|
Grahn AM, Bamford JK, O'Neill MC, Bamford DH. Functional organization of the bacteriophage PRD1 genome. J Bacteriol 1994; 176:3062-8. [PMID: 8188607 PMCID: PMC205464 DOI: 10.1128/jb.176.10.3062-3068.1994] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
PRD1 is a broad-host-range virus that infects Escherichia coli cells. It has a linear double-stranded DNA genome that replicates by a protein-primed mechanism. The virus particle is composed of a protein coat enclosing a lipid membrane. On the basis of this structure, PRD1 is being used as a membrane biosynthesis and structure model. In this investigation, we constructed the transcription map of the 15-kb-long phage genome. This was achieved by a computer search of putative promoters, which were then tested for activity by primer extension and for the capability to promote the synthesis of chloramphenicol acetyltransferase.
Collapse
Affiliation(s)
- A M Grahn
- Department of Genetics, University of Helsinki, Finland
| | | | | | | |
Collapse
|
42
|
Johnson MD, Mindich L. Isolation and characterization of nonsense mutations in gene 10 of bacteriophage phi 6. J Virol 1994; 68:2331-8. [PMID: 8139018 PMCID: PMC236709 DOI: 10.1128/jvi.68.4.2331-2338.1994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Nonsense mutants of bacteriophage phi 6 were isolated by a procedure that involved directed mutagenesis of a cDNA copy of genomic segment M, transcription of this segment, in vitro packaging into procapsids, and transfection of spheroplasts to form viable mutant phage. Recombinant phi 6 viruses that contained amber mutations in two open reading frames, ORF 10 and ORF D, of genomic segment M were isolated. We show that phi 6 protein P10 is the gene product of ORF 10. Further characterization of the phi 6 ORF 10(Am) mutant revealed that phi 6 membrane-associated protein P10 is not required to make enveloped phage particles in infected cells. Enveloped phage particles isolated from a phi 6 ORF 10(Am) infection contained extremely low levels of phi 6 membrane-associated proteins P6 and P3. The low abundance is due to the very low level of P6 synthesis in phi 6 ORF 10(Am)-infected cells. The results suggest that P10 might play a role in regulating the translation of gene 6. Protein P10 was found to be required for host lysis.
Collapse
Affiliation(s)
- M D Johnson
- Department of Microbiology, Public Health Research Institute, New York, New York 10016
| | | |
Collapse
|
43
|
Savilahti H, Bamford DH. Protein-primed DNA replication: role of inverted terminal repeats in the Escherichia coli bacteriophage PRD1 life cycle. J Virol 1993; 67:4696-703. [PMID: 8331725 PMCID: PMC237855 DOI: 10.1128/jvi.67.8.4696-4703.1993] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Escherichia coli bacteriophage PRD1 and its relatives contain linear double-stranded DNA genomes, the replication of which proceeds via a protein-primed mechanism. Characteristically, these molecules contain 5'-covalently bound terminal proteins and inverted terminal nucleotide sequences (inverted terminal repeats [ITRs]). The ITRs of each PRD1 phage species have evolved in parallel, suggesting communication between the molecule ends during the life cycle of these viruses. This process was studied by constructing chimeric PRD1 phage DNA molecules with dissimilar end sequences. These molecules were created by combining two closely related phage genomes (i) in vivo by homologous recombination and (ii) in vitro by ligation of appropriate DNA restriction fragments. The fate of the ITRs after propagation of single genomes was monitored by DNA sequence analysis. Recombinants created in vivo showed that phages with nonidentical genome termini are viable and relatively stable, and hybrid phages made in vitro verified this observation. However, genomes in which the dissimilar DNA termini had regained identical sequences were also detected. These observations are explained by a DNA replication model involving two not mutually exclusive pathways. The generality of this model in protein-primed DNA replication is discussed.
Collapse
Affiliation(s)
- H Savilahti
- Department of Genetics, University of Helsinki, Finland
| | | |
Collapse
|
44
|
Pakula TM, Caldentey J, Gutiérrez C, Olkkonen VM, Salas M, Bamford DH. Overproduction, purification, and characterization of DNA-binding protein P19 of bacteriophage PRD1. Gene 1993; 126:99-104. [PMID: 8472964 DOI: 10.1016/0378-1119(93)90595-t] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The early protein, P19, of bacteriophage PRD1 was purified after overexpression of the cloned gene, XIX, in Escherichia coli DH5 alpha cells. The purified protein binds as multimers to single-stranded DNA (ssDNA), and with a lower affinity to double-stranded DNA (dsDNA), without sequence-specificity. Two distinct P19-ssDNA complexes were discovered in gel- mobility-shift assays at different protein:DNA ratios. P19 was capable of fully protecting ssDNA against nuclease P1. Electron microscopy of protein P19-ssDNA complexes showed DNA molecules which were extensively coated with protein and whose contour length was clearly reduced by P19 binding. The results suggest that P19 binds to ssDNA with moderate cooperativity and are consistent with the DNA being wrapped around the P19 multimers.
Collapse
Affiliation(s)
- T M Pakula
- Department of Genetics, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
45
|
Gottlieb P, Strassman J, Mindich L. Protein P4 of the bacteriophage phi 6 procapsid has a nucleoside triphosphate-binding site with associated nucleoside triphosphate phosphohydrolase activity. J Virol 1992; 66:6220-2. [PMID: 1326667 PMCID: PMC283676 DOI: 10.1128/jvi.66.10.6220-6222.1992] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacteriophage phi 6 contains three segments of double-stranded RNA. The procapsid consists of proteins P1, P2, P4, and P7, which are encoded by the viral L segment. cDNA copies of this segment have been cloned into plasmids that direct the production of these proteins, which assemble into polyhedral procapsids. These procapsids are capable of packaging plus-sense phi 6 RNA in the presence of nucleoside triphosphate and synthesizing the complementary minus strand to form double-stranded RNA. In this article, we report the presence of a nucleotide-binding site in protein P4. The viral procapsid and nucleocapsid exhibit a nucleoside triphosphate phosphohydrolase activity that converts nucleoside triphosphates into nucleoside diphosphates.
Collapse
Affiliation(s)
- P Gottlieb
- Department of Microbiology, Public Health Research Institute, New York, New York 10016
| | | | | |
Collapse
|
46
|
Abstract
Bacteriophage lysis involves at least two fundamentally different strategies. Most phages elaborate at least two proteins, one of which is a murein hydrolase, or lysin, and the other is a membrane protein, which is given the designation holin in this review. The function of the holin is to create a lesion in the cytoplasmic membrane through which the murein hydrolase passes to gain access to the murein layer. This is necessary because phage-encoded lysins never have secretory signal sequences and are thus incapable of unassisted escape from the cytoplasm. The holins, whose prototype is the lambda S protein, share a common organization in terms of the arrangement of charged and hydrophobic residues, and they may all contain at least two transmembrane helical domains. The available evidence suggests that holins oligomerize to form nonspecific holes and that this hole-forming step is the regulated step in phage lysis. The correct scheduling of the lysis event is as much an essential feature of holin function as is the hole formation itself. In the second strategy of lysis, used by the small single-stranded DNA phage phi X174 and the single-stranded RNA phage MS2, no murein hydrolase activity is synthesized. Instead, there is a single species of small membrane protein, unlike the holins in primary structure, which somehow causes disruption of the envelope. These lysis proteins function by activation of cellular autolysins. A host locus is required for the lytic function of the phi X174 lysis gene E.
Collapse
Affiliation(s)
- R Young
- Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843
| |
Collapse
|
47
|
Onodera S, Olkkonen VM, Gottlieb P, Strassman J, Qiao XY, Bamford DH, Mindich L. Construction of a transducing virus from double-stranded RNA bacteriophage phi6: establishment of carrier states in host cells. J Virol 1992; 66:190-6. [PMID: 1727482 PMCID: PMC238275 DOI: 10.1128/jvi.66.1.190-196.1992] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bacteriophage phi 6 contains three double-stranded RNA (dsRNA) genomic segments. We have constructed a plasmid that contains a cDNA copy of the middle (M) segment, with a gene for kanamycin resistance (kan) inserted into the PstI site. A transcript of this cDNA was incorporated in vitro into procapsids along with natural transcripts of the S and L segments. The procapsids were coated with nucleocapsid surface protein P8 and transfected into Pseudomonas syringae pv. phaseolicola. The resulting infectious virus, phi 6 K1, was found to contain an M segment that was 1.2 kbp larger than the normal 4.1 kbp. K1 formed small, turbid plaques, and its genome was unstable. Preparations of K1 contained from about 0.1 to 10% large, clear-plaque forms of the virus which were usually missing the kan gene, and in some cases, the resulting segment M was smaller than its normal size. Cells picked from lawns of host cells infected with K1 yielded colonies that were resistant to kanamycin (Kan). These colonies could be passaged on kanamycin-containing medium. The cells were found to contain large amounts of dsRNA corresponding to the viral genomic segments. Some strains continued to produce viable phage, while others lost this ability. One strain completely lost the small genomic segment S. Approximately 1 in 10,000 infected cells acquired the carrier state with the original phage isolate K1. However, we isolated a viral mutant that was able to induce the carrier state in 10 to 20% of the infected cells. The ability to use drug resistance as a test for the carrier state makes this system very useful for the study of the mechanisms of induction of persistent infections.
Collapse
Affiliation(s)
- S Onodera
- Department of Microbiology, Public Health Research Institute, New York, New York 10016
| | | | | | | | | | | | | |
Collapse
|
48
|
Savilahti H, Caldentey J, Lundström K, Syväoja J, Bamford D. Overexpression, purification, and characterization of Escherichia coli bacteriophage PRD1 DNA polymerase. In vitro synthesis of full-length PRD1 DNA with purified proteins. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55125-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
49
|
Bamford JK, Hänninen AL, Pakula TM, Ojala PM, Kalkkinen N, Frilander M, Bamford DH. Genome organization of membrane-containing bacteriophage PRD1. Virology 1991; 183:658-76. [PMID: 1853567 DOI: 10.1016/0042-6822(91)90995-n] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have determined the nucleotide sequence of the late region (11 kbp) of the lipid-containing bacteriophage PRD1. Gene localization was carried out by complementing nonsense phage mutants with genomic clones containing specific reading frames. The localization was confirmed by sequencing the N-termini of isolated gene products as well as sequencing the N-termini of tryptic fragments of the phage membrane-associated proteins. This, with the previously obtained sequence of the early regions, allowed us to organize most of the phage genes in the phage genome.
Collapse
Affiliation(s)
- J K Bamford
- Department of Genetics, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
50
|
Large-scale purification of membrane-containing bacteriophage PRD1 and its subviral particles. Virology 1991; 181:348-52. [PMID: 1994582 DOI: 10.1016/0042-6822(91)90501-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PRD1 is a dsDNA virus that infects Escherichia coli and Salmonella typhimurium. The genome is a linear molecule with 5' covalently linked terminal protein. The virus has a lipid membrane inside the protein coat. We describe the large-scale purification of the virus using a zonal rotor and the yields and quality of the virus and its subviral assemblies for subsequent biophysical measurements.
Collapse
|