1
|
Hu J, Xin F, Liu W, Gong Z, Zhang Y, Liu S. Downregulation of KLF5 by EBER1 via the ERK signaling pathway in EBV-positive nasopharyngeal carcinoma cells: implications for latent EBV infection. J Gen Virol 2024; 105. [PMID: 38747699 DOI: 10.1099/jgv.0.001988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) carcinogenesis and malignant transformation are intimately associated with Epstein-Barr virus (EBV) infection. A zinc-fingered transcription factor known as Krüppel-like factor 5 (KLF5) has been shown to be aberrantly expressed in a number of cancer types. However, little is known about the regulatory pathways and roles of KLF5 in EBV-positive NPC. Our study found that KLF5 expression was significantly lower in EBV-positive NPC than in EBV-negative NPC. Further investigation revealed that EBER1, which is encoded by EBV, down-regulates KLF5 via the extracellular signal-regulated kinase (ERK) signalling pathway. This down-regulation of KLF5 by EBER1 contributes to maintaining latent EBV infection in NPC. Furthermore, we uncovered the biological roles of KLF5 in NPC cells. Specifically, KLF5 may influence the cell cycle, prevent apoptosis, and encourage cell migration and proliferation - all of which have a generally pro-cancer impact. In conclusion, these findings offer novel strategies for EBV-positive NPC patients' antitumour treatment.
Collapse
Affiliation(s)
- Jieke Hu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, 266555, PR China
| | - Fangjie Xin
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266555, PR China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
| | - Zhiyuan Gong
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, 255036, PR China
| | - Shuzhen Liu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, 266555, PR China
| |
Collapse
|
2
|
Zhang H, Sandhu PK, Damania B. The Role of RNA Sensors in Regulating Innate Immunity to Gammaherpesviral Infections. Cells 2023; 12:1650. [PMID: 37371120 PMCID: PMC10297173 DOI: 10.3390/cells12121650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) and the Epstein-Barr virus (EBV) are double-stranded DNA oncogenic gammaherpesviruses. These two viruses are associated with multiple human malignancies, including both B and T cell lymphomas, as well as epithelial- and endothelial-derived cancers. KSHV and EBV establish a life-long latent infection in the human host with intermittent periods of lytic replication. Infection with these viruses induce the expression of both viral and host RNA transcripts and activates several RNA sensors including RIG-I-like receptors (RLRs), Toll-like receptors (TLRs), protein kinase R (PKR) and adenosine deaminases acting on RNA (ADAR1). Activation of these RNA sensors induces the innate immune response to antagonize the virus. To counteract this, KSHV and EBV utilize both viral and cellular proteins to block the innate immune pathways and facilitate their own infection. In this review, we summarize how gammaherpesviral infections activate RNA sensors and induce their downstream signaling cascade, as well as how these viruses evade the antiviral signaling pathways to successfully establish latent infection and undergo lytic reactivation.
Collapse
|
3
|
Naesens L, Haerynck F, Gack MU. The RNA polymerase III-RIG-I axis in antiviral immunity and inflammation. Trends Immunol 2023; 44:435-449. [PMID: 37149405 PMCID: PMC10461603 DOI: 10.1016/j.it.2023.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 05/08/2023]
Abstract
Nucleic acid sensors survey subcellular compartments for atypical or mislocalized RNA or DNA, ultimately triggering innate immune responses. Retinoic acid-inducible gene-I (RIG-I) is part of the family of cytoplasmic RNA receptors that can detect viruses. A growing literature demonstrates that mammalian RNA polymerase III (Pol III) transcribes certain viral or cellular DNA sequences into immunostimulatory RIG-I ligands, which elicits antiviral or inflammatory responses. Dysregulation of the Pol III-RIG-I sensing axis can lead to human diseases including severe viral infection outcomes, autoimmunity, and tumor progression. Here, we summarize the newly emerging role of viral and host-derived Pol III transcripts in immunity and also highlight recent advances in understanding how mammalian cells prevent unwanted immune activation by these RNAs to maintain homeostasis.
Collapse
Affiliation(s)
- Leslie Naesens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Filomeen Haerynck
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA.
| |
Collapse
|
4
|
Rex V, Zargari R, Stempel M, Halle S, Brinkmann MM. The innate and T-cell mediated immune response during acute and chronic gammaherpesvirus infection. Front Cell Infect Microbiol 2023; 13:1146381. [PMID: 37065193 PMCID: PMC10102517 DOI: 10.3389/fcimb.2023.1146381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Immediately after entry into host cells, viruses are sensed by the innate immune system, leading to the activation of innate antiviral effector mechanisms including the type I interferon (IFN) response and natural killer (NK) cells. This innate immune response helps to shape an effective adaptive T cell immune response mediated by cytotoxic T cells and CD4+ T helper cells and is also critical for the maintenance of protective T cells during chronic infection. The human gammaherpesvirus Epstein-Barr virus (EBV) is a highly prevalent lymphotropic oncovirus that establishes chronic lifelong infections in the vast majority of the adult population. Although acute EBV infection is controlled in an immunocompetent host, chronic EBV infection can lead to severe complications in immunosuppressed patients. Given that EBV is strictly host-specific, its murine homolog murid herpesvirus 4 or MHV68 is a widely used model to obtain in vivo insights into the interaction between gammaherpesviruses and their host. Despite the fact that EBV and MHV68 have developed strategies to evade the innate and adaptive immune response, innate antiviral effector mechanisms still play a vital role in not only controlling the acute infection but also shaping an efficient long-lasting adaptive immune response. Here, we summarize the current knowledge about the innate immune response mediated by the type I IFN system and NK cells, and the adaptive T cell-mediated response during EBV and MHV68 infection. Investigating the fine-tuned interplay between the innate immune and T cell response will provide valuable insights which may be exploited to design better therapeutic strategies to vanquish chronic herpesviral infection.
Collapse
Affiliation(s)
- Viktoria Rex
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Razieh Zargari
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Stempel
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephan Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
- *Correspondence: Stephan Halle, ; Melanie M. Brinkmann,
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- *Correspondence: Stephan Halle, ; Melanie M. Brinkmann,
| |
Collapse
|
5
|
Li T, Zhang W, Xie M. Fluorescent In Situ Detection of RNA-Protein Interactions in Intact Cells by RNA-PLA. Methods Mol Biol 2023; 2666:165-175. [PMID: 37166665 PMCID: PMC11106780 DOI: 10.1007/978-1-0716-3191-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
RNA-protein proximity ligation assay (RNA-PLA) enables the detection of specific RNA-protein interactions in fixed cells. In RNA-PLA, bridging and ligation of a circular DNA template occurs if the target RNA and protein are within 40 nanometers of each other. The resulting circular template is amplified by rolling circle amplification and abundantly recognized by fluorescent antisense DNA oligonucleotides. This strategy therefore enables localization of RNA-protein interactions in situ with high specificity and sensitivity. Here, we describe the use of RNA-PLA to detect interactions between a nuclear viral RNA and a host RNA-binding protein in Epstein-Barr virus (EBV)-infected B cells.
Collapse
Affiliation(s)
- Tianqi Li
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Wei Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Mingyi Xie
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
O’Leary CA, Tompkins VS, Rouse WB, Nam G, Moss W. Thermodynamic and structural characterization of an EBV infected B-cell lymphoma transcriptome. NAR Genom Bioinform 2022; 4:lqac082. [PMID: 36285286 PMCID: PMC9585548 DOI: 10.1093/nargab/lqac082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is a widely prevalent human herpes virus infecting over 95% of all adults and is associated with a variety of B-cell cancers and induction of multiple sclerosis. EBV accomplishes this in part by expression of coding and noncoding RNAs and alteration of the host cell transcriptome. To better understand the structures which are forming in the viral and host transcriptomes of infected cells, the RNA structure probing technique Structure-seq2 was applied to the BJAB-B1 cell line (an EBV infected B-cell lymphoma). This resulted in reactivity profiles and secondary structural analyses for over 10000 human mRNAs and lncRNAs, along with 19 lytic and latent EBV transcripts. We report in-depth structural analyses for the human MYC mRNA and the human lncRNA CYTOR. Additionally, we provide a new model for the EBV noncoding RNA EBER2 and provide the first reported model for the EBV tandem terminal repeat RNA. In-depth thermodynamic and structural analyses were carried out with the motif discovery tool ScanFold and RNAfold prediction tool; subsequent covariation analyses were performed on resulting models finding various levels of support. ScanFold results for all analyzed transcripts are made available for viewing and download on the user-friendly RNAStructuromeDB.
Collapse
Affiliation(s)
- Collin A O’Leary
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Van S Tompkins
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Warren B Rouse
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Gijong Nam
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Walter N Moss
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
7
|
The Impact of Deleting Stem-Loop 1 of Epstein-Barr Virus-Encoded RNA 1 on Cell Proliferation. Viruses 2022; 14:v14112538. [PMID: 36423146 PMCID: PMC9696203 DOI: 10.3390/v14112538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus-encoded RNAs (EBERs) are two small, noncoding, structurally conserved transcripts, constitutively expressed at >106 copies per EBV-infected cell. They have been shown to drive cell growth. However, the mechanism(s) involved in EBER-induced proliferation is not clear. In this study, we investigated the molecular mechanisms and structural impact of EBER1. Sequences of EBER1 stem-loops (SL) 1, 3, and 4 were deleted, creating three mutants: ∆SL1, ∆SL3, and ∆SL4. These mutants were cloned into pHebo plasmids and expressed in Jurkat cell lines. Cells transfected with wildtype EBER1 and pHebo were used as controls. Cell proliferation was monitored by microscopy and flow cytometry. Microarray, qPCR, and Western blotting were used to investigate the cell cycle markers. We found significantly higher cell proliferation in wildtype EBER1 cells compared to pHebo, ∆SL1, and ∆SL3, but not ∆SL4 mutants. There was also significant upregulation of S-phase and G2/M phase markers in wildtype EBER1 and ∆SL4 mutant. Furthermore, CDT1, a factor for DNA replication, was upregulated in wildtype EBER1 and ∆SL4 mutant. However, in ∆SL1 mutant, CDT1 was significantly downregulated and translocated to the cytoplasm. These data indicate that the structure of EBER1 is important in cell proliferation.
Collapse
|
8
|
Jia J, Fu J, Tang H. Activation and Evasion of RLR Signaling by DNA Virus Infection. Front Microbiol 2022; 12:804511. [PMID: 34987495 PMCID: PMC8721196 DOI: 10.3389/fmicb.2021.804511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Antiviral innate immune response triggered by nucleic acid recognition plays an extremely important role in controlling viral infections. The initiation of antiviral immune response against RNA viruses through ligand recognition of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) was extensively studied. RLR’s role in DNA virus infection, which is less known, is increasing attention. Here, we review the research progress of the ligand recognition of RLRs during the DNA virus infection process and the viral evasion mechanism from host immune responses.
Collapse
Affiliation(s)
- Junli Jia
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Jiangan Fu
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Huamin Tang
- Department of Immunology, Nanjing Medical University, Nanjing, China.,Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Bartsch T, Arndt C, Loureiro LR, Kegler A, Puentes-Cala E, Soto JA, Kurien BT, Feldmann A, Berndt N, Bachmann MP. A Small Step, a Giant Leap: Somatic Hypermutation of a Single Amino Acid Leads to Anti-La Autoreactivity. Int J Mol Sci 2021; 22:ijms222112046. [PMID: 34769474 PMCID: PMC8584381 DOI: 10.3390/ijms222112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
The anti-La mab 312B, which was established by hybridoma technology from human-La transgenic mice after adoptive transfer of anti-human La T cells, immunoprecipitates both native eukaryotic human and murine La protein. Therefore, it represents a true anti-La autoantibody. During maturation, the anti-La mab 312B acquired somatic hypermutations (SHMs) which resulted in the replacement of four aa in the complementarity determining regions (CDR) and seven aa in the framework regions. The recombinant derivative of the anti-La mab 312B in which all the SHMs were corrected to the germline sequence failed to recognize the La antigen. We therefore wanted to learn which SHM(s) is (are) responsible for anti-La autoreactivity. Humanization of the 312B ab by grafting its CDR regions to a human Ig backbone confirms that the CDR sequences are mainly responsible for anti-La autoreactivity. Finally, we identified that a single amino acid replacement (D > Y) in the germline sequence of the CDR3 region of the heavy chain of the anti-La mab 312B is sufficient for anti-La autoreactivity.
Collapse
Affiliation(s)
- Tabea Bartsch
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Liliana R. Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Alexandra Kegler
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Edinson Puentes-Cala
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
- Corporación para la Investigación de la Corrosión (CIC), Piedecuesta 681011, Colombia
| | - Javier Andrés Soto
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
- BIOGEN Research Group, University of Santander, Faculty of Health Sciences, Cúcuta 540001, Colombia
| | - Biji T. Kurien
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Nicole Berndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Michael P. Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
- BIOGEN Research Group, University of Santander, Faculty of Health Sciences, Cúcuta 540001, Colombia
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 03128 Dresden, Germany
- Correspondence: ; Tel.: +49-351-260-3223
| |
Collapse
|
10
|
Gilmer O, Quignon E, Jousset AC, Paillart JC, Marquet R, Vivet-Boudou V. Chemical and Enzymatic Probing of Viral RNAs: From Infancy to Maturity and Beyond. Viruses 2021; 13:1894. [PMID: 34696322 PMCID: PMC8537439 DOI: 10.3390/v13101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
RNA molecules are key players in a variety of biological events, and this is particularly true for viral RNAs. To better understand the replication of those pathogens and try to block them, special attention has been paid to the structure of their RNAs. Methods to probe RNA structures have been developed since the 1960s; even if they have evolved over the years, they are still in use today and provide useful information on the folding of RNA molecules, including viral RNAs. The aim of this review is to offer a historical perspective on the structural probing methods used to decipher RNA structures before the development of the selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) methodology and to show how they have influenced the current probing techniques. Actually, these technological breakthroughs, which involved advanced detection methods, were made possible thanks to the development of next-generation sequencing (NGS) but also to the previous works accumulated in the field of structural RNA biology. Finally, we will also discuss how high-throughput SHAPE (hSHAPE) paved the way for the development of sophisticated RNA structural techniques.
Collapse
Affiliation(s)
| | | | | | | | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000 Strasbourg, France; (O.G.); (E.Q.); (A.-C.J.); (J.-C.P.)
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000 Strasbourg, France; (O.G.); (E.Q.); (A.-C.J.); (J.-C.P.)
| |
Collapse
|
11
|
Ahmed W, Hassan Z, Abdelmowla YAA, Philip PS, Shmygol A, Khan G. Epstein-Barr virus noncoding small RNA (EBER1) induces cell proliferation by up-regulating cellular mitochondrial activity and calcium influx. Virus Res 2021; 305:198550. [PMID: 34454973 DOI: 10.1016/j.virusres.2021.198550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/19/2022]
Abstract
Epstein-Barr virus encoded RNAs (EBER1 and EBER2) are two non-polyadenylated, non-protein coding small RNAs expressed at high levels in all forms of EBV latent infections. Although not directly involved in cell transformation, a number of studies have reported that these RNAs may be involved in cell proliferation. However, which of the two EBERs play a major role in this process and the mechanisms involved remains unknown. The aim of this study was to investigate the role and mechanism of EBER1-induced cell proliferation. Using stably transfected EBER1 cell lines, and multiple methodologies, we show that EBER1 transfected epithelial, B and T cell lines proliferate at a higher rate, have higher metabolic activity and increased DNA synthesis. The mitochondrial number and activity was also observed to be higher in the EBER1 transfected cells. Moreover, cytochrome c activity and store operated calcium entry (SOCE) were potentiated in the EBER1 expressing cells. Finally, the genes associated with cell proliferation were also observed to be up-regulated in the EBER1 transfected cells. Taken together, our data has unravelled the role of mitochondria and cellular calcium pathway that appear to be involved in EBER1 induced cell proliferation of EBV infected cells.
Collapse
Affiliation(s)
- Waqar Ahmed
- Departments of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Zubaida Hassan
- Departments of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yasmeen A A Abdelmowla
- Departments of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Pretty S Philip
- Departments of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Anatoliy Shmygol
- Departments of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gulfaraz Khan
- Departments of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
12
|
Chen K, Wang M, Zhang R, Li J. Detection of Epstein-Barr virus encoded RNA in fixed cells and tissues using CRISPR/Cas-mediated RCasFISH. Anal Biochem 2021; 625:114211. [PMID: 33915117 DOI: 10.1016/j.ab.2021.114211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/15/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Identification of Epstein-Barr virus (EBV)-infected cells is critical for the diagnosis and clinical management of EBV-associated diseases. EBV-encoded RNA (EBER) located in the nucleus is a reliable marker due to its high levels of expression and inherent stability in tissue specimens. EBER in situ hybridization has long been the gold standard for detecting tumor-associated latent EBV infection and is valuable in determining the primary site and radiation fields of EBV-related malignancies. However, reliable detection is somewhat restricted by diffused signal and time-consuming procedure of this method, especially when proteins and RNA needed to be labeled simultaneously. Here, we optimized and validated our CRISPR-dCas9 mediated in situ RNA imaging tool-RCasFISH that enabled us to detect EBER rapidly and was compatible with IHC methods in fixed cells and tissue sections. Our approach could provide an attractive alternative for the molecular diagnosis of latent EBV infection.
Collapse
Affiliation(s)
- Kun Chen
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, 100730, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, 100730, PR China
| | - Meng Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, 100730, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, 100730, PR China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, 100730, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, 100730, PR China.
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, 100730, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, 100730, PR China.
| |
Collapse
|
13
|
Jog NR, James JA. Epstein Barr Virus and Autoimmune Responses in Systemic Lupus Erythematosus. Front Immunol 2021; 11:623944. [PMID: 33613559 PMCID: PMC7886683 DOI: 10.3389/fimmu.2020.623944] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease. Infections or infectious reactivation are potential triggers for initiation of autoimmunity and for SLE flares. Epstein-Barr virus (EBV) is gamma herpes virus that has been associated with several autoimmune diseases such as SLE, multiple sclerosis, Sjogren’s syndrome, and systemic sclerosis. In this review, we will discuss the recent advances regarding how EBV may contribute to immune dysregulation, and how these mechanisms may relate to SLE disease progression.
Collapse
Affiliation(s)
- Neelakshi R Jog
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Judith A James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Departments of Medicine, Pathology, Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
14
|
Wang H, Liu W, Luo B. The roles of miRNAs and lncRNAs in Epstein-Barr virus associated epithelial cell tumors. Virus Res 2020; 291:198217. [PMID: 33137402 DOI: 10.1016/j.virusres.2020.198217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) infection is highly prevalent in the population and is known to be associated with a variety of human tumors, such as nasopharyngeal carcinoma, gastric cancer, and lymphoma; however, the mechanisms of EBV carcinogenesis remain unclear. Recent studies have revealed that many non-coding RNAs participate in the regulation of proliferation, migration, invasion, and other processes in EBV-associated tumor, and the interaction between ncRNAs and the potential target genes has gradually become a research hotspot. Therefore, here, we discuss the expression and roles of ncRNAs in EBV-associated epithelial tumors.
Collapse
Affiliation(s)
- Hanqing Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Shandong, 266021, China.
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Shandong, 266021, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Shandong, 266021, China.
| |
Collapse
|
15
|
Andrews RJ, O’Leary CA, Moss WN. A survey of RNA secondary structural propensity encoded within human herpesvirus genomes: global comparisons and local motifs. PeerJ 2020; 8:e9882. [PMID: 32974099 PMCID: PMC7487152 DOI: 10.7717/peerj.9882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/16/2020] [Indexed: 12/13/2022] Open
Abstract
There are nine herpesviruses known to infect humans, of which Epstein-Barr virus (EBV) is the most widely distributed (>90% of adults infected). This ubiquitous virus is implicated in a variety of cancers and autoimmune diseases. Previous analyses of the EBV genome revealed numerous regions with evidence of generating unusually stable and conserved RNA secondary structures and led to the discovery of a novel class of EBV non-coding (nc)RNAs: the stable intronic sequence (sis)RNAs. To gain a better understanding of the roles of RNA structure in EBV biology and pathogenicity, we revisit EBV using recently developed tools for genome-wide motif discovery and RNA structural characterization. This corroborated previous results and revealed novel motifs with potential functionality; one of which has been experimentally validated. Additionally, since many herpesviruses increasingly rival the seroprevalence of EBV (VZV, HHV-6 and HHV-7 being the most notable), analyses were expanded to include all sequenced human Herpesvirus RefSeq genomes, allowing for genomic comparisons. In total 10 genomes were analyzed, for EBV (types 1 and 2), HCMV, HHV-6A, HHV-6B, HHV-7, HSV-1, HSV-2, KSHV, and VZV. All resulting data were archived in the RNAStructuromeDB (https://structurome.bb.iastate.edu/herpesvirus) to make them available to a wide array of researchers.
Collapse
Affiliation(s)
- Ryan J. Andrews
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States of America
| | - Collin A. O’Leary
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States of America
| | - Walter N. Moss
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
16
|
Xu S, Chen H, Zu X, Hao X, Feng R, Zhang S, Chen B, Zeng Z, Chen M, Ye Z, He Y. Epstein-Barr virus infection in ulcerative colitis: a clinicopathologic study from a Chinese area. Therap Adv Gastroenterol 2020; 13:1756284820930124. [PMID: 32913442 PMCID: PMC7444145 DOI: 10.1177/1756284820930124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/05/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Opportunistic Epstein-Barr virus (EBV) infection in patients with ulcerative colitis (UC) has attracted increasing attention. This study aimed to evaluate the clinicopathological characteristics and clinical outcomes of UC with intestinal EBV infection and to explore the predictive value of blood EBV DNA for the presence of EBV in the intestine. METHODS Both peripheral blood and intestinal biopsies from 92 consecutive UC inpatients were included in this study. Normal colonic mucosal tissues from 20 colon cancer patients were used as controls. EBV testing and assessment were performed by EBV-DNA polymerase chain reaction (PCR), EBV-encoded small RNA in situ hybridization (EBER-ISH) and immunohistochemistry. RESULTS A total of 36 patients (39.1%) had UC with superimposed EBV colitis [EBER greater than 2/high-power field (HPF)]. EBER counts and disease activity were significantly correlated (p < 0.05). The major endoscopic findings revealed more irregular and longitudinal ulcers in patients with superimposed EBV colitis (p = 0.016, p = 0.021, respectively). Age, steroid dependence, and irregular ulcerations were identified as possible risk factors. The best EBER cut-off point for outcome prediction was 2.5/HPF. At a cut-off value of 2035 copies/ml, the sensitivity and specificity of the blood EBV-DNA PCR analysis for predicting EBV presence in the intestine were 76.5% and 68.5%, respectively. EBV-infected cells in UC with high EBV concentrations mainly included B lymphocytes by clinicopathology, and the infection might have progressed from the latent to the lytic phase of the EBV life cycle. CONCLUSION The EBER count is positively correlated with disease activity. The best cut-off point for outcome prediction is 2.5/HPF. A high EBV viremia load may effectively predict EBV presence in the colonic mucosa.
Collapse
Affiliation(s)
| | | | - Xiaoman Zu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiuxue Hao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rui Feng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Baili Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziyin Ye
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, NO.58 Zhongshan Road II, Guangzhou 510080, Guangdong Province, P.R. China
| | | |
Collapse
|
17
|
Abstract
Protein kinase R (PKR) is a key antiviral component of the innate immune pathway and is activated by viral double-stranded RNAs (dsRNAs). Adenovirus-associated RNA 1 (VAI) is an abundant, noncoding viral RNA that functions as a decoy by binding PKR but not inducing activation, thereby inhibiting the antiviral response. In VAI, coaxial stacking produces an extended helix that mediates high-affinity PKR binding but is too short to result in activation. Like adenovirus, Epstein-Barr virus produces high concentrations of a noncoding RNA, EBER1. Here, we compare interactions of PKR with VAI and EBER1 and present a structural model of EBER1. Both RNAs function as inhibitors of dsRNA-mediated PKR activation. However, EBER1 weakly activates PKR whereas VAI does not. PKR binds EBER1 more weakly than VAI. Assays at physiological ion concentrations indicate that both RNAs can accommodate two PKR monomers and induce PKR dimerization. A structural model of EBER1 was obtained using constraints derived from chemical structure probing and small-angle X-ray scattering experiments. The central stem of EBER1 coaxially stacks with stem loop 4 and stem loop 1 to form an extended RNA duplex of ∼32 bp that binds PKR and promotes activation. Our observations that EBER1 binds PKR much more weakly than VAI and exhibits weak PKR activation suggest that EBER1 is less well suited to function as an RNA decoy.
Collapse
|
18
|
Zhao Y, Karijolich J. Know Thyself: RIG-I-Like Receptor Sensing of DNA Virus Infection. J Virol 2019; 93:e01085-19. [PMID: 31511389 PMCID: PMC6854496 DOI: 10.1128/jvi.01085-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022] Open
Abstract
The RIG-I-like receptors (RLRs) are double-stranded RNA-binding proteins that play a role in initiating and modulating cell intrinsic immunity through the recognition of RNA features typically absent from the host transcriptome. While they are initially characterized in the context of RNA virus infection, evidence has now accumulated establishing the role of RLRs in DNA virus infection. Here, we review recent advances in the RLR-mediated restriction of DNA virus infection with an emphasis on the RLR ligands sensed.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| |
Collapse
|
19
|
Ahmed W, Tariq S, Khan G. Tracking EBV-encoded RNAs (EBERs) from the nucleus to the excreted exosomes of B-lymphocytes. Sci Rep 2018; 8:15438. [PMID: 30337610 PMCID: PMC6193935 DOI: 10.1038/s41598-018-33758-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/06/2018] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus-encoded RNAs (EBER1 and EBER2) are two highly abundant, non-protein coding RNAs consistently expressed in all EBV infected cells, but their function remains poorly understood. Conventional in situ hybridization studies have indicated that these RNAs are present exclusively in the nucleus. We have recently demonstrated that EBERs can be excreted from infected cells via exosomes. However, the details of the steps involved in their excretion remain unknown. In this study, we aimed to directly track the journey of EBERs from the nucleus to the excretory exosomes of EBV immortalized B-lymphocytes. Using a combination of molecular and novel immuno-gold labelled electron microscopy (EM) based techniques, we demonstrate the presence of EBERs, not only in the nucleus, but also in the cytoplasm of EBV infected B cell lines. EBERs were also seen in exosomes shed from infected cells along with the EBER binding protein La. Our results show, for the first time, that at least a proportion of EBERs are transported from the nucleus to the cytoplasm where they appear to be loaded into multi-vesicular bodies for eventual excretion via exosomes.
Collapse
Affiliation(s)
- Waqar Ahmed
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gulfaraz Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
20
|
Moss WN. RNA2DMut: a web tool for the design and analysis of RNA structure mutations. RNA (NEW YORK, N.Y.) 2018; 24:273-286. [PMID: 29183923 PMCID: PMC5824348 DOI: 10.1261/rna.063933.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/25/2017] [Indexed: 06/07/2023]
Abstract
With the widespread application of high-throughput sequencing, novel RNA sequences are being discovered at an astonishing rate. The analysis of function, however, lags behind. In both the cis- and trans-regulatory functions of RNA, secondary structure (2D base-pairing) plays essential regulatory roles. In order to test RNA function, it is essential to be able to design and analyze mutations that can affect structure. This was the motivation for the creation of the RNA2DMut web tool. With RNA2DMut, users can enter in RNA sequences to analyze, constrain mutations to specific residues, or limit changes to purines/pyrimidines. The sequence is analyzed at each base to determine the effect of every possible point mutation on 2D structure. The metrics used in RNA2DMut rely on the calculation of the Boltzmann structure ensemble and do not require a robust 2D model of RNA structure for designing mutations. This tool can facilitate a wide array of uses involving RNA: for example, in designing and evaluating mutants for biological assays, interrogating RNA-protein interactions, identifying key regions to alter in SELEX experiments, and improving RNA folding and crystallization properties for structural biology. Additional tools are available to help users introduce other mutations (e.g., indels and substitutions) and evaluate their effects on RNA structure. Example calculations are shown for five RNAs that require 2D structure for their function: the MALAT1 mascRNA, an influenza virus splicing regulatory motif, the EBER2 viral noncoding RNA, the Xist lncRNA repA region, and human Y RNA 5. RNA2DMut can be accessed at https://rna2dmut.bb.iastate.edu/.
Collapse
Affiliation(s)
- Walter N Moss
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
21
|
Epstein-Barr virus-encoded RNAs (EBERs) complement the loss of Herpesvirus telomerase RNA (vTR) in virus-induced tumor formation. Sci Rep 2018; 8:209. [PMID: 29317752 PMCID: PMC5760702 DOI: 10.1038/s41598-017-18638-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022] Open
Abstract
Marek's disease virus (MDV) is an alphaherpesvirus that causes fatal lymphomas in chickens and is used as a natural virus-host model for herpesvirus-induced tumorigenesis. MDV encodes a telomerase RNA subunit (vTR) that is crucial for efficient MDV-induced lymphoma formation; however, the mechanism is not completely understood. Similarly, Epstein Barr-virus (EBV) encodes two RNAs (EBER-1 and EBER-2) that are highly expressed in EBV-induced tumor cells, however their role in tumorigenesis remains unclear. Intriguingly, vTR and EBER-1 have interaction partners in common that are highly conserved in humans and chickens. Therefore, we investigated if EBER-1 and/or EBER-2 can complement the loss of vTR in MDV-induced tumor formation. We first deleted vTR (v∆vTR) and replaced it by either EBER-1 or EBER-2 in the very virulent RB-1B strain. Insertion of either EBER-1 or EBER-2 did not affect MDV replication and their expression levels were comparable to vTR in wild type virus. Intriguingly, EBER-2 restored tumor formation of MDV that lacks vTR. EBER-1 partially restored MDV oncogenicity, while tumor formation was severely impaired in chickens infected with v∆vTR. Our data provides the first evidence that EBERs possess tumor-promoting properties in vivo using this natural model for herpesvirus-tumorigenesis.
Collapse
|
22
|
Parvovirus Expresses a Small Noncoding RNA That Plays an Essential Role in Virus Replication. J Virol 2017; 91:JVI.02375-16. [PMID: 28122984 DOI: 10.1128/jvi.02375-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/20/2017] [Indexed: 12/11/2022] Open
Abstract
Human bocavirus 1 (HBoV1) belongs to the species Primate bocaparvovirus of the genus Bocaparvovirus of the Parvoviridae family. HBoV1 causes acute respiratory tract infections in young children and has a selective tropism for the apical surface of well-differentiated human airway epithelia (HAE). In this study, we identified an additional HBoV1 gene, bocavirus-transcribed small noncoding RNA (BocaSR), within the 3' noncoding region (nucleotides [nt] 5199 to 5338) of the viral genome of positive sense. BocaSR is transcribed by RNA polymerase III (Pol III) from an intragenic promoter at levels similar to that of the capsid protein-coding mRNA and is essential for replication of the viral DNA in both transfected HEK293 and infected HAE cells. Mechanistically, we showed that BocaSR regulates the expression of HBoV1-encoded nonstructural proteins NS1, NS2, NS3, and NP1 but not NS4. BocaSR is similar to the adenovirus-associated type I (VAI) RNA in terms of both nucleotide sequence and secondary structure but differs from it in that its regulation of viral protein expression is independent of RNA-activated protein kinase (PKR) regulation. Notably, BocaSR accumulates in the viral DNA replication centers within the nucleus and likely plays a direct role in replication of the viral DNA. Our findings reveal BocaSR to be a novel viral noncoding RNA that coordinates the expression of viral proteins and regulates replication of viral DNA within the nucleus. Thus, BocaSR may be a target for antiviral therapies for HBoV and may also have utility in the production of recombinant HBoV vectors.IMPORTANCE Human bocavirus 1 (HBoV1) is pathogenic to humans, causing acute respiratory tract infections in young children. In this study, we identified a novel HBoV1 gene that lies in the 3' noncoding region of the viral positive-sense genome and is transcribed by RNA polymerase III into a noncoding RNA of 140 nt. This bocavirus-transcribed small RNA (BocaSR) diverges from both adenovirus-associated (VA) RNAs and Epstein-Barr virus-encoded small RNAs (EBERs) with respect to RNA sequence, representing a third species of this kind of Pol III-dependent viral noncoding RNA and the first noncoding RNA identified in autonomous parvoviruses. Unlike the VA RNAs, BocaSR localizes to the viral DNA replication centers of the nucleus and is essential for expression of viral nonstructural proteins independent of RNA-activated protein kinase R and replication of HBoV1 genomes. The identification of BocaSR and its role in virus DNA replication reveals potential avenues for developing antiviral therapies.
Collapse
|
23
|
Abstract
It is more than 50 years since the Epstein-Barr virus (EBV), the first human tumour virus, was discovered. EBV has subsequently been found to be associated with a diverse range of tumours of both lymphoid and epithelial origin. Progress in the molecular analysis of EBV has revealed fundamental mechanisms of more general relevance to the oncogenic process. This Timeline article highlights key milestones in the 50-year history of EBV and discusses how this virus provides a paradigm for exploiting insights at the molecular level in the diagnosis, treatment and prevention of cancer.
Collapse
Affiliation(s)
- Lawrence S Young
- Warwick Medical School, The University of Warwick, Coventry CV4 7AL, UK
| | - Lee Fah Yap
- Department of Oral and Craniofacial Sciences and Oral Cancer Research Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Paul G Murray
- Institute of Cancer and Genomic Medicine, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
24
|
Zhang W, Xie M, Shu MD, Steitz JA, DiMaio D. A proximity-dependent assay for specific RNA-protein interactions in intact cells. RNA (NEW YORK, N.Y.) 2016; 22:1785-1792. [PMID: 27659050 PMCID: PMC5066630 DOI: 10.1261/rna.058248.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/25/2016] [Indexed: 05/05/2023]
Abstract
The proximity ligation assay (PLA) is an immune staining method that detects protein-protein interactions in fixed cells. We describe here RNA-PLA, a simple adaptation of this technology that allows the detection of specific RNA-protein interactions in fixed cells by using a DNA oligonucleotide that hybridizes to a target RNA in combination with an antibody that recognizes the protein bound to the target RNA. Stable and transient RNA-protein interactions can be readily detected by generation of a fluorescent signal in discrete compartments in intact fixed cells with high specificity. We demonstrate that this approach requires the colocalization of the binding protein and its RNA target in the same cellular compartment, use of an oligonucleotide complementary to the target RNA, and the presence of a binding site for the protein in the target RNA.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520-8005, USA
| | - Mingyi Xie
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-208024, USA
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520-208024, USA
| | - Mei-Di Shu
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-208024, USA
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520-208024, USA
| | - Joan A Steitz
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-208024, USA
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520-208024, USA
- Yale Cancer Center, New Haven, Connecticut 06520-8028, USA
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520-8005, USA
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520-208024, USA
- Yale Cancer Center, New Haven, Connecticut 06520-8028, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut 06520-208040, USA
| |
Collapse
|
25
|
Crow MS, Lum KK, Sheng X, Song B, Cristea IM. Diverse mechanisms evolved by DNA viruses to inhibit early host defenses. Crit Rev Biochem Mol Biol 2016; 51:452-481. [PMID: 27650455 PMCID: PMC5285405 DOI: 10.1080/10409238.2016.1226250] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In mammalian cells, early defenses against infection by pathogens are mounted through a complex network of signaling pathways shepherded by immune-modulatory pattern-recognition receptors. As obligate parasites, the survival of viruses is dependent on the evolutionary acquisition of mechanisms that tactfully dismantle and subvert the cellular intrinsic and innate immune responses. Here, we review the diverse mechanisms by which viruses that accommodate DNA genomes are able to circumvent activation of cellular immunity. We start by discussing viral manipulation of host defense protein levels by either transcriptional regulation or protein degradation. We next review viral strategies used to repurpose or inhibit these cellular immune factors by molecular hijacking or by regulating their post-translational modification status. Additionally, we explore the infection-induced temporal modulation of apoptosis to facilitate viral replication and spread. Lastly, the co-evolution of viruses with their hosts is highlighted by the acquisition of elegant mechanisms for suppressing host defenses via viral mimicry of host factors. In closing, we present a perspective on how characterizing these viral evasion tactics both broadens the understanding of virus-host interactions and reveals essential functions of the immune system at the molecular level. This knowledge is critical in understanding the sources of viral pathogenesis, as well as for the design of antiviral therapeutics and autoimmunity treatments.
Collapse
Affiliation(s)
- Marni S. Crow
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Krystal K. Lum
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Xinlei Sheng
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Bokai Song
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| |
Collapse
|
26
|
Hsu YC, Lu HF, Huang CC, Hsu RF, Su CY. Malignant Lymphoepithelial Lesions of the Salivary Gland. Otolaryngol Head Neck Surg 2016; 134:661-6. [PMID: 16564393 DOI: 10.1016/j.otohns.2005.10.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Indexed: 11/27/2022]
Abstract
OBJECTIVES: To describe a relatively large series of patients with uncommon malignant lymphoepithelial lesions (MLEL) in the salivary glands, to present treatment-outcome data to support therapeutic decision-making, and to evaluate the incidence of cooccurrence of MLEL and Epstein-Barr virus (EBV). STUDY DESIGN AND SETTING: Ten patients with MLEL were treated between 1987 and 2002. All lesions were surgically removed, with or without neck dissection, and the patients treated with radiotherapy or radiotherapy and chemotherapy. Histopathology and in situ hybridization studies for EBV-encoded RNA (EBER1) were performed. RESULTS: With aggressive treatment, outcomes were good, regardless of the presenting stage, except when distal metastases were present. All 10 patients tested positive for EBV. CONCLUSION AND SIGNIFICANCE: This and previous investigations support the use of aggressive surgical excision of the tumor and local metastases and radiotherapy or radiotherapy and chemotherapy, as optimal treatment for MLEL. The EBV finding may indicate a role for EBV in the pathogenesis of MLEL.
Collapse
Affiliation(s)
- Yao-Chung Hsu
- Department of Otolaryngology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
27
|
Pimienta G, Fok V, Haslip M, Nagy M, Takyar S, Steitz JA. Proteomics and Transcriptomics of BJAB Cells Expressing the Epstein-Barr Virus Noncoding RNAs EBER1 and EBER2. PLoS One 2015; 10:e0124638. [PMID: 26121143 PMCID: PMC4487896 DOI: 10.1371/journal.pone.0124638] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/17/2015] [Indexed: 01/06/2023] Open
Abstract
In Epstein-Barr virus (EBV) latent infection, the EBV-encoded RNAs EBER1 and EBER2 accumulate in the host cell nucleus to ~106 copies. While the expression of EBERs in cell lines is associated with transformation, a mechanistic explanation of their roles in EBV latency remains elusive. To identify EBER-specific gene expression features, we compared the proteome and mRNA transcriptome from BJAB cells (an EBV-negative B lymphoma cell line) stably transfected with an empty plasmid or with one carrying both EBER genes. We identified ~1800 proteins with at least 2 SILAC pair measurements, of which only 8 and 12 were up- and downregulated ≥ 2-fold, respectively. One upregulated protein was PIK3AP1, a B-cell specific protein adapter known to activate the PI3K-AKT signaling pathway, which regulates alternative splicing and translation in addition to its pro-survival effects. In the mRNA-seq data, the mRNA levels for some of the proteins changing in the SILAC data did not change. We instead observed isoform switch events. We validated the most relevant findings with biochemical assays. These corroborated the upregulation of PIK3AP1 and AKT activation in BJAB cells expressing high levels of both EBERs and EBNA1 (a surrogate of Burkitt’s lymphoma EBV latency I) relative to those expressing only EBNA1. The mRNA-seq data in these cells showed multiple upregulated oncogenes whose mRNAs are enriched for 3´-UTR AU-rich elements (AREs), such as ccl3, ccr7, il10, vegfa and zeb1. The CCL3, CCR7, IL10 and VEGFA proteins promote cell proliferation and are associated with EBV-mediated lymphomas. In EBV latency, ZEB1 represses the transcription of ZEBRA, an EBV lytic phase activation factor. We previously found that EBER1 interacts with AUF1 in vivo and proposed stabilization of ARE-containing mRNAs. Thus, the ~106 copies of EBER1 may promote not only cell proliferation due to an increase in the levels of ARE-containing genes like ccl3, ccr7, il10, and vegfa, but also the maintenance of latency, through higher levels of zeb1.
Collapse
MESH Headings
- Cell Line, Tumor
- Epstein-Barr Virus Infections/virology
- Epstein-Barr Virus Nuclear Antigens/genetics
- Epstein-Barr Virus Nuclear Antigens/metabolism
- Gene Expression
- Gene Expression Profiling
- Genes, Viral
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/physiology
- Humans
- Lymphoma, B-Cell/virology
- Oncogenes
- Proteomics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Latency/genetics
Collapse
Affiliation(s)
- Genaro Pimienta
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail: (GP); (JAS)
| | - Victor Fok
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Maria Haslip
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Maria Nagy
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Seyedtaghi Takyar
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail: (GP); (JAS)
| |
Collapse
|
28
|
Duan Y, Li Z, Cheng S, Chen Y, Zhang L, He J, Liao Q, Yang L, Gong Z, Sun LQ. Nasopharyngeal carcinoma progression is mediated by EBER-triggered inflammation via the RIG-I pathway. Cancer Lett 2015; 361:67-74. [PMID: 25721089 DOI: 10.1016/j.canlet.2015.02.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/14/2015] [Accepted: 02/16/2015] [Indexed: 12/12/2022]
Abstract
EBERs (EBER1 and EBER2) are suggested to be involved in cellular transformation and tumor growth. Cytoplasmic pattern recognition receptor-RIG-I, which is characterized by the recognition of viral dsRNAs, could efficiently trigger the downstream pathways of innate immunity. Although some previous reports have shown that EBERs and RIG-I associate with hematological malignancies, the role of EBERs-RIG-I signaling in solid tumors remains to be clarified. Here we demonstrate that EBER mediation of the inflammatory response via RIG-I contributes to NPC development in vitro and in vivo. We first verified that the expression level of RIG-I was associated with EBER transcription in a dose-dependent manner in NPC cells and specimens from NPC patients. Furthermore, pro-inflammatory cytokine transcription and release were sharply reduced after RIG-I knockdown compared with the control shRNA group in the presence of EBERs, accompanied by an attenuation of the NF-κB and MAPK signaling pathways. Consequently, the tumor burden was greatly alleviated in the RIG-I knockdown group in a xenograft model. In addition, macrophage colony-stimulating factor (M-CSF) and monocyte chemoattractant protein (MCP-1), which promote the maturation and attraction of tumor-associated macrophages, were stimulated upon the introduction of EBERs, and this upregulation conceivably led to the tumor-promoting subset transition of the macrophages. Taken together, our results reveal that EBERs could promote NPC progression through RIG-I-mediated cancer-related inflammation.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Carcinoma
- Cell Differentiation
- Coculture Techniques
- Cytokines/genetics
- Cytokines/metabolism
- DEAD Box Protein 58
- DEAD-box RNA Helicases/antagonists & inhibitors
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Disease Progression
- Female
- Humans
- Immunoenzyme Techniques
- Immunoprecipitation
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation Mediators/analysis
- Interferon Regulatory Factor-3/genetics
- Interferon Regulatory Factor-3/metabolism
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Nasopharyngeal Carcinoma
- Nasopharyngeal Neoplasms/immunology
- Nasopharyngeal Neoplasms/metabolism
- Nasopharyngeal Neoplasms/pathology
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- RNA, Viral/antagonists & inhibitors
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Real-Time Polymerase Chain Reaction
- Receptors, Immunologic
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yumei Duan
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; The department of pathology of Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhi Li
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shiyue Cheng
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yan Chen
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lu Zhang
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiang He
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiong Liao
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lifang Yang
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; Cancer Research Institute, Central South University, Changsha 410008, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Lun-Quan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
29
|
Lee N, Moss WN, Yario TA, Steitz JA. EBV noncoding RNA binds nascent RNA to drive host PAX5 to viral DNA. Cell 2015; 160:607-618. [PMID: 25662012 DOI: 10.1016/j.cell.2015.01.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/14/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022]
Abstract
EBER2 is an abundant nuclear noncoding RNA expressed by the Epstein-Barr virus (EBV). Probing its possible chromatin localization by CHART revealed EBER2's presence at the terminal repeats (TRs) of the latent EBV genome, overlapping previously identified binding sites for the B cell transcription factor PAX5. EBER2 interacts with PAX5 and is required for the localization of PAX5 to the TRs. EBER2 knockdown phenocopies PAX5 depletion in upregulating the expression of LMP2A/B and LMP1, genes nearest the TRs. Knockdown of EBER2 also decreases EBV lytic replication, underscoring the essential role of the TRs in viral replication. Recruitment of the EBER2-PAX5 complex is mediated by base-pairing between EBER2 and nascent transcripts from the TR locus. The interaction is evolutionarily conserved in the related primate herpesvirus CeHV15 despite great sequence divergence. Using base-pairing with nascent RNA to guide an interacting transcription factor to its DNA target site is a previously undescribed function for a trans-acting noncoding RNA.
Collapse
Affiliation(s)
- Nara Lee
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Walter N Moss
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Therese A Yario
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.
| |
Collapse
|
30
|
Deyhimi P, Kalantari M. Study of Epstein-Barr virus expression in Burkitt's lymphoma by polymerase chain reaction and in situ hybridization: A study in Iran. Dent Res J (Isfahan) 2014; 11:380-5. [PMID: 25097650 PMCID: PMC4119373 DOI: 10.4103/1735-3327.135917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background: The association of Epstein-Barr virus (EBV) with Burkitt's lymphoma (BL) is variable in different geographic regions. In developing countries, the association of EBV with BL is regarded to be of an endemic-type in equatorial Africa (> 95%) and sporadic-type in the developed countries (15-30%). The purpose of this study is to assess the frequency of EBV infection in BL, in Iran. The study also aims to compare Ribonucleic acid (RNA) in situ hybridization (RISH), the standard diagnostic method, with the polymerase chain reaction (PCR)-based method for diagnosing BL. Materials and Methods: In this epidemiological study, the paraffinized specimens of 18 cases of BL were selected. Next, the ISH of EBV-encoded RNA (EBER-RISH) and PCR assays that were based on Epstein Barr Nuclear Antigen 2 (EBNA2) amplification were used. The EBV strain was determined by PCR. The data were analyzed using the SPSS10 software and by performing Pearson correlation coefficient formula at a significant level of 0.05. Results: EBV RNA was detected in 50% of the BL specimens. Type 1 and 2 accounted for 70 and 30% of the cases, respectively. Regarding RISH as the standard method for EBV diagnosis, the PCR assays showed a sensitivity and specificity of 100 and 88.9%, respectively. Conclusion: According to the obtained findings, the frequency of EBV in BL was 50% and PCR and RISH showed high concordance and sensitivity in EBV detection. Therefore, PCR can be used as a faster method for EBV detection in high-risk geographical regions.
Collapse
Affiliation(s)
- Parviz Deyhimi
- Torabinejad Dental Research Center and Department of Oral and Maxillofacial Pathology, Isfahan University of Medical Science, Dental School, Isfahan, Iran
| | - Mahsa Kalantari
- Torabinejad Dental Research Center and Department of Oral and Maxillofacial Pathology, Isfahan University of Medical Science, Dental School, Isfahan, Iran
| |
Collapse
|
31
|
Ahmed W, Philip PS, Tariq S, Khan G. Epstein-Barr virus-encoded small RNAs (EBERs) are present in fractions related to exosomes released by EBV-transformed cells. PLoS One 2014; 9:e99163. [PMID: 24896633 PMCID: PMC4045842 DOI: 10.1371/journal.pone.0099163] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/12/2014] [Indexed: 12/20/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic herpesvirus associated with a number of human malignancies of epithelial and lymphoid origin. However, the mechanism of oncogenesis is unclear. A number of viral products, including EBV latent proteins and non-protein coding RNAs have been implicated. Recently it was reported that EBV-encoded small RNAs (EBERs) are released from EBV infected cells and they can induce biological changes in cells via signaling from toll-like receptor 3. Here, we investigated if these abundantly expressed non-protein coding EBV RNAs (EBER-1 and EBER-2) are excreted from infected cells in exosomal fractions. Using differential ultracentrifugation we isolated exosomes from three EBV positive cell lines (B95-8, EBV-LCL, BL30-B95-8), one EBER-1 transfected cell line (293T-pHEBo-E1) and two EBV-negative cell lines (BL30, 293T-pHEBo). The identity of purified exosomes was determined by electron microscopy and western blotting for CD63. The presence of EBERs in cells, culture supernatants and purified exosomal fractions was determined using RT-PCR and confirmed by sequencing. Purified exosomal fractions were also tested for the presence of the EBER-1-binding protein La, using western blotting. Both EBER-1 and EBER-2 were found to be present not only in the culture supernatants, but also in the purified exosome fractions of all EBV-infected cell lines. EBER-1 could also be detected in exosomal fractions from EBER-1 transfected 293T cells whilst the fractions from vector only transfectants were clearly negative. Furthermore, purified exosomal fractions also contained the EBER-binding protein (La), supporting the notion that EBERs are most probably released from EBV infected cells in the form of EBER-La complex in exosomes.
Collapse
Affiliation(s)
- Waqar Ahmed
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Alin, United Arab Emirates
| | - Pretty S. Philip
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Alin, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Alin, United Arab Emirates
| | - Gulfaraz Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Alin, United Arab Emirates
- * E-mail:
| |
Collapse
|
32
|
Feng Q, Langereis MA, Olagnier D, Chiang C, van de Winkel R, van Essen P, Zoll J, Hiscott J, van Kuppeveld FJM. Coxsackievirus cloverleaf RNA containing a 5' triphosphate triggers an antiviral response via RIG-I activation. PLoS One 2014; 9:e95927. [PMID: 24759703 PMCID: PMC3997492 DOI: 10.1371/journal.pone.0095927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/01/2014] [Indexed: 12/25/2022] Open
Abstract
Upon viral infections, pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs) and stimulate an antiviral state associated with the production of type I interferons (IFNs) and inflammatory markers. Type I IFNs play crucial roles in innate antiviral responses by inducing expression of interferon-stimulated genes and by activating components of the adaptive immune system. Although pegylated IFNs have been used to treat hepatitis B and C virus infections for decades, they exert substantial side effects that limit their use. Current efforts are directed toward the use of PRR agonists as an alternative approach to elicit host antiviral responses in a manner similar to that achieved in a natural infection. RIG-I is a cytosolic PRR that recognizes 5' triphosphate (5'ppp)-containing RNA ligands. Due to its ubiquitous expression profile, induction of the RIG-I pathway provides a promising platform for the development of novel antiviral agents and vaccine adjuvants. In this study, we investigated whether structured RNA elements in the genome of coxsackievirus B3 (CVB3), a picornavirus that is recognized by MDA5 during infection, could activate RIG-I when supplied with 5'ppp. We show here that a 5'ppp-containing cloverleaf (CL) RNA structure is a potent RIG-I inducer that elicits an extensive antiviral response that includes induction of classical interferon-stimulated genes, as well as type III IFNs and proinflammatory cytokines and chemokines. In addition, we show that prophylactic treatment with CVB3 CL provides protection against various viral infections including dengue virus, vesicular stomatitis virus and enterovirus 71, demonstrating the antiviral efficacy of this RNA ligand.
Collapse
Affiliation(s)
- Qian Feng
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - Martijn A. Langereis
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - David Olagnier
- Division of Infectious Diseases, Vaccine and Gene Therapy Institute of Florida, Port Saint Lucie, Florida, United States of America
| | - Cindy Chiang
- Division of Infectious Diseases, Vaccine and Gene Therapy Institute of Florida, Port Saint Lucie, Florida, United States of America
| | - Roel van de Winkel
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Peter van Essen
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jan Zoll
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - John Hiscott
- Division of Infectious Diseases, Vaccine and Gene Therapy Institute of Florida, Port Saint Lucie, Florida, United States of America
| | - Frank J. M. van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
33
|
Abstract
Epstein-Barr virus (EBV) is a tumorigenic human γ-herpesvirus, which produces several known structured RNAs with functional importance: two are implicated in latency maintenance and tumorigenic phenotypes, EBER1 and EBER2; a viral small nucleolar RNA (v-snoRNA1) that may generate a small regulatory RNA; and an internal ribosomal entry site in the EBNA1 mRNA. A recent bioinformatics and RNA-Seq study of EBV identified two novel EBV non-coding (nc)RNAs with evolutionary conservation in lymphocryptoviruses and likely functional importance. Both RNAs are transcribed from a repetitive region of the EBV genome (the W repeats) during a highly oncogenic type of viral latency. One novel ncRNA can form a massive (586 nt) hairpin, while the other RNA is generated from a short (81 nt) intron and is found in high abundance in EBV-infected cells.
Collapse
Affiliation(s)
- Walter N Moss
- Howard Hughes Medical Institute; Yale University; Department of Molecular Biophysics and Biochemistry; New Haven, CT USA
| | - Nara Lee
- Howard Hughes Medical Institute; Yale University; Department of Molecular Biophysics and Biochemistry; New Haven, CT USA
| | - Genaro Pimienta
- Howard Hughes Medical Institute; Yale University; Department of Molecular Biophysics and Biochemistry; New Haven, CT USA
| | - Joan A Steitz
- Howard Hughes Medical Institute; Yale University; Department of Molecular Biophysics and Biochemistry; New Haven, CT USA
| |
Collapse
|
34
|
Ahmed W, Khan G. The labyrinth of interactions of Epstein-Barr virus-encoded small RNAs. Rev Med Virol 2013; 24:3-14. [PMID: 24105992 DOI: 10.1002/rmv.1763] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 12/25/2022]
Abstract
Epstein-Barr Virus (EBV) is an oncogenic herpesvirus implicated in the pathogenesis of a number of human malignancies. However, the mechanism by which EBV leads to malignant transformation is not clear. A number of viral latent gene products, including non-protein coding small RNAs, are believed to be involved. Epstein-Barr virus-encoded RNA 1 (EBER1) and EBER2 are two such RNA molecules that are abundantly expressed (up to 10(7) copies) in all EBV-infected cells, but their function remains poorly understood. These polymerase III transcripts have extensive secondary structure and exist as ribonucleoproteins. An accumulating body of evidence suggests that EBERs play an important role, directly or indirectly, in EBV-induced oncogenesis. Here, we summarize the current understanding of the complex interactions of EBERs with various cellular factors and the potential pathways by which these small RNAs are able to influence EBV-infected cells to proliferate and to induce tumorigenesis. The exosome pathway is probably involved in the cellular excretion of EBERs and facilitating some of their biological effects.
Collapse
Affiliation(s)
- Waqar Ahmed
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | |
Collapse
|
35
|
Emerging roles of small Epstein-Barr virus derived non-coding RNAs in epithelial malignancy. Int J Mol Sci 2013; 14:17378-409. [PMID: 23979421 PMCID: PMC3794732 DOI: 10.3390/ijms140917378] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/01/2013] [Accepted: 08/13/2013] [Indexed: 01/08/2023] Open
Abstract
Latent Epstein-Barr virus (EBV) infection is an etiological factor in the progression of several human epithelial malignancies such as nasopharyngeal carcinoma (NPC) and a subset of gastric carcinoma. Reports have shown that EBV produces several viral oncoproteins, yet their pathological roles in carcinogenesis are not fully elucidated. Studies on the recently discovered of EBV-encoded microRNAs (ebv-miRNAs) showed that these small molecules function as post-transcriptional gene regulators and may play a role in the carcinogenesis process. In NPC and EBV positive gastric carcinoma (EBVaGC), 22 viral miRNAs which are located in the long alternative splicing EBV transcripts, named BamH1 A rightward transcripts (BARTs), are abundantly expressed. The importance of several miR-BARTs in carcinogenesis has recently been demonstrated. These novel findings enhance our understanding of the oncogenic properties of EBV and may lead to a more effective design of therapeutic regimens to combat EBV-associated malignancies. This article will review the pathological roles of miR-BARTs in modulating the expression of cancer-related genes in both host and viral genomes. The expression of other small non-coding RNAs in NPC and the expression pattern of miR-BARTs in rare EBV-associated epithelial cancers will also be discussed.
Collapse
|
36
|
Moss WN, Steitz JA. Genome-wide analyses of Epstein-Barr virus reveal conserved RNA structures and a novel stable intronic sequence RNA. BMC Genomics 2013; 14:543. [PMID: 23937650 PMCID: PMC3751371 DOI: 10.1186/1471-2164-14-543] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/07/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is a human herpesvirus implicated in cancer and autoimmune disorders. Little is known concerning the roles of RNA structure in this important human pathogen. This study provides the first comprehensive genome-wide survey of RNA and RNA structure in EBV. RESULTS Novel EBV RNAs and RNA structures were identified by computational modeling and RNA-Seq analyses of EBV. Scans of the genomic sequences of four EBV strains (EBV-1, EBV-2, GD1, and GD2) and of the closely related Macacine herpesvirus 4 using the RNAz program discovered 265 regions with high probability of forming conserved RNA structures. Secondary structure models are proposed for these regions based on a combination of free energy minimization and comparative sequence analysis. The analysis of RNA-Seq data uncovered the first observation of a stable intronic sequence RNA (sisRNA) in EBV. The abundance of this sisRNA rivals that of the well-known and highly expressed EBV-encoded non-coding RNAs (EBERs). CONCLUSION This work identifies regions of the EBV genome likely to generate functional RNAs and RNA structures, provides structural models for these regions, and discusses potential functions suggested by the modeled structures. Enhanced understanding of the EBV transcriptome will guide future experimental analyses of the discovered RNAs and RNA structures.
Collapse
Affiliation(s)
- Walter N Moss
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
37
|
Lee N, Pimienta G, Steitz JA. AUF1/hnRNP D is a novel protein partner of the EBER1 noncoding RNA of Epstein-Barr virus. RNA (NEW YORK, N.Y.) 2012; 18:2073-82. [PMID: 23012480 PMCID: PMC3479396 DOI: 10.1261/rna.034900.112] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Epstein-Barr virus (EBV)-infected cells express two noncoding RNAs called EBV-encoded RNA (EBER) 1 and EBER2. Despite their high abundance in the nucleus (about 10(6) copies), the molecular function of these noncoding RNAs has remained elusive. Here, we report that the insertion into EBER1 of an RNA aptamer that binds the bacteriophage MS2 coat protein allows the isolation of EBER1 and associated protein partners. By combining MS2-mediated selection with stable isotope labeling of amino acids in cell culture (SILAC) and analysis by mass spectrometry, we identified AUF1 (AU-rich element binding factor 1)/hnRNP D (heterogeneous nuclear ribonucleoprotein D) as an interacting protein of EBER1. AUF1 exists as four isoforms generated by alternative splicing and is best known for its role in destabilizing mRNAs upon binding to AU-rich elements (AREs) in their 3' untranslated region (UTR). Using UV crosslinking, we demonstrate that predominantly the p40 isoform of AUF1 interacts with EBER1 in vivo. Electrophoretic mobility shift assays show that EBER1 can compete for the binding of the AUF1 p40 isoform to ARE-containing RNA. Given the high abundance of EBER1 in EBV-positive cells, EBER1 may disturb the normal homeostasis between AUF1 and ARE-containing mRNAs or compete with other AUF1-interacting targets in cells latently infected by EBV.
Collapse
Affiliation(s)
- Nara Lee
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Genaro Pimienta
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Joan A. Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
- Corresponding authorE-mail
| |
Collapse
|
38
|
Jeon SH, Lee K, Lee KS, Kunkeaw N, Johnson BH, Holthauzen LMF, Gong B, Leelayuwat C, Lee YS. Characterization of the direct physical interaction of nc886, a cellular non-coding RNA, and PKR. FEBS Lett 2012; 586:3477-84. [PMID: 22986343 DOI: 10.1016/j.febslet.2012.07.076] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 07/26/2012] [Indexed: 11/16/2022]
Abstract
We have recently shown that nc886 (pre-miR-886 or vtRNA2-1) is not a genuine microRNA precursor nor a vault RNA, but a novel type of non-coding RNA that represses PKR, a double-stranded RNA (dsRNA) dependent kinase. Here we have characterized their direct physical association. PKR's two RNA binding domains form a specific and stable complex with nc886's central portion, without any preference to its 5'-end structure. By binding to PKR with a comparable affinity, nc886 competes with dsRNA and attenuates PKR activation by dsRNA. Our data suggest that nc886 sets a threshold for PKR activation so that it occurs only during genuine viral infection but not by a minute level of fortuitous cellular dsRNA.
Collapse
Affiliation(s)
- Sung Ho Jeon
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555-1072, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Souza EM, Baiocchi OCG, Zanichelli MA, Alves AC, Assis MG, Silva JMK, Dobo C, Oliveira JSR. Matrix metalloproteinase-9 is consistently expressed in Hodgkin/Reed-Sternberg cells and has no impact on survival in patients with Epstein–Barr virus (EBV)-related and non-related Hodgkin lymphoma in Brazil. Med Oncol 2011; 29:2148-52. [PMID: 21922298 DOI: 10.1007/s12032-011-0063-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 09/02/2011] [Indexed: 12/11/2022]
Affiliation(s)
- Eni M Souza
- Departamento de Oncologia Clínica e Experimental, Disciplina de Hematologia e Hemoterapia, Universidade Federal de São Paulo, Rua Botucatu 740, Vila Clementino, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Khan G, Philip PS, Al Ashari M, Houcinat Y, Daoud S. Localization of Epstein-Barr virus to infiltrating lymphocytes in breast carcinomas and not malignant cells. Exp Mol Pathol 2011; 91:466-70. [PMID: 21600202 DOI: 10.1016/j.yexmp.2011.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 04/28/2011] [Accepted: 04/28/2011] [Indexed: 11/17/2022]
Abstract
The pathogenesis of breast cancer is unknown. In recent years, a number of studies have implicated a role for Epstein-Barr virus (EBV) in a subset of cases. However, these findings are controversial and others have failed to find any link between the virus and this malignancy. We hypothesized that technical differences and the different type and ethnic origin of the cases may be the cause of the disparities reported. Using a highly sensitive EBER-in situ hybridization and immunohistochemistry, we examined 219 samples (158 malignant and 61 non-malignant) from 61 Emirati breast cancer cases to determine if EBV was etiologically associated with Emirati cases and if there was any correlation with other established prognostic factors such as age, histological type, lymph node metastasis, estrogen, progesterone and HER2 expression. We found 47.5% of the cases to be EBV positive, but the virus was localized to occasional infiltrating lymphocytes and not in the malignant cells. EBV lymphocytes were more commonly observed in lymph nodes than in breast tissues, but there was no correlation with malignancy or hormone status. The mean age of our patients was 48years and hormone receptor staining revealed 20% of the cases to be triple negative (ER-/PR-/HER2-). We conclude that although EBV can be detected in breast cancer cases, it is not directly associated with the disease. Thus, a PCR-based approach cannot be used to link this ubiquitous virus to the pathogenesis of breast cancer. Furthermore, we do not find any correlation between the presence of EBV in infiltrating lymphocytes and ER, PR, HER2 expression. We believe our findings will help explain some of the controversies relating to the role of EBV in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Gulfaraz Khan
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Alin, United Arab Emirates.
| | | | | | | | | |
Collapse
|
41
|
Minamitani T, Iwakiri D, Takada K. Adenovirus virus-associated RNAs induce type I interferon expression through a RIG-I-mediated pathway. J Virol 2011; 85:4035-40. [PMID: 21248047 PMCID: PMC3126113 DOI: 10.1128/jvi.02160-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 01/07/2011] [Indexed: 12/25/2022] Open
Abstract
The current study demonstrates that adenovirus virus-associated RNA (VA) is recognized by retinoic acid-inducible gene I (RIG-I), a cytosolic pattern recognition receptor, and activates RIG-I downstream signaling, leading to the induction of type I interferons (IFNs), similarly to Epstein-Barr virus-encoded small RNA. Further analysis revealed that adenovirus infection leads to biphasic type I IFN induction at 12 to 24 h and 48 to 60 h postinfection. The later induction coincided with VA expression and was reduced by virus UV inactivation or RIG-I silencing. These results suggest that VA-mediated RIG-I activation is involved in activating innate immune responses during adenovirus infection.
Collapse
Affiliation(s)
- Takeharu Minamitani
- Department of Tumor Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Dai Iwakiri
- Department of Tumor Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Kenzo Takada
- Department of Tumor Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| |
Collapse
|
42
|
Cellular gene expression that correlates with EBER expression in Epstein-Barr Virus-infected lymphoblastoid cell lines. J Virol 2011; 85:3535-45. [PMID: 21248031 DOI: 10.1128/jvi.02086-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel Epstein-Barr Virus (EBV) strains with deletion of either EBER1 or EBER2 and corresponding revertant viruses were constructed and used to infect B lymphocytes to make lymphoblastoid cell lines (LCLs). The LCLs were used in microarray expression profiling to identify genes whose expression correlates with the presence of EBER1 or EBER2. Functions of regulated genes identified in the microarray analysis include membrane signaling, regulation of apoptosis, and the interferon/antiviral response. Although most emphasis has previously been given to EBER1 because it is more abundant than EBER2, the differences in cell gene expression were greater with EBER2 deletion. In this system, deletion of EBER1 or EBER2 had little effect on the EBV transformation frequency of primary B cells or the growth of the resulting LCLs. Using the recombinant viruses and novel EBER expression vectors, the nuclear redistribution of rpL22 protein by EBER1 in 293 cells was confirmed, but in LCLs almost all of the cells had a predominantly cytoplasmic expression of this ribosomal protein, which was not detectably changed by EBER1. The changes in LCL gene expression identified here will provide a basis for identifying the mechanisms of action of EBER RNAs.
Collapse
|
43
|
Souza EM, Baiocchi OCG, Zanichelli MA, Alves AC, Assis MG, Eiras DP, Dobo C, Oliveira JSR. Impact of Epstein-Barr virus in the clinical evolution of patients with classical Hodgkin's lymphoma in Brazil. Hematol Oncol 2010; 28:137-41. [PMID: 20128016 DOI: 10.1002/hon.933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Classical Hodgkin's Lymphoma (cHL) has been frequently associated with Epstein-Barr virus (EBV), which can be found in a latent pattern in Reed-Sternberg (RS) cells. However, the impact of the presence of EBV in RS cells and its prognosis are still controversial. We analysed the presence of EBV in RS cells and its influence in the clinical evolution of patients with cHL treated in two public hospitals in the city of São Paulo, Brazil. MATERIALS AND METHODS We selected 97 patients with cHL from 1994 to 2004. Patients were only included in this study if they had (1) >18 years, (2) negative HIV serology, (3) undergone similar chemotherapy protocols, (4) paraffin blocks available with enough material for systematic review and histological reclassification and for detection of EBV in RS cells by in situ hybridization and immunohistochemistry and (5) clinical, epidemiological and laboratorial parameters available after a thorough chart review. RESULTS EBV was identified in 52.5% of the cases. Mixed cellularity (MC) subtype was more common in EBV-related tumours (25.5%) (p=0.005). There was no difference on age, gender, stage and the presence of B symptoms between the two groups. The presence of EBV did not influence event free survival (EFS) (p=0.38) or overall survival (OS) (p=0.80) with a median follow-up of 80 months. CONCLUSION We demonstrate that the prevalence of EBV-related cHL in this Brazilian population is 52.5% and, that, the presence of EBV does not change the clinical evolution and OS of patients treated with similar chemotherapy protocols.
Collapse
Affiliation(s)
- Eni M Souza
- Federal University of São Paulo (UNIFESP), Hematology and Transfusion Service, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Wang Y, Zhang X, Chao Y, Jia Y, Xing X, Luo B. New variations of Epstein-Barr virus-encoded small RNA genes in nasopharyngeal carcinomas, gastric carcinomas, and healthy donors in northern China. J Med Virol 2010; 82:829-36. [PMID: 20336720 DOI: 10.1002/jmv.21714] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It has been generally believed that the Epstein-Barr virus (EBV)-encoded small RNA 1 and 2 (EBER1 and EBER2) genes are conserved as two families that correlated with type 1 (B95-8) and type 2 (AG876 or P3HR-1) EBV strains. EBER polymorphism and its association with EBV-associated disease have not received much attention. To explore the variations of EBER genes in different malignancies and healthy donors, the sequences of EBER genes were analyzed in 154 EBV-positive samples, including 47 nasopharyngeal carcinoma (NPC), 50 EBV-associated gastric carcinoma (EBVaGC) biopsies and 57 throat washing (TW) samples from healthy donors in northern China, where NPC is non-endemic. Three main distinct variants of EBER genes, designated as EB-6m, EB-8m, and EB-10m, were identified. EB-6m had a previously identified EBER sequence identical to P3HR-1 and was found in 33/47 (70.2%) NPC, 48/50 (96.0%) EBVaGC, and 54/57 (94.7%) TW isolates. EB-8m and EB-10m were new EBER variants with more mutations in EBER2 genes. They were found in 13/47 (27.7%) NPC cases, whereas in only 1/50 (2.0%) EBVaGC cases and not found in TW cases. The distributions were significantly different (P < 0.05). Other five isolates (one NPC, one EBVaGC and three TW cases) showed different sequences and could not be assigned to any of the three groups. Type 1 EBV strains showed heterogeneous in terms of EBER variants. These results suggest that EBER locus can be useful to identify different EBV isolates, and it would be interesting to evaluate the association of EBER polymorphisms with EBV-associated tumors.
Collapse
Affiliation(s)
- Yun Wang
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | | | | | | | | | | |
Collapse
|
45
|
Toroney R, Nallagatla SR, Boyer JA, Cameron CE, Bevilacqua PC. Regulation of PKR by HCV IRES RNA: importance of domain II and NS5A. J Mol Biol 2010; 400:393-412. [PMID: 20447405 DOI: 10.1016/j.jmb.2010.04.059] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 04/27/2010] [Accepted: 04/28/2010] [Indexed: 02/05/2023]
Abstract
Protein kinase R (PKR) is an essential component of the innate immune response. In the presence of double-stranded RNA (dsRNA), PKR is autophosphorylated, which enables it to phosphorylate its substrate, eukaryotic initiation factor 2alpha, leading to translation cessation. Typical activators of PKR are long dsRNAs produced during viral infection, although certain other RNAs can also activate. A recent study indicated that full-length internal ribosome entry site (IRES), present in the 5'-untranslated region of hepatitis C virus (HCV) RNA, inhibits PKR, while another showed that it activates. We show here that both activation and inhibition by full-length IRES are possible. The HCV IRES has a complex secondary structure comprising four domains. While it has been demonstrated that domains III-IV activate PKR, we report here that domain II of the IRES also potently activates. Structure mapping and mutational analysis of domain II indicate that while the double-stranded regions of the RNA are important for activation, loop regions contribute as well. Structural comparison reveals that domain II has multiple, non-Watson-Crick features that mimic A-form dsRNA. The canonical and noncanonical features of domain II cumulate to a total of approximately 33 unbranched base pairs, the minimum length of dsRNA required for PKR activation. These results provide further insight into the structural basis of PKR activation by a diverse array of RNA structural motifs that deviate from the long helical stretches found in traditional PKR activators. Activation of PKR by domain II of the HCV IRES has implications for the innate immune response when the other domains of the IRES may be inaccessible. We also study the ability of the HCV nonstructural protein 5A (NS5A) to bind various domains of the IRES and alter activation. A model is presented for how domain II of the IRES and NS5A operate to control host and viral translation during HCV infection.
Collapse
Affiliation(s)
- Rebecca Toroney
- Department of Chemistry, Pennsylvania State University, 104 Chemistry Building, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
46
|
[Viral noncoding RNAs]. Uirusu 2010; 59:179-87. [PMID: 20218326 DOI: 10.2222/jsv.59.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Many lines of recent evidence indicate that non-coding RNAs including micro RNAs (miRNAs) and small interfering RNAs (siRNAs) play an important role in the control of gene expression in diverse cellular processes and in defense responses against molecular parasites such as viruses and transposons. Viruses also use many different types of non-coding RNAs for regulating expression of their own genome or host genome temporally and spatially to ensure efficient virus proliferation and/or latency in the host cell. Here, we introduce the generation mechanisms and functions of novel non-coding RNAs generated from both animal and plant RNA viruses, after a brief review of non-coding RNAs of DNA viruses.
Collapse
|
47
|
Lymphoid hyperplasia and lymphoma in transgenic mice expressing the small non-coding RNA, EBER1 of Epstein-Barr virus. PLoS One 2010; 5:e9092. [PMID: 20161707 PMCID: PMC2817001 DOI: 10.1371/journal.pone.0009092] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 12/11/2009] [Indexed: 12/16/2022] Open
Abstract
Background Non-coding RNAs have critical functions in diverse biological processes, particularly in gene regulation. Viruses, like their host cells, employ such functional RNAs and the human cancer associated Epstein-Barr virus (EBV) is no exception. Nearly all EBV associated tumours express the EBV small, non-coding RNAs (EBERs) 1 and 2, however their role in viral pathogenesis remains largely obscure. Methodology/Principal Findings To investigate the action of EBER1 in vivo, we produced ten transgenic mouse lines expressing EBER1 in the lymphoid compartment using the mouse immunoglobulin heavy chain intronic enhancer Eμ. Mice of several of these EμEBER1 lines developed lymphoid hyperplasia which in some cases proceeded to B cell malignancy. The hallmark of the transgenic phenotype is enlargement of the spleen and mesenteric lymph nodes and in some cases enlargement of the thymus, liver and peripheral lymph nodes. The tumours were found to be of B cell origin and showed clonal IgH rearrangements. In order to explore if EBER1 would cooperate with c-Myc (deregulated in Burkitt's lymphoma) to accelerate lymphomagenesis, a cross-breeding study was undertaken with EμEBER1 and EμMyc mice. While no significant reduction in latency to lymphoma onset was observed in bi-transgenic mice, c-Myc induction was detected in some EμEBER1 single transgenic tumours, indicative of a functional cooperation. Conclusions/Significance This study is the first to describe the in vivo expression of a polymerase III, non-coding viral gene and demonstrate its oncogenic potential. The data suggest that EBER1 plays an oncogenic role in EBV associated malignant disease.
Collapse
|
48
|
Samanta M, Takada K. Modulation of innate immunity system by Epstein-Barr virus-encoded non-coding RNA and oncogenesis. Cancer Sci 2010; 101:29-35. [PMID: 19886912 PMCID: PMC11159826 DOI: 10.1111/j.1349-7006.2009.01377.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Epstein-Barr virus (EBV)-encoded small RNAs (EBERs) are polyA-, non-coding RNAs that are expressed abundantly in all forms of cells latently infected with EBV. EBERs (EBER1 and EBER2) contribute to the clonal proliferation of EBV-negative Burkitt's lymphoma (BL) cells in soft agar, tumorigenicity in SCID mice, up-regulation of the bcl-2 oncoprotein, resistance to apoptosis, and maintenance of malignant phenotypes in BL cells. EBERs induce the expression of interleukin (IL)-10 in BL cells, insulin-like growth factor 1 (IGF-I) in gastric and nasopharyngeal carcinoma cells, IL-9 in T cells, and IL-6 in lymphoblastoid cell lines. Additionally, each of these cytokines acts as an autocrine growth factor. In BL cells, EBERs bind the double-stranded RNA-activated protein kinase PKR, inhibit its phosphorylation, and thereby prevent IFN-alpha-mediated apoptosis. In epithelial cells, EBERs confer resistance to Fas-mediated apoptosis by blocking PKR activity. EBERs form complexes with PKR, ribosomal protein L22, lupus erythematosis-associated antigen (La), and retinoic acid-inducible gene I (RIG-I). In BL cells, EBERs activate RIG-I signaling and induce the expression of type-I IFNs and interferon stimulated genes (ISGs) through the activation of RIG-I substrates, nuclear factor-kappa B (NF-kappaB), and IFN regulatory factor 3 (IRF-3), and anti-inflamatory cytokine IL-10 through IRF-3 but not NF-kappaB signaling. EBERs also play critical roles in the growth transformation of B lymphocytes. Although EBER1 and EBER2 exhibit similarities in their primary (54%) and secondary structures, recent findings have shown that recombinant EBVs carrying only the EBER2 gene play a greater role in the growth transformation of B lymphocytes than EBVs carrying only the EBER1 gene. Thus, EBERs play multiple roles in various cell types, and we present a model that highlights the functions of EBERs in EBV-mediated oncogenesis in BL cells.
Collapse
Affiliation(s)
- Mrinal Samanta
- Department of Tumor Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
49
|
Growth-promoting properties of Epstein-Barr virus EBER-1 RNA correlate with ribosomal protein L22 binding. J Virol 2009; 83:9844-53. [PMID: 19640998 DOI: 10.1128/jvi.01014-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV)-encoded RNAs, EBER-1 and EBER-2, are highly abundant noncoding nuclear RNAs expressed during all forms of EBV latency. The EBERs have been shown to impart significant tumorigenic potential upon EBV-negative Burkitt lymphoma (BL) cells and to contribute to the growth potential of other B-cell lymphoma-, gastric carcinoma-, and nasopharyngeal carcinoma-derived cell lines. However, the mechanisms underlying this EBER-dependent enhancement of cell growth potential remain to be elucidated. Here we focused on the known interaction between EBER-1 and the cellular ribosomal protein L22 and the consequences of this interaction with respect to the growth-promoting properties of the EBERs. L22, a component of 60S ribosomal subunits, binds three sites on EBER-1, and a substantial fraction of available L22 is relocalized from nucleoli to the nucleoplasm in EBV-infected cells. To investigate the hypothesis that EBER-1-mediated relocalization of L22 in EBV-infected cells is critical for EBER-dependent functions, we investigated whether EBER-1 expression is necessary and sufficient for nucleoplasmic retention of L22. Following demonstration of this, we utilized RNA-protein binding assays and fluorescence localization studies to demonstrate that mutation of the L22 binding sites on EBER-1 prevents L22 binding and inhibits EBER-1-dependent L22 relocalization. Finally, the in vivo consequence of preventing L22 relocalization in EBER-expressing cells was examined in soft agar colony formation assays. We demonstrate that BL cells expressing mutated EBER-1 RNAs rendered incapable of binding L22 have significantly reduced capacity to enhance cell growth potential relative to BL cells expressing wild-type EBERs.
Collapse
|
50
|
Epstein–Barr Virus-Induced Expression of a Novel Human Vault RNA. J Mol Biol 2009; 388:776-84. [DOI: 10.1016/j.jmb.2009.03.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 02/22/2009] [Accepted: 03/11/2009] [Indexed: 11/18/2022]
|