1
|
Deep Sequencing Analysis of Individual HIV-1 Proviruses Reveals Frequent Asymmetric Long Terminal Repeats. J Virol 2022; 96:e0012222. [PMID: 35674431 PMCID: PMC9278108 DOI: 10.1128/jvi.00122-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Effective strategies to eliminate human immunodeficiency virus type 1 (HIV-1) reservoirs are likely to require more thorough characterizations of proviruses that persist on antiretroviral therapy (ART). The rarity of infected CD4+ T-cells and related technical challenges have limited the characterization of integrated proviruses. Current approaches using next-generation sequencing can be inefficient and limited sequencing depth can make it difficult to link proviral sequences to their respective integration sites. Here, we report on an efficient method by which HIV-1 proviruses and their sites of integration are amplified and sequenced. Across five HIV-1-positive individuals on clinically effective ART, a median of 41.2% (n = 88 of 209) of amplifications yielded near-full-length proviruses and their 5'-host-virus junctions containing a median of 430 bp (range, 18 to 1,363 bp) of flanking host sequence. Unexpectedly, 29.5% (n = 26 of 88) of the sequenced proviruses had structural asymmetries between the 5' and 3' long terminal repeats (LTRs), commonly in the form of major 3' deletions. Sequence-intact proviruses were detected in 3 of 5 donors, and infected CD4+ T-cell clones were detected in 4 of 5 donors. The accuracy of the method was validated by amplifying and sequencing full-length proviruses and flanking host sequences directly from peripheral blood mononuclear cell DNA. The individual proviral sequencing assay (IPSA) described here can provide an accurate, in-depth, and longitudinal characterization of HIV-1 proviruses that persist on ART, which is important for targeting proviruses for elimination and assessing the impact of interventions designed to eradicate HIV-1. IMPORTANCE The integration of human immunodeficiency virus type 1 (HIV-1) into chromosomal DNA establishes the long-term persistence of HIV-1 as proviruses despite effective antiretroviral therapy (ART). Characterizing proviruses is difficult because of their rarity in individuals on long-term suppressive ART, their highly polymorphic sequences and genetic structures, and the need for efficient amplification and sequencing of the provirus and its integration site. Here, we describe a novel, integrated, two-step method (individual proviral sequencing assay [IPSA]) that amplifies the host-virus junction and the full-length provirus except for the last 69 bp of the 3' long terminal repeat (LTR). Using this method, we identified the integration sites of proviruses, including those that are sequence intact and replication competent or defective. Importantly, this new method identified previously unreported asymmetries between LTRs that have implications for how proviruses are detected and quantified. The IPSA method reported is unaffected by LTR asymmetries, permitting a more accurate and comprehensive characterization of the proviral landscape.
Collapse
|
2
|
Overview of Retrovirology. RETROVIRUSES AND INSIGHTS INTO CANCER 2010. [PMCID: PMC7122640 DOI: 10.1007/978-0-387-09581-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the 100 years since their discovery, retroviruses have played a special role in virology and in molecular biology. These agents have been at the center of cancer research and shaped our understanding of cell growth, differentiation and survival in ways that stretch far beyond investigations using these viruses. The discovery of retroviral oncogenes established the central paradigm that altered cellular genes can provide a dominant signal initiating cancer development. Their unique replication mechanism and their integration into cellular DNA allow these viruses to alter the properties of their hosts beyond the life span of the infected individual and contribute to the evolution of species. This same property has made retroviral vectors an important tool for gene therapy. Indeed, the impact of retrovirus research has been far-reaching and despite the amazing progress that has been made, retroviruses continue to reveal new insights into the host – pathogen interaction.
Collapse
|
3
|
Maciolek NL, McNally MT. Characterization of Rous sarcoma virus polyadenylation site use in vitro. Virology 2008; 374:468-76. [PMID: 18272196 PMCID: PMC2413101 DOI: 10.1016/j.virol.2008.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 12/13/2007] [Accepted: 01/10/2008] [Indexed: 11/22/2022]
Abstract
Polyadenylation of Rous sarcoma virus (RSV) RNA is inefficient, as approximately 15% of RSV RNAs represent read-through transcripts that use a downstream cellular polyadenylation site (poly(A) site). Read-through transcription has implications for the virus and the host since it is associated with oncogene capture and tumor induction. To explore the basis of inefficient RSV RNA 3'-end formation, we characterized RSV polyadenylation in vitro using HeLa cell nuclear extracts and HEK293 whole cell extracts. RSV polyadenylation substrates composed of the natural 3' end of viral RNA and various lengths of upstream sequence showed little or no polyadenylation, indicating that the RSV poly(A) site is suboptimal. Efficiently used poly(A) sites often have identifiable upstream and downstream elements (USEs and DSEs) in close proximity to the conserved AAUAAA signal. The sequences upstream and downstream of the RSV poly(A) site deviate from those found in efficiently used poly(A) sites, which may explain inefficient RSV polyadenylation. To assess the quality of the RSV USEs and DSEs, the well-characterized SV40 late USEs and/or DSEs were substituted for the RSV elements and vice versa, which showed that the USEs and DSEs from RSV are suboptimal but functional. CstF interacted poorly with the RSV polyadenylation substrate, and the inactivity of the RSV poly(A) site was at least in part due to poor CstF binding since tethering CstF to the RSV substrate activated polyadenylation. Our data are consistent with poor polyadenylation factor binding sites in both the USE and DSE as the basis for inefficient use of the RSV poly(A) site and point to the importance of additional elements within RSV RNA in promoting 3' end formation.
Collapse
Affiliation(s)
- Nicole L. Maciolek
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226 USA
| | - Mark T. McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226 USA
| |
Collapse
|
4
|
Kung CM, King CC, Lee CN, Huang LM, Lee PI, Kao CL. Differences in replication capacity between enterovirus 71 isolates obtained from patients with encephalitis and those obtained from patients with herpangina in Taiwan. J Med Virol 2007; 79:60-8. [PMID: 17133556 DOI: 10.1002/jmv.20761] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cellular-tropism and biological characteristics of enterovirus 71 (EV71) isolates in Taiwan (TW) were studied. Growth curve experiments were conducted using cell lines that were possibly exhibited pathogenesis, and RT-PCR and sequencing tests were undertaken to amplify the 5' non-coding region (5'-NCR). The encephalitis isolate EV71 TW98NTU2078 was PBMC-tropic, temperature-resistant (Tr) at 40 degrees C, and easier to replicate in HTB-14 (astrocytoma) than the herpangina isolate EV71 TW98NTU1186 (The viral yields were 100-fold higher than those of the herpangina isolate EV71 TW98NTU1186 at 96 hr post infection.). The herpangina isolate EV71 TW98NTU1186 was non-PBMC-tropic, and temperature-sensitive (Ts) at 40 degrees C. The replication of EV71 TW98NTU1186 in HTB-14 was lower. No EV71 isolate infected HTB-37 (human colon adenocarcinoma cells). The encephalitis EV71 isolate exhibited better replication and transmission in PBMCs and astrocytes than did the EV71 isolate without CNS involvement.
Collapse
Affiliation(s)
- Chien-Min Kung
- Department of Medical Technology, Yuanpei University, Hsinchu, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
5
|
Brandt S, Grunwald T, Lucke S, Stang A, Überla K. Functional replacement of the R region of simian immunodeficiency virus-based vectors by heterologous elements. J Gen Virol 2006; 87:2297-2307. [PMID: 16847126 DOI: 10.1099/vir.0.81883-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Substitution of lentiviral cis-acting elements by heterologous sequences might allow the safety of lentiviral vectors to be enhanced by reducing the risk of homologous recombination and vector mobilization. Therefore, a substitution and deletion analysis of the R region of simian immunodeficiency virus (SIV)-based vectors was performed and the effect of the modifications on packaging and transfer by SIV and human immunodeficiency virus type 1 (HIV-1) particles was analysed. Deletion of the first 7 nt of R reduced vector titres by 10- to 20-fold, whilst deletion of the entire R region led to vector titres that were 1500-fold lower. Replacement of the R region of SIV-based vectors by HIV-1 or Moloney murine sarcoma virus R regions partially restored vector titres. A non-retroviral cellular sequence was also functional, although to a lesser extent. In the absence of tat, modification of the R region had only minor effects on cytoplasmic RNA stability, steady-state levels of vector RNA and packaging, consistent with the known primary function of R during reverse transcription. Although the SIV R region of SIV-based vectors could be replaced functionally by heterologous sequences, the same modifications of R led to a severe replication defect in the context of a replication-competent SIV. As SIV-based vectors containing the HIV-1 R region were transferred less efficiently by HIV-1 particles than wild-type SIV vectors, a match between R and cis-acting elements of the vector construct seems to be more important than a match between R and the Gag or Pol proteins of the vector particle.
Collapse
Affiliation(s)
- Sabine Brandt
- Department of Molecular and Medical Virology, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Thomas Grunwald
- Department of Molecular and Medical Virology, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Susann Lucke
- Department of Molecular and Medical Virology, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Alexander Stang
- Department of Molecular and Medical Virology, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
6
|
Sutkowski N, Chen G, Calderon G, Huber BT. Epstein-Barr virus latent membrane protein LMP-2A is sufficient for transactivation of the human endogenous retrovirus HERV-K18 superantigen. J Virol 2004; 78:7852-60. [PMID: 15220463 PMCID: PMC434102 DOI: 10.1128/jvi.78.14.7852-7860.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Superantigens are microbial proteins that strongly stimulate T cells. We described previously that the Epstein-Barr virus (EBV) transactivates a superantigen encoded by the human endogenous retrovirus, HERV-K18. We now report that the transactivation is dependent upon the EBV latent cycle proteins. Moreover, LMP-2A is sufficient for induction of HERV-K18 superantigen activity.
Collapse
Affiliation(s)
- Natalie Sutkowski
- Department of Pathology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
7
|
An W, Telesnitsky A. Human immunodeficiency virus type 1 transductive recombination can occur frequently and in proportion to polyadenylation signal readthrough. J Virol 2004; 78:3419-28. [PMID: 15016864 PMCID: PMC371070 DOI: 10.1128/jvi.78.7.3419-3428.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One model for retroviral transduction suggests that template switching between viral RNAs and polyadenylation readthrough sequences is responsible for the generation of acute transforming retroviruses. For this study, we examined reverse transcription products of human immunodeficiency virus (HIV)-based vectors designed to mimic postulated transduction intermediates. For maximization of the discontinuous mode of DNA synthesis proposed to generate transductants, sequences located between the vectors' two long terminal repeats (vector "body" sequences) and polyadenylation readthrough "tail" sequences were made highly homologous. Ten genetic markers were introduced to indicate which products had acquired tail sequences by a process we term transductive recombination. Marker segregation patterns for over 100 individual products were determined, and they revealed that more than half of the progeny proviruses were transductive recombinants. Although most crossovers occurred in regions of homology, about 5% were nonhomologous and some included insertions. Ratios of encapsidated readthrough and polyadenylated transcripts for vectors with wild-type and inactivated polyadenylation signals were compared, and transductive recombination frequencies were found to correlate with the readthrough transcript prevalence. In assays in which either vector body or tail could serve as a recombination donor, recombination between tail and body sequences was at least as frequent as body-body exchange. We propose that transductive recombination may contribute to natural HIV variation by providing a mechanism for the acquisition of nongenomic sequences.
Collapse
Affiliation(s)
- Wenfeng An
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, USA
| | | |
Collapse
|
8
|
Onafuwa A, An W, Robson ND, Telesnitsky A. Human immunodeficiency virus type 1 genetic recombination is more frequent than that of Moloney murine leukemia virus despite similar template switching rates. J Virol 2003; 77:4577-87. [PMID: 12663764 PMCID: PMC152108 DOI: 10.1128/jvi.77.8.4577-4587.2003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviral recombinants result from template switching between copackaged viral genomes. Here, marker reassortment between coexpressed vectors was measured during single replication cycles, and human immunodeficiency virus type 1 (HIV-1) recombination was observed six- to sevenfold more frequently than murine leukemia virus (MLV) recombination. Template switching was also assayed by using transduction-type vectors in which donor and acceptor template regions were joined covalently. In this situation, where RNA copackaging could not vary, MLV and HIV-1 template switching rates were indistinguishable. These findings argue that MLV's lower intermolecular recombination frequency does not reflect enzymological differences. Instead, these data suggest that recombination rates differ because coexpressed MLV RNAs are less accessible to the recombination machinery than are coexpressed HIV RNAs. This hypothesis provides a plausible explanation for why most gammaretrovirus recombinants, although relatively rare, display evidence of multiple nonselected crossovers. By implying that recombinogenic template switching occurs roughly four times on average during the synthesis of every MLV or HIV-1 DNA, these results suggest that virtually all products of retroviral replication are biochemical recombinants.
Collapse
Affiliation(s)
- Adewunmi Onafuwa
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, USA
| | | | | | | |
Collapse
|
9
|
Affiliation(s)
- R Zufferey
- Department of Genetics and Microbiology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Ismail SI, Rohll JB, Kingsman SM, Kingsman AJ, Uden M. Use of intron-disrupted polyadenylation sites to enhance expression and safety of retroviral vectors. J Virol 2001; 75:199-204. [PMID: 11119589 PMCID: PMC113913 DOI: 10.1128/jvi.75.1.199-204.2001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Normal mRNA polyadenylation signals are composed of an AAUAAA motif and G/U box spaced 20 to 30 bp apart. If this spacing is increased further, then polyadenylation is disrupted. Previously it has been demonstrated that insertion of an intron will similarly disrupt this signal even though such introns are removed during a nuclear splicing reaction (X. Liu and J. Mertz, Nucleic Acids Res. 21:5256-5263, 1993). This observation has led to the suggestion that polyadenylation site selection is undertaken prior to intron excision. We now present results that both support and extend these observations and in doing so create a novel class of retroviral expression vector with improved qualities. We found that when an intron-disrupted polyadenylation signal is inserted within a retroviral expression vector, such a signal, although reformed in the producer cell, remains benign until transduction, where it is then preferentially used. Thus, we demonstrate that upon transduction these vectors now produce a majority of shortened subgenomic species and as a consequence have a reduced tendency for subsequent mobilization from transduced cells. In addition, we demonstrate that the use of this internal signal leads to enhanced expression from such vectors and that this is achieved without any loss in titer. Therefore, split polyadenylation signals confer enhanced performance and improved safety upon retroviral expression vectors into which they are inserted. Such split signals may prove useful for the future optimization of retroviral vectors in gene therapy.
Collapse
Affiliation(s)
- S I Ismail
- Retrovirus Molecular Biology Group, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Dang Q, Hu WS. Effects of homology length in the repeat region on minus-strand DNA transfer and retroviral replication. J Virol 2001; 75:809-20. [PMID: 11134294 PMCID: PMC113977 DOI: 10.1128/jvi.75.2.809-820.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homology between the two repeat (R) regions in the retroviral genome mediates minus-strand DNA transfer during reverse transcription. We sought to define the effects of R homology lengths on minus-strand DNA transfer. We generated five murine leukemia virus (MLV)-based vectors that contained identical sequences but different lengths of the 3' R (3, 6, 12, 24 and 69 nucleotides [nt]); 69 nt is the full-length MLV R. After one round of replication, viral titers from the vector with a full-length downstream R were compared with viral titers generated from the other four vectors with reduced R lengths. Viral titers generated from vectors with R lengths reduced to one-third (24 nt) or one-sixth (12 nt) that of the wild type were not significantly affected; however, viral titers generated from vectors with only 3- or 6-nt homology in the R region were significantly lower. Because expression and packaging of the RNA were similar among all the vectors, the differences in the viral titers most likely reflected the impact of the homology lengths on the efficiency of minus-strand DNA transfer. The molecular nature of minus-strand DNA transfer was characterized in 63 proviruses. Precise R-to-R transfer was observed in most proviruses generated from vectors with 12-, 24-, or 69-nt homology in R, whereas aberrant transfers were predominantly used to generate proviruses from vectors with 3- or 6-nt homology. Reverse transcription using RNA transcribed from an upstream promoter, termed read-in RNA transcripts, resulted in most of the aberrant transfers. These data demonstrate that minus-strand DNA transfer is homology driven and a minimum homology length is required for accurate and efficient minus-strand DNA transfer.
Collapse
Affiliation(s)
- Q Dang
- Department of Microbiology and Immunology, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
| | | |
Collapse
|
12
|
Affiliation(s)
- G Daly
- Bone and Joint Research Unit, London, United Kingdom
| | | |
Collapse
|
13
|
Cheslock SR, Anderson JA, Hwang CK, Pathak VK, Hu WS. Utilization of nonviral sequences for minus-strand DNA transfer and gene reconstitution during retroviral replication. J Virol 2000; 74:9571-9. [PMID: 11000228 PMCID: PMC112388 DOI: 10.1128/jvi.74.20.9571-9579.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Minus-strand DNA transfer, an essential step in retroviral reverse transcription, is mediated by the two repeat (R) regions in the viral genome. It is unclear whether R simply serves as a homologous sequence to mediate the strand transfer or contains specific sequences to promote strand transfer. To test the hypothesis that the molecular mechanism by which R mediates strand transfer is based on homology rather than specific sequences, we examined whether nonviral sequences can be used to facilitate minus-strand DNA transfer. The green fluorescent protein (GFP) gene was divided into GF and FP fragments, containing the 5' and 3' portions of GFP, respectively, with an overlapping F fragment (85 bp). FP and GF were inserted into the 5' and 3' long terminal repeats, respectively, of a murine leukemia virus-based vector. Utilization of the F fragment to mediate minus-strand DNA transfer should reconstitute GFP during reverse transcription. Flow cytometry analyses demonstrated that GFP was expressed in 73 to 92% of the infected cells, depending on the structure of the viral construct. This indicated that GFP was reconstituted at a high frequency; molecular characterization further confirmed the accurate reconstitution of GFP. These data indicated that nonviral sequences could be used to efficiently mediate minus-strand DNA transfer. Therefore, placement and homology, not specific sequence context, are the important elements in R for minus-strand DNA transfer. In addition, these experiments demonstrate that minus-strand DNA transfer can be used to efficiently reconstitute genes for gene therapy applications.
Collapse
Affiliation(s)
- S R Cheslock
- Department of Microbiology and Immunology, West Virginia University, Morgantown, West Virginia, 26506, USA
| | | | | | | | | |
Collapse
|
14
|
Rosin-Arbesfeld R, Willbold D, Yaniv A, Gazit A. The Tat protein of equine infectious anemia virus (EIAV) activates cellular gene expression by read-through transcription. Gene X 1998; 219:25-35. [PMID: 9756988 DOI: 10.1016/s0378-1119(98)00389-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Tat protein of equine infectious anemia virus, EIAV, was shown to augment viral gene expression, presumably through interaction with the Tat responsive element, TAR. Recently, cell-free polyadenylation assays suggested that perturbation of the EIAV TAR secondary structure diminished polyadenylation efficiency. The present study indicates that the EIAV TAR regulates the efficiency of the 3'-end processing of viral RNA also in transfected cells. Moreover, our data suggest that the provision of the EIAV Tat protein in trans potentiates read-through transcription through the 3' viral long terminal repeat (3' LTR), thus suggesting activation of downstream-located cellular genes.
Collapse
Affiliation(s)
- R Rosin-Arbesfeld
- Department of Human Microbiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
15
|
Topping R, Demoitie MA, Shin NH, Telesnitsky A. Cis-acting elements required for strong stop acceptor template selection during Moloney murine leukemia virus reverse transcription. J Mol Biol 1998; 281:1-15. [PMID: 9680471 DOI: 10.1006/jmbi.1998.1929] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Template switching is required during normal retroviral DNA synthesis and is involved in retroviral genetic recombination. The first strong stop template switch during Moloney murine leukemia virus reverse transcription was studied to examine how template switch acceptor templates are selected. Retroviral vectors with specific alterations in their template switch acceptor regions were constructed, and DNA products templated by these vectors during a single replication cycle were analyzed. The results indicated that maximizing complementarity between the primer strand 3' end and the acceptor template was not the most significant factor in determining a strong stop template switch site. Instead, preferential transfer to the U3/R junction was observed, with as little as one contiguous base-pair of complementarity between the primer terminus and the template strand sufficient to direct template switching to the U3/R junction. These findings suggest that, in contrast to prevailing dogma, a base-pairing-independent mechanism functions in the specific guidance of retroviral strong stop template switch to the U3/R junction. Certain template alterations 3' of the template switch site were at least as disruptive to acceptor template use as was primer-terminal mismatch, suggesting that template structure or primer strand-internal sequences are important determinants of acceptor template selection. We discuss the implications of these findings for the mechanisms of retroviral DNA synthesis and homologous recombination.
Collapse
Affiliation(s)
- R Topping
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109-0620, USA
| | | | | | | |
Collapse
|
16
|
|
17
|
Zhang QY, Clausen PA, Yatsula BA, Calothy G, Blair DG. Mutation of polyadenylation signals generates murine retroviruses that produce fused virus-cell RNA transcripts at high frequency. Virology 1998; 241:80-93. [PMID: 9454719 DOI: 10.1006/viro.1997.8947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Retroviruses act as insertional mutagens and can also capture cellular sequences through a mechanism which initially requires the generation of RNA transcripts which fail to cleave and polyadenylate correctly. The correct termination of retroviral transcripts at the 3' LTR R/U5 junction is primarily dependent on the canonical AAUAAA polyadenylation signal, so we have analyzed the effect of mutating the polyadenylation signal sequences on the properties of a selectable murine retroviral vector. Mutation of consensus polyadenylation signal sequences in the 5' and/or 3' proviral LTRs demonstrated that a UA to GG change generated larger sized virus-specific RNA, consistent with loss of normal polyadenylation. Cell clones infected with viruses generated by proviral constructs containing this mutation in the 5' LTR express either normal-length or elongated viral RNA. Fused transcripts contained the mutant polyadenylation signal, while sequence analysis was consistent with the hypothesis that premature 5' to 3' primer strand transfer was responsible for the high frequency (80%) of wild-type polyadenylation. Cells infected by viruses from constructs mutated in both 5' and 3' proviral LTRs expressed poly(A)+ viral RNA between 0.3 and 3 kb larger than normal virus in 100% of infected clones, and sequence analysis of clones derived from either infected rodent or human cells confirmed that these transcripts contained both viral and adjacent cellular sequences. While mutant virus exhibits no increased ability to alter cell phenotypes, the read-through transcripts contain both unique and repetitive cell-derived sequences and can easily be recovered using PCR techniques, suggesting that these viruses may serve as effective tools for rapidly cloning cellular sequences and generating random genomic markers for gene mapping.
Collapse
Affiliation(s)
- Q Y Zhang
- Division of Basic Sciences, NCI-FCRDC, Frederick, Maryland, 21702-1201, USA
| | | | | | | | | |
Collapse
|
18
|
Yin PD, Pathak VK, Rowan AE, Teufel RJ, Hu WS. Utilization of nonhomologous minus-strand DNA transfer to generate recombinant retroviruses. J Virol 1997; 71:2487-94. [PMID: 9032388 PMCID: PMC191361 DOI: 10.1128/jvi.71.3.2487-2494.1997] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
During reverse transcription, minus-strand DNA transfer connects the sequences located at the two ends of the viral RNA to generate a long terminal repeat. It is thought that the homology in the repeat (R) regions located at the two ends of the viral RNA sequences facilitate minus-strand DNA transfer. In this report, the effects of diminished R-region homology on DNA synthesis and virus titer were examined. A retrovirus vector, PY31, was constructed to contain the 5' and 3' cis-acting elements from Moloney murine sarcoma virus and spleen necrosis virus. These two viruses are genetically distinct, and the two R regions contain little homology. In one round of replication, the PY31 titer was approximately 3,000-fold lower than that of a control vector with highly homologous R regions. The molecular characteristics of the junctions of minus-strand DNA transfer were analyzed in both unintegrated DNA and integrated proviruses. Short stretches of homology were found at the transfer junctions and were likely to be used to facilitate minus-strand DNA transfer. Both minus-strand strong-stop DNA and weak-stop DNA were observed to mediate strand transfer. The ability of PY31 to complete reverse transcription indicates that minus-strand DNA transfer can be used to join sequences from two different viruses to form recombinant viruses. These results suggest the provocative possibility that genetically distinct viruses can interact through this mechanism.
Collapse
Affiliation(s)
- P D Yin
- Department of Microbiology and Immunology, West Virginia University, Morgantown 26506, USA
| | | | | | | | | |
Collapse
|
19
|
Felder MP, Laugier D, Yatsula B, Dezélée P, Calothy G, Marx M. Functional and biological properties of an avian variant long terminal repeat containing multiple A to G conversions in the U3 sequence. J Virol 1994; 68:4759-67. [PMID: 8035477 PMCID: PMC236415 DOI: 10.1128/jvi.68.8.4759-4767.1994] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We previously reported that infection of chicken embryonic neuroretina cells with Rous-associated virus type 1 leads to the frequent occurrence of spliced readthrough transcripts containing viral and cellular sequences. Generation of such chimeric transcripts constitutes a very early step in oncogene transduction. We report, here, the isolation of a c-mil transducing retrovirus, designated IC4, which contains a highly mutated U3 sequence in which 48% of A is converted to G. Functional analysis of this variant U3 indicated that these mutations do not impair viral transcription and replication; however, they abolish functioning of its polyadenylation signal, thus allowing readthrough transcription of downstream cellular sequences. On the basis of these results, we designed a nonreplicative retroviral vector, pIC4Neo, expressing the neomycin resistance (Neo(r)) gene under the control of the IC4 long terminal repeat. Infection of nondividing neuroretina cells with virus produced by a packaging cell line transfected with pIC4Neo occasionally resulted in sustained cell proliferation. Two independent G418-resistant proliferating cultures were found to express hybrid RNAs containing viral and cellular sequences. These sequences were characterized by reverse transcription-PCR and were identified in both cultures, suggesting that proliferation was correlated with a common integration locus. These results indicate that IC4Neo virus functions as a useful insertional mutagen and may allow identification of genes potentially involved in regulation of cell division.
Collapse
Affiliation(s)
- M P Felder
- Unité de Recherche Associée 1443 du Centre National de la Recherche Scientifique, Institut Curie, Centre Universitaire, Orsay, France
| | | | | | | | | | | |
Collapse
|
20
|
Klaver B, Berkhout B. Comparison of 5' and 3' long terminal repeat promoter function in human immunodeficiency virus. J Virol 1994; 68:3830-40. [PMID: 8189520 PMCID: PMC236888 DOI: 10.1128/jvi.68.6.3830-3840.1994] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The architecture of a retroviral genome presents some unusual features for transcriptional regulation because of duplication of the transcriptional control sequences in the 5' and 3' long terminal repeats (LTRs). We have studied the transcriptional activity of the 5' and 3' LTRs of human immunodeficiency virus type 1 (HIV-1) vectors. Using full-length HIV molecular clones, we demonstrate that both LTRs function as Tat-inducible promoters. However, the absolute levels of transcription were found to be much higher for the 5' LTR than for the 3' LTR promoter. When transcription was assayed for an integrated HIV-1 provirus, we also found that the upstream 5' LTR element was the major transcriptional promoter. 3' LTR transcription, however, can be triggered by inactivation of the 5' LTR promoter. Likewise, 5' LTR transcription is induced in constructs lacking a functional 3' LTR promoter. This phenomenon of promoter suppression may have important implications for the design of HIV-based retrovirus vectors.
Collapse
Affiliation(s)
- B Klaver
- Department of Virology, Academic Medical Center, University of Amsterdam, The Netherlands
| | | |
Collapse
|
21
|
Swain A, Coffin JM. Influence of sequences in the long terminal repeat and flanking cell DNA on polyadenylation of retroviral transcripts. J Virol 1993; 67:6265-9. [PMID: 7690423 PMCID: PMC238050 DOI: 10.1128/jvi.67.10.6265-6269.1993] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Readthrough transcripts are formed during retrovirus infection by polyadenylation of viral RNA in cellular sequences adjacent to the provirus. We have studied such transcripts in avian leukosis virus-infected cell clones containing a single provirus, either the wild type or one with an inactivating mutation in the poly(A) addition signal. All individual wild-type proviruses produced readthrough transcripts, implying that this property is not restricted to a few integration sites. The range of sizes of viral RNA in the mutant lacking a correct signal for poly(A) addition reflected both the occurrence of functional polyadenylation sites within flanking cell DNA and increased usage of cryptic sites within viral sequences.
Collapse
Affiliation(s)
- A Swain
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | |
Collapse
|
22
|
Abstract
The provirus structure of retroviruses is bracketed by long terminal repeats (LTRs). The two LTRs (5' and 3') are identical in nucleotide sequence and organization. They contain signals for transcription initiation as well as termination and cleavage polyadenylation. As in eukaryotic pre-mRNAs, the two common signals, the polyadenylation signal, AAUAAA, or a variant AGUAAA, and the G+U-rich sequence are present in all retroviruses. However, the AAUAAA sequence is present in the U3 region in some retroviruses and in the R region in other retroviruses. As in animal cell RNAs, both AAUAAA and G+U-rich sequences apparently contribute to the 3'-end processing of retroviral RNAs. In addition, at least in a few cases examined, the sequences in the U3 region determine the efficiency of 3'-end processing. In retroviruses in which the AAUAAA is localized in the R region, the poly(A) signal in the 3' LTR but not the 5' LTR must be selectively used for the production of genomic RNA. It appears that the short distance between the 5' cap site and polyadenylation signal in the 5' LTR precludes premature termination and polyadenylation. Since 5' and 3' LTRs are identical in sequence and structural organization yet function differently, it is speculated that flanking cellular DNA sequences, chromatin structure, and binding of transcription factors may be involved in the functional divergence of 5' and 3' LTRs of retroviruses.
Collapse
Affiliation(s)
- R V Guntaka
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia 65212
| |
Collapse
|
23
|
Affiliation(s)
- B Sugden
- McArdle Laboratory for Cancer Research, Department of Oncology, Medical School, University of Wisconsin, Madison 53706
| |
Collapse
|
24
|
Cherrington J, Russnak R, Ganem D. Upstream sequences and cap proximity in the regulation of polyadenylation in ground squirrel hepatitis virus. J Virol 1992; 66:7589-96. [PMID: 1279209 PMCID: PMC240476 DOI: 10.1128/jvi.66.12.7589-7596.1992] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The polyadenylation signal of mammalian hepadnaviruses is unusual in that its hexanucleotide element is the variant UAUAAA rather than AAUAAA. This signal functions inefficiently and must be augmented by multiple activator elements located in the upstream 400 nucleotides (nt) to promote efficient processing. Here we characterize one of these upstream elements, termed PS2, in the ground squirrel hepatitis virus. PS2 is located within the 107 nt 5' to the UAUAAA and raises the efficiency of polyadenylation by this signal from < 10% to 50 to 60%. It can function independently of the more 5' activator elements and conversely is not required for their function. Its action is orientation dependent, and a predicted stem-loop structure within the element is not necessary for its activity. PS2 is the sole upstream element that maps within the terminal redundancy of viral genomic RNA. Thus, it is present, together with the UAUAAA, at both the 5' and 3' ends of this RNA. During genomic RNA synthesis, the poly(A) signals in the 5' repeat are bypassed, while those in the 3' copy are used. The ability of PS2 to function independently of the other, more upstream activators suggests that the absence of the latter elements from the 5' redundancy is insufficient to account for bypass of the 5' poly(A) site, as we had earlier proposed. Rather, the short distance from the cap site to the UAUAAA at the 5' end of genomic RNA actively suppresses its use, as this suppression can be experimentally relieved by increasing this distance to 230 to 400 nt.
Collapse
Affiliation(s)
- J Cherrington
- Howard Hughes Medical Institute, University of California Medical Center, San Francisco 94143-0502
| | | | | |
Collapse
|
25
|
Dunn MM, Olsen JC, Swanstrom R. Characterization of unintegrated retroviral DNA with long terminal repeat-associated cell-derived inserts. J Virol 1992; 66:5735-43. [PMID: 1382140 PMCID: PMC241448 DOI: 10.1128/jvi.66.10.5735-5743.1992] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have used a replication-competent shuttle vector based on the genome of Rous sarcoma virus to characterize genomic rearrangements that occur during retrovirus replication. The strategy involved cloning circular DNA that was generated during an acute infection. While analyzing a class of retroviral DNA clones that are greater than full length, we found several clones which had acquired nonviral inserts in positions adjacent to the long terminal repeats (LTRs). There appear to be two distinct mechanisms leading to the incorporation of cellular sequences into these clones. Three of the molecules contain a cell-derived insert at the circle junction site between two LTR units. Two of these molecules appear to be the results of abortive integration attempts, because of which, in each case, one of the LTRs is missing 2 bases at its junction with the cell-derived insert. In the third clone, pNO220, the cellular sequences are flanked by an inappropriately placed copy of the tRNA primer-binding site on one side and a partial copy of the U3 sequence as part of the LTR on the other side. A fourth molecule we characterized, pMD96, has a single LTR with a U5-bounded deletion of viral sequences spanning gag and pol, with cell-derived sequences inserted at the site of the deletion; its origin may be related mechanistically to pNO220. Sequence analysis indicates that all of the cellular inserts were derived from the cell line used for the acute infection rather than from sequences carried into the cell as part of the virus particle. Northern (RNA) analysis of cellular RNA demonstrated that the cell-derived sequences of two clones, pNO220 and pMD96, were expressed as polyadenylated RNA in uninfected cells. One mechanism for the joining of viral and cellular sequences suggested by the structures of pNO220 and pMD96 is recombination occurring during viral DNA synthesis, with cellular RNA serving as the template for the acquisition of cellular sequences.
Collapse
Affiliation(s)
- M M Dunn
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill 27599-7295
| | | | | |
Collapse
|
26
|
Abstract
Retroviruses can capture cellular sequences and express them as oncogenes. Capture has been proposed to be a consequence of the inefficiency of polyadenylation of the viral genome that allows the packaging of cellular sequences flanking the integrated provirus in virions; after transfer into virions, these sequences could be incorporated into the viral genome by illegitimate recombination during reverse transcription. As a test for this hypothesis, a tissue culture system was developed that mimics the transduction process and allows the analysis and quantitation of capture events in a single step. In this model, transduction of sequences adjacent to a provirus depends on the formation of readthrough transcripts and their transmission in virions and leads to various recombinant structures whose formation is independent of sequence similarity at the crossover site. Thus, all events in the transduction process can be attributed to the action of reverse transcriptase on readthrough transcripts without involving deletions of cellular DNA.
Collapse
Affiliation(s)
- A Swain
- Tufts University School of Medicine, Department of Molecular Biology and Microbiology, Boston, MA 02111
| | | |
Collapse
|
27
|
Affiliation(s)
- J M Coffin
- Tufts University School of Medicine, Boston, Massachusetts 02111
| |
Collapse
|