1
|
Reynolds N, Aceves NM, Liu JL, Compton JR, Leary DH, Freitas BT, Pegan SD, Doctor KZ, Wu FY, Hu X, Legler PM. The SARS-CoV-2 SSHHPS Recognized by the Papain-like Protease. ACS Infect Dis 2021; 7:1483-1502. [PMID: 34019767 PMCID: PMC8171221 DOI: 10.1021/acsinfecdis.0c00866] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 12/16/2022]
Abstract
Viral proteases are highly specific and recognize conserved cleavage site sequences of ∼6-8 amino acids. Short stretches of homologous host-pathogen sequences (SSHHPS) can be found spanning the viral protease cleavage sites. We hypothesized that these sequences corresponded to specific host protein targets since >40 host proteins have been shown to be cleaved by Group IV viral proteases and one Group VI viral protease. Using PHI-BLAST and the viral protease cleavage site sequences, we searched the human proteome for host targets and analyzed the hit results. Although the polyprotein and host proteins related to the suppression of the innate immune responses may be the primary targets of these viral proteases, we identified other cleavable host proteins. These proteins appear to be related to the virus-induced phenotype associated with Group IV viruses, suggesting that information about viral pathogenesis may be extractable directly from the viral genome sequence. Here we identify sequences cleaved by the SARS-CoV-2 papain-like protease (PLpro) in vitro within human MYH7 and MYH6 (two cardiac myosins linked to several cardiomyopathies), FOXP3 (an X-linked Treg cell transcription factor), ErbB4 (HER4), and vitamin-K-dependent plasma protein S (PROS1), an anticoagulation protein that prevents blood clots. Zinc inhibited the cleavage of these host sequences in vitro. Other patterns emerged from multispecies sequence alignments of the cleavage sites, which may have implications for the selection of animal models and zoonosis. SSHHPS/nsP is an example of a sequence-specific post-translational silencing mechanism.
Collapse
Affiliation(s)
- Nathanael
D. Reynolds
- Center
for Bio/molecular Science and Engineering (CBMSE), U.S. Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375, United States
| | | | - Jinny L. Liu
- Center
for Bio/molecular Science and Engineering (CBMSE), U.S. Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375, United States
| | - Jaimee R. Compton
- Center
for Bio/molecular Science and Engineering (CBMSE), U.S. Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375, United States
| | - Dagmar H. Leary
- Center
for Bio/molecular Science and Engineering (CBMSE), U.S. Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375, United States
| | - Brendan T. Freitas
- Center
for Drug Discovery, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Scott D. Pegan
- Center
for Drug Discovery, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Katarina Z. Doctor
- Navy
Center for Applied Research in AI (NCARAI) Information Technology
Division, U.S. Naval Research Laboratory, 4555 Overlook Ave., Washington, DC 20375, United States
| | - Fred Y. Wu
- Indiana
University Health Systems, Indiana University
School of Medicine, Bloomington, Indiana 47401, United States
| | - Xin Hu
- National
Center for Advancing Translational Sciences, National Institutes of
Health, Rockville, Maryland 20850, United
States
| | - Patricia M. Legler
- Center
for Bio/molecular Science and Engineering (CBMSE), U.S. Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375, United States
| |
Collapse
|
2
|
Ng CS, Stobart CC, Luo H. Innate immune evasion mediated by picornaviral 3C protease: Possible lessons for coronaviral 3C-like protease? Rev Med Virol 2021; 31:1-22. [PMID: 33624382 PMCID: PMC7883238 DOI: 10.1002/rmv.2206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 01/10/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 is the etiological agent of the ongoing pandemic of coronavirus disease-2019, a multi-organ disease that has triggered an unprecedented global health and economic crisis. The virally encoded 3C-like protease (3CLpro ), which is named after picornaviral 3C protease (3Cpro ) due to their similarities in substrate recognition and enzymatic activity, is essential for viral replication and has been considered as the primary drug target. However, information regarding the cellular substrates of 3CLpro and its interaction with the host remains scarce, though recent work has begun to shape our understanding more clearly. Here we summarized and compared the mechanisms by which picornaviruses and coronaviruses have evolved to evade innate immune surveillance, with a focus on the established role of 3Cpro in this process. Through this comparison, we hope to highlight the potential action and mechanisms that are conserved and shared between 3Cpro and 3CLpro . In this review, we also briefly discussed current advances in the development of broad-spectrum antivirals targeting both 3Cpro and 3CLpro .
Collapse
Affiliation(s)
- Chen Seng Ng
- Centre for Heart Lung Innovation, St Paul's Hospital, University of British Columbia, Vancouver, Canada.,Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, Canada
| | | | - Honglin Luo
- Centre for Heart Lung Innovation, St Paul's Hospital, University of British Columbia, Vancouver, Canada.,Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Elrick MJ, Pekosz A, Duggal P. Enterovirus D68 molecular and cellular biology and pathogenesis. J Biol Chem 2021; 296:100317. [PMID: 33484714 PMCID: PMC7949111 DOI: 10.1016/j.jbc.2021.100317] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
In recent years, enterovirus D68 (EV-D68) has advanced from a rarely detected respiratory virus to a widespread pathogen responsible for increasing rates of severe respiratory illness and acute flaccid myelitis (AFM) in children worldwide. In this review, we discuss the accumulating data on the molecular features of EV-D68 and place these into the context of enterovirus biology in general. We highlight similarities and differences with other enteroviruses and genetic divergence from own historical prototype strains of EV-D68. These include changes in capsid antigens, host cell receptor usage, and viral RNA metabolism collectively leading to increased virulence. Furthermore, we discuss the impact of EV-D68 infection on the biology of its host cells, and how these changes are hypothesized to contribute to motor neuron toxicity in AFM. We highlight areas in need of further research, including the identification of its primary receptor and an understanding of the pathogenic cascade leading to motor neuron injury in AFM. Finally, we discuss the epidemiology of the EV-D68 and potential therapeutic approaches.
Collapse
Affiliation(s)
- Matthew J Elrick
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Morazzani EM, Compton JR, Leary DH, Berry AV, Hu X, Marugan JJ, Glass PJ, Legler PM. Proteolytic cleavage of host proteins by the Group IV viral proteases of Venezuelan equine encephalitis virus and Zika virus. Antiviral Res 2019; 164:106-122. [PMID: 30742841 DOI: 10.1016/j.antiviral.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/13/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
The alphaviral nonstructural protein 2 (nsP2) cysteine proteases (EC 3.4.22.-) are essential for the proteolytic processing of the nonstructural (ns) polyprotein and are validated drug targets. A common secondary role of these proteases is to antagonize the effects of interferon (IFN). After delineating the cleavage site motif of the Venezuelan equine encephalitis virus (VEEV) nsP2 cysteine protease, we searched the human genome to identify host protein substrates. Here we identify a new host substrate of the VEEV nsP2 protease, human TRIM14, a component of the mitochondrial antiviral-signaling protein (MAVS) signalosome. Short stretches of homologous host-pathogen protein sequences (SSHHPS) are present in the nonstructural polyprotein and TRIM14. A 25-residue cyan-yellow fluorescent protein TRIM14 substrate was cleaved in vitro by the VEEV nsP2 protease and the cleavage site was confirmed by tandem mass spectrometry. A TRIM14 cleavage product also was found in VEEV-infected cell lysates. At least ten other Group IV (+)ssRNA viral proteases have been shown to cleave host proteins involved in generating the innate immune responses against viruses, suggesting that the integration of these short host protein sequences into the viral protease cleavage sites may represent an embedded mechanism of IFN antagonism. This interference mechanism shows several parallels with those of CRISPR/Cas9 and RNAi/RISC, but with a protease recognizing a protein sequence common to both the host and pathogen. The short host sequences embedded within the viral genome appear to be analogous to the short phage sequences found in a host's CRISPR spacer sequences. To test this algorithm, we applied it to another Group IV virus, Zika virus (ZIKV), and identified cleavage sites within human SFRP1 (secreted frizzled related protein 1), a retinal Gs alpha subunit, NT5M, and Forkhead box protein G1 (FOXG1) in vitro. Proteolytic cleavage of these proteins suggests a possible link between the protease and the virus-induced phenotype of ZIKV. The algorithm may have value for selecting cell lines and animal models that recapitulate virus-induced phenotypes, predicting host-range and susceptibility, selecting oncolytic viruses, identifying biomarkers, and de-risking live virus vaccines. Inhibitors of the proteases that utilize this mechanism may both inhibit viral replication and alleviate suppression of the innate immune responses.
Collapse
Affiliation(s)
- Elaine M Morazzani
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Jaimee R Compton
- Center for Bio/molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Dagmar H Leary
- Center for Bio/molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | | | - Xin Hu
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, Rockville, MD 20850, USA
| | - Juan J Marugan
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, Rockville, MD 20850, USA
| | - Pamela J Glass
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Patricia M Legler
- Center for Bio/molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| |
Collapse
|
5
|
N-Terminal Domain of Feline Calicivirus (FCV) Proteinase-Polymerase Contributes to the Inhibition of Host Cell Transcription. Viruses 2016; 8:v8070199. [PMID: 27447663 PMCID: PMC4974534 DOI: 10.3390/v8070199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 11/17/2022] Open
Abstract
Feline Calicivirus (FCV) infection results in the inhibition of host protein synthesis, known as “shut-off”. However, the precise mechanism of shut-off remains unknown. Here, we found that the FCV strain 2280 proteinase-polymerase (PP) protein can suppress luciferase reporter gene expression driven by endogenous and exogenous promoters. Furthermore, we found that the N-terminal 263 aa of PP (PPN-263) determined its shut-off activity using the expression of truncated proteins. However, the same domain of the FCV strain F9 PP protein failed to inhibit gene expression. A comparison between strains 2280 and F9 indicated that Val27, Ala96 and Ala98 were key sites for the inhibition of host gene expression by strain 2280 PPN-263, and PPN-263 exhibited the ability to shut off host gene expression as long as it contained any two of the three amino acids. Because the N-terminus of the PP protein is required for its proteinase and shut-off activities, we investigated the ability of norovirus 3C-like proteins (3CLP) from the GII.4-1987 and -2012 isolates to interfere with host gene expression. The results showed that 3CLP from both isolates was able to shut off host gene expression, but 3CLP from GII.4-2012 had a stronger inhibitory activity than that from GII.4-1987. Finally, we found that 2280 PP and 3CLP significantly repressed reporter gene transcription but did not affect mRNA translation. Our results provide new insight into the mechanism of the FCV-mediated inhibition of host gene expression.
Collapse
|
6
|
Laitinen OH, Svedin E, Kapell S, Nurminen A, Hytönen VP, Flodström-Tullberg M. Enteroviral proteases: structure, host interactions and pathogenicity. Rev Med Virol 2016; 26:251-67. [PMID: 27145174 PMCID: PMC7169145 DOI: 10.1002/rmv.1883] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/22/2022]
Abstract
Enteroviruses are common human pathogens, and infections are particularly frequent in children. Severe infections can lead to a variety of diseases, including poliomyelitis, aseptic meningitis, myocarditis and neonatal sepsis. Enterovirus infections have also been implicated in asthmatic exacerbations and type 1 diabetes. The large disease spectrum of the closely related enteroviruses may be partially, but not fully, explained by differences in tissue tropism. The molecular mechanisms by which enteroviruses cause disease are poorly understood, but there is increasing evidence that the two enteroviral proteases, 2Apro and 3Cpro, are important mediators of pathology. These proteases perform the post‐translational proteolytic processing of the viral polyprotein, but they also cleave several host‐cell proteins in order to promote the production of new virus particles, as well as to evade the cellular antiviral immune responses. Enterovirus‐associated processing of cellular proteins may also contribute to pathology, as elegantly demonstrated by the 2Apro‐mediated cleavage of dystrophin in cardiomyocytes contributing to Coxsackievirus‐induced cardiomyopathy. It is likely that improved tools to identify targets for these proteases will reveal additional host protein substrates that can be linked to specific enterovirus‐associated diseases. Here, we discuss the function of the enteroviral proteases in the virus replication cycle and review the current knowledge regarding how these proteases modulate the infected cell in order to favour virus replication, including ways to avoid detection by the immune system. We also highlight new possibilities for the identification of protease‐specific cellular targets and thereby a way to discover novel mechanisms contributing to disease. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Olli H Laitinen
- BioMediTech, Finland and Fimlab Laboratories, University of Tampere, Tampere, Finland
| | - Emma Svedin
- The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Kapell
- The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Stockholm, Sweden
| | - Anssi Nurminen
- BioMediTech, Finland and Fimlab Laboratories, University of Tampere, Tampere, Finland
| | - Vesa P Hytönen
- BioMediTech, Finland and Fimlab Laboratories, University of Tampere, Tampere, Finland
| | - Malin Flodström-Tullberg
- BioMediTech, Finland and Fimlab Laboratories, University of Tampere, Tampere, Finland.,The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Flather D, Semler BL. Picornaviruses and nuclear functions: targeting a cellular compartment distinct from the replication site of a positive-strand RNA virus. Front Microbiol 2015; 6:594. [PMID: 26150805 PMCID: PMC4471892 DOI: 10.3389/fmicb.2015.00594] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/29/2015] [Indexed: 11/13/2022] Open
Abstract
The compartmentalization of DNA replication and gene transcription in the nucleus and protein production in the cytoplasm is a defining feature of eukaryotic cells. The nucleus functions to maintain the integrity of the nuclear genome of the cell and to control gene expression based on intracellular and environmental signals received through the cytoplasm. The spatial separation of the major processes that lead to the expression of protein-coding genes establishes the necessity of a transport network to allow biomolecules to translocate between these two regions of the cell. The nucleocytoplasmic transport network is therefore essential for regulating normal cellular functioning. The Picornaviridae virus family is one of many viral families that disrupt the nucleocytoplasmic trafficking of cells to promote viral replication. Picornaviruses contain positive-sense, single-stranded RNA genomes and replicate in the cytoplasm of infected cells. As a result of the limited coding capacity of these viruses, cellular proteins are required by these intracellular parasites for both translation and genomic RNA replication. Being of messenger RNA polarity, a picornavirus genome can immediately be translated upon entering the cell cytoplasm. However, the replication of viral RNA requires the activity of RNA-binding proteins, many of which function in host gene expression, and are consequently localized to the nucleus. As a result, picornaviruses disrupt nucleocytoplasmic trafficking to exploit protein functions normally localized to a different cellular compartment from which they translate their genome to facilitate efficient replication. Furthermore, picornavirus proteins are also known to enter the nucleus of infected cells to limit host-cell transcription and down-regulate innate antiviral responses. The interactions of picornavirus proteins and host-cell nuclei are extensive, required for a productive infection, and are the focus of this review.
Collapse
Affiliation(s)
- Dylan Flather
- Department of Microbiology and Molecular Genetics, Center for Virus Research, School of Medicine, University of California, Irvine Irvine, CA, USA
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, Center for Virus Research, School of Medicine, University of California, Irvine Irvine, CA, USA
| |
Collapse
|
8
|
Boncristiani HF, Evans JD, Chen Y, Pettis J, Murphy C, Lopez DL, Simone-Finstrom M, Strand M, Tarpy DR, Rueppell O. In vitro infection of pupae with Israeli acute paralysis virus suggests disturbance of transcriptional homeostasis in honey bees (Apis mellifera). PLoS One 2013; 8:e73429. [PMID: 24039938 PMCID: PMC3764161 DOI: 10.1371/journal.pone.0073429] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/19/2013] [Indexed: 01/08/2023] Open
Abstract
The ongoing decline of honey bee health worldwide is a serious economic and ecological concern. One major contributor to the decline are pathogens, including several honey bee viruses. However, information is limited on the biology of bee viruses and molecular interactions with their hosts. An experimental protocol to test these systems was developed, using injections of Israeli Acute Paralysis Virus (IAPV) into honey bee pupae reared ex-situ under laboratory conditions. The infected pupae developed pronounced but variable patterns of disease. Symptoms varied from complete cessation of development with no visual evidence of disease to rapid darkening of a part or the entire body. Considerable differences in IAPV titer dynamics were observed, suggesting significant variation in resistance to IAPV among and possibly within honey bee colonies. Thus, selective breeding for virus resistance should be possible. Gene expression analyses of three separate experiments suggest IAPV disruption of transcriptional homeostasis of several fundamental cellular functions, including an up-regulation of the ribosomal biogenesis pathway. These results provide first insights into the mechanisms of IAPV pathogenicity. They mirror a transcriptional survey of honey bees afflicted with Colony Collapse Disorder and thus support the hypothesis that viruses play a critical role in declining honey bee health.
Collapse
Affiliation(s)
- Humberto F. Boncristiani
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
- * E-mail:
| | - Jay D. Evans
- Bee Research Laboratory, Agricultural Research Service of the United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Yanping Chen
- Bee Research Laboratory, Agricultural Research Service of the United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Jeff Pettis
- Bee Research Laboratory, Agricultural Research Service of the United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Charles Murphy
- Soybean Genomics and Improvement, Agricultural Research Service of the United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Dawn L. Lopez
- Bee Research Laboratory, Agricultural Research Service of the United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Michael Simone-Finstrom
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Micheline Strand
- United States Army Research Office, Division of Life Sciences, Research Triangle Park, North Carolina, United States of America
| | - David R. Tarpy
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| |
Collapse
|
9
|
Fitzgerald KD, Chase AJ, Cathcart AL, Tran GP, Semler BL. Viral proteinase requirements for the nucleocytoplasmic relocalization of cellular splicing factor SRp20 during picornavirus infections. J Virol 2013; 87:2390-400. [PMID: 23255796 PMCID: PMC3571363 DOI: 10.1128/jvi.02396-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 12/11/2012] [Indexed: 02/05/2023] Open
Abstract
Infection of mammalian cells by picornaviruses results in the nucleocytoplasmic redistribution of certain host cell proteins. These viruses interfere with import-export pathways, allowing for the cytoplasmic accumulation of nuclear proteins that are then available to function in viral processes. We recently described the cytoplasmic relocalization of cellular splicing factor SRp20 during poliovirus infection. SRp20 is an important internal ribosome entry site (IRES) trans-acting factor (ITAF) for poliovirus IRES-mediated translation; however, it is not known whether other picornaviruses utilize SRp20 as an ITAF and direct its cytoplasmic relocalization. Also, the mechanism by which poliovirus directs the accumulation of SRp20 in the cytoplasm of the infected cell is currently unknown. Work described in this report demonstrated that infection by another picornavirus (coxsackievirus B3) causes SRp20 to relocalize from the nucleus to the cytoplasm of HeLa cells, similar to poliovirus infection; however, SRp20 is relocalized to a somewhat lesser extent in the cytoplasm of HeLa cells during infection by yet another picornavirus (human rhinovirus 16). We show that expression of poliovirus 2A proteinase is sufficient to cause the nucleocytoplasmic redistribution of SRp20. Following expression of poliovirus 2A proteinase in HeLa cells, we detect cleavage of specific nuclear pore proteins known to be cleaved during poliovirus infection. We also find that expression of human rhinovirus 16 2A proteinase alone can cause efficient cytoplasmic relocalization of SRp20, despite the lower levels of SRp20 relocalization observed during rhinovirus infection compared to poliovirus. Taken together, these results further define the mechanism of SRp20 cellular redistribution during picornavirus infections, and they provide additional insight into some of the differences observed between human rhinovirus and other enterovirus infections.
Collapse
Affiliation(s)
- Kerry D Fitzgerald
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, USA
| | | | | | | | | |
Collapse
|
10
|
Rozovics JM, Chase AJ, Cathcart AL, Chou W, Gershon PD, Palusa S, Wilusz J, Semler BL. Picornavirus modification of a host mRNA decay protein. mBio 2012; 3:e00431-12. [PMID: 23131833 PMCID: PMC3487778 DOI: 10.1128/mbio.00431-12] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 10/12/2012] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED Due to the limited coding capacity of picornavirus genomic RNAs, host RNA binding proteins play essential roles during viral translation and RNA replication. Here we describe experiments suggesting that AUF1, a host RNA binding protein involved in mRNA decay, plays a role in the infectious cycle of picornaviruses such as poliovirus and human rhinovirus. We observed cleavage of AUF1 during poliovirus or human rhinovirus infection, as well as interaction of this protein with the 5' noncoding regions of these viral genomes. Additionally, the picornavirus proteinase 3CD, encoded by poliovirus or human rhinovirus genomic RNAs, was shown to cleave all four isoforms of recombinant AUF1 at a specific N-terminal site in vitro. Finally, endogenous AUF1 was found to relocalize from the nucleus to the cytoplasm in poliovirus-infected HeLa cells to sites adjacent to (but distinct from) putative viral RNA replication complexes. IMPORTANCE This study derives its significance from reporting how picornaviruses like poliovirus and human rhinovirus proteolytically cleave a key player (AUF1) in host mRNA decay pathways during viral infection. Beyond cleavage of AUF1 by the major viral proteinase encoded in picornavirus genomes, infection by poliovirus results in the relocalization of this host cell RNA binding protein from the nucleus to the cytoplasm. The alteration of both the physical state of AUF1 and its cellular location illuminates how small RNA viruses manipulate the activities of host cell RNA binding proteins to ensure a faithful intracellular replication cycle.
Collapse
Affiliation(s)
| | | | | | | | | | - Saiprasad Palusa
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | | |
Collapse
|
11
|
Chase AJ, Semler BL. Viral subversion of host functions for picornavirus translation and RNA replication. Future Virol 2012; 7:179-191. [PMID: 23293659 DOI: 10.2217/fvl.12.2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Picornavirus infections lead to symptoms that can have serious health and economic implications. The viruses in this family (Picornaviridae) have a small genomic RNA and must rely on host proteins for efficient viral gene expression and RNA replication. To ensure their effectiveness as pathogens, picornaviruses have evolved to utilize and/or alter host proteins for the benefit of the virus life cycle. This review discusses the host proteins that are subverted during infection to aid in virus replication. It will also describe proteins and functions that are altered during infection for the benefit of the virus.
Collapse
Affiliation(s)
- Amanda J Chase
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
12
|
Álvarez E, Castelló A, Carrasco L, Izquierdo JM. Alternative splicing, a new target to block cellular gene expression by poliovirus 2A protease. Biochem Biophys Res Commun 2011; 414:142-7. [PMID: 21945619 DOI: 10.1016/j.bbrc.2011.09.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 09/08/2011] [Indexed: 11/29/2022]
Abstract
Viruses have developed multiple strategies to interfere with the gene expression of host cells at different stages to ensure their own survival. Here we report a new role for poliovirus 2A(pro) modulating the alternative splicing of pre-mRNAs. Expression of 2A(pro) potently inhibits splicing of reporter genes in HeLa cells. Low amounts of 2A(pro) abrogate Fas exon 6 skipping, whereas higher levels of protease fully abolish Fas and FGFR2 splicing. In vitro splicing of MINX mRNA using nuclear extracts is also strongly inhibited by 2A(pro), leading to accumulation of the first exon and the lariat product containing the unspliced second exon. These findings reveal that the mechanism of action of 2A(pro) on splicing is to selectively block the second catalytic step.
Collapse
Affiliation(s)
- Enrique Álvarez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera, 1 Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
13
|
Krupina KA, Sheval EV, Lidsky PV. Variability in inhibition of host RNA synthesis by entero- and cardioviruses. J Gen Virol 2010; 91:1239-44. [PMID: 20089798 DOI: 10.1099/vir.0.017723-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Both entero- and cardioviruses have been shown to suppress host mRNA synthesis. Enteroviruses are also known to inhibit the activity of rRNA genes, whereas this ability of cardioviruses is under debate. This study reported that mengovirus (a cardiovirus) suppressed rRNA synthesis but less efficiently than poliovirus (an enterovirus). In contrast to poliovirus infection, the incorporation of BrUTP, fluorouridine and [14C]uridine in rRNA precursors was observed even during the late stages of mengovirus infection, although at a significantly reduced level. The cleavage of TATA-binding protein, considered to be one of the central events in poliovirus-induced transcription shutoff, was not detected in mengovirus-infected cells, indicating a difference in the mechanisms of host RNA synthesis inhibition caused by these viruses. The results also showed that functional leader protein is redundant for the suppression of host RNA synthesis by cardiovirus.
Collapse
Affiliation(s)
- Ksenia A Krupina
- M. P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow Region 142782, Russia
| | | | | |
Collapse
|
14
|
Theiler's murine encephalomyelitis virus leader protein is the only nonstructural protein tested that induces apoptosis when transfected into mammalian cells. J Virol 2009; 83:6546-53. [PMID: 19403676 DOI: 10.1128/jvi.00353-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) induces two distinct cell death programs, necrosis and apoptosis. The apoptotic pathway is of particular interest because TMEV persists in the central nervous system of mice, largely in infiltrating macrophages, which undergo apoptosis. Infection of murine macrophages in culture induces apoptosis that is Bax dependent through the intrinsic or mitochondrial pathway, restricting infectious-virus yields and raising the possibility that apoptosis represents a mechanism to attenuate TMEV yet promote macrophage-to-macrophage spread during persistent infection. To help define the cellular stressors and upstream signaling events leading to apoptosis during TMEV infection, we screened baby hamster kidney (BHK-21) cells transfected to express individual nonstructural genes (except 3B) of the low-neurovirulence BeAn virus strain for cell death. Only expression of the leader protein led to apoptosis, as assessed by fluorescence-activated cell sorting analysis of propidium iodide- and annexin V-stained transfected cells, immunoblot analysis of poly(ADP-ribose) polymerase and caspase cleavages, electron microscopy, and inhibition of apoptosis by the pancaspase inhibitor qVD-OPh. After transfection, Bak and not Bax expression increased, suggesting that the apical pathway leading to activation of these Bcl-2 multi-BH-domain proapoptotic proteins differs in BeAn virus infection versus L transfection. Mutation to remove the CHCC Zn finger motif from L, a motif required by L to mediate inhibition of nucleocytoplasmic trafficking, significantly reduced L-protein-induced apoptosis in both BHK-21 and M1-D macrophages.
Collapse
|
15
|
De Palma AM, Vliegen I, De Clercq E, Neyts J. Selective inhibitors of picornavirus replication. Med Res Rev 2008; 28:823-84. [PMID: 18381747 DOI: 10.1002/med.20125] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Picornaviruses cover a large family of pathogens that have a major impact on human but also on veterinary health. Although most infections in man subside mildly or asymptomatically, picornaviruses can also be responsible for severe, potentially life-threatening disease. To date, no therapy has been approved for the treatment of picornavirus infections. However, efforts to develop an antiviral that is effective in treating picornavirus-associated diseases are ongoing. In 2007, Schering-Plough, under license of ViroPharma, completed a phase II clinical trial with Pleconaril, a drug that was originally rejected by the FDA after a New Drug Application in 2001. Rupintrivir, a rhinovirus protease inhibitor developed at Pfizer, reached clinical trials but was recently halted from further development. Finally, Biota's HRV drug BTA-798 is scheduled for phase II trials in 2008. Several key steps in the picornaviral replication cycle, involving structural as well as non-structural proteins, have been identified as valuable targets for inhibition. The current review aims to highlight the most important developments during the past decades in the search for antivirals against picornaviruses.
Collapse
Affiliation(s)
- Armando M De Palma
- Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
16
|
de Breyne S, Bonderoff JM, Chumakov KM, Lloyd RE, Hellen CUT. Cleavage of eukaryotic initiation factor eIF5B by enterovirus 3C proteases. Virology 2008; 378:118-22. [PMID: 18572216 PMCID: PMC2580754 DOI: 10.1016/j.virol.2008.05.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 03/25/2008] [Accepted: 05/16/2008] [Indexed: 11/28/2022]
Abstract
The enteroviruses poliovirus (PV), Coxsackie B virus (CVB) and rhinovirus (HRV) are members of Picornaviridae that inhibit host cell translation early in infection. Enterovirus translation soon predominates in infected cells, but eventually also shuts off. This complex pattern of modulation of translation suggests regulation by a multifactorial mechanism. We report here that eIF5B is proteolytically cleaved during PV and CVB infection of cultured cells, beginning at 3 hours post-infection and increasing thereafter. Recombinant PV, CVB and HRV 3Cpro cleaved purified native rabbit eukaryotic initiation factor (eIF) 5B in vitro at a single site (VVEQG, equivalent to VMEQG479 in human eIF5B) that is consistent with the cleavage specificity of enterovirus 3C proteases. Cleavage separates the N-terminal domain of eIF5B from its essential conserved central GTPase and C-terminal domains. 3Cpro-mediated cleavage of eIF5B may thus play an accessory role in the shutoff of translation that occurs in enterovirus-infected cells.
Collapse
Affiliation(s)
- Sylvain de Breyne
- Department of Microbiology and Immunology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Jennifer M. Bonderoff
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Konstantin M. Chumakov
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Rockville, Maryland 20852
| | - Richard E. Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Christopher U. T. Hellen
- Department of Microbiology and Immunology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| |
Collapse
|
17
|
Randall RE, Goodbourn S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 2008; 89:1-47. [PMID: 18089727 DOI: 10.1099/vir.0.83391-0] [Citation(s) in RCA: 1233] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The interferon (IFN) system is an extremely powerful antiviral response that is capable of controlling most, if not all, virus infections in the absence of adaptive immunity. However, viruses can still replicate and cause disease in vivo, because they have some strategy for at least partially circumventing the IFN response. We reviewed this topic in 2000 [Goodbourn, S., Didcock, L. & Randall, R. E. (2000). J Gen Virol 81, 2341-2364] but, since then, a great deal has been discovered about the molecular mechanisms of the IFN response and how different viruses circumvent it. This information is of fundamental interest, but may also have practical application in the design and manufacture of attenuated virus vaccines and the development of novel antiviral drugs. In the first part of this review, we describe how viruses activate the IFN system, how IFNs induce transcription of their target genes and the mechanism of action of IFN-induced proteins with antiviral action. In the second part, we describe how viruses circumvent the IFN response. Here, we reflect upon possible consequences for both the virus and host of the different strategies that viruses have evolved and discuss whether certain viruses have exploited the IFN response to modulate their life cycle (e.g. to establish and maintain persistent/latent infections), whether perturbation of the IFN response by persistent infections can lead to chronic disease, and the importance of the IFN system as a species barrier to virus infections. Lastly, we briefly describe applied aspects that arise from an increase in our knowledge in this area, including vaccine design and manufacture, the development of novel antiviral drugs and the use of IFN-sensitive oncolytic viruses in the treatment of cancer.
Collapse
Affiliation(s)
- Richard E Randall
- School of Biology, University of St Andrews, The North Haugh, St Andrews KY16 9ST, UK
| | - Stephen Goodbourn
- Division of Basic Medical Sciences, St George's, University of London, London SW17 0RE, UK
| |
Collapse
|
18
|
Oberste MS, Maher K, Pallansch MA. Complete genome sequences for nine simian enteroviruses. J Gen Virol 2008; 88:3360-3372. [PMID: 18024906 DOI: 10.1099/vir.0.83124-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Analysis of the VP1 capsid-coding sequences of the simian picornaviruses has suggested that baboon enterovirus (BaEV), SV19, SV43 and SV46 belong to the species Human enterovirus A (HEV-A) and SA5 belongs to HEV-B, whereas SV4/A2 plaque virus (two isolates of a single serotype), SV6 and N125/N203 (two isolates of a single serotype) appear to represent new species in the genus. We have further characterized by complete genomic sequencing the genetic relationships among the simian enteroviruses serotypes (BaEV, N125/N203, SA5, SV4/A2 plaque virus, SV6, SV19, SV43 and SV46) and to other enteroviruses. Phylogenetic and pairwise sequence relationships for the P1 region paralleled those of VP1 alone, and confirmed that SV4/A-2 plaque virus, SV6 and N125/N203 represent unique genetic clusters that probably correspond to three new species. However, sequence relationships in the P2 and P3 regions were quite different. In 2C, SV19, SV43 and SV46 remain clustered with the human viruses of HEV-A, but BaEV, SV6 and N125/N203 cluster together; in 3CD, SA5 (HEV-B) also joined this cluster. The 3'-non-translated region (NTR) sequences are highly conserved within each of the four human enterovirus species, but the 3'-NTRs of the simian enteroviruses are distinct from those of all human enteroviruses and generally distinct from one another. These results suggest that host species may have a significant influence on the evolution of enterovirus non-capsid sequences.
Collapse
Affiliation(s)
- M Steven Oberste
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Kaija Maher
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Mark A Pallansch
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| |
Collapse
|
19
|
Perera R, Daijogo S, Walter BL, Nguyen JHC, Semler BL. Cellular protein modification by poliovirus: the two faces of poly(rC)-binding protein. J Virol 2007; 81:8919-32. [PMID: 17581994 PMCID: PMC1951425 DOI: 10.1128/jvi.01013-07] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 06/12/2007] [Indexed: 11/20/2022] Open
Abstract
During picornavirus infection, several cellular proteins are cleaved by virus-encoded proteinases. Such cleavage events are likely to be involved in the changing dynamics during the intracellular viral life cycle, from viral translation to host shutoff to RNA replication to virion assembly. For example, it has been proposed that there is an active switch from poliovirus translation to RNA replication mediated by changes in RNA-binding protein affinities. This switch could be a mechanism for controlling template selection for translation and negative-strand viral RNA synthesis, two processes that use the same positive-strand RNA as a template but proceed in opposing directions. The cellular protein poly(rC)-binding protein (PCBP) was identified as a primary candidate for regulating such a mechanism. Among the four different isoforms of PCBP in mammalian cells, PCBP2 is required for translation initiation on picornavirus genomes with type I internal ribosome entry site elements and also for RNA replication. Through its three K-homologous (KH) domains, PCPB2 forms functional protein-protein and RNA-protein complexes with components of the viral translation and replication machinery. We have found that the isoforms PCBP1 and -2 are cleaved during the mid-to-late phase of poliovirus infection. On the basis of in vitro cleavage assays, we determined that this cleavage event was mediated by the viral proteinases 3C/3CD. The primary cleavage occurs in the linker between the KH2 and KH3 domains, resulting in truncated PCBP2 lacking the KH3 domain. This cleaved protein, termed PCBP2-DeltaKH3, is unable to function in translation but maintains its activity in viral RNA replication. We propose that through the loss of the KH3 domain, and therefore loss of its ability to function in translation, PCBP2 can mediate the switch from viral translation to RNA replication.
Collapse
Affiliation(s)
- Rushika Perera
- Department of Microbiology and Molecular Genetics, School of Medicine, Med Sci B240, University of California, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
20
|
Lulla A, Lulla V, Tints K, Ahola T, Merits A. Molecular determinants of substrate specificity for Semliki Forest virus nonstructural protease. J Virol 2007; 80:5413-22. [PMID: 16699022 PMCID: PMC1472149 DOI: 10.1128/jvi.00229-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The C-terminal cysteine protease domain of Semliki Forest virus nonstructural protein 2 (nsP2) regulates the virus life cycle by sequentially cleaving at three specific sites within the virus-encoded replicase polyprotein P1234. The site between nsP3 and nsP4 (the 3/4 site) is cleaved most efficiently. Analysis of Semliki Forest virus-specific cleavage sites with shuffled N-terminal and C-terminal half-sites showed that the main determinants of cleavage efficiency are located in the region preceding the cleavage site. Random mutagenesis analysis revealed that amino acid residues in positions P4, P3, P2, and P1 of the 3/4 cleavage site cannot tolerate much variation, whereas in the P5 position most residues were permitted. When mutations affecting cleavage efficiency were introduced into the 2/3 and 3/4 cleavage sites, the resulting viruses remained viable but had similar defects in P1234 processing as observed in the in vitro assay. Complete blockage of the 3/4 cleavage was found to be lethal. The amino acid in position P1' had a significant effect on cleavage efficiency, and in this regard the protease markedly preferred a glycine residue over the tyrosine natively present in the 3/4 site. Therefore, the cleavage sites represent a compromise between protease recognition and other requirements of the virus life cycle. The protease recognizes at least residues P4 to P1', and the P4 arginine residue plays an important role in the fast cleavage of the 3/4 site.
Collapse
|
21
|
Abstract
Most RNA viruses have evolved strategies to regulate cellular translation in order to promote preferential expression of the viral genome. Positive strand RNA viruses express large portions, or all of their proteome via translation of large polyproteins that are processed by embedded viral proteinases or host proteinases. Several of these viral proteinases are known to interact with host proteins, particularly with the host translation machinery, and thus, encompass the dual functions of processing of viral polyproteins and exerting translation control. Picornaviruses are perhaps the best characterized in regards to interaction of their proteinases with the host translation machinery and will be emphasized here. However, new findings have shown that similar paradigms exist in other viral systems which will be discussed.
Collapse
Affiliation(s)
- Richard E Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Kundu P, Raychaudhuri S, Tsai W, Dasgupta A. Shutoff of RNA polymerase II transcription by poliovirus involves 3C protease-mediated cleavage of the TATA-binding protein at an alternative site: incomplete shutoff of transcription interferes with efficient viral replication. J Virol 2005; 79:9702-13. [PMID: 16014932 PMCID: PMC1181600 DOI: 10.1128/jvi.79.15.9702-9713.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Accepted: 04/24/2005] [Indexed: 11/20/2022] Open
Abstract
The TATA-binding protein (TBP) plays a crucial role in cellular transcription catalyzed by all three DNA-dependent RNA polymerases. Previous studies have shown that TBP is targeted by the poliovirus (PV)-encoded protease 3C(pro) to bring about shutoff of cellular RNA polymerase II-mediated transcription in PV-infected cells. The processing of the majority of viral precursor proteins by 3C(pro) involves cleavages at glutamine-glycine (Q-G) sites. We present evidence that suggests that the transcriptional inactivation of TBP by 3C(pro) involves cleavage at the glutamine 104-serine 105 (Q104-S105) site of TBP and not at the Q18-G19 site as previously thought. The TBP Q104-S105 cleavage by 3C(pro) is greatly influenced by the presence of an aliphatic amino acid at the P4 position, a hallmark of 3C(pro)-mediated proteolysis. To examine the importance of host cell transcription shutoff in the PV life cycle, stable HeLa cell lines were created that express recombinant TBP resistant to cleavage by the viral proteases, called GG rTBP. Transcription shutoff was significantly impaired and delayed in GG rTBP cells upon infection with poliovirus compared with the cells that express wild-type recombinant TBP (wt rTBP). Infection of GG rTBP cells with poliovirus resulted in small plaques, significantly reduced viral RNA synthesis, and lower viral yields compared to the wt rTBP cell line. These results suggest that a defect in transcription shutoff can lead to inefficient replication of poliovirus in cultured cells.
Collapse
Affiliation(s)
- Pallob Kundu
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA School of Medicine, University of California--Los Angeles, 90095, USA
| | | | | | | |
Collapse
|
23
|
Banerjee R, Weidman MK, Navarro S, Comai L, Dasgupta A. Modifications of both selectivity factor and upstream binding factor contribute to poliovirus-mediated inhibition of RNA polymerase I transcription. J Gen Virol 2005; 86:2315-2322. [PMID: 16033979 DOI: 10.1099/vir.0.80817-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Soon after infection, poliovirus (PV) shuts off host-cell transcription, which is catalysed by all three cellular RNA polymerases. rRNA constitutes more than 50 % of all cellular RNA and is transcribed from rDNA by RNA polymerase I (pol I). Here, evidence has been provided suggesting that both pol I transcription factors, SL-1 (selectivity factor) and UBF (upstream binding factor), are modified and inactivated in PV-infected cells. The viral protease 3C(pro) appeared to cleave the TATA-binding protein-associated factor 110 (TAF(110)), a subunit of the SL-1 complex, into four fragments in vitro. In vitro protease-cleavage assays using various mutants of TAF(110) and purified 3C(pro) indicated that the Q(265)G(266) and Q(805)G(806) sites were cleaved by 3C(pro). Both SL-1 and UBF were depleted in PV-infected cells and their disappearance correlated with pol I transcription inhibition. rRNA synthesis from a template containing a human pol I promoter demonstrated that both SL-1 and UBF were necessary to restore pol I transcription fully in PV-infected cell extracts. These results suggested that both SL-1 and UBF are transcriptionally inactivated in PV-infected HeLa cells.
Collapse
Affiliation(s)
- Rajeev Banerjee
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, UCLA School of Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Mary K Weidman
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, UCLA School of Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Sonia Navarro
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Asim Dasgupta
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, UCLA School of Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| |
Collapse
|
24
|
Banerjee R, Weidman MK, Echeverri A, Kundu P, Dasgupta A. Regulation of poliovirus 3C protease by the 2C polypeptide. J Virol 2004; 78:9243-56. [PMID: 15308719 PMCID: PMC506913 DOI: 10.1128/jvi.78.17.9243-9256.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 05/04/2004] [Indexed: 11/20/2022] Open
Abstract
Poliovirus-encoded nonstructural polypeptide 2C is a multifunctional protein that plays an important role in viral RNA replication. 2C interacts with both intracellular membranes and virus-specific RNAs and has ATPase and GTPase activities. Extensive computer analysis of the 2C sequence revealed that in addition to the known ATPase-, GTPase-, membrane-, and RNA-binding domains it also contains several "serpin" (serine protease inhibitor) motifs. We provide experimental evidence suggesting that 2C is indeed capable of regulating virus-encoded proteases. The purified 2C protein inhibits 3C(pro)-catalyzed cleavage of cellular transcription factors at Q-G sites in vitro. It also inhibits cleavage of a viral precursor by the other viral protease, 2A(pro). However, at least three cellular proteases appear not to be inhibited by 2C in vitro. The 2C-associated protease inhibitory activity can be depleted by anti-2C antibody. A physical interaction between 2C and His-tagged 3C(pro) can be demonstrated in vitro by coimmunoprecipitation of 2C with anti-His antibody. Deletion analysis suggests that the 2C central and C-terminal domains that include several serpin motifs are important for 3C(pro)-inhibitory activity. To examine the 2C protease inhibitory activity in vivo, stable HeLa cell lines were made that express 2C in an inducible fashion. Infection of 2C-expressing cells with poliovirus led to incomplete (or inefficient) processing of viral precursor polypeptides compared to control cell lines containing the vector alone. These results suggest that 2C can negatively regulate the viral protease 3C(pro). The possible role of the 2C protease inhibitory activity in viral RNA replication is discussed.
Collapse
Affiliation(s)
- Rajeev Banerjee
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1747, USA
| | | | | | | | | |
Collapse
|
25
|
Graham KL, Gustin KE, Rivera C, Kuyumcu-Martinez NM, Choe SS, Lloyd RE, Sarnow P, Utz PJ. Proteolytic cleavage of the catalytic subunit of DNA-dependent protein kinase during poliovirus infection. J Virol 2004; 78:6313-21. [PMID: 15163725 PMCID: PMC416498 DOI: 10.1128/jvi.78.12.6313-6321.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DNA-dependent protein kinase (DNA-PK) is a serine/threonine kinase that has critical roles in DNA double-strand break repair, as well as B- and T-cell antigen receptor rearrangement. The DNA-PK enzyme consists of the Ku regulatory subunit and a 450-kDa catalytic subunit termed DNA-PK(CS). Both of these subunits are autoantigens associated with connective tissue diseases such as systemic lupus erythematosus (SLE) and scleroderma. In this report, we show that DNA-PK(CS) is cleaved during poliovirus infection of HeLa cells. Cleavage was visible as early as 1.5 h postinfection (hpi) and resulted in an approximately 40% reduction in the levels of native protein by 5.5 hpi. Consistent with this observation, the activity of the DNA-PK(CS) enzyme was also reduced during viral infection, as determined by immunoprecipitation kinase assays. Although it has previously been shown that DNA-PK(CS) is a substrate of caspase-3 in vitro, the protein was still cleaved during poliovirus infection of the caspase-3-deficient MCF-7 cell line. Cleavage was not prevented by infection in the presence of a soluble caspase inhibitor, suggesting that cleavage in vivo was independent of host caspase activation. DNA-PK(CS) is directly cleaved by a picornaviral 2A protease in vitro, producing a fragment similar in size to the cleavage product observed in vivo. Taken together, our results indicate that DNA-PK(CS) is cleaved by the 2A protease during poliovirus infection. Proteolytic cleavage of DNA-PK(CS) during poliovirus infection may contribute to inhibition of host immune responses. Furthermore, cleavage of autoantigens by viral proteases may target these proteins for the autoimmune response by generating novel, or "immunocryptic," protein fragments.
Collapse
Affiliation(s)
- Kareem L Graham
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford University School of Medicine, CCSR Building, Room 2215A, 269 Campus Drive, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Weidman MK, Sharma R, Raychaudhuri S, Kundu P, Tsai W, Dasgupta A. The interaction of cytoplasmic RNA viruses with the nucleus. Virus Res 2003; 95:75-85. [PMID: 12921997 DOI: 10.1016/s0168-1702(03)00164-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mammalian cells infected with poliovirus, the prototype member of the picornaviridae family, undergo rapid macromolecular and metabolic changes resulting in efficient replication and release of virus from infected cells. Although this virus is predominantly cytoplasmic, it does shut-off transcription of all three cellular transcription systems. Both biochemical and genetic studies have shown that a virally encoded protease, 3C(pro), is responsible for host cell transcription shut-off. The 3C protease cleaves a number of RNA polymerase II transcription factors including the TATA-binding protein (TBP), the cyclic AMP-responsive element binding protein (CREB), the Octamer binding protein (Oct-1), p53, and RNA polymerase III transcription factor IIICalpha, and Polymerase I factor SL-1. Most of these cleavages occur at glutamine-glycine bonds. Additionally, a second viral protease, 2A(pro), also cleaves TBP at a tyrosine-glycine bond. The latter cleavage could be responsible for shut-off of small nuclear RNA transcription. Recent studies indicate that the viral protease-polymerase precursor 3CD can enter nucleus in poliovirus-infected cells. The nuclear localization signal (NLS) present within the 3D sequence appears to play a role in the nuclear entry of 3CD. Thus, 3C may be delivered to the infected cell nucleus in the form the precursor 3CD or other 3C-containing precursors. Auto-proteolytic cleavage of these precursors could then generate 3C. Thus, for a small RNA virus that strictly replicates in the cytoplasm, a portion of its life cycle does include interaction with the host cell nucleus.
Collapse
Affiliation(s)
- Mary K Weidman
- Department of Microbiology, UCLA School of Medicine, The University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
27
|
Back SH, Kim YK, Kim WJ, Cho S, Oh HR, Kim JE, Jang SK. Translation of polioviral mRNA is inhibited by cleavage of polypyrimidine tract-binding proteins executed by polioviral 3C(pro). J Virol 2002; 76:2529-42. [PMID: 11836431 PMCID: PMC135932 DOI: 10.1128/jvi.76.5.2529-2542.2002] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2001] [Accepted: 12/04/2001] [Indexed: 12/26/2022] Open
Abstract
The translation of polioviral mRNA occurs through an internal ribosomal entry site (IRES). Several RNA-binding proteins, such as polypyrimidine tract-binding protein (PTB) and poly(rC)-binding protein (PCBP), are required for the poliovirus IRES-dependent translation. Here we report that a poliovirus protein, 3C(pro) (and/or 3CD(pro)), cleaves PTB isoforms (PTB1, PTB2, and PTB4). Three 3C(pro) target sites (one major target site and two minor target sites) exist in PTBs. PTB fragments generated by poliovirus infection are redistributed to the cytoplasm from the nucleus, where most of the intact PTBs are localized. Moreover, these PTB fragments inhibit polioviral IRES-dependent translation in a cell-based assay system. We speculate that the proteolytic cleavage of PTBs may contribute to the molecular switching from translation to replication of polioviral RNA.
Collapse
Affiliation(s)
- Sung Hoon Back
- NRL, Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Maraia RJ, Intine RV. Recognition of nascent RNA by the human La antigen: conserved and divergent features of structure and function. Mol Cell Biol 2001; 21:367-79. [PMID: 11134326 PMCID: PMC86573 DOI: 10.1128/mcb.21.2.367-379.2001] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- R J Maraia
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
29
|
Abstract
Many viruses interfere with host cell function in ways that are harmful or pathological. This often results in changes in cell morphology referred to as cytopathic effects. However, pathogenesis of virus infections also involves inhibition of host cell gene expression. Thus the term "cytopathogenesis," or pathogenesis at the cellular level, is meant to be broader than the term "cytopathic effects" and includes other cellular changes that contribute to viral pathogenesis in addition to those changes that are visible at the microscopic level. The goal of this review is to place recent work on the inhibition of host gene expression by RNA viruses in the context of the pathogenesis of virus infections. Three different RNA virus families, picornaviruses, influenza viruses, and rhabdoviruses, are used to illustrate common principles involved in cytopathogenesis. These examples were chosen because viral gene products responsible for inhibiting host gene expression have been identified, as have some of the molecular targets of the host. The argument is made that the role of the virus-induced inhibition of host gene expression is to inhibit the host antiviral response, such as the response to double-stranded RNA. Viral cytopathogenesis is presented as a balance between the host antiviral response and the ability of viruses to inhibit that response through the overall inhibition of host gene expression. This balance is a major determinant of viral tissue tropism in infections of intact animals.
Collapse
Affiliation(s)
- D S Lyles
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1064, USA.
| |
Collapse
|
30
|
Huber M, Watson KA, Selinka HC, Carthy CM, Klingel K, McManus BM, Kandolf R. Cleavage of RasGAP and phosphorylation of mitogen-activated protein kinase in the course of coxsackievirus B3 replication. J Virol 1999; 73:3587-94. [PMID: 10196249 PMCID: PMC104132 DOI: 10.1128/jvi.73.5.3587-3594.1999] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, we reported on tyrosine phosphorylation of distinct cellular proteins in the course of enterovirus infections (M. Huber, H.-C. Selinka, and R. Kandolf, J. Virol. 71:595-600, 1997). These phosphorylation events were mediated by Src-like kinases and were shown to be necessary for effective virus replication. That study is now extended by examination of the interaction of the adapter protein Sam68, a cellular target of Src-like kinases which has been shown to interact with the poliovirus 3D polypeptide, with cellular signaling proteins as well as the function of the latter during infection. Here, we report that the RNA-binding and protein-binding protein Sam68 associates with the p21(ras) GTPase-activating protein RasGAP. Remarkably, RasGAP is cleaved during infections with different strains of coxsackievirus B3 as well as with echovirus 11 and echovirus 12, yielding a 104-kDa protein fragment. This cleavage event, which cannot be prevented by the general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, may promote the activation of the Ras pathway, as shown by the activating dual phosphorylation of the mitogen-activated protein kinases Erk-1 and Erk-2 in the late phase of infection. Moreover, downstream targets of the mitogen-activated protein kinases, i.e., the p21(ras) exchange factor Sos-1 and cytoplasmic phospholipase A2, are phosphorylated with parallel time courses during infection. Activation or inhibition of cellular signaling pathways may play a general role in regulating effective enterovirus replication and pathogenesis, and the results of this study begin to unravel the molecular cross talk between enterovirus infection and key cellular signaling networks.
Collapse
Affiliation(s)
- M Huber
- Department of Molecular Pathology, Institute for Pathology, University of Tübingen, D-72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Shiroki K, Isoyama T, Kuge S, Ishii T, Ohmi S, Hata S, Suzuki K, Takasaki Y, Nomoto A. Intracellular redistribution of truncated La protein produced by poliovirus 3Cpro-mediated cleavage. J Virol 1999; 73:2193-200. [PMID: 9971802 PMCID: PMC104464 DOI: 10.1128/jvi.73.3.2193-2200.1999] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/1998] [Accepted: 11/16/1998] [Indexed: 02/05/2023] Open
Abstract
The La autoantigen (also known as SS-B), a cellular RNA binding protein, may shuttle between the nucleus and cytoplasm, but it is mainly located in the nucleus. La protein is redistributed to the cytoplasm after poliovirus infection. An in vitro translation study demonstrated that La protein stimulated the internal initiation of poliovirus translation. In the present study, a part of the La protein was shown to be cleaved in poliovirus-infected HeLa cells, and this cleavage appeared to be mediated by poliovirus-specific protease 3C (3Cpro). Truncated La protein (dl-La) was produced in vitro from recombinant La protein by cleavage with purified 3Cpro at only one Gln358-Gly359 peptide bond in the 408-amino-acid (aa) sequence of La protein. The dl-La expressed in L cells was detected in the cytoplasm. However, green fluorescence protein linked to the C-terminal 50-aa sequence of La protein was localized in the nucleus, suggesting that this C-terminal region contributes to the steady-state nuclear localization of the intact La protein in uninfected cells. The dl-La retained the enhancing activity of translation initiation driven by poliovirus RNA in rabbit reticulocyte lysates. These results suggest that La protein is cleaved by 3Cpro in the course of poliovirus infection and that the dl-La is redistributed to the cytoplasm. dl-La, as well as La protein, may play a role in stimulating the internal initiation of poliovirus translation in the cytoplasm.
Collapse
Affiliation(s)
- K Shiroki
- Department of Microbiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wessely R, Henke A, Zell R, Kandolf R, Knowlton KU. Low-level expression of a mutant coxsackieviral cDNA induces a myocytopathic effect in culture: an approach to the study of enteroviral persistence in cardiac myocytes. Circulation 1998; 98:450-7. [PMID: 9714096 DOI: 10.1161/01.cir.98.5.450] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Enteroviral ribonucleic acids have been identified in heart muscle of a subset of patients with myocarditis and dilated cardiomyopathy as well as in a mouse model of persistent coxsackievirus B3 (CVB3) infection, suggesting that persistent viral infection along with activation of an immune response may contribute to the pathogenesis of ongoing cardiac disease and dilated cardiomyopathy in certain patients. It is still not known whether persistence of the viral genome contributes to the pathogenesis of dilated cardiomyopathy. METHODS AND RESULTS To determine whether low-level enteroviral gene expression similar to that observed with viral persistence can induce myocytopathic effects without formation of infectious virus progeny, the full-length infectious cDNA copy of CVB3 was mutated at the VP0 maturation cleavage site. This prevented formation of infectious virus progeny. In myocytes transfected with this mutated cDNA copy of the viral genome, both positive- and negative-strand viral RNAs were detected, demonstrating that there was replication of the viral genome by the RNA-dependent RNA polymerase. The level of viral protein expression was found to be below limits of detection by conventional methods of protein detection, thus resembling restricted virus replication. Nonetheless, the CVB3 mutant was found to induce a cytopathic effect in transfected myocytes, which was demonstrated by inhibition of cotransfected MLC-2v luciferase reporter activity and an increase in release of lactate dehydrogenase from transfected cells. CONCLUSIONS This study demonstrates that restricted replication of enteroviral genomes in myocytes in a pattern similar to that observed in hearts with persistent viral infection can induce myocytopathic effects without generation of infectious virus progeny.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cardiomyopathies/etiology
- Cardiomyopathies/genetics
- Cardiomyopathies/virology
- Cells, Cultured
- Coxsackievirus Infections/etiology
- Coxsackievirus Infections/genetics
- Coxsackievirus Infections/virology
- Cytopathogenic Effect, Viral/genetics
- DNA, Complementary/genetics
- DNA, Viral/genetics
- Enterovirus B, Human/genetics
- Enterovirus B, Human/pathogenicity
- Gene Expression Regulation, Viral/genetics
- Genetic Vectors/genetics
- Heart/virology
- Mutation/genetics
- Myocardium/cytology
- Polymerase Chain Reaction/methods
- RNA, Viral/genetics
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- R Wessely
- Department of Medicine, University of California, San Diego, School of Medicine, 92093-0613, USA
| | | | | | | | | |
Collapse
|
33
|
Yalamanchili P, Banerjee R, Dasgupta A. Poliovirus-encoded protease 2APro cleaves the TATA-binding protein but does not inhibit host cell RNA polymerase II transcription in vitro. J Virol 1997; 71:6881-6. [PMID: 9261414 PMCID: PMC191970 DOI: 10.1128/jvi.71.9.6881-6886.1997] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transient expression of the poliovirus-encoded protease 2APro in eukaryotic cells results in inhibition of both cellular transcription and translation. The inhibition of transcription observed in cells expressing 2APro could be due to a primary effect or secondary effect caused by inhibition of translation. Because transcriptional activity of the TATA-binding protein (TBP) is drastically reduced in poliovirus-infected cells, we determined if 2APro is able to cleave TBP in vitro. We demonstrate here that 2APro directly cleaves the single tyrosine-glycine bond at position 34 of TBP. This cleavage is also seen in poliovirus-infected HeLa cells. Surprisingly, despite TBP cleavage 2APro was unable to inhibit RNA polymerase II transcription in vitro. Under similar conditions, however, 2APro inhibited translation of a capped cellular mRNA in vitro. Thus, cleavage of TBP at position 34 does not alter its transcriptional activity in vitro. These results suggest that inhibition of host cell RNA polymerase II transcription seen in cells transiently transfected with 2APro is due to host cell translational shutoff.
Collapse
Affiliation(s)
- P Yalamanchili
- Department of Microbiology and Immunology, UCLA School of Medicine 90095-1747, USA
| | | | | |
Collapse
|
34
|
Yalamanchili P, Datta U, Dasgupta A. Inhibition of host cell transcription by poliovirus: cleavage of transcription factor CREB by poliovirus-encoded protease 3Cpro. J Virol 1997; 71:1220-6. [PMID: 8995645 PMCID: PMC191176 DOI: 10.1128/jvi.71.2.1220-1226.1997] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Host cell RNA polymerase II-mediated transcription is inhibited by poliovirus infection. Previous studies from our laboratory showed that activated transcription from a cyclic AMP-responsive element (CRE)-containing promoter was severely inhibited in extracts prepared from poliovirus-infected HeLa cells compared to those from mock-infected cells. Here we demonstrate that the CRE-binding protein, CREB, is specifically cleaved by the poliovirus-encoded protease 3Cpro both in vitro and in virus-infected cells. The proteolytic cleavage of CREB leads to a significant loss of its DNA binding as well as transcriptional activity. Additionally, we demonstrate that the phosphorylated, transcriptionally active form of CREB is cleaved by the viral protease in vitro. The results presented here suggest that a direct cleavage of CREB by the viral protease 3Cpro leads to inhibition of CREB-activated transcription in poliovirus-infected HeLa cells.
Collapse
Affiliation(s)
- P Yalamanchili
- Department of Microbiology and Immunology, Jonsson Comprehensive Cancer Center, UCLA School of Medicine, Los Angeles, California 90095-1747, USA
| | | | | |
Collapse
|
35
|
Shen Y, Igo M, Yalamanchili P, Berk AJ, Dasgupta A. DNA binding domain and subunit interactions of transcription factor IIIC revealed by dissection with poliovirus 3C protease. Mol Cell Biol 1996; 16:4163-71. [PMID: 8754815 PMCID: PMC231413 DOI: 10.1128/mcb.16.8.4163] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transcription factor IIIC (TFIIIC) is a general RNA polymerase III transcription factor that binds the B-box internal promotor element of tRNA genes and the complex of TFIIIA with a 5S rRNA gene. TFIIIC then directs the binding of TFIIIB to DNA upstream of the transcription start site. TFIIIB in turn directs RNA polymerase III binding and initiation. Human TFIIIC contains five different subunits. The 243-kDa alpha subunit can be specifically cross-linked to B-box DNA, but its sequence does not reveal a known DNA binding domain. During poliovirus infection, TFIIIC is cleaved and inactivated by the poliovirus-encoded 3C protease (3Cpro). Here we analyzed the cleavage of TFIIIC subunits by 3Cpro in vitro and during poliovirus infection of HeLa cells. Analyses of the DNA binding activities of the resulting subcomplexes indicated that an N-terminal 83-kDa domain of the alpha subunit associates with the beta subunit to generate the TFIIIC DNA binding domain. Cleavage with 3Cpro also generated an approximately 125-kDa C-terminal fragment of the alpha subunit which remained associated with the gamma and epsilon subunits.
Collapse
Affiliation(s)
- Y Shen
- Molecular Biology Institute, University of California, Los Angeles, 90095-1570, USA
| | | | | | | | | |
Collapse
|
36
|
Yalamanchili P, Harris K, Wimmer E, Dasgupta A. Inhibition of basal transcription by poliovirus: a virus- encoded protease (3Cpro) inhibits formation of TBP-TATA box complex in vitro. J Virol 1996; 70:2922-9. [PMID: 8627767 PMCID: PMC190150 DOI: 10.1128/jvi.70.5.2922-2929.1996] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Host cell RNA polymerase II (pol II)-mediated transcription is inhibited by poliovirus infection. We demonstrate here that both TATA- and initiator-mediated basal transcription is inhibited in extracts prepared from poliovirus-infected HeLa cells. This inhibition can be reproduced by incubation of uninfected HeLa cell extracts with purified, recombinant poliovirus protease, 3Cpro. Transient-transfection assays demonstrate that 3Cpro, in the absence of other viral proteins, is able to inhibit cellular pol II-mediated transcription in vivo. Three lines of evidence suggest that inactivation of TATA-binding protein (TBP) is the major cause of inhibition of basal transcription by poliovirus. First, RNA pol II transcription in poliovirus-infected cell extract is fully restored by bacterially expressed TBP. Second, addition of purified TBP restores transcription in heat-treated nuclear extracts from mock- and virus-infected cells to identical levels. Finally, using a gel mobility shift assay, we demonstrate that incubation of TBP with the viral protease (3Cpro) inhibits its ability to bind TATA sequence in vitro. These results suggest that inhibition of pol II transcription in mammalian cells infected with poliovirus is, at least in part, due to the inability of modified TBP to bind pol II promoter sequences.
Collapse
Affiliation(s)
- P Yalamanchili
- Department of Microbiology and Immunology, University of California, Los Angeles, School of Medicine, 90024-1747, USA
| | | | | | | |
Collapse
|
37
|
Gorbalenya AE, Snijder EJ. Viral cysteine proteinases. PERSPECTIVES IN DRUG DISCOVERY AND DESIGN : PD3 1996; 6:64-86. [PMID: 32288276 PMCID: PMC7104566 DOI: 10.1007/bf02174046] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/1996] [Accepted: 06/13/1996] [Indexed: 11/26/2022]
Abstract
Dozens of novel cysteine proteinases have been identified in positive single-stranded RNA viruses and, for the first time, in large double-stranded DNA viruses. The majority of these proteins are distantly related to papain or chymotrypsin and may be direct descendants of primordial proteolytic enzymes. Virus genome synthesis and expression, virion formation, virion entry into the host cell, as well as cellular architecture and functioning can be under the control of viral cysteine proteinases during infection. RNA virus proteinases mediate their liberation from giant multidomain precursors in which they tend to occupy conserved positions. These proteinases possess a narrow substrate specificity, can cleave in cis and in trans, and may also have additional, nonproteolytic functions. The mechanisms of catalysis, substrate recognition and RNA binding were highlighted by the recent analysis of the three-dimensional structure of the chymotrypsin-like cysteine proteinases of two RNA viruses.
Collapse
Affiliation(s)
- Alexander E Gorbalenya
- 1M.P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, 142782 Moscow Region
- 2A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899 Moscow, Russia
| | - Eric J Snijder
- 3Department of Virology, Institute of Medical Microbiology, Leiden University, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
38
|
Ansardi DC, Porter DC, Anderson MJ, Morrow CD. Poliovirus Assembly and Encapsidation of Genomic RNA. Adv Virus Res 1996. [DOI: 10.1016/s0065-3527(08)60069-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Yu SF, Benton P, Bovee M, Sessions J, Lloyd RE. Defective RNA replication by poliovirus mutants deficient in 2A protease cleavage activity. J Virol 1995; 69:247-52. [PMID: 7983716 PMCID: PMC188570 DOI: 10.1128/jvi.69.1.247-252.1995] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
2A protease (2Apro) catalyzes the initial cleavage of the poliovirus polyprotein which separates the P1 structural protein precursor from the P2-P3 nonstructural protein precursor. In addition, 2Apro indirectly induces cleavage of the p220 component of eukaryotic initiation factor 4F, which is thought to contribute to the specific inhibition of host cell protein synthesis observed in virus-infected HeLa cells. However, it is unclear whether the trans function of 2Apro which induces host cell shutoff is essential or merely facilitates efficient poliovirus replication. In this study, three point mutations in 2Apro (D38E, Y88L, and Y89L [S. F. Yu and R. E. Lloyd, Virology 182:615-625, 1991]) which cause specific loss of trans but not cis cleavage function were independently introduced into the full-length poliovirus cDNA. In addition, mutations which caused only partial loss of both cis and trans cleavage activities (Y88S) or resulted in a wild-type phenotype (Y88F) were individually introduced. When each of these mutant poliovirus cDNAs was transcribed and translated in vitro, normal proteolytic processing of the viral polyprotein was observed, and p220 was not cleaved in those reactions containing proteases defective in trans function, as expected. Surprisingly, Northern (RNA) blot analysis and reverse transcriptase-PCRs performed after transfection of COS-7 or HeLa cells with these viral RNAs revealed that Y88S and Y88L RNAs replicated at only very low levels. RNA replication could not be detected at all in cells transfected with D38E and Y89L RNAs. Taken together, the results suggest a correlation between the function of 2Apro and productive poliovirus RNA replication in vivo that may be independent of the ability to cause p220 cleavage.
Collapse
Affiliation(s)
- S F Yu
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City 73190
| | | | | | | | | |
Collapse
|