1
|
The poly-proline tail of SIVmac Vpx provides gain of function for resistance to a cryptic proteasome-dependent degradation pathway. Virology 2017; 511:23-29. [PMID: 28803141 DOI: 10.1016/j.virol.2017.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/29/2022]
Abstract
The lentiviral accessory protein Vpx is critical for viral infection of myeloid cells and acts by hijacking CRL4(DCAF1) E3 ubiquitin ligase to induce the degradation of the host restriction factor SAMHD1. It has been observed that the sequences from HIV-2 and SIVsmm/SIVmac Vpx contain a poly-proline tail which is distinct from other SIV Vpx proteins. However, the role of this region in Vpx function is controversial. Herein, we found proteasome-dependent degradation of a Vpx mutant lacking the poly-proline tail in the nucleus in a CRL4(DCAF1) E3 ligase-independent fashion. Unlike wild-type Vpx, the poly-proline tail mutant Vpx is partly defective in enhancing viral infection in macrophages. Our findings suggest that during Vpx evolution, Vpx of the HIV-2/SIVsm/SIVmac lineage is targeted by a CRL4(DCAF1) E3 ligase-independent ubiquitination pathway, and have gained this interesting region, allowing them to maintain nuclear accumulation as part of their adaptation to host cell regulation.
Collapse
|
2
|
Wang H, Guo H, Su J, Rui Y, Zheng W, Gao W, Zhang W, Li Z, Liu G, Markham RB, Wei W, Yu XF. Inhibition of Vpx-Mediated SAMHD1 and Vpr-Mediated Host Helicase Transcription Factor Degradation by Selective Disruption of Viral CRL4 (DCAF1) E3 Ubiquitin Ligase Assembly. J Virol 2017; 91:e00225-17. [PMID: 28202763 PMCID: PMC5391453 DOI: 10.1128/jvi.00225-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/21/2022] Open
Abstract
The lentiviral accessory proteins Vpx and Vpr are known to utilize CRL4 (DCAF1) E3 ligase to induce the degradation of the host restriction factor SAMHD1 or host helicase transcription factor (HLTF), respectively. Selective disruption of viral CRL4 (DCAF1) E3 ligase could be a promising antiviral strategy. Recently, we have determined that posttranslational modification (neddylation) of Cullin-4 is required for the activation of Vpx-CRL4 (DCAF1) E3 ligase. However, the mechanism of Vpx/Vpr-CRL4 (DCAF1) E3 ligase assembly is still poorly understood. Here, we report that zinc coordination is an important regulator of Vpx-CRL4 E3 ligase assembly. Residues in a conserved zinc-binding motif of Vpx were essential for the recruitment of the CRL4 (DCAF1) E3 complex and Vpx-induced SAMHD1 degradation. Importantly, altering the intracellular zinc concentration by treatment with the zinc chelator N,N,N'-tetrakis-(2'-pyridylmethyl)ethylenediamine (TPEN) potently blocked Vpx-mediated SAMHD1 degradation and inhibited wild-type SIVmac (simian immunodeficiency virus of macaques) infection of myeloid cells, even in the presence of Vpx. TPEN selectively inhibited Vpx and DCAF1 binding but not the Vpx-SAMHD1 interaction or Vpx virion packaging. Moreover, we have shown that zinc coordination is also important for the assembly of the HIV-1 Vpr-CRL4 E3 ligase. In particular, Vpr zinc-binding motif mutation or TPEN treatment efficiently inhibited Vpr-CRL4 (DCAF1) E3 ligase assembly and Vpr-mediated HLTF degradation or Vpr-induced G2 cell cycle arrest. Collectively, our study sheds light on a conserved strategy by the viral proteins Vpx and Vpr to recruit host CRL4 (DCAF1) E3 ligase, which represents a target for novel anti-human immunodeficiency virus (HIV) drug development.IMPORTANCE The Vpr and its paralog Vpx are accessory proteins encoded by different human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) lentiviruses. To facilitate viral replication, Vpx has evolved to induce SAMHD1 degradation and Vpr to mediate HLTF degradation. Both Vpx and Vpr perform their functions by recruiting CRL4 (DCAF1) E3 ligase. In this study, we demonstrate that the assembly of the Vpx- or Vpr-CRL4 E3 ligase requires a highly conserved zinc-binding motif. This motif is specifically required for the DCAF1 interaction but not for the interaction of Vpx or Vpr with its substrate. Selective disruption of Vpx- or Vpr-CRL4 E3 ligase function was achieved by zinc sequestration using N,N,N'-tetrakis-(2'-pyridylmethyl)ethylenediamine (TPEN). At the same time, zinc sequestration had no effect on zinc-dependent cellular protein functions. Therefore, information obtained from this study may be important for novel anti-HIV drug development.
Collapse
Affiliation(s)
- Hong Wang
- School of Life Science, Tianjin University, Tianjin, China
| | - Haoran Guo
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, People's Republic of China
| | - Jiaming Su
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yajuan Rui
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, People's Republic of China
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Wenwen Zheng
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, People's Republic of China
| | - Wenying Gao
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, People's Republic of China
| | - Wenyan Zhang
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, People's Republic of China
| | - Zhaolong Li
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, People's Republic of China
| | - Guanchen Liu
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, People's Republic of China
| | - Richard B Markham
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Wei Wei
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, People's Republic of China
| | - Xiao-Fang Yu
- School of Life Science, Tianjin University, Tianjin, China
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, People's Republic of China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Degradation of SAMHD1 by Vpx Is Independent of Uncoating. J Virol 2015; 89:5701-13. [PMID: 25762741 DOI: 10.1128/jvi.03575-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Sterile alpha motif domain and HD domain-containing protein 1 (SAMHD1) restricts human immunodeficiency virus type 1 (HIV-1) replication in myeloid and resting T cells. Lentiviruses such as HIV-2 and some simian immunodeficiency viruses (SIVs) counteract the restriction by encoding Vpx or Vpr, accessory proteins that are packaged in virions and which, upon entry of the virus into the cytoplasm, induce the proteasomal degradation of SAMHD1. As a tool to study these mechanisms, we generated HeLa cell lines that express a fusion protein termed NLS.GFP.SAM595 in which the Vpx binding domain of SAMHD1 is fused to the carboxy terminus of green fluorescent protein (GFP) and a nuclear localization signal is fused to the amino terminus of GFP. Upon incubation of Vpx-containing virions with the cells, the NLS.GFP.SAM595 fusion protein was degraded over several hours and the levels remained low over 5 days as the result of continued targeting of the CRL4 E3 ubiquitin ligase. Degradation of the fusion protein required that it contain a nuclear localization sequence. Fusion to the cytoplasmic protein muNS rendered the protein resistant to Vpx-mediated degradation, confirming that SAMHD1 is targeted in the nucleus. Virions treated with protease inhibitors failed to release Vpx, indicating that Gag processing was required for Vpx release from the virion. Mutations in the capsid protein that altered the kinetics of virus uncoating and the Gag binding drug PF74 had no effect on the Vpx-mediated degradation. These results suggest that Vpx is released from virions without a need for uncoating of the capsid, allowing Vpx to transit to the nucleus rapidly upon entry into the cytoplasm. IMPORTANCE SAMHD1 restricts lentiviral replication in myeloid cells and resting T cells. Its importance is highlighted by the fact that viruses such as HIV-2 encode an accessory protein that is packaged in the virion and is dedicated to inducing SAMHD1 degradation. Vpx needs to act rapidly upon infection to allow reverse transcription to proceed. The limited number of Vpx molecules in a virion also needs to clear the cell of SAMHD1 over a prolonged period of time. Using an engineered HeLa cell line that expresses a green fluorescent protein (GFP)-SAMHD1 fusion protein, we showed that the Vpx-dependent degradation occurs without a need for viral capsid uncoating. In addition, the fusion protein was degraded only when it was localized to the nucleus, confirming that SAMHD1 is targeted in the nucleus and thus explaining why Vpx also localizes to the nucleus.
Collapse
|
4
|
Zhu CF, Wei W, Peng X, Dong YH, Gong Y, Yu XF. The mechanism of substrate-controlled allosteric regulation of SAMHD1 activated by GTP. ACTA ACUST UNITED AC 2015; 71:516-24. [PMID: 25760601 DOI: 10.1107/s1399004714027527] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/17/2014] [Indexed: 12/20/2022]
Abstract
SAMHD1 is the only known eukaryotic deoxynucleoside triphosphate triphosphohydrolase (dNTPase) and is a major regulator of intracellular dNTP pools. It has been reported to be a potent inhibitor of retroviruses such as HIV-1 and endogenous retrotransposons. Previous crystal structures have revealed that SAMHD1 is activated by dGTP-dependent tetramer formation. However, recent data have indicated that the primary activator of SAMHD1 is GTP, not dGTP. Therefore, how its dNTPase activity is regulated needs to be further clarified. Here, five crystal structures of the catalytic core of SAMHD1 in complex with different combinations of GTP and dNTPs are reported, including a GTP-bound dimer and four GTP/dNTP-bound tetramers. The data show that human SAMHD1 contains two unique activator-binding sites in the allosteric pocket. The primary activator GTP binds to one site and the substrate dNTP (dATP, dCTP, dUTP or dTTP) occupies the other. Consequently, both GTP and dNTP are required for tetramer activation of the enzyme. In the absence of substrate binding, SAMHD1 adopts an inactive dimer conformation even when complexed with GTP. Furthermore, SAMHD1 activation is regulated by the concentration of dNTP. Thus, the level of dNTP pools is elegantly regulated by the self-sensing ability of SAMHD1 through a novel activation mechanism.
Collapse
Affiliation(s)
- Chun Feng Zhu
- School of Life Sciences, Tianjin University, Tianjin, People's Republic of China
| | - Wei Wei
- School of Life Sciences, Tianjin University, Tianjin, People's Republic of China
| | - Xin Peng
- School of Life Sciences, Tianjin University, Tianjin, People's Republic of China
| | - Yu Hui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China
| | - Yong Gong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China
| | - Xiao Fang Yu
- School of Life Sciences, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
5
|
Zhu C, Gao W, Zhao K, Qin X, Zhang Y, Peng X, Zhang L, Dong Y, Zhang W, Li P, Wei W, Gong Y, Yu XF. Structural insight into dGTP-dependent activation of tetrameric SAMHD1 deoxynucleoside triphosphate triphosphohydrolase. Nat Commun 2014; 4:2722. [PMID: 24217394 DOI: 10.1038/ncomms3722] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/07/2013] [Indexed: 01/20/2023] Open
Abstract
SAMHD1 is a dGTP-activated deoxynucleoside triphosphate triphosphohydrolase (dNTPase) whose dNTPase activity has been linked to HIV/SIV restriction. The mechanism of its dGTP-activated dNTPase function remains unclear. Recent data also indicate that SAMHD1 regulates retrotransposition of LINE-1 elements. Here we report the 1.8-Å crystal structure of homotetrameric SAMHD1 in complex with the allosteric activator and substrate dGTP/dATP. The structure indicates the mechanism of dGTP-dependent tetramer formation, which requires the cooperation of three subunits and two dGTP/dATP molecules at each allosteric site. Allosteric dGTP binding induces conformational changes at the active site, allowing a more stable interaction with the substrate and explaining the dGTP-induced SAMHD1 dNTPase activity. Mutations of dGTP binding residues in the allosteric site affect tetramer formation, dNTPase activity and HIV-1 restriction. dGTP-triggered tetramer formation is also important for SAMHD1-mediated LINE-1 regulation. The structural and functional information provided here should facilitate future investigation of SAMHD1 function, including dNTPase activity, LINE-1 modulation and HIV-1 restriction.
Collapse
Affiliation(s)
- Chunfeng Zhu
- 1] School of Life Sciences, Tianjin University, Tianjin 300072, China [2]
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lai CK, Saxena V, Tseng CH, Jeng KS, Kohara M, Lai MMC. Nonstructural protein 5A is incorporated into hepatitis C virus low-density particle through interaction with core protein and microtubules during intracellular transport. PLoS One 2014; 9:e99022. [PMID: 24905011 PMCID: PMC4048239 DOI: 10.1371/journal.pone.0099022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/09/2014] [Indexed: 01/16/2023] Open
Abstract
Nonstructural protein 5A (NS5A) of hepatitis C virus (HCV) serves dual functions in viral RNA replication and virus assembly. Here, we demonstrate that HCV replication complex along with NS5A and Core protein was transported to the lipid droplet (LD) through microtubules, and NS5A-Core complexes were then transported from LD through early-to-late endosomes to the plasma membrane via microtubules. Further studies by cofractionation analysis and immunoelectron microscopy of the released particles showed that NS5A-Core complexes, but not NS4B, were present in the low-density fractions, but not in the high-density fractions, of the HCV RNA-containing virions and associated with the internal virion core. Furthermore, exosomal markers CD63 and CD81 were also detected in the low-density fractions, but not in the high-density fractions. Overall, our results suggest that HCV NS5A is associated with the core of the low-density virus particles which exit the cell through a preexisting endosome/exosome pathway and may contribute to HCV natural infection.
Collapse
Affiliation(s)
- Chao-Kuen Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Toxicology, National Taiwan University, Taipei, Taiwan
| | - Vikas Saxena
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chung-Hsin Tseng
- Department of Microbiology and Immunology, and Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - King-Song Jeng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Michael M. C. Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, United States of America
- Department of Microbiology and Immunology, and Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
7
|
Schaller T, Bauby H, Hué S, Malim MH, Goujon C. New insights into an X-traordinary viral protein. Front Microbiol 2014; 5:126. [PMID: 24782834 PMCID: PMC3986551 DOI: 10.3389/fmicb.2014.00126] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/11/2014] [Indexed: 11/13/2022] Open
Abstract
Vpx is a protein encoded by members of the HIV-2/SIVsmm and SIVrcm/SIVmnd-2 lineages of primate lentiviruses, and is packaged into viral particles. Vpx plays a critical role during the early steps of the viral life cycle and has been shown to counteract SAMHD1, a restriction factor in myeloid and resting T cells. However, it is becoming evident that Vpx is a multifunctional protein in that SAMHD1 antagonism is likely not its sole role. This review summarizes the current knowledge on this X-traordinary protein.
Collapse
Affiliation(s)
- Torsten Schaller
- Department of Infectious Diseases, King's College London London, UK
| | - Hélène Bauby
- Department of Infectious Diseases, King's College London London, UK
| | - Stéphane Hué
- Department of Infection, Division of Infection and Immunity, Centre for Medical Molecular Virology, University College London London, UK
| | - Michael H Malim
- Department of Infectious Diseases, King's College London London, UK
| | - Caroline Goujon
- Department of Infectious Diseases, King's College London London, UK
| |
Collapse
|
8
|
Variation of two primate lineage-specific residues in human SAMHD1 confers resistance to N terminus-targeted SIV Vpx proteins. J Virol 2013; 88:583-91. [PMID: 24173216 DOI: 10.1128/jvi.02866-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) restricts human immunodeficiency virus type 1 (HIV-1) infection in myeloid cells but is inactivated by certain classes of simian immunodeficiency virus (SIV) Vpx proteins. Vpx proteins recruit the DCAF1-CRL4 E3 ubiquitin ligase to trigger species-specific SAMHD1 degradation. Determinants of SIV Vpx-mediated primate SAMHD1 degradation have been mapped to its C terminus. In this study, we have identified the N terminus of human SAMHD1 as a major species-specific determinant of Vpx-mediated suppression. The SIVmnd2 and SIVrcm Vpx proteins recognize the N terminus of rhesus, but not human, SAMHD1. We have also demonstrated that variation of two primate lineage-specific residues between human and rhesus SAMHD1 proteins determine resistance to SIVmnd2 and SIVrcm Vpx proteins. These residues (Cys15 and Ser52) are sequentially mutated to Phe in different lineages of Old World monkeys. Consequently, SIVmnd2 and SIVrcm Vpx proteins that could recognize Phe15- and Phe52-containing SAMHD1 could not inactivate human SAMHD1, which contains Cys15 and Ser52. In contrast, SIVmac Vpx, which targets the C terminus of SAMHD1 molecules, could inactivate various primate SAMHD1 molecules with divergent C-terminal sequences. Both C terminus-targeted SIVmac Vpx and N terminus-targeted SIVrcm Vpx require DCAF1 for the induction of SAMHD1 degradation. The ability of SIV Vpx to restrict SAMHD1 among different primate species is a manifestation of the SAMHD1 evolutionary pattern among those species.
Collapse
|
9
|
Guo H, Wei W, Wei Z, Liu X, Evans SL, Yang W, Wang H, Guo Y, Zhao K, Zhou JY, Yu XF. Identification of critical regions in human SAMHD1 required for nuclear localization and Vpx-mediated degradation. PLoS One 2013; 8:e66201. [PMID: 23874389 PMCID: PMC3708934 DOI: 10.1371/journal.pone.0066201] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 05/02/2013] [Indexed: 01/19/2023] Open
Abstract
The sterile alpha motif (SAM) and HD domain-containing protein-1 (SAMHD1) inhibits the infection of resting CD4+ T cells and myeloid cells by human and related simian immunodeficiency viruses (HIV and SIV). Vpx inactivates SAMHD1 by promoting its proteasome-dependent degradation through an interaction with CRL4 (DCAF1) E3 ubiquitin ligase and the C-terminal region of SAMHD1. However, the determinants in SAMHD1 that are required for Vpx-mediated degradation have not been well characterized. SAMHD1 contains a classical nuclear localization signal (NLS), and NLS point mutants are cytoplasmic and resistant to Vpx-mediated degradation. Here, we demonstrate that NLS-mutant SAMHD1 K11A can be rescued by wild-type SAMHD1, restoring its nuclear localization; consequently, SAMHD1 K11A became sensitive to Vpx-mediated degradation in the presence of wild-type SAMHD1. Surprisingly, deletion of N-terminal regions of SAMHD1, including the classical NLS, generated mutant SAMHD1 proteins that were again sensitive to Vpx-mediated degradation. Unlike SAMHD1 K11A, these deletion mutants could be detected in the nucleus. Interestingly, NLS-defective SAMHD1 could still bind to karyopherin-β1 and other nuclear proteins. We also determined that the linker region between the SAM and HD domain and the HD domain itself is important for Vpx-mediated degradation but not Vpx interaction. Thus, SAMHD1 contains an additional nuclear targeting mechanism in addition to the classical NLS. Our data indicate that multiple regions in SAMHD1 are critical for Vpx-mediated nuclear degradation and that association with Vpx is not sufficient for Vpx-mediated degradation of SAMHD1. Since the linker region and HD domain may be involved in SAMHD1 multimerization, our results suggest that SAMHD1 multimerization may be required for Vpx-mediation degradation.
Collapse
Affiliation(s)
- Haoran Guo
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Zhenhong Wei
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xianjun Liu
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Sean L. Evans
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Weiming Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Hong Wang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ying Guo
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ke Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jian-Ying Zhou
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Xiao-Fang Yu
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
10
|
Abstract
Primate immunodeficiency viruses are highly specialized lentiviruses that have evolved to successfully infect and persist for the lifetime of the host. Despite encountering numerous potent antiviral factors, HIVs and SIVs are successful pathogens due to the acquisition of equally potent countermeasures in the form of accessory genes. The accessory gene Vpx encoded by HIV-2 and a subset of SIVs have a profound effect on the ability of lentiviruses to infect non-dividing cells, such as macrophages. Although most virus replication occurs in activated CD4(+) T cells, myeloid lineage cells are natural targets of infection and play a central role in virus transmission, dissemination, and persistence. However, myeloid lineage cells are poorly sensitive to lentiviral infection due partly to the high-level expression of a host protein that regulates nucleic acid metabolism named SAMHD1. Degradation of SAMHD1 is induced by Vpx to eliminate this intrinsic antiviral factor. Importantly, SAMHD1 has also been implicated as a negative regulator of the innate immune response, so the interplay between SAMHD1 and Vpx is likely to have significant consequences for virus replication, persistence, and immune control.
Collapse
Affiliation(s)
- Mark Sharkey
- University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
11
|
Evidence for Vpr-dependent HIV-1 replication in human CD4+ CEM.NKR T-cells. Retrovirology 2012; 9:93. [PMID: 23134572 PMCID: PMC3528630 DOI: 10.1186/1742-4690-9-93] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 10/11/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Vpr is exclusively expressed in primate lentiviruses and contributes to viral replication and disease progression in vivo. HIV-1 Vpr has two major activities in vitro: arrest of cell cycle in the G2 phase (G2 arrest), and enhancement of viral replication in macrophages. Previously, we reported a potent HIV-1 restriction in the human CD4+ CEM.NKR (NKR) T cells, where wild-type (WT) HIV-1 replication was inhibited by almost 1,000-fold. From the parental NKR cells, we isolated eight clones by limiting dilution. These clones showed three levels of resistance to the WT HIV-1 infection: non-permissive (NP), semi-permissive (SP), and permissive (P). Here, we compared the replication of WT, Vif-defective, Vpr-defective, and Vpu-defective viruses in these cells. RESULTS Although both WT and Vpu-defective viruses could replicate in the permissive and semi-permissive clones, the replication of Vif-defective and Vpr-defective viruses was completely restricted. The expression of APOBEC3G (A3G) cytidine deaminase in NKR cells explains why Vif, but not Vpr, was required for HIV-1 replication. When the Vpr-defective virus life cycle was compared with the WT virus life cycle in the semi-permissive cells, it was found that the Vpr-defective virus could enter the cell and produce virions containing properly processed Gag and Env proteins, but these virions showed much less efficiency for reverse transcription during the next-round of infection. In addition, although viral replication was restricted in the non-permissive cells, treatment with arsenic trioxide (As2O3) could completely restore WT, but not Vpr-defective virus replication. Moreover, disruption of Vpr binding to its cofactor DCAF1 and/or induction of G2 arrest activity did not disrupt the Vpr activity in enhancing HIV-1 replication in NKR cells. CONCLUSIONS These results demonstrate that HIV-1 replication in NKR cells is Vpr-dependent. Vpr promotes HIV-1 replication from the 2nd cycle likely by overcoming a block at early stage of viral replication; and this activity does not require DCAF1 and G2 arrest. Further studies of this mechanism should provide new understanding of Vpr function in the HIV-1 life cycle.
Collapse
|
12
|
Wei W, Guo H, Han X, Liu X, Zhou X, Zhang W, Yu XF. A novel DCAF1-binding motif required for Vpx-mediated degradation of nuclear SAMHD1 and Vpr-induced G2 arrest. Cell Microbiol 2012; 14:1745-1756. [PMID: 22776683 DOI: 10.1111/j.1462-5822.2012.01835.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 06/07/2012] [Accepted: 06/29/2012] [Indexed: 12/19/2022]
Abstract
HIV-2 and closely related SIV Vpx proteins are essential for viral replication in macrophages and dendritic cells. Vpx hijacks DCAF1-DDB1-Cul4 E3 ubiquitin ligase to promote viral replication. DCAF1 is essential for cell proliferation and embryonic development and is responsible for the polyubiquitination of poorly defined cellular proteins. How substrate receptors recruit the DCAF1-containing E3 ubiquitin ligase to induce protein degradation is still poorly understood. Here we identify a highly conserved motif (Wx4Φx2Φx3AΦxH) that is present in diverse Vpx and Vpr proteins of primate lentiviruses. We demonstrate that the Wx4Φx2Φx3AΦxH motif in SIVmac Vpx is required for both the Vpx-DCAF1 interaction and/or Vpx-mediated degradation of SAMHD1. DCAF1-binding defective Vpx mutants also have impaired ability to promote SIVΔVpx virus infection of myeloid cells. Critical amino acids in the Wx4Φx2Φx3AΦxH motif of SIV Vpx that are important for DCAF1 interaction maintained the ability to bind SAMHD1, indicating that the DCAF1 and SAMHD1 interactions involve distinctive interfaces in Vpx. Surprisingly, VpxW24A mutant proteins that were still capable of binding DCAF1 and SAMHD1 lost the ability to induce SAMHD1 degradation, suggesting that Vpx is not a simple linker between the DCAF1-DDB1-Cul4 E3 ubiquitin ligase and its substrate, SAMHD1.VpxW24A maintained the ability to accumulate in the nucleus despite the fact that nuclear, but not cytoplasmic, mutant forms of SAMHD1 were more sensitive to Vpx-mediated degradation. The Wx4Φx2Φx3AΦxH motif in HIV-1 Vpr is also required for the Vpr-DCAF1 interaction and Vpr-induced G2 cell cycle arrest. Thus, our data reveal previously unrecognized functional interactions involved in the assembly of virally hijacked DCAF1-DDB1-based E3 ubiquitin ligase complex.
Collapse
Affiliation(s)
- Wei Wei
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Bobadilla S, Sunseri N, Landau NR. Efficient transduction of myeloid cells by an HIV-1-derived lentiviral vector that packages the Vpx accessory protein. Gene Ther 2012; 20:514-20. [PMID: 22895508 DOI: 10.1038/gt.2012.61] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lentiviral vectors are widely used for the stable expression of genes and small hairpin RNA (shRNA)-mediated knockdown and are currently under development for clinical use in gene therapy. Pseudotyping of the vectors with VSV-G allows them to infect a wide range of cell types. However, myeloid cells, such as dendritic cells and macrophages, are relatively refractory to lentiviral vector transduction as a result of the myeloid-specific restriction factor, SAMHD1. SIVmac/HIV-2 and related viruses relieve the SAMHD1-mediated restriction by encoding Vpx, a virion-packaged accessory protein that induces the degradation of SAMHD1 upon infection. HIV-1 does not encode Vpx and cannot package the protein. We report the development of an HIV-1-based lentiviral vector in which the Vpx packaging motif has been placed in the p6 region of the Gag/Pol expression vector that is used to generate the lentiviral vector virions. The virions package Vpx in high copy number and infect myeloid cells with a two-log increase in titer. Transduction of dendritic cells with an shRNA against transportin-3 resulted in >90% knockdown of the encoding mRNA. The system can be applied to any HIV-based lentiviral vector and is useful for laboratory and clinical applications where the efficient transduction of myeloid cells is required.
Collapse
Affiliation(s)
- S Bobadilla
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
14
|
Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, Bloch N, Maudet C, Bertrand M, Gramberg T, Pancino G, Priet S, Canard B, Laguette N, Benkirane M, Transy C, Landau NR, Kim B, Margottin-Goguet F. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 2012; 13:223-228. [PMID: 22327569 PMCID: PMC3771401 DOI: 10.1038/ni.2236] [Citation(s) in RCA: 674] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/13/2012] [Indexed: 02/06/2023]
Abstract
SAMHD1 restricts the infection of dendritic and other myeloid cells by human immunodeficiency virus type 1 (HIV-1), but in lentiviruses of the simian immunodeficiency virus of sooty mangabey (SIVsm)-HIV-2 lineage, SAMHD1 is counteracted by the virion-packaged accessory protein Vpx. Here we found that SAMHD1 restricted infection by hydrolyzing intracellular deoxynucleoside triphosphates (dNTPs), lowering their concentrations to below those required for the synthesis of the viral DNA by reverse transcriptase (RT). SAMHD1-mediated restriction was alleviated by the addition of exogenous deoxynucleosides. An HIV-1 with a mutant RT with low affinity for dNTPs was particularly sensitive to SAMHD1-mediated restriction. Vpx prevented the SAMHD1-mediated decrease in dNTP concentration and induced the degradation of human and rhesus macaque SAMHD1 but had no effect on mouse SAMHD1. Nucleotide-pool depletion could be a general mechanism for protecting cells from infectious agents that replicate through a DNA intermediate.
Collapse
Affiliation(s)
- Hichem Lahouassa
- Inserm, U1016, Institut Cochin, 27 rue du faubourg St Jacques, Bat G. Roussy, 75014 Paris France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
| | - Waaqo Daddacha
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Henning Hofmann
- New York University School of Medicine, Microbiology Department, 550 First Ave., New York, NY 10016, USA
| | - Diana Ayinde
- Inserm, U1016, Institut Cochin, 27 rue du faubourg St Jacques, Bat G. Roussy, 75014 Paris France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
| | - Eric C. Logue
- New York University School of Medicine, Microbiology Department, 550 First Ave., New York, NY 10016, USA
| | - Loïc Dragin
- Inserm, U1016, Institut Cochin, 27 rue du faubourg St Jacques, Bat G. Roussy, 75014 Paris France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
| | - Nicolin Bloch
- New York University School of Medicine, Microbiology Department, 550 First Ave., New York, NY 10016, USA
| | - Claire Maudet
- Inserm, U1016, Institut Cochin, 27 rue du faubourg St Jacques, Bat G. Roussy, 75014 Paris France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
| | - Matthieu Bertrand
- Inserm, U1016, Institut Cochin, 27 rue du faubourg St Jacques, Bat G. Roussy, 75014 Paris France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
| | - Thomas Gramberg
- Virologisches Institut, Klinische und Molekulare Virologie, Universitat Erlangen-Nurnberg, 91054 Erlangen
| | - Gianfranco Pancino
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Stéphane Priet
- Laboratoire d’Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS-Universitéd’Aix-Marseille, 13288 Marseille cedex 09, France
| | - Bruno Canard
- Laboratoire d’Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS-Universitéd’Aix-Marseille, 13288 Marseille cedex 09, France
| | - Nadine Laguette
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS UPR1142, Montpellier 34000, France
| | - Monsef Benkirane
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS UPR1142, Montpellier 34000, France
| | - Catherine Transy
- Inserm, U1016, Institut Cochin, 27 rue du faubourg St Jacques, Bat G. Roussy, 75014 Paris France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
| | - Nathaniel R. Landau
- New York University School of Medicine, Microbiology Department, 550 First Ave., New York, NY 10016, USA
| | - Baek Kim
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Florence Margottin-Goguet
- Inserm, U1016, Institut Cochin, 27 rue du faubourg St Jacques, Bat G. Roussy, 75014 Paris France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
| |
Collapse
|
15
|
Gupta P, Singhal PK, Rajendrakumar P, Padwad Y, Tendulkar AV, Kalyanaraman VS, Schmidt RE, Srinivasan A, Mahalingam S. Mechanism of host cell MAPK/ERK-2 incorporation into lentivirus particles: characterization of the interaction between MAPK/ERK-2 and proline-rich-domain containing capsid region of structural protein Gag. J Mol Biol 2011; 410:681-97. [PMID: 21762808 DOI: 10.1016/j.jmb.2011.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 01/11/2023]
Abstract
The characteristic event that follows infection of a cell by retroviruses Including human immunodeficiency virus (HIV)/ simian immunodeficiency virus (SIV) is the formation of a reverse transcription complex in which viral nucleic acids are synthesized. Nuclear transport of newly synthesized viral DNA requires phosphorylation of proteins in the reverse transcription complex by virion-associated cellular kinases. Recently, we demonstrated that disruption of cellular mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase 2 (ERK-2) incorporation into SIV virions inhibits virus replication in nonproliferating target cells, indicating that MAPK/ERK-2 plays an important role in HIV /SIV replication. The mechanism of incorporation of MAPK/ERK-2 into virus particles is not defined. In this regard, we hypothesized that a likely interaction of MAPK/ERK-2 with Gag(p55) may enable its packaging into virus particles. In the present investigation, we provided evidence for the first time that MAPK/ERK-2 interacts with the structural Gag polyprotein p55 using a combination of mutagenesis and protein-protein interaction analysis. We further show that MAPK/ERK-2 interacts specifically with the poly-proline motif present in the capsid region of Gag(p55). Utilizing virus-like particles directed by Gag, we have shown that the exchange of conserved proline residues within capsid of Gag(p55) resulted in impaired incorporation of MAPK/ERK-2. In addition, the deletion of a domain comprising amino acids 201 to 255 within host cell MAPK/ERK-2 abrogates its interaction with Gag(p55). The relevance of the poly-proline motif is further evident by its conservation in diverse retroviruses, as noted from the sequence analysis and structural modeling studies of predicted amino acid sequences of the corresponding Gag proteins. Collectively, these data suggest that the interaction of MAPK/ERK-2 with Gag polyprotein results in its incorporation into virus particles and may be essential for retroviral replication.
Collapse
Affiliation(s)
- Pankaj Gupta
- Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, India
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pertel T, Reinhard C, Luban J. Vpx rescues HIV-1 transduction of dendritic cells from the antiviral state established by type 1 interferon. Retrovirology 2011; 8:49. [PMID: 21696578 PMCID: PMC3130655 DOI: 10.1186/1742-4690-8-49] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/22/2011] [Indexed: 01/08/2023] Open
Abstract
Background Vpx is a virion-associated protein encoded by SIVSM, a lentivirus endemic to the West African sooty mangabey (Cercocebus atys). HIV-2 and SIVMAC, zoonoses resulting from SIVSM transmission to humans or Asian rhesus macaques (Macaca mulatta), also encode Vpx. In myeloid cells, Vpx promotes reverse transcription and transduction by these viruses. This activity correlates with Vpx binding to DCAF1 (VPRBP) and association with the DDB1/RBX1/CUL4A E3 ubiquitin ligase complex. When delivered experimentally to myeloid cells using VSV G-pseudotyped virus-like particles (VLPs), Vpx promotes reverse transcription of retroviruses that do not normally encode Vpx. Results Here we show that Vpx has the extraordinary ability to completely rescue HIV-1 transduction of human monocyte-derived dendritic cells (MDDCs) from the potent antiviral state established by prior treatment with exogenous type 1 interferon (IFN). The magnitude of rescue was up to 1,000-fold, depending on the blood donor, and was also observed after induction of endogenous IFN and IFN-stimulated genes (ISGs) by LPS, poly(I:C), or poly(dA:dT). The effect was relatively specific in that Vpx-associated suppression of soluble IFN-β production, of mRNA levels for ISGs, or of cell surface markers for MDDC differentiation, was not detected. Vpx did not rescue HIV-2 or SIVMAC transduction from the antiviral state, even in the presence of SIVMAC or HIV-2 VLPs bearing additional Vpx, or in the presence of HIV-1 VLPs bearing all accessory genes. In contrast to the effect of Vpx on transduction of untreated MDDCs, HIV-1 rescue from the antiviral state was not dependent upon Vpx interaction with DCAF1 or on the presence of DCAF1 within the MDDC target cells. Additionally, although Vpx increased the level of HIV-1 reverse transcripts in MDDCs to the same extent whether or not MDDCs were treated with IFN or LPS, Vpx rescued a block specific to the antiviral state that occurred after HIV-1 cDNA penetrated the nucleus. Conclusion Vpx provides a tool for the characterization of a potent, new HIV-1 restriction activity, which acts in the nucleus of type 1 IFN-treated dendritic cells.
Collapse
Affiliation(s)
- Thomas Pertel
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
17
|
Human immunodeficiency virus type 1 modified to package Simian immunodeficiency virus Vpx efficiently infects macrophages and dendritic cells. J Virol 2011; 85:6263-74. [PMID: 21507971 DOI: 10.1128/jvi.00346-11] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The lentiviral accessory protein Vpx is thought to facilitate the infection of macrophages and dendritic cells by counteracting an unidentified host restriction factor. Although human immunodeficiency virus type 1 (HIV-1) does not encode Vpx, the accessory protein can be provided to monocyte-derived macrophages (MDM) and monocyte-derived dendritic cells (MDDC) in virus-like particles, dramatically enhancing their susceptibility to HIV-1. Vpx and the related accessory protein Vpr are packaged into virions through a virus-specific interaction with the p6 carboxy-terminal domain of Gag. We localized the minimal Vpx packaging motif of simian immunodeficiency virus SIVmac(239) p6 to a 10-amino-acid motif and introduced this sequence into an infectious HIV-1 provirus. The chimeric virus packaged Vpx that was provided in trans and was substantially more infectious on MDDC and MDM than the wild-type virus. We further modified the virus by introducing the Vpx coding sequence in place of nef. The resulting virus produced Vpx and replicated efficiently in MDDC and MDM. The virus also induced a potent type I interferon response in MDDC. In a coculture system, the Vpx-containing HIV-1 was more efficiently transmitted from MDDC to T cells. These findings suggest that in vivo, Vpx may facilitate transmission of the virus from dendritic cells to T cells. In addition, the chimeric virus could be used to design dendritic cell vaccines that induce an enhanced innate immune response. This approach could also be useful in the design of lentiviral vectors that transduce these relatively resistant cells.
Collapse
|
18
|
Ayinde D, Maudet C, Transy C, Margottin-Goguet F. Limelight on two HIV/SIV accessory proteins in macrophage infection: is Vpx overshadowing Vpr? Retrovirology 2010; 7:35. [PMID: 20380700 PMCID: PMC2867959 DOI: 10.1186/1742-4690-7-35] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 04/09/2010] [Indexed: 01/16/2023] Open
Abstract
HIV viruses encode a set of accessory proteins, which are important determinants of virulence due to their ability to manipulate the host cell physiology for the benefit of the virus. Although these viral proteins are dispensable for viral growth in many in vitro cell culture systems, they influence the efficiency of viral replication in certain cell types. Macrophages are early targets of HIV infection which play a major role in viral dissemination and persistence in the organism. This review focuses on two HIV accessory proteins whose functions might be more specifically related to macrophage infection: Vpr, which is conserved across primate lentiviruses including HIV-1 and HIV-2, and Vpx, a protein genetically related to Vpr, which is unique to HIV-2 and a subset of simian lentiviruses. Recent studies suggest that both Vpr and Vpx exploit the host ubiquitination machinery in order to inactivate specific cellular proteins. We review here why it remains difficult to decipher the role of Vpr in macrophage infection by HIV-1 and how recent data underscore the ability of Vpx to antagonize a restriction factor which counteracts synthesis of viral DNA in monocytic cells.
Collapse
Affiliation(s)
- Diana Ayinde
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | | | | | | |
Collapse
|
19
|
Kaushik R, Zhu X, Stranska R, Wu Y, Stevenson M. A cellular restriction dictates the permissivity of nondividing monocytes/macrophages to lentivirus and gammaretrovirus infection. Cell Host Microbe 2009; 6:68-80. [PMID: 19616766 DOI: 10.1016/j.chom.2009.05.022] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 03/13/2009] [Accepted: 05/15/2009] [Indexed: 12/17/2022]
Abstract
Primate lentiviruses, including HIV-1, transduce terminally differentiated, nondividing myeloid cells; however, these cells are refractory to infection by gammaretroviruses such as murine leukemia virus (MLV). Here, we present evidence that a cellular restriction is the obstacle to transduction of macrophages by MLV. Neutralization of the restriction by Vpx, a primate lentiviral protein previously shown to protect primate lentiviruses from a macrophage restriction, rendered macrophages permissive to MLV infection. We further demonstrate that this restriction prevents transduction of quiescent monocytes by HIV-1. Monocyte-HeLa heterokaryons were resistant to HIV-1 infection, while heterokaryons formed between monocytes and HeLa cells expressing Vpx were permissive to HIV-1 infection. Encapsidation of Vpx within HIV-1 virions conferred the ability to infect quiescent monocytes. Collectively, our results indicate that the relative ability of lentiviruses and gammaretroviruses to transduce nondividing myeloid cells is dependent upon their ability to neutralize a cellular restriction.
Collapse
Affiliation(s)
- Rajnish Kaushik
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
The HIV genome encodes several accessory proteins (Vif, Vpr, Vpx, Vpu, and Nef) unique to primate lentiviruses, in addition to the structural (Gag, Pol, and Env) and regulatory (Tat and Rev) proteins. Early studies showed that deletion of accessory proteins has a small or no effect on virus replication in cell cultures. However, recent studies have clearly demonstrated that these proteins are essential for efficient viral replication, dissemination, pathogenicity, and disease progression. Here, we summarize the current knowledge of HIV accessory proteins and their cellular targets, and discuss the functional roles of these biologically unique and important viral proteins for virus replication in vitro and in vivo.
Collapse
Affiliation(s)
- Masako Nomaguchi
- Department of Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto, Tokushima 770-8503, Japan
| | | |
Collapse
|
21
|
Characterization of simian immunodeficiency virus SIVSM/human immunodeficiency virus type 2 Vpx function in human myeloid cells. J Virol 2008; 82:12335-45. [PMID: 18829761 DOI: 10.1128/jvi.01181-08] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2)/simian immunodeficiency virus SIV(SM) Vpx is incorporated into virion particles and is thus present during the early steps of infection, when it has been reported to influence the nuclear import of viral DNA. We recently reported that Vpx promoted the accumulation of full-length viral DNA following the infection of human monocyte-derived dendritic cells (DCs). This positive effect was exerted following the infection of DCs with cognate viruses and with retroviruses as divergent as HIV-1, feline immunodeficiency virus, and even murine leukemia virus, leading us to suggest that Vpx counteracted an antiviral restriction present in DCs. Here, we show that Vpx is required, albeit to a different extent, for the infection of all myeloid but not of lymphoid cells, including monocytes, macrophages, and monocytoid THP-1 cells that had been induced to differentiate with phorbol esters. The intracellular localization of Vpx was highly heterogeneous and cell type dependent, since Vpx localized differently in HeLa cells and DCs. Despite these differences, no clear correlation between the functionality of Vpx and its intracellular localization could be drawn. As a first insight into its function, we determined that SIV(SM)/HIV-2 and SIV(RCM) Vpx proteins interact with the DCAF1 adaptor of the Cul4-based E3 ubiquitin ligase complex recently described to associate with HIV-1 Vpr and HIV-2 Vpx. However, the functionality of Vpx proteins in the infection of DCs did not strictly correlate with DCAF1 binding, and knockdown experiments failed to reveal a functional role for this association in differentiated THP-1 cells. Lastly, when transferred in the context of a replication-competent viral clone, Vpx was required for replication in DCs.
Collapse
|
22
|
Srivastava S, Swanson SK, Manel N, Florens L, Washburn MP, Skowronski J. Lentiviral Vpx accessory factor targets VprBP/DCAF1 substrate adaptor for cullin 4 E3 ubiquitin ligase to enable macrophage infection. PLoS Pathog 2008; 4:e1000059. [PMID: 18464893 PMCID: PMC2330158 DOI: 10.1371/journal.ppat.1000059] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 04/08/2008] [Indexed: 11/17/2022] Open
Abstract
Vpx is a small virion-associated adaptor protein encoded by viruses of the HIV-2/SIVsm lineage of primate lentiviruses that enables these viruses to transduce monocyte-derived cells. This probably reflects the ability of Vpx to overcome an as yet uncharacterized block to an early event in the virus life cycle in these cells, but the underlying mechanism has remained elusive. Using biochemical and proteomic approaches, we have found that Vpx protein of the pathogenic SIVmac 239 strain associates with a ternary protein complex comprising DDB1 and VprBP subunits of Cullin 4–based E3 ubiquitin ligase, and DDA1, which has been implicated in the regulation of E3 catalytic activity, and that Vpx participates in the Cullin 4 E3 complex comprising VprBP. We further demonstrate that the ability of SIVmac as well as HIV-2 Vpx to interact with VprBP and its associated Cullin 4 complex is required for efficient reverse transcription of SIVmac RNA genome in primary macrophages. Strikingly, macrophages in which VprBP levels are depleted by RNA interference resist SIVmac infection. Thus, our observations reveal that Vpx interacts with both catalytic and regulatory components of the ubiquitin proteasome system and demonstrate that these interactions are critical for Vpx ability to enable efficient SIVmac replication in primary macrophages. Furthermore, they identify VprBP/DCAF1 substrate receptor for Cullin 4 E3 ubiquitin ligase and its associated protein complex as immediate downstream effector of Vpx for this function. Together, our findings suggest a model in which Vpx usurps VprBP-associated Cullin 4 ubiquitin ligase to enable efficient reverse transcription and thereby overcome a block to lentivirus replication in monocyte-derived cells, and thus provide novel insights into the underlying molecular mechanism. Monocyte-derived tissue macrophages play crucial roles in infection by primate lentiviruses. Human and simian lentiviruses of the HIV-2 and SIVsm/mac lineages encode a virion-bound virulence factor termed Vpx. Vpx is required to establish infection specifically of monocyte-derived cells, but the underlying molecular mechanism is unclear. In this study we characterize how the replication of SIVmac is blocked in the absence of Vpx and how Vpx overcomes this block. We find that Vpx is required for efficient reverse transcription of the incoming RNA genome, suggesting that Vpx acts early following virion entry into the macrophage, probably on events linked to virion uncoating and/or reverse transcription. We also identified a Vpx-associated ternary protein complex that is the key mediator of Vpx function specifically in macrophages. This complex links Vpx to the cellular machinery that mediates protein ubiquitination and degradation. Together, we describe the immediate downstream effector, the molecular machinery and a tentative mechanism that lentiviral Vpx uses to enable reverse transcription in macrophages. Our findings should lead to the conception of new strategies to control macrophage infection by human and simian lentiviruses.
Collapse
Affiliation(s)
- Smita Srivastava
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | | | | | | | | | | |
Collapse
|
23
|
Wolfrum N, Mühlebach MD, Schüle S, Kaiser JK, Kloke BP, Cichutek K, Schweizer M. Impact of viral accessory proteins of SIVsmmPBj on early steps of infection of quiescent cells. Virology 2007; 364:330-41. [PMID: 17418360 DOI: 10.1016/j.virol.2007.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 12/21/2006] [Accepted: 03/05/2007] [Indexed: 11/24/2022]
Abstract
Although lentiviruses like HIV-1 are able to infect non-dividing cells, particular resting cells such as non-stimulated primary peripheral blood mononuclear cells (PBMC) are resistant to infection. In contrast to other lentiviruses, SIVsmmPBj can replicate in non-stimulated PBMC. Moreover, SIVsmmPBj-derived, but not HIV-1-derived, replication-incompetent vectors enable gene transfer into G(0)-arrested human cell lines and primary human monocytes. Here, we demonstrate that transduction of G(0)-arrested cell lines by SIVsmmPBj-derived vectors is independent of the viral accessory proteins Vif, Vpx, Vpr, or Nef. In contrast, for the transduction of primary human monocytes, the Vpx protein proved to be essential. However, trans-complementation of HIV-1 vectors with SIVsmmPBj Vpx did not provide the property of gene transfer into monocytes. Taken together, these data indicate that Vpx is essential for the infection of primary monocytes by SIVsmmPBj. Additionally, further genome functions besides the accessory proteins are required for the particular capacity of SIVsmmPBj in transduction or infection events.
Collapse
Affiliation(s)
- Nina Wolfrum
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, Langen, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Mahnke LA, Belshan M, Ratner L. Analysis of HIV-2 Vpx by modeling and insertional mutagenesis. Virology 2006; 348:165-74. [PMID: 16457868 DOI: 10.1016/j.virol.2005.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 11/22/2005] [Accepted: 12/09/2005] [Indexed: 11/27/2022]
Abstract
Vpx facilitates HIV-2 nuclear localization by a poorly understood mechanism. We have compared Vpx to an NMR structure HIV-1 Vpr in a central helical domain and probed regions of Vpx by insertional mutagenesis. A predicted loop between helices two and three appears to be unique, overlapping with a known novel nuclear localization signal. Overall, Vpx was found to be surprisingly flexible, tolerating a series of large insertions. We found that insertion within the polyproline-containing C-terminus destabilizes nuclear localization, whereas mutating a second helix in the central domain disrupts viral packaging. Other insertional mutants in the predicted loop and in a linker region between the central domain and the C-terminus may be useful as sites of intramolecular tags as they could be packaged adequately and retained preintegration complex associated integration activity in a serum starvation assay. An unexpected result was found within a previously defined nuclear localization motif near aa 71. This mutant retained robust nuclear localization in a GFP fusion assay and was competent for preintegration complex associated nuclear import. In summary, we have modeled helical content in Vpx and assessed potential sites of intramolecular tags which may prove useful for protein-protein interactions studies.
Collapse
MESH Headings
- Amino Acid Sequence
- Cell Nucleus/chemistry
- Gene Products, vpr/chemistry
- Genes, Reporter
- Green Fluorescent Proteins/analysis
- HIV-2/chemistry
- HIV-2/genetics
- HIV-2/physiology
- Microscopy, Fluorescence
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Insertional
- Nuclear Magnetic Resonance, Biomolecular
- Protein Structure, Secondary
- Protein Structure, Tertiary/genetics
- Protein Structure, Tertiary/physiology
- Protein Transport
- Sequence Alignment
- Viral Regulatory and Accessory Proteins/analysis
- Viral Regulatory and Accessory Proteins/chemistry
- Viral Regulatory and Accessory Proteins/genetics
- Viral Regulatory and Accessory Proteins/physiology
- Virus Assembly/genetics
- vpr Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Lisa A Mahnke
- Department of Medicine, Divisions of Oncology and Infections Diseases, Washington University School of Medicine, PO Box 8069, 660 South Euclid Avenue, Saint Louis, MO 63110, USA.
| | | | | |
Collapse
|
25
|
Rajendra Kumar P, Singhal PK, Subba Rao MRK, Mahalingam S. Phosphorylation by MAPK Regulates Simian Immunodeficiency Virus Vpx Protein Nuclear Import and Virus Infectivity. J Biol Chem 2005; 280:8553-63. [PMID: 15556948 DOI: 10.1074/jbc.m407863200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transport of the viral genome into the nucleus required phosphorylation of components in the preintegration complex by virion-associated host cellular kinases. In this study, we showed that ERK-2/MAPK is associated with simian immunodeficiency virus (SIV) virions and regulated the nuclear transport of Vpx and virus replication in non-proliferating target cells by phosphorylating Vpx. Suppression of the virion-associated ERK-2 activity by MAPK pathway inhibitors impaired both Vpx nuclear import and viral infectivity without affecting virus particle maturation and release. In addition, mutation analysis indicated that the inactivation of Vpx phosphorylation precluded nuclear import and reduced virus replication in macrophage cultures, even when functional integrase and Gag matrix proteins implicated in viral preintegration complex nuclear import are present. In this study, we also showed that co-localization of Vpx with Gag precursor in the cytoplasm is a prerequisite for Vpx incorporation into virus particles. Substitution of hydrophobic Leu-74 and Ile-75 with serines in the helical domain abrogated Vpx nuclear import, and its incorporation into virus particles, despite its localization in the cytoplasm, suggested that the structural integrity of helical domains is critical for Vpx functions. Taken together, these studies demonstrated that the host cell MAPK signal transduction pathway regulated an early step in SIV infection.
Collapse
Affiliation(s)
- Palakurthy Rajendra Kumar
- Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, ECIL Road, Hyderabad 500 076, India
| | | | | | | |
Collapse
|
26
|
Mueller SM, Jung R, Weiler S, Lang SM. Vpx proteins of SIVmac239 and HIV-2ROD interact with the cytoskeletal protein alpha-actinin 1. J Gen Virol 2004; 85:3291-3303. [PMID: 15483243 DOI: 10.1099/vir.0.80198-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
vpx genes of human immunodeficiency virus type 2 (HIV-2) and immunodeficiency viruses from macaques (SIVmac), sooty mangabeys (SIVsm) and red-capped mangabeys (SIVrcm) encode a 112 aa protein that is packed into virion particles via interaction with the p6 domain of p55(gag). Vpx localizes to the nucleus when expressed in the absence of other viral proteins. Moreover, Vpx is necessary for efficient nuclear import of the pre-integration complex (PIC) and critical for virus replication in quiescent cells, such as terminally differentiated macrophages and memory T cells. Vpx does not contain sequence elements that are homologous to previously characterized nuclear localization signals (NLSs). Therefore, it is likely that Vpx-dependent import of the PIC is mediated by interaction of Vpx with cellular proteins that do not belong to the classical import pathways. By using a yeast two-hybrid screen, alpha-actinin 1, a cytoskeletal protein, was identified to interact with SIVmac239 Vpx. Interestingly, deletion of the proline-rich C-terminal domain (aa 101-112) of Vpx, which is important for nuclear localization, resulted in loss of interaction with alpha-actinin 1. These findings suggest that the interaction with alpha-actinin 1 may play an important role in the transport of Vpx to the nucleus and in Vpx-mediated nuclear import of the PIC.
Collapse
Affiliation(s)
- Sandra M Mueller
- Institute of Clinical and Molecular Virology, University of Erlangen-Nuernberg, Schlossgarten 4, D-91054 Erlangen, Germany
| | - Ronny Jung
- Institute of Clinical and Molecular Virology, University of Erlangen-Nuernberg, Schlossgarten 4, D-91054 Erlangen, Germany
| | - Sigrid Weiler
- Institute of Clinical and Molecular Virology, University of Erlangen-Nuernberg, Schlossgarten 4, D-91054 Erlangen, Germany
| | - Sabine M Lang
- Institute of Clinical and Molecular Virology, University of Erlangen-Nuernberg, Schlossgarten 4, D-91054 Erlangen, Germany
| |
Collapse
|
27
|
Mulky A, Sarafianos SG, Arnold E, Wu X, Kappes JC. Subunit-specific analysis of the human immunodeficiency virus type 1 reverse transcriptase in vivo. J Virol 2004; 78:7089-96. [PMID: 15194785 PMCID: PMC421671 DOI: 10.1128/jvi.78.13.7089-7096.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is a heterodimer comprised of two structurally distinct subunits (p51 and p66). Since p51 and p66 are derived from the same coding region, subunit-specific structure-function studies of RT have been conducted exclusively by in vitro biochemical approaches. To study RT subunit function in the context of infectious virus, we constructed an LTR-vpr-p51-IRES-p66 expression cassette in which the HIV-1 vpr gene was fused in frame with p51, followed by an internal ribosome entry site (IRES) sequence and the p66 coding region. By coexpression with RT-deficient proviral DNA, we demonstrated that the p66 subunit is specifically and selectively packaged into virions as a Vpr-p51/p66 complex. Our analysis showed that cleavage by the viral protease liberates Vpr and generates functional heterodimeric RT (p51/p66) that supports HIV-1 reverse transcription and virus infection. By exploiting this novel trans-complementation approach, we demonstrated, for the first time with infectious virions, that the YMDD aspartates of p66 are both required and sufficient for RT polymerase function. Mutational analyses of the p51 YMDD aspartates indicated that they play an important structural role in p51 folding and subunit interactions that are required for the formation of an active RT heterodimer within infected cells. Understanding the role of the individual RT subunits in RNA- and DNA-dependent DNA synthesis is integral to our understanding of RT function. Our findings will lead to important new insights into the role of the p51 and p66 subunits in HIV-1 reverse transcription.
Collapse
Affiliation(s)
- Alok Mulky
- Department of Microbiology, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | |
Collapse
|
28
|
Rajendra Kumar P, Singhal PK, Vinod SS, Mahalingam S. A non-canonical transferable signal mediates nuclear import of simian immunodeficiency virus Vpx protein. J Mol Biol 2003; 331:1141-56. [PMID: 12927548 DOI: 10.1016/s0022-2836(03)00853-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Protein transport into the nucleus is generally considered to involve specific nuclear localization signals (NLS) though it is becoming increasingly evident that efficient and well controlled import of proteins which lack a canonical NLS also occurs in cells. Vpx, a 112 amino acid protein from human immunodeficiency virus type 2 (HIV-2) and the closely related simian immunodeficiency virus (SIV) is one such protein, which does not have an identifiable canonical NLS and is yet efficiently imported to the nuclear compartment. Here we report that Vpx protein is imported to the nucleus independently of virus-encoded cofactors. When fusions of truncated versions of Vpx with full-length beta-galactosidase (beta-Gal) were tested, the region from Vpx 61 to 80 was found to be sufficient to mediate the import of the heterologous cytoplasmic protein to the nucleus. Inactivation of Vpx NLS precluded nuclear import of Vpx and reduced virus replication in non-dividing macrophage cultures, even when functional integrase and Gag matrix proteins implicated in viral nuclear import were present. Importantly, we identified and characterized a novel type of 20 amino acid transferable nuclear import signal in Vpx that is distinct from other import signals described. In addition, we show that the minimal nuclear targeting domain identified here overlaps with helical domain III (amino acid (aa) 64-82) and the structural integrity of this helical motif is critical for the nuclear import of Vpx. Taken together, these data suggest that Vpx is imported to the nucleus via a novel import pathway that is dependent on its 20 amino acid unique nuclear targeting signal, and that the nuclear import property of Vpx is critical for the optimal virus replication in non-dividing cells such as macrophages.
Collapse
Affiliation(s)
- P Rajendra Kumar
- Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, (CDFD), ECIL Road, Nacharam, 500 076, Hyderabad, India
| | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Eric O Freed
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA.
| |
Collapse
|
30
|
Affiliation(s)
- M Stevenson
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
31
|
Bour S, Strebel K. HIV accessory proteins: multifunctional components of a complex system. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 48:75-120. [PMID: 10987089 DOI: 10.1016/s1054-3589(00)48004-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- S Bour
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | |
Collapse
|
32
|
Jin L, Zhou Y, Ratner L. HIV type 2 Vpx interaction with Gag and incorporation into virus-like particles. AIDS Res Hum Retroviruses 2001; 17:105-11. [PMID: 11177390 DOI: 10.1089/08892220150217193] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The domain of HIV-2 Vpx previously shown to be important for virion incorporation has been mapped to residues 73--89. Mutational analysis of this domain was employed to further define the sequences important for incorporation into virus-like particles, using a vaccinia virus expression system. Deletion of residues 73--89 did not abrogate Vpx packaging, but substitution with alanines markedly reduced incorporation into virus-like particles. Moreover, alanine substitution also disrupted Vpx interaction with Gag, as demonstrated with glutathione S-transferase fusion proteins and the yeast two-hybrid system.
Collapse
Affiliation(s)
- L Jin
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
33
|
Mahalingam S, Van Tine B, Santiago ML, Gao F, Shaw GM, Hahn BH. Functional analysis of the simian immunodeficiency virus Vpx protein: identification of packaging determinants and a novel nuclear targeting domain. J Virol 2001; 75:362-74. [PMID: 11119605 PMCID: PMC113929 DOI: 10.1128/jvi.75.1.362-374.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vpx gene products of human immunodeficiency virus type 2 (HIV-2) and of the closely related simian immunodeficiency viruses from sooty mangabeys (SIVsm) and macaques (SIVmac) comprise a 112-amino-acid virion-associated protein that is critical for efficient virus replication in nondividing cells such as macrophages. When expressed in the absence of other viral proteins, Vpx localizes to the nuclear membrane as well as to the nucleus; however, in the context of virus replication Vpx is packaged into virions via interaction with the p6 domain of the Gag precursor polyprotein (p55(gag)). To identify the domains essential for virion incorporation and nuclear localization, site-directed mutations were introduced into the vpx gene of SIVsmPBj1.9 and functionally analyzed. Our results show that (i) mutation of two highly conserved L74 and I75 residues impaired both virion incorporation and nuclear localization of Vpx; (ii) substitution of conserved H82, G86, C87, P103, and P106 residues impaired Vpx nuclear localization but not virion incorporation; (iii) mutations of conserved Y66, Y69, and Y71 residues impaired virion incorporation but not the translocation of Vpx to the nucleus; and (iv) a mutation at E30 (predicted to disrupt an N-terminal alpha-helix) had no effect on either virion incorporation or nuclear localization of Vpx. Importantly, mutations in Vpx which impaired nuclear localization also reduced virus replication in macaque macrophages, suggesting an important role of the carboxyl terminus of Vpx in nuclear translocation of the viral preintegration complex. Analyzing this domain in greater detail, we identified a 26-amino-acid (aa 60 to 85) fragment that was sufficient to mediate the transport of a heterologous protein (green fluorescent protein [GFP]) to the nucleus. Taken together, these results indicate that virion incorporation and nuclear localization are encoded by two partially overlapping domains in the C-terminus of Vpx (aa 60 to 112). The identification of a novel 26-amino-acid nuclear targeting domain provides a new tool to investigate the nuclear import of the HIV-2/SIV preintegration complex.
Collapse
Affiliation(s)
- S Mahalingam
- Departments of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
34
|
Padow M, Lai L, Fisher RJ, Zhou YC, Wu X, Kappes JC, Towler EM. Analysis of human immunodeficiency virus type 1 containing HERV-K protease. AIDS Res Hum Retroviruses 2000; 16:1973-80. [PMID: 11153080 DOI: 10.1089/088922200750054701] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human endogenous retrovirus, type K (HERV-K) represents the most biologically active form of known retroelements present in the human genome. Several HERV-K genomes have transcriptionally active open reading frames and encode their own protease (PR). The HERV-K PR has been shown to authentically cleave human immunodeficiency virus type 1 (HIV-1) matrix-capsid peptide in the presence of HIV-1 PR inhibitors. This raised the possibility that HERV-K PR could complement HIV-1 PR function in HIV-1-infected individuals. To investigate this possibility, we fused the HIV-1 vpr gene to the HERV-K PR gene (vpr-PR). The vpr-PR expression plasmid and a PR-defective HIV-1 clone were cotransfected into 293T cells. Progeny virions were assayed for processing of the HIV-1 polyproteins by Western blot and for changes in infectivity. HERV-K PR fused to Vpr was incorporated into HIV-1 virions at a high concentration and cleaved the Gag and Pol precursor proteins. However, neither Gag nor Pol polyproteins were correctly processed. Moreover, the HERV-K PR did not restore virus infectivity. While these results do not exclude the possibility that the HERV-K PR could complement an HIV-1 PR whose function is impaired due to drugs or drug-resistant mutations, they clearly demonstrate that the HERV-K PR cannot substitute for the function of the wild-type HIV-1 PR.
Collapse
Affiliation(s)
- M Padow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Pancio HA, Vander Heyden N, Kosuri K, Cresswell P, Ratner L. Interaction of human immunodeficiency virus type 2 Vpx and invariant chain. J Virol 2000; 74:6168-72. [PMID: 10846101 PMCID: PMC112116 DOI: 10.1128/jvi.74.13.6168-6172.2000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vpx is a virion-associated protein of human immunodeficiency virus type 2 (HIV-2) and simian immunodeficiency viruses. The yeast two-hybrid system was used to identify invariant chain (Ii) as a cellular protein that interacts with HIV-2 Vpx. Vpx-Ii interaction was confirmed in cell-free reactions using bacterially expressed glutathione S-transferase fusion proteins and by coimmunoprecipitation in transfected and infected cells. In chronically infected cells expressing Vpx, Ii levels were markedly decreased, presumably due to enhanced degradation. These findings suggest that Vpx may disrupt major histocompatibility complex class II antigen presentation.
Collapse
Affiliation(s)
- H A Pancio
- Department of Medicine, Pathology, and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
36
|
Pancio HA, Vander Heyden N, Ratner L. The C-terminal proline-rich tail of human immunodeficiency virus type 2 Vpx is necessary for nuclear localization of the viral preintegration complex in nondividing cells. J Virol 2000; 74:6162-7. [PMID: 10846100 PMCID: PMC112115 DOI: 10.1128/jvi.74.13.6162-6167.2000] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2), like other lentiviruses, is capable of infecting nondividing T cells and macrophages. The present work shows that in HIV-2-infected cells, Vpx is necessary for efficient nuclear import of the preintegration complex. In agreement with this finding, the subcellular localization of a GFP-Vpx fusion protein was found to be predominantly nuclear. However, deletion of the proline-rich C-terminal 11 residues of Vpx resulted in a shift of the fusion protein to the cytoplasm. Furthermore, the same deletion in the context of the provirus resulted in a decrease in nuclear import of the preintegration complex and attenuated replication in macrophages.
Collapse
Affiliation(s)
- H A Pancio
- Departments of Medicine, Pathology, and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
37
|
Wecker K, Roques BP. NMR structure of the (1-51) N-terminal domain of the HIV-1 regulatory protein Vpr. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:359-69. [PMID: 10561576 DOI: 10.1046/j.1432-1327.1999.00858.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) genome encodes a highly conserved 16 kDa regulatory gene product, Vpr (viral protein of regulation, 96 amino acid residues), which is incorporated into virions, in quantities equivalent to those of the viral Gag proteins. In the infected cells, Vpr is believed to function in the early phase of HIV-1 replication, including nuclear migration of preintegration complex, transcription of the provirus genome and viral multiplication by blocking cells in the G2 phase. Vpr has a critical role in long-term AIDS disease by inducing infection in nondividing cells such as monocytes and macrophages. Mutations have suggested that the N-terminal domain of Vpr encompassing the first 40 residues could be required for nuclear localization, packaging into virions and binding of transcription factor (TFIIB, Sp1), viral proteins (p6) and cellular proteins (RIP1, UNG, karyopherins). To gain insight into the structure-function relationship of Vpr, (1-51)Vpr was synthesized and its structure analyzed by circular dichroism and two-dimensional 1H NMR in aqueous trifluoroethanol (30%) solution and refined by restrained molecular dynamics. The structure is characterized by three turns around the first three prolines, Pro5, Pro10, Pro14, followed by a long amphipathic alpha helix-turn-alpha helix (Asp17-Ile46) motif ended by a turn extending from Tyr47 to Thr49. The alpha helix-turn-alpha helix motif and the amphipathic helix are well known for being implicated in protein-protein or protein-nucleic acid interaction. Therefore structural characteristics of the (1-51) N-terminal fragment of Vpr could explain why this region of Vpr plays a role in several biological functions of this protein.
Collapse
Affiliation(s)
- K Wecker
- Département de Pharmacochemie Moléculair et Structurale, INSERM U266--CNRS UMR 8600, UFR des Sciences Pharmaceutiques et Biologiques, Paris, France
| | | |
Collapse
|
38
|
Accola MA, Bukovsky AA, Jones MS, Göttlinger HG. A conserved dileucine-containing motif in p6(gag) governs the particle association of Vpx and Vpr of simian immunodeficiency viruses SIV(mac) and SIV(agm). J Virol 1999; 73:9992-9. [PMID: 10559313 PMCID: PMC113050 DOI: 10.1128/jvi.73.12.9992-9999.1999] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vpr is a small accessory protein of human and simian immunodeficiency viruses (HIV and SIV) that is specifically incorporated into virions. Members of the HIV-2/SIV(sm)/SIV(mac) lineage of primate lentiviruses also incorporate a related protein designated Vpx. We previously identified a highly conserved L-X-X-L-F sequence near the C terminus of the p6 domain of the Gag precursor as the major virion association motif for HIV-1 Vpr. In the present study, we show that a different leucine-containing motif (D-X-A-X-X-L-L) in the N-terminal half of p6(gag) is required for the incorporation of SIV(mac) Vpx. Similarly, the uptake of SIV(mac) Vpr depended primarily on the D-X-A-X-X-L-L motif. SIV(mac) Vpr was unstable when expressed alone, but its intracellular steady-state levels increased significantly in the presence of wild-type Gag or of the proteasome inhibitor lactacystin. Collectively, our results indicate that the interaction with the Gag precursor via the D-X-A-X-X-L-L motif diverts SIV(mac) Vpr away from the proteasome-degradative pathway. While absent from HIV-1 p6(gag), the D-X-A-X-X-L-L motif is conserved in both the HIV-2/SIV(sm)/SIV(mac) and SIV(agm) lineages of primate lentiviruses. We found that the incorporation of SIV(agm) Vpr, like that of SIV(mac) Vpx, is absolutely dependent on the D-X-A-X-X-L-L motif, while the L-X-X-L-F motif used by HIV-1 Vpr is dispensable. The similar requirements for the incorporation of SIV(mac) Vpx and SIV(agm) Vpr provide support for their proposed common ancestry.
Collapse
Affiliation(s)
- M A Accola
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
39
|
Bachand F, Yao XJ, Hrimech M, Rougeau N, Cohen EA. Incorporation of Vpr into human immunodeficiency virus type 1 requires a direct interaction with the p6 domain of the p55 gag precursor. J Biol Chem 1999; 274:9083-91. [PMID: 10085158 DOI: 10.1074/jbc.274.13.9083] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 96-amino acid Vpr protein is the major virion-associated accessory protein of the human immunodeficiency virus type 1 (HIV-1). As Vpr is not part of the p55 Gag polyprotein precursor (Pr55(gag)), its incorporation requires an anchor to associate with the assembling viral particles. Although the molecular mechanism is presently unclear, the C-terminal region of the Pr55(gag) corresponding to the p6 domain appears to constitute such an anchor essential for the incorporation of the Vpr protein. In order to clarify the mechanism by which the Vpr accessory protein is trans-incorporated into progeny virion particles, we tested whether HIV-1 Vpr interacted with the Pr55(gag) using the yeast two-hybrid system and the maltose-binding protein pull-down assay. The present study provides genetic and biochemical evidence indicating that the Pr55(gag) can physically interact with the Vpr protein. Furthermore, point mutations affecting the integrity of the conserved L-X-S-L-F-G motif of p6(gag) completely abolish the interaction between Vpr and the Pr55(gag) and, as a consequence, prevent Vpr virion incorporation. In contrast to other studies, mutations affecting the integrity of the NCp7 zinc fingers impaired neither Vpr virion incorporation nor the binding between Vpr and the Pr55(gag). Conversely, amino acid substitutions in Vpr demonstrate that an intact N-terminal alpha-helical structure is essential for the Vpr-Pr55(gag) interaction. Vpr and the Pr55(gag) demonstrate a strong interaction in vitro as salt concentrations as high as 900 mM could not disrupt the interaction. Finally, the interaction is efficiently competed using anti-Vpr sera. Together, these results strongly suggest that Vpr trans-incorporation into HIV-1 particles requires a direct interaction between its N-terminal region and the C-terminal region of p6(gag). The development of Pr55(gag)-Vpr interaction assays may allow the screening of molecules that can prevent the incorporation of the Vpr accessory protein into HIV-1 virions, and thus inhibit its early functions.
Collapse
Affiliation(s)
- F Bachand
- Laboratoire de rétrovirologie humaine, Département de Microbiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
40
|
Selig L, Pages JC, Tanchou V, Prévéral S, Berlioz-Torrent C, Liu LX, Erdtmann L, Darlix J, Benarous R, Benichou S. Interaction with the p6 domain of the gag precursor mediates incorporation into virions of Vpr and Vpx proteins from primate lentiviruses. J Virol 1999; 73:592-600. [PMID: 9847364 PMCID: PMC103865 DOI: 10.1128/jvi.73.1.592-600.1999] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vpr and Vpx proteins from human and simian immunodeficiency viruses (HIV and SIV) are incorporated into virions in quantities equivalent to those of the viral Gag proteins. We demonstrate here that Vpr and Vpx proteins from distinct lineages of primate lentiviruses were able to bind to their respective Gag precursors. The capacity of HIV type 1 (HIV-1) Vpr mutants to bind to Pr55(Gag) was correlated with their incorporation into virions. Molecular analysis of these interactions revealed that they required the C-terminal p6 domain of the Gag precursors. While the signal for HIV-1 Vpr binding lies in the leucine triplet repeat region of the p6 domain reported to be essential for incorporation, SIVsm Gag lacking the equivalent region still bound to SIVsm Vpr and Vpx, indicating that the determinants for Gag binding are located upstream of this region of the p6 domain. Binding to Gag cleavage products showed that HIV-1 Vpr interacted directly with the nucleocapsid protein (NC), whereas SIVsm Vpr and Vpx did not interact with NC but with the p6 protein. These results (i) reveal differences between HIV-1 and SIVsm for the p6 determinants required for Vpr and Vpx binding to Gag and (ii) suggest that HIV-1 Vpr and SIVsm Vpr and Vpx interact with distinct cleavage products of the precursor following proteolytic processing in the virions.
Collapse
Affiliation(s)
- L Selig
- INSERM CJF 97-03, Institut Cochin de Génétique Moléculaire, Université Paris V, 75014 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Viral protein R (Vpr) of HIV-1 belongs to a class of so called 'accessory' proteins, originally thought to be dispensable for virus replication, at least in vitro. Indeed, viruses with mutated or deleted Vpr replicate well in transformed T cell lines. However, recently published results reveal several important functions performed by Vpr, which are critical for HIV-1 replication in vivo. Vpr plays an important role in regulating nuclear import of the HIV-1 pre-integration complex, and is required for virus replication in non-dividing cells. Vpr also induces cell cycle arrest in proliferating cells, stimulates virus transcription, and regulates activation and apoptosis of infected cells. These diverse functions are mediated by the interaction of Vpr with different cellular proteins, many of which carry the WxxF amino acid motif. The molecular events underlying the activity of Vpr are reviewed in this article.
Collapse
Affiliation(s)
- M Bukrinsky
- Pieower Institute for Medical Research, Manhasset, NY 11030, USA
| | | |
Collapse
|
42
|
Popper SJ, Sankalé JL, Thior I, Siby T, Marlink RG, Mboup S, Essex M, Kanki PJ. Antibodies to the HIV type 2 core protein p26 and Vpx: association with disease progression. AIDS Res Hum Retroviruses 1998; 14:1157-62. [PMID: 9737587 DOI: 10.1089/aid.1998.14.1157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A longitudinal cohort study was conducted to define the prevalence and temporal pattern of antibody response to the HIV-2 virion-associated proteins p26gag and Vpx. One hundred and forty-one asymptomatic HIV-2-infected women were enrolled, and followed for up to 11 years. Eighty-one percent of the subjects had antibodies to p26, and 51% to Vpx; response to these two antigens was not correlated. The response to both proteins was determined early in infection, and remained stable over time. The absence of antibodies to p26 was a highly significant predictor of CDC category IV HIV-related disease (p < 0.01) in both univariate and multivariate analysis. Antibody response to Vpx alone was not associated with disease progression. However, those individuals lacking anti-p26 antibodies, and with anti-Vpx antibodies, were six times more likely to be classified as CDC category IV by the end of the study (p < 0.01). This represents the first identification of virus-specific serological markers for HIV-2-related disease progression.
Collapse
Affiliation(s)
- S J Popper
- Harvard AIDS Institute, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sleigh R, Sharkey M, Newman MA, Hahn B, Stevenson M. Differential association of uracil DNA glycosylase with SIVSM Vpr and Vpx proteins. Virology 1998; 245:338-43. [PMID: 9636373 PMCID: PMC9524214 DOI: 10.1006/viro.1998.9159] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The HIV-1 Vpr protein is a virion-associated protein which has been shown to facilitate infection of nondividing macrophages and additionally to alter cell cycle and proliferation status of the infected host cell. HIV-1 Vpr also was recently shown to associate with the DNA repair enzyme uracil DNA glycosylase (UDG). This association with a DNA repair enzyme is intriguing given that nonprimate lentiviruses encode a dUTPase, which, like UDG, minimizes the misincorporation of uracil into DNA and is important for virus replication in primary nondividing macrophages but not in dividing cells. This raises the possibility that the dependence upon Vpr for infection of nondividing macrophages may relate to its ability to interact with UDG. Members of the HIV-2/SIVSM group encode, in addition to Vpr, a related protein called Vpx. We previously demonstrated (Fletcher et al., 1996) that Vpx of HIV-2/SIVSM is necessary and sufficient for infection of primary macaque macrophages, while Vpr is not required for macrophage infection but governs cell cycle arrest. Here, we extend on these observations by demonstrating that Vpr, but not Vpx of HIV-2/SIVSM, associates with UDG, which suggests that Vpx facilitates infection of macrophages by a UDG-independent mechanism.
Collapse
Affiliation(s)
- R Sleigh
- Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester 01605, USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
Incorporation of Vpx into human immunodeficiency virus type 2 (HIV-2) virus-like particles is mediated by the Gag polyprotein. We have identified residues 15 to 40 of Gag p6 and residues 73 to 89 of Vpx as being necessary for virion incorporation. In addition, we show enhanced in vitro binding of Vpx to a chimeric HIV-1/HIV-2 Gag construct containing residues 2 to 49 of HIV-2 p6 and demonstrate that the presence of residues 73 to 89 of Vpx allows for in vitro binding to HIV-2 Gag.
Collapse
Affiliation(s)
- H A Pancio
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
45
|
Yu XF, Dawson L, Tian CJ, Flexner C, Dettenhofer M. Mutations of the human immunodeficiency virus type 1 p6Gag domain result in reduced retention of Pol proteins during virus assembly. J Virol 1998; 72:3412-7. [PMID: 9525672 PMCID: PMC109837 DOI: 10.1128/jvi.72.4.3412-3417.1998] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/1997] [Accepted: 01/12/1998] [Indexed: 02/06/2023] Open
Abstract
One of the crucial steps in the assembly of the human immunodeficiency virus type 1 (HIV-1) and other retroviruses is the incorporation and retention of all the key viral enzymes in released virions. The viral enzymes protease, reverse transcriptase, and integrase of HIV-1 are initially synthesized as Gag-Pol fusion polyproteins. It has been shown that the incorporation of Gag-Pol polyproteins during virus assembly requires the Gag domains that are shared by the Gag and Gag-Pol precursors. We now report that truncation of the C-terminal p6 domain of HIV-1 Gag, which is present in the Gag precursor but not in the Gag-Pol precursor, drastically reduced the amount of Pol proteins in the mutant virions. Mutations in the lentivirus conserved motif P(T/S)APP in p6 also drastically reduced the amount of Pol proteins in mutant virions. The steady-state levels of Gag-Pol precursors and cleaved Pol proteins in the transfected cells were not affected by mutations in p6. The incorporation of unprocessed Gag-Pol precursors into p6 mutant virions was detected when the viral protease was mutated, suggesting that the interactions among mutant Gag molecules and Gag-Pol precursors were not significantly affected. These results suggest that the p6 domain of HIV-1 Gag may play an important role in recruiting or retaining cleaved Pol proteins during virus assembly.
Collapse
Affiliation(s)
- X F Yu
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205, USA.
| | | | | | | | | |
Collapse
|
46
|
Liu H, Wu X, Xiao H, Conway JA, Kappes JC. Incorporation of functional human immunodeficiency virus type 1 integrase into virions independent of the Gag-Pol precursor protein. J Virol 1997; 71:7704-10. [PMID: 9311854 PMCID: PMC192121 DOI: 10.1128/jvi.71.10.7704-7710.1997] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Retroviral integrase (IN) is expressed and incorporated into virions as part of the Gag-Pol polyprotein precursor. IN catalyzes integration of the proviral DNA into host cell chromosomes during the early stages of the virus life cycle, and as a component of Gag-Pol, it is involved in virion morphogenesis during late stages. It is unknown whether the scheme, conserved among retroviruses, for expressing and incorporating IN as a component of the Gag-Pol precursor protein is necessary for its function in the infected cell after viral entry. We have developed human immunodeficiency virus (HIV) virion-associated accessory proteins (Vpr and Vpx) as vehicles to deliver both foreign and viral proteins into the virus particle by their expression in trans as heterologous fusion proteins (X. Wu, et al., J. Virol. 69:3389-3398, 1995; X. Wu, et al., J. Virol. 70:3378-3384, 1996; X. Wu, et al., EMBO J. 16:5113-5122, 1977). To analyze IN function independent of its expression as a part of Gag-Pol, we expressed and incorporated IN into HIV type 1 (HIV-1) virions in trans as a fusion partner of Vpr (Vpr-IN). Our results demonstrate that the Vpr-IN fusion protein is efficiently incorporated into virions and then processed by the viral protease to liberate the IN protein. Virus derived from IN-minus provirus is noninfectious. However, this defect is overcome by trans complementation with the Vpr-IN fusion protein. Moreover, complemented virions are able to replicate through a complete cycle of infection, including formation of the provirus (integration). These results show, for the first time, that full IN function can be provided in trans, independent of its expression and incorporation into virions as a component of Gag-Pol. This finding also indicates that the IN domain of Gag-Pol is not required for the formation of infectious virions when IN is provided in trans. The ability to incorporate functional IN into retroviral particles in trans will provide unique opportunities to explore the function of this critical enzyme in a biologically relevant context, i.e., in infected cells as part of the nucleoprotein/preintegration complex.
Collapse
Affiliation(s)
- H Liu
- Department of Medicine, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | |
Collapse
|
47
|
Mahalingam S, Ayyavoo V, Patel M, Kieber-Emmons T, Weiner DB. Nuclear import, virion incorporation, and cell cycle arrest/differentiation are mediated by distinct functional domains of human immunodeficiency virus type 1 Vpr. J Virol 1997; 71:6339-47. [PMID: 9261351 PMCID: PMC191907 DOI: 10.1128/jvi.71.9.6339-6347.1997] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The vpr gene product of human immunodeficiency virus type 1 (HIV-1) is a virion-associated protein that is essential for efficient viral replication in monocytes/macrophages. Vpr is primarily localized in the nucleus when expressed in the absence of other viral proteins. Vpr is packaged efficiently into viral particles through interactions with the p6 domain of the Gag precursor polyprotein p55gag. We developed a panel of expression vectors encoding Vpr molecules mutated in the amino-terminal helical domain, leucine-isoleucine (LR) domain, and carboxy-terminal domain to map the different functional domains and to define the interrelationships between virion incorporation, nuclear localization, cell cycle arrest, and differentiation functions of Vpr. We observed that substitution mutations in the N-terminal domain of Vpr impaired both nuclear localization and virion packaging, suggesting that the helical structure may play a vital role in modulating both of these biological properties. The LR domain was found to be involved in the nuclear localization of Vpr. In contrast, cell cycle arrest appears to be largely controlled by the C-terminal domain of Vpr. The LR and C-terminal domains do not appear to be essential for virion incorporation of Vpr. Interestingly, we found that two Vpr mutants harboring single amino acid substitutions (A30L and G75A) retained the ability to translocate to the nucleus but were impaired in the cell cycle arrest function. In contrast, mutation of Leu68 to Ser resulted in a protein that localizes in the cytoplasm while retaining the ability to arrest host cell proliferation. We speculate that the nuclear localization and cell cycle arrest functions of Vpr are not interrelated and that these functions are mediated by separable putative functional domains of Vpr.
Collapse
Affiliation(s)
- S Mahalingam
- Department of Pathology, School of Medicine, University of Pennsylvania Medical Center, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
48
|
Campbell BJ, Hirsch VM. Vpr of simian immunodeficiency virus of African green monkeys is required for replication in macaque macrophages and lymphocytes. J Virol 1997; 71:5593-602. [PMID: 9188633 PMCID: PMC191801 DOI: 10.1128/jvi.71.7.5593-5602.1997] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The genomes of simian immunodeficiency viruses isolated from African green monkeys (SIVagm) contain a single accessory gene homolog of human immunodeficiency virus type 1 (HIV-1) vpr. This genomic organization differs from that of SIVsm-SIVmac-HIV-2 group viruses, which contain two gene homologs, designated vpr and vpx, which in combination appear to share the functions of HIV-1 vpr. The in vitro role of the SIVagm homolog was evaluated with molecularly cloned, pathogenic SIVagm9063-2. These studies revealed that this gene shares properties of HIV-1 vpr, such as nuclear and virion localization. In addition, SIVagm mutants with inactivating mutations of vpr are unable to replicate in nondividing cells, such as macaque monocyte-derived macrophages, but replicate to almost wild-type levels in a susceptible human T-cell line. The transport of virus preintegration complexes into the nucleus in primary macrophages, as measured by the production of unintegrated circular viral DNA, is less efficient for the mutant viruses than it is for the wild-type virus. SIVagm mutants also replicate inefficiently in primary macaque peripheral blood mononuclear cells, with a propensity for substitutions that remove the inserted inactivating stop codon. These data, in conjunction with recent findings that the Vpr protein is capable of inducing G2 arrest, are consistent with designation of this SIVagm accessory gene as vpr to reflect its shared functions and properties with HIV-1 vpr.
Collapse
Affiliation(s)
- B J Campbell
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH Twinbrook II Facility, Rockville, Maryland 20852, USA
| | | |
Collapse
|
49
|
Fletcher TM, Brichacek B, Sharova N, Newman MA, Stivahtis G, Sharp PM, Emerman M, Hahn BH, Stevenson M. Nuclear import and cell cycle arrest functions of the HIV-1 Vpr protein are encoded by two separate genes in HIV-2/SIV(SM). EMBO J 1996; 15:6155-65. [PMID: 8947037 PMCID: PMC452436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The vpr genes of human and simian immunodeficiency viruses (HIV/SIV) encode proteins which are packaged in the virus particle. HIV-1 Vpr has been shown to mediate the nuclear import of viral reverse transcription complexes in non-dividing target cells (e.g. terminally differentiated macrophages), and to alter the cell cycle and proliferation status of the infected host cell. Members of the HIV-2/SIV(SM) group encode, in addition to Vpr, a related protein called Vpx. Because these two proteins share considerable sequence similarity, it has been assumed that they also exhibit similar functions. Here, we report that the functions of Vpr and Vpx are distinct and non-redundant, although both proteins are components of the HIV-2/SIV(SM) virion and reverse transcription complex. Characterizing SIV(SM) proviruses defective in one or both genes, we found that Vpx is both necessary and sufficient for the nuclear import of the viral reverse transcription complex. In contrast, Vpr, but not Vpx, inhibited the progression of infected host cells from the G2 to the M phase of the cell cycle. Thus, two independent functions of the HIV-1 Vpr protein are encoded by separate genes in HIV-2/SIV(SM). This segregation is consistent with the conservation of these genes in HIV-2/SIV(SM) evolution, and underscores the importance of both nuclear transport and cell cycle arrest functions in primate lentivirus biology.
Collapse
Affiliation(s)
- T M Fletcher
- Department of Medicine, University of Alabama, Birmingham 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wu X, Liu H, Xiao H, Conway JA, Kappes JC. Inhibition of human and simian immunodeficiency virus protease function by targeting Vpx-protease-mutant fusion protein into viral particles. J Virol 1996; 70:3378-84. [PMID: 8648668 PMCID: PMC190209 DOI: 10.1128/jvi.70.6.3378-3384.1996] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The human immunodeficiency virus type I (HIV-1) Vpr and HIV-2 Vpx proteins package into virions through interactions with their cognate Gag polyprotein precursor. The targeting properties of Vpr and Vpx have been exploited to incorporate foreign proteins into virions by expression as heterologous fusion molecules (X. Wu, H.-M. Liu, H. Xiao, J. Kim, P. Seshaiah, G. Natsoulis, J. D. Boeke, B. H. Hahn, and J. C. Kappes, J. Virol. 69:3389-3398, 1995). To explore the possibility of utilizing Vpx and Vpr to target dominant negative mutants of the HIV Pol proteins into virions, we fused HIV-2 Vpx with an enzymatically defective protease (PR) mutant. Using a vector system to facilitate transient coexpression with HIV provirus, Vpx-PR-mutant (VpxPR(M)) fusion protein was expressed and packaged efficiently into HIV-2 and simian immunodeficiency virus virions. Immunoblot analysis of purified virions demonstrated that the packaging of VpxPR(M) interfered with the processing of the Gag and Gag/Pol precursor proteins, similar to that of a well-characterized active-site PR inhibitor. The incomplete processing of Gag and Gag/Pol was consistent with a 25-fold reduction in virion infectivity. The coexpression of a packaging defective VpxPR(M) fusion protein with HIV-2 provirus produced virions with fully processed Gag protein, similar to wild-type virions. Importantly, virions trans complemented with a Vpx-chloramphenicol acetyltransferase fusion protein were normal with respect to the processing of Gag protein and the ability to infect and replicate in vitro. These results indicate that VpxPR(M) specifically inhibited the function of the viral protease and provide for the first time proof of principle that the incorporation of foreign proteins into virions via fusion with Vpx can inhibit HIV replication. The use of accessory proteins as vehicles to deliver deleterious proteins to virions, including dominant negative mutants of Pol proteins, may provide new opportunities for application of gene therapy-based antiretroviral strategies. The ability to package PR by expression in trans, independent of the Gag/Pol precursor, also represents a novel approach that may be exploited to study the function of the Pol proteins.
Collapse
Affiliation(s)
- X Wu
- Department of Medicine, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | |
Collapse
|