1
|
HIV-1 Lethality and Loss of Env Protein Expression Induced by Single Synonymous Substitutions in the Virus Genome Intronic-Splicing Silencer. J Virol 2020; 94:JVI.01108-20. [PMID: 32817222 DOI: 10.1128/jvi.01108-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/06/2020] [Indexed: 01/13/2023] Open
Abstract
Synonymous genome recoding has been widely used to study different aspects of virus biology. Codon usage affects the temporal regulation of viral gene expression. In this study, we performed synonymous codon mutagenesis to investigate whether codon usage affected HIV-1 Env protein expression and virus viability. We replaced the codons AGG, GAG, CCU, ACU, CUC, and GGG of the HIV-1 env gene with the synonymous codons CGU, GAA, CCG, ACG, UUA, and GGA, respectively. We found that recoding the Env protein gp120 coding region (excluding the Rev response element [RRE]) did not significantly affect virus replication capacity, even though we introduced 15 new CpG dinucleotides. In contrast, changing a single codon (AGG to CGU) located in the gp41 coding region (HXB2 env position 2125 to 2127), which was included in the intronic splicing silencer (ISS), completely abolished virus replication and Env expression. Computational analyses of this mutant revealed a severe disruption in the ISS RNA secondary structure. A variant that restored ISS secondary RNA structure also reestablished Env production and virus viability. Interestingly, this codon variant prevented both virus replication and Env translation in a eukaryotic expression system. These findings suggested that disrupting mRNA splicing was not the only means of inhibiting translation. Our findings indicated that synonymous gp120 recoding was not always deleterious to HIV-1 replication. Importantly¸ we found that disrupting an external ISS loop strongly affected HIV-1 replication and Env translation.IMPORTANCE Synonymous substitutions can influence virus phenotype, replication capacity, and virulence. In this study, we explored how synonymous codon mutations impacted HIV-1 Env protein expression and virus replication capacity. We changed a single codon, AGG to CGU, which was located in the gp41 coding region (env nucleotide residues 2125 to 2127) and was included in the HIV-1 intronic splicing silencer. This change completely abolished virus replication and Env expression. We also found that changing codon usage in the gp120 region by including an increased number of CpG dinucleotides did not significantly affect Env expression or virus viability. Our findings showed that synonymous recoding was useful for altering viral phenotype and exploring virus biology.
Collapse
|
2
|
Wan Q, Song D, Li H, He ML. Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduct Target Ther 2020; 5:125. [PMID: 32661235 PMCID: PMC7356129 DOI: 10.1038/s41392-020-00233-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/26/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Stress proteins (SPs) including heat-shock proteins (HSPs), RNA chaperones, and ER associated stress proteins are molecular chaperones essential for cellular homeostasis. The major functions of HSPs include chaperoning misfolded or unfolded polypeptides, protecting cells from toxic stress, and presenting immune and inflammatory cytokines. Regarded as a double-edged sword, HSPs also cooperate with numerous viruses and cancer cells to promote their survival. RNA chaperones are a group of heterogeneous nuclear ribonucleoproteins (hnRNPs), which are essential factors for manipulating both the functions and metabolisms of pre-mRNAs/hnRNAs transcribed by RNA polymerase II. hnRNPs involve in a large number of cellular processes, including chromatin remodelling, transcription regulation, RNP assembly and stabilization, RNA export, virus replication, histone-like nucleoid structuring, and even intracellular immunity. Dysregulation of stress proteins is associated with many human diseases including human cancer, cardiovascular diseases, neurodegenerative diseases (e.g., Parkinson’s diseases, Alzheimer disease), stroke and infectious diseases. In this review, we summarized the biologic function of stress proteins, and current progress on their mechanisms related to virus reproduction and diseases caused by virus infections. As SPs also attract a great interest as potential antiviral targets (e.g., COVID-19), we also discuss the present progress and challenges in this area of HSP-based drug development, as well as with compounds already under clinical evaluation.
Collapse
Affiliation(s)
- Qianya Wan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Dan Song
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Huangcan Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China. .,CityU Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
3
|
Levengood JD, Tolbert BS. Idiosyncrasies of hnRNP A1-RNA recognition: Can binding mode influence function. Semin Cell Dev Biol 2019; 86:150-161. [PMID: 29625167 PMCID: PMC6177329 DOI: 10.1016/j.semcdb.2018.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 12/21/2022]
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a diverse family of RNA binding proteins that function in most stages of RNA metabolism. The prototypical member, hnRNP A1, is composed of three major domains; tandem N-terminal RNA Recognition Motifs (RRMs) and a C-terminal mostly intrinsically disordered region. HnRNP A1 is broadly implicated in basic cellular RNA processing events such as splicing, stability, nuclear export and translation. Due to its ubiquity and abundance, hnRNP A1 is also frequently usurped to control viral gene expression. Deregulation of the RNA metabolism functions of hnRNP A1 in neuronal cells contributes to several neurodegenerative disorders. Because of these roles in human pathologies, the study of hnRNP A1 provides opportunities for the development of novel therapeutics, with disruption of its RNA binding capabilities being the most promising target. The functional diversity of hnRNP A1 is reflected in the complex nature by which it interacts with various RNA targets. Indeed, hnRNP A1 binds both structured and unstructured RNAs with binding affinities that span several magnitudes. Available structures of hnRNP A1-RNA complexes also suggest a degree of plasticity in molecular recognition. Given the reinvigoration in hnRNP A1, the goal of this review is to use the available structural biochemical developments as a framework to interpret its wide-range of RNA functions.
Collapse
Affiliation(s)
- Jeffrey D Levengood
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, United States
| | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
4
|
Sertznig H, Hillebrand F, Erkelenz S, Schaal H, Widera M. Behind the scenes of HIV-1 replication: Alternative splicing as the dependency factor on the quiet. Virology 2018; 516:176-188. [PMID: 29407375 DOI: 10.1016/j.virol.2018.01.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 01/31/2023]
Abstract
Alternative splicing plays a key role in the HIV-1 life cycle and is essential to maintain an equilibrium of mRNAs that encode viral proteins and polyprotein-isoforms. In particular, since all early HIV-1 proteins are expressed from spliced intronless and late enzymatic and structural proteins from intron containing, i.e. splicing repressed viral mRNAs, cellular splicing factors and splicing regulatory proteins are crucial for the replication capacity. In this review, we will describe the complex network of cis-acting splicing regulatory elements (SREs), which are mainly localized in the neighbourhoods of all HIV-1 splice sites and warrant the proper ratio of individual transcript isoforms. Since SREs represent binding sites for trans-acting cellular splicing factors interacting with the cellular spliceosomal apparatus we will review the current knowledge of interactions between viral RNA and cellular proteins as well as their impact on viral replication. Finally, we will discuss potential therapeutic approaches targeting HIV-1 alternative splicing.
Collapse
Affiliation(s)
- Helene Sertznig
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Frank Hillebrand
- Institute of Virology, Heinrich Heine University, University Hospital, Düsseldorf, Germany
| | - Steffen Erkelenz
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Heiner Schaal
- Institute of Virology, Heinrich Heine University, University Hospital, Düsseldorf, Germany
| | - Marek Widera
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
5
|
Vega Y, Delgado E, de la Barrera J, Carrera C, Zaballos Á, Cuesta I, Mariño A, Ocampo A, Miralles C, Pérez-Castro S, Álvarez H, López-Miragaya I, García-Bodas E, Díez-Fuertes F, Thomson MM. Sequence Analysis of In Vivo-Expressed HIV-1 Spliced RNAs Reveals the Usage of New and Unusual Splice Sites by Viruses of Different Subtypes. PLoS One 2016; 11:e0158525. [PMID: 27355361 PMCID: PMC4927154 DOI: 10.1371/journal.pone.0158525] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/16/2016] [Indexed: 11/18/2022] Open
Abstract
HIV-1 RNAs are generated through a complex splicing mechanism, resulting in a great diversity of transcripts, which are classified in three major categories: unspliced, singly spliced (SS), and doubly spliced (DS). Knowledge on HIV-1 RNA splicing in vivo and by non-subtype B viruses is scarce. Here we analyze HIV-1 RNA splice site usage in CD4+CD25+ lymphocytes from HIV-1-infected individuals through pyrosequencing. HIV-1 DS and SS RNAs were amplified by RT-PCR in 19 and 12 samples, respectively. 13,108 sequences from HIV-1 spliced RNAs, derived from viruses of five subtypes (A, B, C, F, G), were identified. In four samples, three of non-B subtypes, five 3' splice sites (3'ss) mapping to unreported positions in the HIV-1 genome were identified. Two, designated A4i and A4j, were used in 22% and 25% of rev RNAs in two viruses of subtypes B and A, respectively. Given their close proximity (one or two nucleotides) to A4c and A4d, respectively, they could be viewed as variants of these sites. Three 3'ss, designated A7g, A7h, and A7i, located 20, 32, and 18 nucleotides downstream of A7, respectively, were identified in a subtype C (A7g, A7h) and a subtype G (A7i) viruses, each in around 2% of nef RNAs. The new splice sites or variants of splice sites were associated with the usual sequence features of 3'ss. Usage of unusual 3'ss A4d, A4e, A5a, A7a, and A7b was also detected. A4f, previously identified in two subtype C viruses, was preferentially used by rev RNAs of a subtype C virus. These results highlight the great diversity of in vivo splice site usage by HIV-1 RNAs. The fact that four of five newly identified splice sites or variants of splice sites were detected in non-subtype B viruses allows anticipating an even greater diversity of HIV-1 splice site usage than currently known.
Collapse
Affiliation(s)
- Yolanda Vega
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Elena Delgado
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Jorge de la Barrera
- Bioinformatics Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Cristina Carrera
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Ángel Zaballos
- Genomics Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Isabel Cuesta
- Bioinformatics Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Ana Mariño
- Hospital Arquitecto Marcide. Ferrol, A Coruña, Spain
| | - Antonio Ocampo
- Complejo Hospitalario Universitario de Vigo. Vigo, Pontevedra, Spain
| | - Celia Miralles
- Complejo Hospitalario Universitario de Vigo. Vigo, Pontevedra, Spain
| | | | | | | | - Elena García-Bodas
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Francisco Díez-Fuertes
- AIDS Immunopathogenesis Unit. Centro Nacional de Microbiología, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Michael M. Thomson
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
- * E-mail:
| |
Collapse
|
6
|
Jain N, Morgan CE, Rife BD, Salemi M, Tolbert BS. Solution Structure of the HIV-1 Intron Splicing Silencer and Its Interactions with the UP1 Domain of Heterogeneous Nuclear Ribonucleoprotein (hnRNP) A1. J Biol Chem 2015; 291:2331-44. [PMID: 26607354 DOI: 10.1074/jbc.m115.674564] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Indexed: 12/11/2022] Open
Abstract
Splicing patterns in human immunodeficiency virus type 1 (HIV-1) are maintained through cis regulatory elements that recruit antagonistic host RNA-binding proteins. The activity of the 3' acceptor site A7 is tightly regulated through a complex network of an intronic splicing silencer (ISS), a bipartite exonic splicing silencer (ESS3a/b), and an exonic splicing enhancer (ESE3). Because HIV-1 splicing depends on protein-RNA interactions, it is important to know the tertiary structures surrounding the splice sites. Herein, we present the NMR solution structure of the phylogenetically conserved ISS stem loop. ISS adopts a stable structure consisting of conserved UG wobble pairs, a folded 2X2 (GU/UA) internal loop, a UU bulge, and a flexible AGUGA apical loop. Calorimetric and biochemical titrations indicate that the UP1 domain of heterogeneous nuclear ribonucleoprotein A1 binds the ISS apical loop site-specifically and with nanomolar affinity. Collectively, this work provides additional insights into how HIV-1 uses a conserved RNA structure to commandeer a host RNA-binding protein.
Collapse
Affiliation(s)
- Niyati Jain
- From the Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7078 and
| | - Christopher E Morgan
- From the Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7078 and
| | - Brittany D Rife
- Department of Pathology, Immunology, and Laboratory of Medicine, College of Medicine and Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32610-3633
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory of Medicine, College of Medicine and Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32610-3633
| | - Blanton S Tolbert
- From the Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7078 and
| |
Collapse
|
7
|
HIV-1 pre-mRNA commitment to Rev mediated export through PSF and Matrin 3. Virology 2013; 435:329-40. [DOI: 10.1016/j.virol.2012.10.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/16/2012] [Accepted: 10/21/2012] [Indexed: 12/15/2022]
|
8
|
Kula A, Marcello A. Dynamic Post-Transcriptional Regulation of HIV-1 Gene Expression. BIOLOGY 2012; 1:116-33. [PMID: 24832221 PMCID: PMC4009772 DOI: 10.3390/biology1020116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 01/08/2023]
Abstract
Gene expression of the human immunodeficiency virus type 1 (HIV-1) is a highly regulated process. Basal transcription of the integrated provirus generates early transcripts that encode for the viral products Tat and Rev. Tat promotes the elongation of RNA polymerase while Rev mediates the nuclear export of viral RNAs that contain the Rev-responsive RNA element (RRE). These RNAs are exported from the nucleus to allow expression of Gag-Pol and Env proteins and for the production of full-length genomic RNAs. A balance exists between completely processed mRNAs and RRE-containing RNAs. Rev functions as an adaptor that recruits cellular factors to re-direct singly spliced and unspliced viral RNAs to nuclear export. The aim of this review is to address the dynamic regulation of this post-transcriptional pathway in light of recent findings that implicate several novel cellular cofactors of Rev function.
Collapse
Affiliation(s)
- Anna Kula
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste 99 34012, Italy.
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste 99 34012, Italy.
| |
Collapse
|
9
|
Shida H. Role of Nucleocytoplasmic RNA Transport during the Life Cycle of Retroviruses. Front Microbiol 2012; 3:179. [PMID: 22783232 PMCID: PMC3390767 DOI: 10.3389/fmicb.2012.00179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/26/2012] [Indexed: 12/14/2022] Open
Abstract
Retroviruses have evolved mechanisms for transporting their intron-containing RNAs (including genomic and messenger RNAs, which encode virion components) from the nucleus to the cytoplasm of the infected cell. Human retroviruses, such as human immunodeficiency virus (HIV) and human T cell leukemia virus type 1 (HTLV-1), encode the regulatory proteins Rev and Rex, which form a bridge between the viral RNA and the export receptor CRM1. Recent studies show that these transport systems are not only involved in RNA export, but also in the encapsidation of genomic RNA; furthermore, they influence subsequent events in the cytoplasm, including the translation of the cognate mRNA, transport of Gag proteins to the plasma membrane, and the formation of virus particles. Moreover, the mode of interaction between the viral and cellular RNA transport machinery underlies the species-specific propagation of HIV-1 and HTLV-1, forming the basis for constructing animal models of infection. This review article discusses recent progress regarding these issues.
Collapse
Affiliation(s)
- Hisatoshi Shida
- Division of Molecular Virology, Institute of Immunological Science, Hokkaido University Sapporo, Japan
| |
Collapse
|
10
|
Delgado E, Carrera C, Nebreda P, Fernández-García A, Pinilla M, García V, Pérez-Álvarez L, Thomson MM. Identification of new splice sites used for generation of rev transcripts in human immunodeficiency virus type 1 subtype C primary isolates. PLoS One 2012; 7:e30574. [PMID: 22363449 PMCID: PMC3281843 DOI: 10.1371/journal.pone.0030574] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 12/21/2011] [Indexed: 12/16/2022] Open
Abstract
The HIV-1 primary transcript undergoes a complex splicing process by which more than 40 different spliced RNAs are generated. One of the factors contributing to HIV-1 splicing complexity is the multiplicity of 3′ splice sites (3'ss) used for generation of rev RNAs, with two 3'ss, A4a and A4b, being most commonly used, a third site, A4c, used less frequently, and two additional sites, A4d and A4e, reported in only two and one isolates, respectively. HIV-1 splicing has been analyzed mostly in subtype B isolates, and data on other group M clades are lacking. Here we examine splice site usage in three primary isolates of subtype C, the most prevalent clade in the HIV-1 pandemic, by using an in vitro infection assay of peripheral blood mononuclear cells. Viral spliced RNAs were identified by RT-PCR amplification using a fluorescently-labeled primer and software analyses and by cloning and sequencing the amplified products. The results revealed that splice site usage for generation of rev transcripts in subtype C differs from that reported for subtype B, with most rev RNAs using two previously unreported 3'ss, one located 7 nucleotides upstream of 3'ss A4a, designated A4f, preferentially used by two isolates, and another located 14 nucleotides upstream of 3'ss A4c, designated A4g, preferentially used by the third isolate. A new 5′ splice site, designated D2a, was also identified in one virus. Usage of the newly identified splice sites is consistent with sequence features commonly found in subtype C viruses. These results show that splice site usage may differ between HIV-1 subtypes.
Collapse
Affiliation(s)
- Elena Delgado
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Cristina Carrera
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Paloma Nebreda
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | - Milagros Pinilla
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Valentina García
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Lucía Pérez-Álvarez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael M. Thomson
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- * E-mail:
| |
Collapse
|
11
|
Levengood JD, Rollins C, Mishler CHJ, Johnson CA, Miner G, Rajan P, Znosko BM, Tolbert BS. Solution structure of the HIV-1 exon splicing silencer 3. J Mol Biol 2011; 415:680-98. [PMID: 22154809 DOI: 10.1016/j.jmb.2011.11.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 12/20/2022]
Abstract
Alternative splicing of the human immunodeficiency virus type 1 (HIV-1) genomic RNA is necessary to produce the complete viral protein complement, and aberrations in the splicing pattern impair HIV-1 replication. Genome splicing in HIV-1 is tightly regulated by the dynamic assembly/disassembly of trans host factors with cis RNA control elements. The host protein, heterogeneous nuclear ribonucleoprotein (hnRNP) A1, regulates splicing at several highly conserved HIV-1 3' splice sites by binding 5'-UAG-3' elements embedded within regions containing RNA structure. The physical determinants of hnRNP A1 splice site recognition remain poorly defined in HIV-1, thus precluding a detailed understanding of the molecular basis of the splicing pattern. Here, the three-dimensional structure of the exon splicing silencer 3 (ESS3) from HIV-1 has been determined using NMR spectroscopy. ESS3 adopts a 27-nucleotide hairpin with a 10-bp A-form stem that contains a pH-sensitive A(+)C wobble pair. The seven-nucleotide hairpin loop contains the high-affinity hnRNP-A1-responsive 5'-UAGU-3' element and a proximal 5'-GAU-3' motif. The NMR structure shows that the heptaloop adopts a well-organized conformation stabilized primarily by base stacking interactions reminiscent of a U-turn. The apex of the loop is quasi-symmetric with UA dinucleotide steps from the 5'-GAU-3' and 5'-UAGU-3' motifs stacking on opposite sides of the hairpin. As a step towards understanding the binding mechanism, we performed calorimetric and NMR titrations of several hnRNP A1 subdomains into ESS3. The data show that the UP1 domain forms a high-affinity (K(d)=37.8±1.1 nM) complex with ESS3 via site-specific interactions with the loop.
Collapse
Affiliation(s)
- Jeffrey D Levengood
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Tazi J, Bakkour N, Marchand V, Ayadi L, Aboufirassi A, Branlant C. Alternative splicing: regulation of HIV-1 multiplication as a target for therapeutic action. FEBS J 2010; 277:867-76. [DOI: 10.1111/j.1742-4658.2009.07522.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Transcriptional errors in human immunodeficiency virus type 1 generate targets for T-cell responses. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1369-71. [PMID: 19571107 DOI: 10.1128/cvi.00410-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We measured T-cell responses to human immunodeficiency virus type 1 (HIV-1) cryptic epitopes encoded by regions of the viral genome not normally translated into viral proteins. T-cell responses to cryptic epitopes and to regions normally spliced out of the HIV-1 viral proteins Rev and Tat were detected in HIV-1-infected subjects.
Collapse
|
14
|
Nicoletti F, Lapenta C, Lamenta C, Donati S, Spada M, Ranazzi A, Cacopardo B, Mangano K, Belardelli F, Perno C, Aquaro S. Inhibition of human immunodeficiency virus (HIV-1) infection in human peripheral blood leucocytes-SCID reconstituted mice by rapamycin. Clin Exp Immunol 2009; 155:28-34. [PMID: 19076826 DOI: 10.1111/j.1365-2249.2008.03780.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The capacity of the immunomodulatory drug rapamycin (RAPA) to inhibit replication of the CCR5 strain of human immunodeficiency virus (HIV) in vitro prompted us to test its effects in a murine preclinical model of HIV infection. RAPA (0.6 or 6 mg/kg body weight) or its vehicle were administered daily, per os, to SCID mice reconstituted with human peripheral blood leucocytes (hu-PBL) starting 2 days before the intraperitoneal challenge with the R5 tropic SF162 strain of HIV-1 (1000 50% tissue culture infective dose/ml). Relative to hu-PBL-SCID mice that received no treatment, HIV-infected hu-PBL-SCID mice treated with the vehicle control for 3 weeks exhibited a severe depletion of CD4(+) cells (90%), an increase in CD8(+) cells and an inversion of the CD4(+)/CD8(+) cell ratio. In contrast, treatment of HIV-infected mice with RAPA prevented a decrease in CD4(+) cells and the increase of CD8(+) cells, thereby preserving the original CD4(+):CD8(+) cell ratio. Viral infection also resulted in the detection of HIV-DNA within peritoneal cells and spleen, and lymph node tissues of the vehicle-treated mice within 3 weeks of the viral challenge. In contrast, treatment with RAPA decreased cellular provirus integration and reduced HIV-RNA levels in the blood. Furthermore, in co-cultivation assays, spleens from RAPA-treated mice exhibited a reduced capacity for infecting allogeneic T cells which was dose-dependent. These data show that RAPA possesses powerful anti-viral activity against R5 strains of HIV in vivo and support the use of additional studies to evaluate the potential application of this drug in the management of HIV patients.
Collapse
Affiliation(s)
- F Nicoletti
- Department of Biomedical Sciences, Section of Clinical Pathology and Molecular Oncology, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
RNA structure modulates splicing efficiency at the human immunodeficiency virus type 1 major splice donor. J Virol 2007; 82:3090-8. [PMID: 18160437 DOI: 10.1128/jvi.01479-07] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The untranslated leader of the human immunodeficiency virus type 1 (HIV-1) RNA genome encodes essential sequence and structural motifs that control various replication steps. The 5' splice site or splice donor (SD) is embedded in a semistable hairpin, but the function of this structure is unknown. We stabilized this SD hairpin by creating an additional base pair and demonstrated a severe HIV-1 replication defect. A splicing defect was apparent in RNA analyses of virus-infected cells and cells transfected with appropriate reporter constructs. We selected multiple virus revertants in search for interesting second-site escape pathways. Most revertants acquired an additional mutation that modulated the stability of the mutant SD hairpin. One revertant acquired a single nucleotide change in the upstream DIS hairpin. We demonstrate that a novel SD site is created by this upstream mutation, which obviously reduces the number of leader nucleotides that are included in spliced HIV-1 transcripts. These results suggest a novel role of RNA structure in the regulation of HIV-1 splicing.
Collapse
|
16
|
Felber BK, Zolotukhin AS, Pavlakis GN. Posttranscriptional Control of HIV‐1 and Other Retroviruses and Its Practical Applications. ADVANCES IN PHARMACOLOGY 2007; 55:161-97. [PMID: 17586315 DOI: 10.1016/s1054-3589(07)55005-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | | |
Collapse
|
17
|
Sajic R, Lee K, Asai K, Sakac D, Branch DR, Upton C, Cochrane A. Use of modified U1 snRNAs to inhibit HIV-1 replication. Nucleic Acids Res 2006; 35:247-55. [PMID: 17158512 PMCID: PMC1802557 DOI: 10.1093/nar/gkl1022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Control of RNA processing plays a central role in regulating the replication of HIV-1, in particular the 3' polyadenylation of viral RNA. Based on the demonstration that polyadenylation of mRNAs can be disrupted by the targeted binding of modified U1 snRNA, we examined whether binding of U1 snRNAs to conserved 10 nt regions within the terminal exon of HIV-1 was able to inhibit viral structural protein expression. In this report, we demonstrate that U1 snRNAs complementary to 5 of the 15 regions targeted result in significant suppression of HIV-1 protein expression and viral replication coincident with loss of viral RNA. Suppression of viral gene expression is dependent upon appropriate assembly of a U1 snRNP particle as mutations of U1 snRNA that affect binding of U1 70K or Sm proteins significantly reduced efficacy. However, constructs lacking U1A binding sites retained significant anti-viral activity. This finding suggests a role for these mutants in situations where the wild-type constructs cause toxic effects. The conserved nature of the sequences targeted and the high efficacy of the constructs suggests that this strategy has significant potential as an HIV therapeutic.
Collapse
Affiliation(s)
| | | | | | - D. Sakac
- Department of Medicine, University of TorontoToronto, Ontario, Canada
| | - D. R. Branch
- Department of Medicine, University of TorontoToronto, Ontario, Canada
| | - C. Upton
- Department of Biochemistry and Microbiology, University of VictoriaVictoria, BC, Canada
| | - A. Cochrane
- To whom correspondence should be addressed at Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S-1A8. Tel: +416 978 2500; Fax: +416 978-6885;
| |
Collapse
|
18
|
Hallay H, Locker N, Ayadi L, Ropers D, Guittet E, Branlant C. Biochemical and NMR Study on the Competition between Proteins SC35, SRp40, and Heterogeneous Nuclear Ribonucleoprotein A1 at the HIV-1 Tat Exon 2 Splicing Site. J Biol Chem 2006; 281:37159-74. [PMID: 16990281 DOI: 10.1074/jbc.m603864200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human immunodeficiency virus, type 1, Tat protein plays a key role in virus multiplication. Because of its apoptotic property, its production is highly controlled. It depends upon the A3 splicing site utilization. A key control of site A3 activity is the ESS2 splicing silencer, which is located within the long stem-loop structure 3 (SLS3), far downstream from site A3. Here, by enzymatic footprints, we demonstrate the presence of several heterogeneous nuclear ribonucleoprotein (hnRNP) A1-binding sites on SLS3 and show the importance of the C-terminal Gly domain of hnRNP A1 in the formation of stable complexes containing several hnRNP A1 molecules bound on SLS3. Mutations in each of the UAG triplets in ESS2 strongly reduce the overall hnRNP A1 binding, showing the central role of ESS2 in hnRNP A1 assembly on SLS2-SLS3. Using NMR spectroscopy, we demonstrate the direct interaction of ESS2 with the RNA recognition motifs domains of hnRNP A1. This interaction has limited effect on the RNA two-dimensional structure. The SR proteins SC35 and SRp40 were found previously to be strong activators of site A3 utilization. By enzymatic and chemical footprints, we delineate their respective binding sites on SLS2 and SLS3 and find a strong similarity between the hnRNP A1-, SC35-, and SRp40-binding sites. The strongest SC35-binding site only has a modest contribution to site A3 activation. Hence, the main role of SR proteins at site A3 is to counteract hnRNP A1 binding on ESS2 and ESE2. Indeed, we found that ESE2 has inhibitory properties because of its ability to bind hnRNP A1.
Collapse
Affiliation(s)
- Houda Hallay
- UMR 7567 CNRS-Université Henri Poincaré-Nancy I, Boulevard des Aiguillettes, BP239, 54506 Vandoeuvre-lès-Nancy Cedex and Laboratoire de Chimie et Biologie Structurales, ICSN-CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
19
|
Graf M, Ludwig C, Kehlenbeck S, Jungert K, Wagner R. A quasi-lentiviral green fluorescent protein reporter exhibits nuclear export features of late human immunodeficiency virus type 1 transcripts. Virology 2006; 352:295-305. [PMID: 16777165 DOI: 10.1016/j.virol.2006.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 02/23/2006] [Accepted: 05/02/2006] [Indexed: 10/24/2022]
Abstract
We have previously shown that Rev-dependent expression of HIV-1 Gag from CMV immediate early promoter critically depends on the AU-rich codon bias of the gag gene. Here, we demonstrate that adaptation of the green fluorescent protein (GFP) reporter gene to HIV codon bias is sufficient to turn this hivGFP RNA into a quasi-lentiviral message following the rules of late lentiviral gene expression. Accordingly, GFP expression was significantly decreased in transfected cells strictly correlating with reduced RNA levels. In the presence of the HIV 5' major splice donor, the hivGFP RNAs were stabilized in the nucleus and efficiently exported to the cytoplasm following fusion of the 3' Rev-responsive element (RRE) and coexpression of HIV-1 Rev. This Rev-dependent translocation was specifically inhibited by leptomycin B suggesting export via the CRM1-dependent pathway used by late lentiviral transcripts. In conclusion, this quasi-lentiviral reporter system may provide a new platform for developing sensitive Rev screening assays.
Collapse
Affiliation(s)
- Marcus Graf
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology and Gene Therapy, University of Regensburg, 93053 Regensburg, Germany
| | | | | | | | | |
Collapse
|
20
|
Cochrane AW, McNally MT, Mouland AJ. The retrovirus RNA trafficking granule: from birth to maturity. Retrovirology 2006; 3:18. [PMID: 16545126 PMCID: PMC1475878 DOI: 10.1186/1742-4690-3-18] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 03/17/2006] [Indexed: 11/10/2022] Open
Abstract
Post-transcriptional events in the life of an RNA including RNA processing, transport, translation and metabolism are characterized by the regulated assembly of multiple ribonucleoprotein (RNP) complexes. At each of these steps, there is the engagement and disengagement of RNA-binding proteins until the RNA reaches its final destination. For retroviral genomic RNA, the final destination is the capsid. Numerous studies have provided crucial information about these processes and serve as the basis for studies on the intracellular fate of retroviral RNA. Retroviral RNAs are like cellular mRNAs but their processing is more tightly regulated by multiple cis-acting sequences and the activities of many trans-acting proteins. This review describes the viral and cellular partners that retroviral RNA encounters during its maturation that begins in the nucleus, focusing on important events including splicing, 3' end-processing, RNA trafficking from the nucleus to the cytoplasm and finally, mechanisms that lead to its compartmentalization into progeny virions.
Collapse
Affiliation(s)
- Alan W Cochrane
- Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Mark T McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute for Medical Research-Sir Mortimer B. Davis Jewish General Hospital and McGill University, 3755 Côte-Ste-Catherine Road, H3T 1E2, Canada
| |
Collapse
|
21
|
Madsen JM, Stoltzfus CM. A suboptimal 5' splice site downstream of HIV-1 splice site A1 is required for unspliced viral mRNA accumulation and efficient virus replication. Retrovirology 2006; 3:10. [PMID: 16457729 PMCID: PMC1403798 DOI: 10.1186/1742-4690-3-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 02/03/2006] [Indexed: 11/10/2022] Open
Abstract
Background Inefficient alternative splicing of the human immunodeficiency virus type 1(HIV-1) primary RNA transcript results in greater than half of all viral mRNA remaining unspliced. Regulation of HIV-1 alternative splicing occurs through the presence of suboptimal viral 5' and 3' splice sites (5' and 3'ss), which are positively regulated by exonic splicing enhancers (ESE) and negatively regulated by exonic splicing silencers (ESS) and intronic splicing silencers (ISS). We previously showed that splicing at HIV-1 3'ss A2 is repressed by ESSV and enhanced by the downstream 5'ss D3 signal. Disruption of ESSV results in increased vpr mRNA accumulation and exon 3 inclusion, decreased accumulation of unspliced viral mRNA, and decreased virus production. Results Here we show that optimization of the 5'ss D2 signal results in increased splicing at the upstream 3'ss A1, increased inclusion of exon 2 into viral mRNA, decreased accumulation of unspliced viral mRNA, and decreased virus production. Virus production from the 5'ss D2 and ESSV mutants was rescued by transient expression of HIV-1 Gag and Pol. We further show that the increased inclusion of either exon 2 or 3 does not significantly affect the stability of viral mRNA but does result in an increase and decrease, respectively, in HIV-1 mRNA levels. The changes in viral mRNA levels directly correlate with changes in tat mRNA levels observed upon increased inclusion of exon 2 or 3. Conclusion These results demonstrate that splicing at HIV-1 3'ss A1 is regulated by the strength of the downstream 5'ss signal and that suboptimal splicing at 3'ss A1 is necessary for virus replication. Furthermore, the replication defective phenotype resulting from increased splicing at 3'ss A1 is similar to the phenotype observed upon increased splicing at 3'ss A2. Further examination of the role of 5'ss D2 and D3 in the alternative splicing of 3'ss A1 and A2, respectively, is necessary to delineate a role for non-coding exon inclusion in HIV-1 replication.
Collapse
Affiliation(s)
- Joshua M Madsen
- Interdisciplinary Program in Molecular Biology, University of Iowa, Iowa City, IA 52242, USA
| | - C Martin Stoltzfus
- Interdisciplinary Program in Molecular Biology, University of Iowa, Iowa City, IA 52242, USA
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
22
|
Scholten KBJ, Kramer D, Kueter EWM, Graf M, Schoedl T, Meijer CJLM, Schreurs MWJ, Hooijberg E. Codon modification of T cell receptors allows enhanced functional expression in transgenic human T cells. Clin Immunol 2006; 119:135-45. [PMID: 16458072 DOI: 10.1016/j.clim.2005.12.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 12/20/2005] [Accepted: 12/20/2005] [Indexed: 10/25/2022]
Abstract
Expression of native transgenic T cell receptors in recipient human T cells is often insufficient to achieve highly reactive T cell bulks. Here we show that codon modification of an HPV16E7-specific T cell receptor (TCR), together with omission of mRNA instability motifs and (cryptic) splice sites, leads to a dramatic increase in the expression levels of the transgenic TCRs in human CD8+ T cells. The codon-modified TCRs have been tested in three different configurations in the retroviral vector LZRS: (1) TCRalpha-IRES-GFP in combination with TCRbeta-IRES-NGFR, (2) TCRalpha-IRES-TCRbeta, and (3) TCRalpha-2A-TCRbeta. T cells carrying the codon-modified TCRs are functionally active against target cells loaded with relevant peptide, model tumor cells expressing the specific epitope as well as cervical carcinoma cells. The significant improvements we report here in the functional expression of specific human TCRs will hopefully expedite clinical application of TCR transfer-based immunotherapy.
Collapse
Affiliation(s)
- Kirsten B J Scholten
- Department of Pathology, VU University Medical Center, de Boelelaan 1117, NL-1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Paca-Uccaralertkun S, Damgaard CK, Auewarakul P, Thitithanyanont A, Suphaphiphat P, Essex M, Kjems J, Lee TH. The Effect of a Single Nucleotide Substitution in the Splicing Silencer in the tat/rev Intron on HIV Type 1 Envelope Expression. AIDS Res Hum Retroviruses 2006; 22:76-82. [PMID: 16438649 DOI: 10.1089/aid.2006.22.76] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A complex mRNA splicing pattern, which remains to be fully characterized, influences HIV-1 gene expression. In this study, poor envelope expression of a primary HIV-1 isolate was observed and linked to increased splicing of the two coding exons of tat/rev. The substitution of a nucleotide G, located 28 nucleotides upstream of the splice acceptor site SA7 in the recently identified intron splicing silencer sequence, was found to be responsible for the poor envelope expression. A single nucleotide substitution of G with A at this position results in a poor envelope expression phenotype. Moreover, substitution of the nucleotide G with any other nucleotide in an infectious HIV-1 proviral clone, HXB2RU3, results in poor envelope expression. The substitution of this nucleotide reduces the hnRNP A1 binding affinity but increases the splicing of env mRNA. The nucleotide G at this position is highly conserved among HIV-1 isolates and appears to play a critical role in HIV-1 splicing.
Collapse
|
24
|
Abstract
Human immunodeficiency virus type-1 (HIV-1) relies on both partial and complete splicing of its full-length RNA transcripts to generate a distribution of essential spliced mRNA products. The complexity of the splicing process, which can employ multiple alternative splice sites, challenges our ability to understand how mutations in splice sites may influence the composition of the resulting mRNA pool and, more broadly, the development of viral progeny. Here, we begin to systematically address these issues by developing a mechanistic mathematical model for the splicing process. We identify as key parameters the probabilities that the cellular splice machinery selects specific splice acceptors, and we show how the splicing process depends on these probabilities. Further, by incorporating this splicing model into a detailed kinetic model for HIV-1 intracellular development we find that an increase in the fraction of either rev or tat mRNA in the HIV-1 mRNA pool is generally beneficial for HIV-1 growth. However, a splice site mutation that excessively increases the fraction of either mRNA can be detrimental due to the corresponding reduction in the other mRNA, suggesting that a balance of Rev and Tat is needed in order for HIV-1 to optimize its growth. Although our model is based on still very limited quantitative data on RNA splicing, Rev-mediated splicing regulation and nuclear export, and the effects of associated mutations, it serves as a starting point for better understanding how variations in essential post-transcriptional functions can impact the intracellular development of HIV-1.
Collapse
Affiliation(s)
- Hwijin Kim
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 3633 Engineering Hall, 1415 Engineering Drive, Madison, Wisconsin 53706-1607, USA
| | | |
Collapse
|
25
|
Freund M, Hicks MJ, Konermann C, Otte M, Hertel KJ, Schaal H. Extended base pair complementarity between U1 snRNA and the 5' splice site does not inhibit splicing in higher eukaryotes, but rather increases 5' splice site recognition. Nucleic Acids Res 2005; 33:5112-9. [PMID: 16155183 PMCID: PMC1201333 DOI: 10.1093/nar/gki824] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spliceosome formation is initiated by the recognition of the 5′ splice site through formation of an RNA duplex between the 5′ splice site and U1 snRNA. We have previously shown that RNA duplex formation between U1 snRNA and the 5′ splice site can protect pre-mRNAs from degradation prior to splicing. This initial RNA duplex must be disrupted to expose the 5′ splice site sequence for base pairing with U6 snRNA and to form the active spliceosome. Here, we investigated whether hyperstabilization of the U1 snRNA/5′ splice site duplex interferes with splicing efficiency in human cell lines or nuclear extracts. Unlike observations in Saccharomyces cerevisiae, we demonstrate that an extended U1 snRNA/5′ splice site interaction does not decrease splicing efficiency, but rather increases 5′ splice site recognition and exon inclusion. However, low complementarity of the 5′ splice site to U1 snRNA significantly increases exon skipping and RNA degradation. Although the splicing mechanisms are conserved between human and S.cerevisiae, these results demonstrate that distinct differences exist in the activation of the spliceosome.
Collapse
Affiliation(s)
| | - Martin J. Hicks
- Department of Microbiology and Molecular Genetics, School of Medicine, University of CaliforniaIrvine, Irvine, CA 92697, USA
| | | | | | - Klemens J. Hertel
- Department of Microbiology and Molecular Genetics, School of Medicine, University of CaliforniaIrvine, Irvine, CA 92697, USA
| | - Heiner Schaal
- To whom correspondence should be addressed. Tel: +49 211 81 12393; Fax: +49 211 81 12227;
| |
Collapse
|
26
|
Madsen JM, Stoltzfus CM. An exonic splicing silencer downstream of the 3' splice site A2 is required for efficient human immunodeficiency virus type 1 replication. J Virol 2005; 79:10478-86. [PMID: 16051840 PMCID: PMC1182660 DOI: 10.1128/jvi.79.16.10478-10486.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alternative splicing of the human immunodeficiency virus type 1 (HIV-1) genomic mRNA produces more than 40 unique viral mRNA species, of which more than half remain incompletely spliced within an HIV-1-infected cell. Regulation of splicing at HIV-1 3' splice sites (3'ss) requires suboptimal polypyrimidine tracts, and positive or negative regulation of splicing occurs through binding of cellular factors to cis-acting splicing regulatory elements. We have previously shown that splicing at HIV-1 3'ss A2, which produces vpr mRNA and promotes inclusion of HIV-1 exon 3, is repressed by the hnRNP A/B-dependent exonic splicing silencer ESSV. Here we show that ESSV activity downstream of 3'ss A2 is localized to a 16-nucleotide element within HIV-1 exon 3. HIV-1 replication was reduced by 95% when ESSV was inactivated by mutagenesis. Reduced replication was concomitant with increased inclusion of exon 3 within spliced viral mRNA and decreased accumulation of unspliced viral mRNA, resulting in decreased cell-associated p55 Gag. Prolonged culture of ESSV mutant viruses resulted in two independent second-site reversions disrupting the splice sites that define exon 3, 3'ss A2 and 5' splice site D3. Either of these changes restored both HIV-1 replication and regulated viral splicing. Therefore, inhibition of HIV-1 3'ss A2 splicing is necessary for HIV-1 replication.
Collapse
Affiliation(s)
- Joshua M Madsen
- Interdisciplinary Program in Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
27
|
Abstract
The persistence of human immunodeficiency virus type-1 (HIV-1) has long been attributed to its high mutation rate and the capacity of its resulting heterogeneous virus populations to evade host immune responses and antiviral drugs. However, this view is incomplete because it does not explain how the virus persists in light of the adverse effects mutations in the viral genome and variations in host functions can potentially have on viral functions and growth. Here we show that the resilience of HIV-1 can be credited, at least in part, to a robust response to perturbations that emerges as an intrinsic property of its intracellular development. Specifically, robustness in HIV-1 arises through the coupling of two feedback loops: a Rev-mediated negative feedback and a Tat-mediated positive feedback. By employing a mechanistic kinetic model for its growth we found that HIV-1 buffers the effects of many potentially detrimental variations in essential viral and cellular functions, including the binding of Rev to mRNA; the level of rev mRNA in the pool of fully spliced mRNA; the splicing of mRNA; the Rev-mediated nuclear export of incompletely-spliced mRNAs; and the nuclear import of Tat and Rev. The virus did not, however, perform robustly to perturbations in all functions. Notably, HIV-1 tended to amplify rather than buffer adverse effects of variations in the interaction of Tat with viral mRNA. This result shows how targeting therapeutics against molecular components of the viral positive-feedback loop open new possibilities and potential in the effective treatment of HIV-1.
Collapse
Affiliation(s)
- Hwijin Kim
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706-1607, USA
| | | |
Collapse
|
28
|
Bohne J, Wodrich H, Kräusslich HG. Splicing of human immunodeficiency virus RNA is position-dependent suggesting sequential removal of introns from the 5' end. Nucleic Acids Res 2005; 33:825-37. [PMID: 15701754 PMCID: PMC549389 DOI: 10.1093/nar/gki185] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transcription of the HIV-1 genome yields a single primary transcript, which is alternatively spliced to >30 mRNAs. Productive infection depends on inefficient and regulated splicing and appears to proceed in a tight 5' to 3' order. To analyse whether sequential splicing is mediated by the quality of splice sites or by the position of an intron, we inserted the efficient beta-globin intron (BGI) into the 3' region or 5'UTR of a subgenomic expression vector or an infectious proviral plasmid. RNA analysis revealed splicing of the 3' BGI only if all upstream introns were removed, while splicing of the same intron in the 5'UTR was efficient and independent of further splicing. Furthermore, mutation of the upstream splice signal in the subgenomic vector did not eliminate the inhibition of 3' splicing, although the BGI sequence was the only intron in this case. These results suggest that downstream splicing of HIV-1 RNAs is completely dependent on prior splicing of all upstream intron(s). This hypothesis was supported by the mutation of the major 5' splice site in the HIV-1 genome, which completely abolished all splicing. It appears likely that the tight order of splicing is important for HIV-1 replication, which requires the stable production of intron containing RNAs, while splicing of 3' introns on incompletely spliced RNAs would be likely to render them subject to nonsense-mediated decay.
Collapse
Affiliation(s)
- Jens Bohne
- Department of Virology, Universität HeidelbergD-69120 Heidelberg, Germany
- Department of Hematology and Oncology, Hannover Medical SchoolD-30625 Hannover, Germany
| | - Harald Wodrich
- Department of Virology, Universität HeidelbergD-69120 Heidelberg, Germany
- Institute de Généthique Moléculaire de Montepellier CNRS UMR 5535F-34293 Montepellier, France
| | - Hans-Georg Kräusslich
- Department of Virology, Universität HeidelbergD-69120 Heidelberg, Germany
- To whom correspondence should be addressed at Abteilung Virologie, Universitätsklinikum Heidelberg Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany. Tel: +49 6221 56 5001; Fax: +49 6221 56 5003;
| |
Collapse
|
29
|
Hovhannisyan RH, Carstens RP. A novel intronic cis element, ISE/ISS-3, regulates rat fibroblast growth factor receptor 2 splicing through activation of an upstream exon and repression of a downstream exon containing a noncanonical branch point sequence. Mol Cell Biol 2005; 25:250-63. [PMID: 15601847 PMCID: PMC538792 DOI: 10.1128/mcb.25.1.250-263.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutually exclusive splicing of fibroblast growth factor receptor 2 (FGFR2) exons IIIb and IIIc yields two receptor isoforms, FGFR2-IIIb and -IIIc, with distinctly different ligand binding properties. Several RNA cis elements in the intron (intron 8) separating these exons have been described that are required for splicing regulation. Using a heterologous splicing reporter, we have identified a new regulatory element in this intron that confers cell-type-specific inclusion of an unrelated exon that mirrors its ability to promote cell-type-specific inclusion of exon IIIb. This element promoted inclusion of exon IIIb while at the same time silencing exon IIIc inclusion in cells expressing FGFR2-IIIb; hence, we have termed this element ISE/ISS-3 (for "intronic splicing enhancer-intronic splicing silencer 3"). Silencing of exon IIIc splicing by ISE/ISS-3 was shown to require a branch point sequence (BPS) using G as the primary branch nucleotide. Replacing a consensus BPS with A as the primary branch nucleotide resulted in constitutive splicing of exon IIIc. Our results suggest that the branch point sequence constitutes an important component that can contribute to the efficiency of exon definition of alternatively spliced cassette exons. Noncanonical branch points may thus facilitate cell-type-specific silencing of regulated exons by flanking cis elements.
Collapse
Affiliation(s)
- Ruben H Hovhannisyan
- University of Pennsylvania School of Medicine, 700 Clinical Research Building, 415 Curie Blvd., Philadelphia, PA 19104-6144, USA
| | | |
Collapse
|
30
|
Zhao X, Rush M, Schwartz S. Identification of an hnRNP A1-dependent splicing silencer in the human papillomavirus type 16 L1 coding region that prevents premature expression of the late L1 gene. J Virol 2004; 78:10888-905. [PMID: 15452209 PMCID: PMC521837 DOI: 10.1128/jvi.78.20.10888-10905.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have previously identified cis-acting RNA sequences in the human papillomavirus type 16 (HPV-16) L1 coding region which inhibit expression of L1 from eukaryotic expression plasmids. Here we have determined the function of one of these RNA elements, and we provide evidence that this RNA element is a splicing silencer which suppresses the use of the 3' splice site located immediately upstream of the L1 AUG. We also show that this splice site is inefficiently utilized as a result of a suboptimal polypyrimidine tract. Introduction of point mutations in the L1 coding region that altered the RNA sequence without affecting the L1 protein sequence resulted in the inactivation of the splicing silencer and induced splicing to the L1 3' splice site. These mutations also prevented the interaction of the RNA silencer with a 35-kDa cellular protein identified here as hnRNP A1. The splicing silencer in L1 inhibits splicing in vitro, and splicing can be restored by the addition of RNAs containing an hnRNP A1 binding site to the reaction, demonstrating that hnRNP A1 inhibits splicing of the late HPV-16 mRNAs through the splicing silencer sequence. While we show that one role of the splicing silencer is to determine the ratio between partially spliced L2/L1 mRNAs and spliced L1 mRNAs, we also demonstrate that it inhibits splicing from the major 5' splice site in the early region to the L1 3' splice site, thereby playing an essential role in preventing late gene expression at an early stage of the viral life cycle. We speculate that the activity of the splicing silencer and possibly the concentration of hnRNP A1 in the HPV-16-infected cell determines the ability of the virus to establish a persistent infection which remains undetected by the host immune surveillance.
Collapse
Affiliation(s)
- Xiaomin Zhao
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Husargatan 3, Box 582, 751 23 Uppsala, Sweden
| | | | | |
Collapse
|
31
|
McNally LM, Yee L, McNally MT. Two regions promote U11 small nuclear ribonucleoprotein particle binding to a retroviral splicing inhibitor element (negative regulator of splicing). J Biol Chem 2004; 279:38201-8. [PMID: 15252020 DOI: 10.1074/jbc.m407073200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rous sarcoma virus (RSV) negative regulator of splicing (NRS) is an RNA element that represses splicing and promotes polyadenylation of viral RNA. The NRS acts as a pseudo 5' splice site (ss), and serine-arginine (SR) proteins, U1snRNP, and U6 small nuclear ribonucleoproteins (snRNPs) are implicated in its function. The NRS also efficiently binds U11 snRNP of the U12-dependent splicing pathway, which is interesting, because U11 binds only poorly to authentic substrates that lack a U12-type 3' splice site. It is of considerable interest to understand how the low abundance U11 snRNP binds the NRS so well. Here we show that U11 can bind the NRS as a mono-snRNP in vitro and that a G-rich element located downstream of the U11 site is required for efficient binding. Mutational analyses indicated that two of four G tracts in this region were important for optimal U11 binding and that the G-rich region did not function indirectly by promoting U1 snRNP binding to an overlapping site. Surprisingly, inactivation of U2 snRNP also decreased U11 binding to the NRS. The NRS harbors a branch point-like/pyrimidine tract sequence (BP/Py) just upstream of the U1/U11 site that is characteristic of 3' splice sites. Deletion of this region decreased U2 and U11 binding, and deletion of the G-rich region also reduced U2 binding. The G element, but not the BP/Py sequence, was also required for U11 binding to the NRS in vivo as assessed by minor class splicing from the NRS to a minor class 3'ss from the P120 gene. These results indicate that efficient U11 binding to the isolated NRS involves at least two elements in addition to the U11 consensus sequence and may have implications for U11 binding to authentic splicing substrates.
Collapse
Affiliation(s)
- Lisa M McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
32
|
McLaren M, Asai K, Cochrane A. A novel function for Sam68: enhancement of HIV-1 RNA 3' end processing. RNA (NEW YORK, N.Y.) 2004; 10:1119-29. [PMID: 15208447 PMCID: PMC1370602 DOI: 10.1261/rna.5263904] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Both cis elements and host cell proteins can significantly affect HIV-1 RNA processing and viral gene expression. Previously, we determined that the exon splicing silencer (ESS3) within the terminal exon of HIV-1 not only reduces use of the adjacent 3' splice site but also prevents Rev-induced export of the unspliced viral RNA to the cytoplasm. In this report, we demonstrate that loss of unspliced viral RNA export is correlated with the inhibition of 3' end processing by the ESS3. Furthermore, we find that the host factor Sam68, a stimulator of HIV-1 protein expression, is able to reverse the block to viral RNA export mediated by the ESS3. The reversal is associated with a stimulation of 3' end processing of the unspliced viral RNA. Our findings identify a novel activity for the ESS3 and Sam68 in regulating HIV-1 RNA polyadenylation. Furthermore, the observations provide an explanation for how Sam68, an exclusively nuclear protein, modulates cytoplasmic utilization of the affected RNAs. Our finding that Sam68 is also able to enhance 3' end processing of a heterologous RNA raises the possibility that it may play a similar role in regulating host gene expression.
Collapse
Affiliation(s)
- Meredith McLaren
- Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
33
|
Ropers D, Ayadi L, Gattoni R, Jacquenet S, Damier L, Branlant C, Stévenin J. Differential effects of the SR proteins 9G8, SC35, ASF/SF2, and SRp40 on the utilization of the A1 to A5 splicing sites of HIV-1 RNA. J Biol Chem 2004; 279:29963-73. [PMID: 15123677 DOI: 10.1074/jbc.m404452200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Splicing is a crucial step for human immunodeficiency virus, type 1 (HIV-1) multiplication; eight acceptor sites are used in competition to produce the vif, vpu, vpr, nef, env, tat, and rev mRNAs. The effects of SR proteins have only been investigated on a limited number of HIV-1 splicing sites by using small HIV-1 RNA pieces. To understand how SR proteins influence the use of HIV-1 splicing sites, we tested the effects of overproduction of individual SR proteins in HeLa cells on the splicing pattern of an HIV-1 RNA that contained all the splicing sites. The steady state levels of the HIV-1 mRNAs produced were quantified by reverse transcriptase-PCR. For interpretation of the data, transcripts containing one or several of the HIV-1 acceptor sites were spliced in vitro in the presence or the absence of one of the tested SR proteins. Both in vivo and in vitro, acceptor sites A2 and A3 were found to be strongly and specifically regulated by SR proteins. ASF/SF2 strongly activates site A2 and to a lesser extent site A1. As a result, upon ASF/SF2 overexpression, the vpr mRNA steady state level is specifically increased. SC35 and SRp40, but not 9G8, strongly activate site A3, and their overexpression ex vivo induces a dramatic accumulation of the tat mRNA, to the detriment of most of the other viral mRNAs. Here we showed by Western blot analysis that the Nef protein synthesis is strongly decreased by overexpression of SC35, SRp40, and ASF/SF2. Finally, activation by ASF/SF2 and 9G8 was found to be independent of the RS domain. This is the first investigation of the effects of variations of individual SR protein concentrations that is performed ex vivo on an RNA containing a complex set of splicing sites.
Collapse
Affiliation(s)
- Delphine Ropers
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR CNRS 7567, Université Henri Poincaré Nancy 1, Boulevard des Aiguillettes, BP239, 54506 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Zahler AM, Damgaard CK, Kjems J, Caputi M. SC35 and heterogeneous nuclear ribonucleoprotein A/B proteins bind to a juxtaposed exonic splicing enhancer/exonic splicing silencer element to regulate HIV-1 tat exon 2 splicing. J Biol Chem 2004; 279:10077-84. [PMID: 14703516 DOI: 10.1074/jbc.m312743200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Splicing of the human immunodeficiency virus, type 1, primary transcript is highly regulated. Maintaining the proper equilibrium among spliced, unspliced, and partially spliced isoforms is essential for the replication of the virus. Here we characterize a complex cis-acting element located in tat exon 2 that is required for the splicing regulation of the upstream intron. An exonic splicing enhancer (ESE) and an exonic splicing silencer (ESS) are both located within the regulatory element. Heterogeneous nuclear ribonucleoprotein (hnRNP) A/B proteins bind the ESS to repress splicing, whereas the SR protein SC35 binds the ESE to activate it. We show that the SC35 and the hnRNP A1 binding sites overlap within the juxtaposed ESE/ESS. We propose that hnRNP A1 binding to the ESS inhibits splicing of the upstream intron by directly masking the SC35 binding site.
Collapse
Affiliation(s)
- Alan M Zahler
- Department of Molecular, Cellular and Developmental Biology and Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | | | | | |
Collapse
|
35
|
Martínez-Contreras R, Galindo JM, Aguilar-Rojas A, Valdés J. Two exonic elements in the flanking constitutive exons control the alternative splicing of the alpha exon of the ZO-1 pre-mRNA. ACTA ACUST UNITED AC 2004; 1630:71-83. [PMID: 14654237 DOI: 10.1016/j.bbaexp.2003.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The 240-bp alpha exon of the tight junction (TJ) protein ZO-1 pre-mRNA is alternatively spliced. Expression of both ZO-1alpha+/ZO-1alpha- isoforms results in hermetic TJs, and these become leaky when ZO-1alpha- expression prevails. The alpha exon inclusion/skipping mechanism was studied by in vivo RT-PCR splicing assays in neural and epithelial cells, utilizing a canine minigene construct containing the alpha exon, and the flanking introns and exons. Inclusion of the alpha exon always occurs in wild-type MDCK cells and it is detectable in transfected HeLa cells. However, the alpha exon is skipped in transfected neural cells. Accordingly, both 5' and 3' splice sites surrounding the alpha exon appear to be suboptimal and no cis-acting splicing control elements were found in this exon. Deletion analysis revealed an 83-bp splicing enhancer in the downstream exon and a 35-bp splicing silencer at the beginning of the upstream exon. In epithelial cells all constructs rendered alpha exon inclusion. We conclude that, in neural cells, skipping of the alpha exon depends on two antagonistic exonic elements located in the flanking constitutive exons.
Collapse
Affiliation(s)
- Rebeca Martínez-Contreras
- Departmento de Fisiología, Biofísica y Neurociencias, CINVESTAV-México, Apartado Postal 14-740, DF 07000, México
| | | | | | | |
Collapse
|
36
|
Domsic JK, Wang Y, Mayeda A, Krainer AR, Stoltzfus CM. Human immunodeficiency virus type 1 hnRNP A/B-dependent exonic splicing silencer ESSV antagonizes binding of U2AF65 to viral polypyrimidine tracts. Mol Cell Biol 2003; 23:8762-72. [PMID: 14612416 PMCID: PMC262674 DOI: 10.1128/mcb.23.23.8762-8772.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) exonic splicing silencers (ESSs) inhibit production of certain spliced viral RNAs by repressing alternative splicing of the viral precursor RNA. Several HIV-1 ESSs interfere with spliceosome assembly by binding cellular hnRNP A/B proteins. Here, we have further characterized the mechanism of splicing repression using a representative HIV-1 hnRNP A/B-dependent ESS, ESSV, which regulates splicing at the vpr 3' splice site. We show that hnRNP A/B proteins bound to ESSV are necessary to inhibit E complex assembly by competing with the binding of U2AF65 to the polypyrimidine tracts of repressed 3' splice sites. We further show evidence suggesting that U1 snRNP binds the 5' splice site despite an almost complete block of splicing by ESSV. Possible splicing-independent functions of U1 snRNP-5' splice site interactions during virus replication are discussed.
Collapse
Affiliation(s)
- Jeffrey K Domsic
- Program in Molecular Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
37
|
Asai K, Platt C, Cochrane A. Control of HIV-1 env RNA splicing and transport: investigating the role of hnRNP A1 in exon splicing silencer (ESS3a) function. Virology 2003; 314:229-42. [PMID: 14517076 DOI: 10.1016/s0042-6822(03)00400-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The control of HIV-1 viral RNA splicing and transport plays an important role in the successful replication of the virus. Previous studies have identified both an exon splicing enhancer (ESE) and a bipartite exon splicing silencer (ESS3a and ESS3b) within the terminal exon of HIV-1 that are involved in modulating both splicing and Rev-mediated export of viral RNA. To define the mechanism of ESS3a function, experiments were carried out to better define the cis and trans components required for ESS3a activity. Mutations throughout the 30-nt element resulted in partial loss of ESS function. Combining mutations was found to have an additive effect, suggesting the presence of multiple binding sites. Analysis of interacting factors identified hnRNP A1 as one component of the complex that modulates ESS3a activity. However, subsequent binding analyses determined that hnRNP A1 interacts with only one portion of ESS3a, suggesting the involvement of another host factor. Parallel analysis of the effect of the mutations on Rev-mediated export determined that there is not a direct correlation between the effect of the mutations on splicing and RNA transport. Consistent with this hypothesis, replacement of ESS3a with consensus hnRNP A1 binding sites was found to be insufficient to block Rev-mediated RNA export.
Collapse
Affiliation(s)
- Kengo Asai
- Department of Molecular and Medical Genetics, Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, Canada M5S-1A8
| | | | | |
Collapse
|
38
|
Suh D, Seguin B, Atkinson S, Ozdamar B, Staffa A, Emili A, Mouland A, Cochrane A. Mapping of determinants required for the function of the HIV-1 env nuclear retention sequence. Virology 2003; 310:85-99. [PMID: 12788633 DOI: 10.1016/s0042-6822(03)00073-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Control of HIV-1 RNA processing and transport are critical to the successful replication of the virus. In previous work, we identified a region within the HIV-1 env that is involved in mediating nuclear retention of unspliced viral RNA. To define this sequence further and identify elements required for function, deletion mutagenesis was carried out. Progressive 5' and 3' deletions map the nuclear retention sequence (NRS) within the intron between nts 8281 and 8381. While deletion of sequences comprising the 3'ss had no effect, removal of the 5'ss resulted in cytoplasmic accumulation of unspliced RNA. Sequence analysis determined that the region corresponding to the NRS is highly conserved among HIV-1 strains. To evaluate whether this NRS interacts with cellular factors, RNA electrophoretic mobility shift assays (REMSA) were performed. We show that the NRS specifically interacts with cellular factors present in HeLa nuclear extracts, and, by UV crosslinking, correlates with the binding of a 49-kDa protein. Immunoprecipitation of the UV crosslinked products determined that this 49-kDa protein corresponds to hnRNP C.
Collapse
Affiliation(s)
- Daniel Suh
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario M5S-1A8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Suptawiwat O, Sutthent R, Lee TH, Auewarakul P. Intragenic HIV-1 env sequences that enhance gag expression. Virology 2003; 309:1-9. [PMID: 12726721 DOI: 10.1016/s0042-6822(02)00084-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Expression of HIV-1 genes is regulated at multiple levels including the complex RNA splicing and transport mechanisms. Multiple cis-acting elements involved in these regulations have been previously identified in various regions of HIV-1 genome. Here we show that another cis-acting element was present in HIV-1 env region. This element enhanced the expression of Gag when inserted together with Rev response element (RRE) into a truncated HIV-1 genome in the presence of Rev. The enhancing activity was mapped to a 263-bp fragment in the gp41 region downstream to RRE. RNA analysis showed that it might function by promoting RNA stability and Rev-dependent RNA export. The enhancement was specific to Rev-dependent expression, since it did not enhance Gag expression driven by Sam68, a cellular protein that has been shown to be able to substitute for Rev in RNA export function.
Collapse
Affiliation(s)
- Ornpreya Suptawiwat
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | | | | | | |
Collapse
|
40
|
Damgaard CK, Tange TO, Kjems J. hnRNP A1 controls HIV-1 mRNA splicing through cooperative binding to intron and exon splicing silencers in the context of a conserved secondary structure. RNA (NEW YORK, N.Y.) 2002; 8:1401-1415. [PMID: 12458794 PMCID: PMC1370347 DOI: 10.1017/s1355838202023075] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The removal of the second intron in the HIV-1 rev/tat pre-mRNAs, which involves the joining of splice site SD4 to SA7, is inhibited by hnRNP A1 by a mechanism that requires the intronic splicing silencer (ISS) and the exon splicing silencer (ESS3). In this study, we have determined the RNA secondary structure and the hnRNP A1 binding sites within the 3' splice site region by phylogenetic comparison and chemical/enzymatic probing. A biochemical characterization of the RNA/protein complexes demonstrates that hnRNP A1 binds specifically to primarily three sites, the ISS, a novel UAG motif in the exon splicing enhancer (ESE) and the ESS3 element, which are all situated in experimentally supported stem loop structures. A mutational analysis of the ISS region revealed that the core hnRNP A1 binding site directly overlaps with a major branchpoint used in splicing to SA7, thereby providing a direct explanation for the inhibition of U2 snRNP association with the pre-mRNA by hnRNP A1. Binding of hnRNP A1 to the ISS core site is inhibited by RNA structure but strongly stimulated by the exonic silencer, ESS3. Moreover, the ISS also stimulate binding of hnRNP A1 to the exonic splicing regulators ESS3 and the ESE. Our results suggest a model where a network is formed between hnRNP A1 molecules situated at discrete sites in the intron and exon and that these interactions preclude the recognition of essential splicing signals including the branch point.
Collapse
|
41
|
Roy J, Paquette JS, Fortin JF, Tremblay MJ. The immunosuppressant rapamycin represses human immunodeficiency virus type 1 replication. Antimicrob Agents Chemother 2002; 46:3447-55. [PMID: 12384349 PMCID: PMC128699 DOI: 10.1128/aac.46.11.3447-3455.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The immunosuppressive macrolide rapamycin is used in humans to prevent graft rejection. This drug acts by selectively repressing the translation of proteins that are encoded by an mRNA bearing a 5'-polypyrimidine tract (e.g., ribosomal proteins, elongation factors). The human immunodeficiency virus type 1 (HIV-1) carries a polypyrimidine motif that is located within the tat exon 2. Treatment of human T lymphoid cells with rapamycin resulted in a marked diminution of HIV-1 transcription when infection was performed with luciferase reporter T-tropic and macrophage-tropic viruses. Replication of fully infectious HIV-1 particles was abolished by rapamycin treatment. The rapamycin-mediated inhibitory effect on HIV-1 production was reversed by FK506. The anti-HIV-1 effect of rapamycin was also seen in primary human cells (i.e., peripheral blood lymphocytes) from different healthy donors. Rapamycin was shown to diminish basal HIV-1 long terminal repeat gene expression, and the observed effect of rapamycin on HIV-1 replication seems to be independent of the virus-specific transactivating Tat protein. A constitutive beta-actin promoter-based reporter gene vector was unaffected by rapamycin treatment. Kinetic virus infection studies and exposure to reporter viruses pseudotyped with heterologous envelope proteins (i.e., amphotropic murine leukemia virus and vesicular stomatitis virus G) suggested that rapamycin is primarily affecting the life cycle of HIV-1 at a transcriptional level. Northern blot analysis confirmed that this compound is selectively targeting HIV-1 mRNA synthesis.
Collapse
Affiliation(s)
- Jocelyn Roy
- Centre de Recherche en Infectiologie, Hôpital CHUL, Centre Hospitalier Universitaire de Québec, and Département de Biologie Médicale, Faculté de Médecine, Université Laval, Ste-Foy, Québec, Canada G1V 4G2
| | | | | | | |
Collapse
|
42
|
Marchand V, Méreau A, Jacquenet S, Thomas D, Mougin A, Gattoni R, Stévenin J, Branlant C. A Janus splicing regulatory element modulates HIV-1 tat and rev mRNA production by coordination of hnRNP A1 cooperative binding. J Mol Biol 2002; 323:629-52. [PMID: 12419255 DOI: 10.1016/s0022-2836(02)00967-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Retroviral protein production depends upon alternative splicing of the viral transcript. The HIV-1 acceptor site A7 is required for tat and rev mRNA production. Production of the Tat transcriptional activator is highly controlled because of its apoptotic properties. Two silencer elements (ESS3 and ISS) and two enhancer elements (ESE2 and ESE3/(GAA)3) were previously identified at site A7. hnRNP A1 binds ISS and ESS3 and is involved in the inhibitory process, ASF/SF2 activates site A7 utilisation. Here, by using chemical and enzymatic probes we established the 2D structure of the HIV-1(BRU) RNA region containing site A7 and identified the RNA segments protected in nuclear extract and by purified hnRNP A1. ISS, ESE3/(GAA)3 and ESS3 are located in three distinct stem-loop structures (SLS1, 2 and 3). As expected, hnRNP A1 binds sites 1, 2 and 3 of ISS and ESS3b, and oligomerises on the polypurine sequence upstream of ESS3b. In addition, we discovered an unidentified hnRNP A1 binding site (AUAGAA), that overlaps ESE3/(GAA)3. On the basis of competition experiments, hnRNP A1 has a stronger affinity for this site than for ESS3b. By insertion of (GAA)3 alone or preceded by the AUA trinucleotide in a foreign context, the AUAGAA sequence was found to modulate strongly the (GAA)3 splicing enhancer activity. Cross-linking experiments on these heterologous RNAs and the SLS2-SLS3 HIV-1 RNA region, in nuclear extract and with recombinant proteins, showed that binding of hnRNP A1 to AUA(GAA)3 strongly competes the association of ASF/SF2 with (GAA)3. In addition, disruption of AUA(GAA)3 demonstrated a key role of this sequence in hnRNP A1 cooperative binding to the ISS and ESS3b inhibitors and hnRNP A1 oligomerisation on the polypurine sequence. Thus, depending on the cellular context ([ASF/SF2]/[hnRNP A1] ratio), AUA(GAA)3 will activate or repress site A7 utilisation and can thus be considered as a Janus splicing regulator.
Collapse
MESH Headings
- Alternative Splicing
- Base Sequence
- Binding Sites
- Electrophoretic Mobility Shift Assay
- Gene Expression Regulation, Viral
- Gene Products, rev/genetics
- Gene Products, tat/genetics
- HIV-1/genetics
- HeLa Cells
- Heterogeneous Nuclear Ribonucleoprotein A1
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism
- Humans
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Protein Binding
- RNA, Messenger/biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/biosynthesis
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Silencer Elements, Transcriptional/genetics
- Transcription, Genetic
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Virginie Marchand
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 UHP-CNRS, Université Henri Poincaré Nancy 1, Boulevard des Aiguillettes, BP239, 54506 Cedex, Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Pongoski J, Asai K, Cochrane A. Positive and negative modulation of human immunodeficiency virus type 1 Rev function by cis and trans regulators of viral RNA splicing. J Virol 2002; 76:5108-20. [PMID: 11967326 PMCID: PMC136130 DOI: 10.1128/jvi.76.10.5108-5120.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the entire complement of human immunodeficiency virus type 1 (HIV-1) viral proteins depends on the competing activities of viral RNA splicing and export into the cytoplasm by Rev. To investigate the possibility that modulation of viral RNA metabolism may alter Rev function, we analyzed the impact of multiple SR proteins on both processes. While overexpression of several of the SR factors altered splicing of HIV-1 env mRNA, they had disparate effects on Rev function that varied with the cell line used. Subsequent examination of exon splicing enhancer (ESE) and/or silencer (ESS) deletions suggests that the effects of the SR proteins on Rev function are not mediated through interaction with these elements. However, analysis of the deletions did indicate that the ESE and/or ESS does have significant effects on Rev function, with deletion of the ESS augmenting the magnitude of the response to Rev and deletion of the ESE significantly reducing it. In situ hybridization and reverse transcription-PCR indicated that the loss of Rev response upon deletion of the ESE was due to a failure of Rev to induce transport of the unspliced RNA into the cytoplasm. Together, the data indicate that cellular splicing factors and viral regulatory elements can have significant stimulatory and inhibitory effects on Rev function, raising the possibility that cells can be rendered permissive or nonpermissive for virus replication by modulation of splicing activities.
Collapse
Affiliation(s)
- Jodi Pongoski
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
44
|
Mautino MR, Morgan RA. Inhibition of HIV-1 replication by novel lentiviral vectors expressing transdominant Rev and HIV-1 env antisense. Gene Ther 2002; 9:421-31. [PMID: 11938457 DOI: 10.1038/sj.gt.3301674] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2001] [Accepted: 12/21/2001] [Indexed: 11/10/2022]
Abstract
Retroviral vectors expressing transdominant negative mutants of Rev (TdRev) inhibit HIV-1 replication by preventing the nuclear export of unspliced viral transcripts, thus inhibiting the synthesis of Gag-Pol, Env and reducing the levels of genomic RNA available for packaging. Due to these effective mechanisms of inhibition, production of HIV-1-based lentiviral vectors expressing TdRev has been difficult. Here we describe HIV-based vectors in which expression of TdRev is negatively regulated by Rev expression. In these vectors, we maintained the wild-type HIV-1 Tat/Rev exons and intron configuration and its mode of splicing regulation. The second Rev exon was mutated to encode TdRev. Inhibition of TdRev expression by Rev during vector production yields high titer vector preparations. A second vector containing an additional anti-HIV gene (env-antisense) was constructed by flipping a 1.2-kb env fragment contained within the Tat/TdRev intron. SupT1 cells and primary CD4+ lymphocytes transduced with these vectors inhibit HIV-1 replication and show a preferential advantage for survival. Although these vectors are poorly mobilized to secondary target cells by wild-type HIV-1, they reduce the infectivity of the wild-type virions escaping inhibition.
Collapse
Affiliation(s)
- M R Mautino
- Clinical Gene Therapy Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
45
|
Jacquenet S, Méreau A, Bilodeau PS, Damier L, Stoltzfus CM, Branlant C. A second exon splicing silencer within human immunodeficiency virus type 1 tat exon 2 represses splicing of Tat mRNA and binds protein hnRNP H. J Biol Chem 2001; 276:40464-75. [PMID: 11526107 DOI: 10.1074/jbc.m104070200] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An equilibrium between spliced and unspliced primary transcripts is essential for retrovirus multiplication. This equilibrium is maintained by the presence of inefficient splice sites. The A3 3'-splice site of human immunodeficiency virus type I (HIV-1) is required for Tat mRNA production. The infrequent utilization of this splice site has been attributed to the presence of a suboptimal polypyrimidine tract and an exonic splicing silencer (ESS2) in tat exon 2 approximately 60 nucleotides downstream of 3'-splice site A3. Here, using site-directed mutagenesis followed by analysis of splicing in vitro and in HeLa cells, we show that the 5' extremity of tat exon 2 contains a second exonic splicing silencer (ESS2p), which acts to repress splice site A3. The inhibitory property of this exonic silencer was active when inserted downstream of another HIV-1 3'-splice site (A2). Protein hnRNP H binds to this inhibitory element, and two U-to-C substitutions within the ESS2p element cause a decreased hnRNP H affinity with a concomitant increase in splicing efficiency at 3'-splice site A3. This suggests that hnRNP H is directly involved in splicing inhibition. We propose that hnRNP H binds to the HIV-1 ESS2p element and competes with U2AF(35) for binding to the exon sequence flanking 3'-splice site A3. This binding results in the inhibition of splicing at 3'-splice site A3.
Collapse
Affiliation(s)
- S Jacquenet
- Laboratoire de Maturation des Acide Ribo-Nucléotidique et Enzymologie Moléculaire, Unité Mixte de Recherche 7567 Université Henri Poincarré-CNRS, Boulevard des Aiguillettes, BP239, 54506 Vandoeuvre-lès-Nancy cedex, France
| | | | | | | | | | | |
Collapse
|
46
|
Tange TØ, Damgaard CK, Guth S, Valcárcel J, Kjems J. The hnRNP A1 protein regulates HIV-1 tat splicing via a novel intron silencer element. EMBO J 2001; 20:5748-58. [PMID: 11598017 PMCID: PMC125679 DOI: 10.1093/emboj/20.20.5748] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The generation of >30 different HIV-1 mRNAs is achieved by alternative splicing of one primary transcript. The removal of the second tat intron is regulated by a combination of a suboptimal 3' splice site and cis-acting splicing enhancers and silencers. Here we show that hnRNP A1 inhibits splicing of this intron via a novel heterogeneous nuclear ribonucleoprotein (hnRNP) A1-responsive intron splicing silencer (ISS) that can function independently of the previously characterized exon splicing silencer (ESS3). Surprisingly, depletion of hnRNP A1 from the nuclear extract (NE) enables splicing to proceed in NE that contains 100-fold reduced concentrations of U2AF and normal levels of SR proteins, conditions that do not support processing of other efficiently spliced pre-mRNAs. Reconstituting the extract with recombinant hnRNP A1 protein restores splicing inhibition at a step subsequent to U2AF binding, mainly at the time of U2 snRNP association. hnRNP A1 interacts specifically with the ISS sequence, which overlaps with one of three alternative branch point sequences, pointing to a model where the entry of U2 snRNP is physically blocked by hnRNP A1 binding.
Collapse
Affiliation(s)
| | | | - Sabine Guth
- Department of Molecular and Structural Biology, University of Aarhus, C.F. Møllers Allé, Building 130, DK-8000 Århus C, Denmark and
Gene Expression Program, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany Corresponding author e-mail:
| | - Juan Valcárcel
- Department of Molecular and Structural Biology, University of Aarhus, C.F. Møllers Allé, Building 130, DK-8000 Århus C, Denmark and
Gene Expression Program, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany Corresponding author e-mail:
| | - Jørgen Kjems
- Department of Molecular and Structural Biology, University of Aarhus, C.F. Møllers Allé, Building 130, DK-8000 Århus C, Denmark and
Gene Expression Program, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany Corresponding author e-mail:
| |
Collapse
|
47
|
Tange TØ, Kjems J. SF2/ASF binds to a splicing enhancer in the third HIV-1 tat exon and stimulates U2AF binding independently of the RS domain. J Mol Biol 2001; 312:649-62. [PMID: 11575921 DOI: 10.1006/jmbi.2001.4971] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Splicing of a single HIV-1 primary transcript into more than 30 different mRNAs is regulated by a combination of suboptimal splice sites, cis-acting RNA splicing enhancers and silencers, and trans-acting factors. We have studied the splicing of the second tat intron (SD4 to SA7) and find that activation of splicing by SF2/ASF is mediated by a degenerate exon splicing enhancer (ESE3), consisting of at least three functionally independent sub-elements. One of these sub-elements appears to have both enhancing and silencing properties, depending on the context. SF2/ASF stimulates U2AF65 binding to the suboptimal tat polypyrimidine tract in an ESE3-dependent manner, whereas the exon splicing silencer (ESS3) that is located downstream of the ESE3 inhibits this step. Truncated SF2/ASF protein without the RS domain binds specifically to the ESE3 and retains almost full capacity to stimulate U2AF65 binding and activate splicing. This suggests that SF2/ASF can stimulate the recruitment of U2AF65 by an RS domain-independent mechanism.
Collapse
Affiliation(s)
- T Ø Tange
- Department of Molecular and Structural Biology, University of Aarhus, C.F. Møllers Allé Building 130, DK-8000 Arhus C, Denmark
| | | |
Collapse
|
48
|
Hauber J. Nuclear export mediated by the Rev/Rex class of retroviral Trans-activator proteins. Curr Top Microbiol Immunol 2001; 259:55-76. [PMID: 11417127 DOI: 10.1007/978-3-642-56597-7_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- J Hauber
- Institute for Clinical and Molecular Virology, University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| |
Collapse
|
49
|
Farson D, Witt R, McGuinness R, Dull T, Kelly M, Song J, Radeke R, Bukovsky A, Consiglio A, Naldini L. A new-generation stable inducible packaging cell line for lentiviral vectors. Hum Gene Ther 2001; 12:981-97. [PMID: 11387062 DOI: 10.1089/104303401750195935] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have successfully generated and characterized a stable packaging cell line for HIV-1-based vectors. To allow safe production of vector, a minimal packaging construct carrying only the coding sequences of the HIV-1 gag-pol, tat, and rev genes was stably introduced into 293G cells under the control of a Tet(o) minimal promoter. 293G cells express the chimeric Tet(R)/VP16 trans-activator and contain a tetracycline-regulated vesicular stomatitis virus protein G (VSV-G) envelope gene. When the cells were grown in the presence of tetracycline the expression of both HIV-1-derived and VSV-derived packaging functions was suppressed. On induction, approximately 50 ng/ml/24 hr of Gag p24 equivalent of vector was obtained. After introduction of the transfer vector by serial infection, vector could be collected for several days with a transduction efficiency similar or superior to that of vector produced by transient transfection both for dividing and growth-arrested cells. The vector could be effectively concentrated to titers reaching 10(9) transducing units/ml and allowed for efficient delivery and stable expression of a GFP transgene in the mouse brain. The packaging cell line and all vector producer clones described here were shown to be free from replication-competent recombinants, and from recombinants between packaging and vector constructs that transfer the viral gag-pol genes. The packaging cell line and the assays developed will advance lentiviral vectors toward the stringent requirements of clinical applications.
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/pharmacology
- Blotting, Southern
- Brain/metabolism
- Cell Division
- Cell Line
- Fusion Proteins, gag-pol/genetics
- Gene Products, rev/genetics
- Gene Products, tat/genetics
- Genetic Vectors
- Green Fluorescent Proteins
- HIV-1/genetics
- HeLa Cells
- Humans
- Lentivirus/genetics
- Luminescent Proteins/metabolism
- Membrane Glycoproteins
- Mice
- Mice, Inbred C57BL
- Models, Genetic
- Plasmids/metabolism
- Recombinant Fusion Proteins/metabolism
- Recombination, Genetic
- Tetracycline/pharmacology
- Time Factors
- Transduction, Genetic
- Transfection
- Transgenes
- Viral Envelope Proteins/genetics
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- D Farson
- Cell Genesys, Foster City, CA 94404, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kammler S, Leurs C, Freund M, Krummheuer J, Seidel K, Tange TO, Lund MK, Kjems J, Scheid A, Schaal H. The sequence complementarity between HIV-1 5' splice site SD4 and U1 snRNA determines the steady-state level of an unstable env pre-mRNA. RNA (NEW YORK, N.Y.) 2001; 7:421-34. [PMID: 11333022 PMCID: PMC1370098 DOI: 10.1017/s1355838201001212] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
HIV-1 env expression from certain subgenomic vectors requires the viral regulatory protein Rev, its target sequence RRE, and a 5' splice site upstream of the env open reading frame. To determine the role of this splice site in the 5'-splice-site-dependent Rev-mediated env gene expression, we have subjected the HIV-1 5' splice site, SD4, to a mutational analysis and have analyzed the effect of those mutations on env expression. The results demonstrate that the overall strength of hydrogen bonding between the 5' splice site, SD4, and the free 5' end of the U1 snRNA correlates with env expression efficiency, as long as env expression is suboptimal, and that a continuous stretch of 14 hydrogen bonds can lead to full env expression, as a result of stabilizing the pre-mRNA. The U1 snRNA-mediated stabilization is independent of functional splicing, as a mismatch in position +1 of the 5' splice site that led to loss of detectable amounts of spliced transcripts did not preclude stabilization and expression of the unspliced env mRNA, provided that Rev enables its nuclear export. The nucleotides capable of participating in U1 snRNA:pre-mRNA interaction include positions -3 to +8 of the 5' splice site and all 11 nt constituting the single-stranded 5' end of U1 snRNA. Moreover, env gene expression is significantly decreased upon the introduction of point mutations in several upstream GAR nucleotide motifs, which are mediating SF2/ASF responsiveness in an in vitro splicing assay. This suggests that the GAR sequences may play a role in stabilizing the pre-mRNA by sequestering U1 snRNP to SD4.
Collapse
Affiliation(s)
- S Kammler
- Institut für Medizinische Mikrobiologie und Virologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|