1
|
Abstract
The human betaherpesviruses, human cytomegalovirus (HCMV; species Human betaherpesvirus 5) and human herpesviruses 6A, 6B, and 7 (HHV-6A, -6B, and -7; species Human betaherpesviruses 6A, 6B, and 7) are highly prevalent and can cause severe disease in immune-compromised and immune-naive populations in well- and under-developed communities. Herpesvirus virion assembly is an intricate process that requires viral orchestration of host systems. In this review, we describe recent advances in some of the many cellular events relevant to assembly and egress of betaherpesvirus virions. These include modifications of host metabolic, immune, and autophagic/recycling systems. In addition, we discuss unique aspects of betaherpesvirus virion structure, virion assembly, and the cellular pathways employed during virion egress.
Collapse
|
2
|
Denner J, Bigley TM, Phan TL, Zimmermann C, Zhou X, Kaufer BB. Comparative Analysis of Roseoloviruses in Humans, Pigs, Mice, and Other Species. Viruses 2019; 11:E1108. [PMID: 31801268 PMCID: PMC6949924 DOI: 10.3390/v11121108] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Viruses of the genus Roseolovirus belong to the subfamily Betaherpesvirinae, family Herpesviridae. Roseoloviruses have been studied in humans, mice and pigs, but they are likely also present in other species. This is the first comparative analysis of roseoloviruses in humans and animals. The human roseoloviruses human herpesvirus 6A (HHV-6A), 6B (HHV-6B), and 7 (HHV-7) are relatively well characterized. In contrast, little is known about the murine roseolovirus (MRV), also known as murine thymic virus (MTV) or murine thymic lymphotrophic virus (MTLV), and the porcine roseolovirus (PRV), initially incorrectly named porcine cytomegalovirus (PCMV). Human roseoloviruses have gained attention because they can cause severe diseases including encephalitis in immunocompromised transplant and AIDS patients and febrile seizures in infants. They have been linked to a number of neurological diseases in the immunocompetent including multiple sclerosis (MS) and Alzheimer's. However, to prove the causality in the latter disease associations is challenging due to the high prevalence of these viruses in the human population. PCMV/PRV has attracted attention because it may be transmitted and pose a risk in xenotransplantation, e.g., the transplantation of pig organs into humans. Most importantly, all roseoloviruses are immunosuppressive, the humoral and cellular immune responses against these viruses are not well studied and vaccines as well as effective antivirals are not available.
Collapse
Affiliation(s)
- Joachim Denner
- Robert Koch Institute, Robert Koch Fellow, 13352 Berlin, Germany
| | - Tarin M. Bigley
- Division of Rheumatology, Department. of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Tuan L. Phan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70118, USA;
- HHV-6 Foundation, Santa Barbara, CA 93108, USA
| | - Cosima Zimmermann
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Xiaofeng Zhou
- Division of Pulmonary and Critical Care Medicine, Department. of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
3
|
Ren W, Chen H, Renault T, Cai Y, Bai C, Wang C, Huang J. Complete genome sequence of acute viral necrosis virus associated with massive mortality outbreaks in the Chinese scallop, Chlamys farreri. Virol J 2013; 10:110. [PMID: 23566284 PMCID: PMC3623871 DOI: 10.1186/1743-422x-10-110] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 03/28/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Acute viral necrosis virus (AVNV) is the causative agent of a serious disease resulting in high mortality in cultured Chinese scallops, Chlamys farreri. We have sequenced and analyzed the complete genome of AVNV. RESULTS The AVNV genome is a linear, double-stranded DNA molecule of 210,993 bp with a nucleotide composition of 38.5% G + C. A total of 123 open reading frames were predicted to encode functional proteins, ranging from 41 to 1,878 amino acid residues. The DNA sequence of AVNV is 97% identical to that of ostreid herpesvirus 1 (OsHV-1), and the amino acid sequences of the encoded proteins of these two viruses are 94-100% identical. The genomic organization of AVNV is similar to that of OsHV-1, and consists of two unique regions (170.4 kb and 3.4 kb, respectively), each flanked by two inverted repeats (7.6 kb and 10.2 kb, respectively), with a third unique region (1.5 kb) situated between the two internal repeats. CONCLUSIONS Our results indicate that AVNV is a variant of OsHV-1. The AVNV genome sequence provides information useful for understanding the evolution and divergence of OsHV-1 in marine molluscs.
Collapse
Affiliation(s)
- Weicheng Ren
- Maricultural Organism Disease Control and Pathogenic Molecular Biology Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Qingdao, 266071, China
| | | | | | | | | | | | | |
Collapse
|
4
|
Identification of a varicella-zoster virus replication inhibitor that blocks capsid assembly by interacting with the floor domain of the major capsid protein. J Virol 2012; 86:12198-207. [PMID: 22933294 DOI: 10.1128/jvi.01280-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel anti-varicella-zoster virus compound, a derivative of pyrazolo[1,5-c]1,3,5-triazin-4-one (coded as 35B2), was identified from a library of 9,600 random compounds. This compound inhibited both acyclovir (ACV)-resistant and -sensitive strains. In a plaque reduction assay under conditions in which the 50% effective concentration of ACV against the vaccine Oka strain (V-Oka) in human fibroblasts was 4.25 μM, the 50% effective concentration of 35B2 was 0.75 μM. The selective index of the compound was more than 200. Treatment with 35B2 inhibited neither immediate-early gene expression nor viral DNA synthesis. Twenty-four virus clones resistant to 35B2 were isolated, all of which had a mutation(s) in the amino acid sequence of open reading frame 40 (ORF40), which encodes the major capsid protein (MCP). Most of the mutations were located in the regions corresponding to the "floor" domain of the MCP of herpes simplex virus 1. Treatment with 35B2 changed the localization of MCP in the fibroblasts infected with V-Oka but not in the fibroblasts infected with the resistant clones, although it did not affect steady-state levels of MCP. Overexpression of the scaffold proteins restored the normal MCP localization in the 35B2-treated infected cells. The compound did not inhibit the scaffold protein-mediated translocation of MCP from the cytoplasm to the nucleus. Electron microscopic analysis demonstrated the lack of capsid formation in the 35B2-treated infected cells. These data indicate the feasibility of developing a new class of antivirals that target the herpesvirus MCPs and inhibit normal capsid formation by a mechanism that differs from those of the known protease and encapsidation inhibitors. Further biochemical studies are required to clarify the precise antiviral mechanism.
Collapse
|
5
|
Tuddenham L, Jung JS, Chane-Woon-Ming B, Dölken L, Pfeffer S. Small RNA deep sequencing identifies microRNAs and other small noncoding RNAs from human herpesvirus 6B. J Virol 2012; 86:1638-49. [PMID: 22114334 PMCID: PMC3264354 DOI: 10.1128/jvi.05911-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/11/2011] [Indexed: 02/07/2023] Open
Abstract
Roseolovirus, or human herpesvirus 6 (HHV-6), is a ubiquitous human pathogen infecting over 95% of the population by the age of 2 years. As with other herpesviruses, reactivation of HHV-6 can present with severe complications in immunocompromised individuals. Recent studies have highlighted the importance of herpesvirus-derived microRNAs (miRNAs) in modulating both cellular and viral gene expression. An initial report which computed the likelihood of various viruses to encode miRNAs did not predict HHV-6 miRNAs. To experimentally screen for small HHV-6-encoded RNAs, we conducted large-scale sequencing of Sup-T-1 cells lytically infected with a laboratory strain of HHV-6B. This revealed an abundant, 60- to 65-nucleotide RNA of unknown function derived from the lytic origin of replication (OriLyt) that gave rise to smaller RNA species of 18 or 19 nucleotides. In addition, we identified four pre-miRNAs whose mature forms accumulated in Argonaute 2. In contrast to the case for other betaherpesviruses, HHV-6B miRNAs are expressed from direct repeat regions (DR(L) and DR(R)) located at either side of the genome. All miRNAs are conserved in the closely related HHV-6A variant, and one of them is a seed ortholog of the human miRNA miR-582-5p. Similar to alphaherpesvirus miRNAs, they are expressed in antisense orientation relative to immediate-early open reading frames (ORFs) and thus have the potential to regulate key viral genes.
Collapse
Affiliation(s)
- Lee Tuddenham
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Jette S. Jung
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, Munich, Germany
| | - Béatrice Chane-Woon-Ming
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Lars Dölken
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, Munich, Germany
- University of Cambridge, Department of Medicine, Cambridge, United Kingdom
| | - Sébastien Pfeffer
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| |
Collapse
|
6
|
Establishment of a cell-based assay for screening of compounds inhibiting very early events in the cytomegalovirus replication cycle and characterization of a compound identified using the assay. Antimicrob Agents Chemother 2008; 52:2420-7. [PMID: 18458124 DOI: 10.1128/aac.00134-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To simplify the detection of infectious human cytomegalovirus (HCMV), we generated a cell line that produced luciferase in a dose-dependent manner upon HCMV infection. Using this cell line, we identified anti-HCMV compounds from a diverse library of 9,600 compounds. One of them, 1-(3,5-dichloro-4-pyridyl)piperidine-4-carboxamide (DPPC), was effective against HCMV (Towne strain) infection of human lung fibroblast cells at a 50% effective concentration of 2.5 microM. DPPC also inhibited the growth of clinical HCMV isolates and guinea pig and mouse cytomegaloviruses. Experiments using various time frames for treatment of the cells with DPPC demonstrated that DPPC was effective during the first 24 h after HCMV infection. DPPC treatment decreased not only viral DNA replication but also IE1 and IE2 expression at mRNA and protein levels in the HCMV-infected cells. However, DPPC did not inhibit the attachment of HCMV particles to the cell surface. DPPC is a unique compound that targets the very early phase of cytomegalovirus infection, probably by disrupting a pathway that is important after viral entry but before immediate-early gene expression.
Collapse
|
7
|
Ohyashiki JH, Takaku T, Ojima T, Abe K, Yamamoto K, Zhang Y, Ohyashiki K. Transcriptional profiling of human herpesvirus type B (HHV-6B) in an adult T cell leukemia cell line as in vitro model for persistent infection. Biochem Biophys Res Commun 2005; 329:11-7. [PMID: 15721266 DOI: 10.1016/j.bbrc.2005.01.090] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Indexed: 10/25/2022]
Abstract
Human herpesvirus 6 (HHV-6), which is present in more than 90% of the human, is known to cause infectious diseases in immuno-compromised patients, e.g., transplant patients. To clarify the possible role of the pattern of expression of HHV-6 genes in various types of HHV-6B infection, we sought to determine whether or not viral DNA microarray could be used for detailed characterization of viral transcription using a HHV-6B DNA microarray that contains 97 known open reading frames of HHV-6B. A subset of genes are preferentially expressed in persistent infection: U16 (IE-B, transactivator, US22 gene family), U18 (IE-B, homolog to HCMV IE glycoprotein), U20 (glycoprotein), U27 (DNA polymerase processivity transactivator), U82 (gL, gH accessory protein), U83 (chemokine), U85 (OX-2 homology, glycoprotein), U90 (IE-A), and U94 (transactivator), respectively. Although the function of each HHV-6B is not fully understood, our study suggests that comprehensive analysis of HHV-6B transcription is useful not only to clarify the pathogenesis of the virus but also to develop new strategies for anti-viral drugs.
Collapse
Affiliation(s)
- Junko H Ohyashiki
- Intractable Immune System Disease Research Center, Tokyo Medical University, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
8
|
Davison AJ, Trus BL, Cheng N, Steven AC, Watson MS, Cunningham C, Deuff RML, Renault T. A novel class of herpesvirus with bivalve hosts. J Gen Virol 2005; 86:41-53. [PMID: 15604430 DOI: 10.1099/vir.0.80382-0] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ostreid herpesvirus 1 (OsHV-1) is the only member of the Herpesviridae that has an invertebrate host and is associated with sporadic mortality in the Pacific oyster (Crassostrea gigas) and other bivalve species. Cryo-electron microscopy of purified capsids revealed the distinctive T=16 icosahedral structure characteristic of herpesviruses, although the preparations examined lacked pentons. The gross genome organization of OsHV-1 was similar to that of certain mammalian herpesviruses (including herpes simplex virus and human cytomegalovirus), consisting of two invertible unique regions (U(L), 167.8 kbp; U(S), 3.4 kbp) each flanked by inverted repeats (TR(L)/IR(L), 7.6 kbp; TR(S)/IR(S), 9.8 kbp), with an additional unique sequence (X, 1.5 kbp) between IR(L) and IR(S). Of the 124 unique genes predicted from the 207 439 bp genome sequence, 38 were members of 12 families of related genes and encoded products related to helicases, inhibitors of apoptosis, deoxyuridine triphosphatase and RING-finger proteins, in addition to membrane-associated proteins. Eight genes in three of the families appeared to be fragmented. Other genes that did not belong to the families were predicted to encode DNA polymerase, the two subunits of ribonucleotide reductase, a helicase, a primase, the ATPase subunit of terminase, a RecB-like protein, additional RING-like proteins, an ion channel and several other membrane-associated proteins. Sequence comparisons showed that OsHV-1 is at best tenuously related to the two classes of vertebrate herpesviruses (those associated with mammals, birds and reptiles, and those associated with bony fish and amphibians). OsHV-1 thus represents a third major class of the herpesviruses.
Collapse
Affiliation(s)
- Andrew J Davison
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Benes L Trus
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Imaging Sciences Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naiqian Cheng
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alasdair C Steven
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Moira S Watson
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Charles Cunningham
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | | | - Tristan Renault
- Laboratoire de Génétique et Pathologie, IFREMER, 17390 La Tremblade, France
| |
Collapse
|
9
|
De Bolle L, Naesens L, De Clercq E. Update on human herpesvirus 6 biology, clinical features, and therapy. Clin Microbiol Rev 2005; 18:217-45. [PMID: 15653828 PMCID: PMC544175 DOI: 10.1128/cmr.18.1.217-245.2005] [Citation(s) in RCA: 363] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human herpesvirus 6 (HHV-6) is a betaherpesvirus that is closely related to human cytomegalovirus. It was discovered in 1986, and HHV-6 literature has expanded considerably in the past 10 years. We here present an up-to-date and complete overview of the recent developments concerning HHV-6 biological features, clinical associations, and therapeutic approaches. HHV-6 gene expression regulation and gene products have been systematically characterized, and the multiple interactions between HHV-6 and the host immune system have been explored. Moreover, the discovery of the cellular receptor for HHV-6, CD46, has shed a new light on HHV-6 cell tropism. Furthermore, the in vitro interactions between HHV-6 and other viruses, particularly human immunodeficiency virus, and their relevance for the in vivo situation are discussed, as well as the transactivating capacities of several HHV-6 proteins. The insight into the clinical spectrum of HHV-6 is still evolving and, apart from being recognized as a major pathogen in transplant recipients (as exemplified by the rising number of prospective clinical studies), its role in central nervous system disease has become increasingly apparent. Finally, we present an overview of therapeutic options for HHV-6 therapy (including modes of action and resistance mechanisms).
Collapse
Affiliation(s)
- Leen De Bolle
- Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
10
|
Severini A, Sevenhuysen C, Garbutt M, Tipples GA. Structure of replicating intermediates of human herpesvirus type 6. Virology 2003; 314:443-50. [PMID: 14517096 DOI: 10.1016/s0042-6822(03)00451-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have studied the structure of the replicative intermediates of human herpesvirus 6 (HHV-6) using pulsed-field gel electrophoresis, partial digestion, two-dimensional gel electrophoresis, and sedimentation centrifugation. The results show that DNA replication of HHV-6 produces head-to-tail concatemeric intermediates as well as approximately equal amounts of circular monomers or oligomers. Unlike the situation in herpes simplex virus, the intermediates of human herpesvirus 6 replication are not highly branched, suggesting a difference in the mechanism of replication or a lower frequency of homologous recombination in human herpesvirus 6 compared to herpes simplex virus.
Collapse
MESH Headings
- Cell Line
- Centrifugation, Density Gradient
- DNA Replication
- DNA, Viral/biosynthesis
- DNA, Viral/chemistry
- DNA, Viral/genetics
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Electrophoresis, Gel, Pulsed-Field
- Electrophoresis, Gel, Two-Dimensional
- Herpesvirus 6, Human/genetics
- Herpesvirus 6, Human/metabolism
- Herpesvirus 6, Human/physiology
- Humans
Collapse
Affiliation(s)
- Alberto Severini
- National Microbiology Laboratory, Health Canada, Winnipeg, Monitoba, Canada.
| | | | | | | |
Collapse
|
11
|
Rajcáni J, Kúdelová M. Gamma herpesviruses: pathogenesis of infection and cell signaling. Folia Microbiol (Praha) 2003; 48:291-318. [PMID: 12879740 DOI: 10.1007/bf02931360] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Altered cell signaling is the molecular basis for cell proliferation occurring in association with several gamma herpesvirus infections. Three gamma herpesviruses, namely EBV/HHV-4, KSHV/HHV-8 and the MHV-68 (and/or MHV-72) and their unusual cell-pirated gene products are discussed in this respect. The EBV, KSHV as well as the MHV DNA may persist lifelong in an episomal form in the host carrier cells (mainly in lymphocytes but also in macrophages, in non-hornifying squamous epithelium and/or in blood vessel endothelial cells). Under conditions of extremely limited transcription, the EBV-infected cells express EBNA1 (EB nuclear antigen 1), the KSHV infected cells express LANA1 (latent nuclear antigen 1), while the MHV DNA carrier cells express the latency-associated protein M2. With the full set of latency-associated proteins expressed, EBV carrier cells synthesize additional EBNAs and at least one LMP (latent membrane protein 1). The latent KSHV carrier cells, in addition to LANA1, may express a viral cyclin, a viral Fas-DD-like ICE inhibitor protein (vFLIP) and a virus-specific transformation protein called kaposin (K12). In MHV latency with a wide expression of latency-associated proteins, the carrier cells express a LANA analogue (ORF73), the M3 protein, the K3/IE (immediate early) proteins and M11/bcl-2 homologue proteins. During the period of limited gene expression, the latency-associated proteins serve mainly for the maintenance of the latent episomal DNA (a typical example is EBNA1). In contrast, during latency with a broader spectrum gene expression, the virus-encoded products activate transcription of otherwise silenced cellular genes, which leads to the synthesis of enzymes capable of promoting not only viral but also cellular DNA replication. Thus, the latency-associated proteins block apoptosis and drive host cells towards division and immortalization. Proliferation of hemopoetic cells, which had become gamma herpesvirus DNA carriers, can be initiated and strongly enhanced in the presence of inflammatory cytokines and by virus-encoded analogues of interleukins, chemokines and IFN regulator proteins. At early stages of tumor formation, many proliferating hemopoetic and/or endothelium cells, which had became transcriptionally active under the influence of chemokines and cytokines, may not yet be infected. In contrast, at later stages of oncogenesis, the virus-encoded proteins, inducing false signaling and activating the proliferation pathways, bring the previously infected cells into full transformation burst.
Collapse
Affiliation(s)
- J Rajcáni
- Institute of Microbiology and Immunology, Jessenius Medical Faculty, Martin, Slovakia.
| | | |
Collapse
|
12
|
Papanikolaou E, Kouvatsis V, Dimitriadis G, Inoue N, Arsenakis M. Identification and characterization of the gene products of open reading frame U86/87 of human herpesvirus 6. Virus Res 2002; 89:89-101. [PMID: 12367753 DOI: 10.1016/s0168-1702(02)00126-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human herpesvirus 6 (HHV-6) immediate early-A locus (IE-A) locates in the position analogous to the human cytomegalovirus (HCMV) major IE (MIE) locus that is well-known to play critical roles in viral infection. Similarly to HCMV MIE, HHV-6 IE-A consists of two genetic units, IE1 and IE2, corresponding to open reading frames U90-U89 and U90-U86/87, respectively. However, the HHV-6 IE-A locus exhibits limited sequence homology with the HCMV MIE locus. In this study, to characterize HHV-6 IE2 gene products, polyclonal antibodies against four domains of the U86/87 open reading frame were generated by immunization of rabbits with bacterially-expressed proteins. Three polypeptides derived from the U86/87 region with apparent molecular masses of 100, 85 and 55 kD were detected in HHV-6-infected cells 3 days after infection, while IE1 polypeptides with apparent molecular mass greater than 170 kD were detectable as early as 8 h. Mapping of the IE2 gene products with the antibodies suggests differential splicing and alternative translation initiation in the IE2 genetic unit. The IE2 products show a mixed cytoplasmic and nuclear localization pattern. In addition, the 437 amino acid carboxyl-terminus domain bound to a DNA fragment containing the putative IE-A promoter. These results suggest that HHV-6 IE2 plays a critical role in transcriptional regulation and viral growth as does HCMV IE2, although it is likely that HHV-6 IE2 has expression kinetics different from HCMV IE2.
Collapse
Affiliation(s)
- Eleni Papanikolaou
- Laboratory of General Microbiology, Section of Genetics, Developmental and Molecular Biology, School of Biology, Aristotle Universit, Thessaloniki 54006, Greece
| | | | | | | | | |
Collapse
|
13
|
Abstract
Herpesvirus gene expression is divided into immediate-early (IE) or alpha genes, early (E) or beta genes, and late (L) or gamma genes on the basis of temporal expression and dependency on other gene products. By using real-time PCR, we have investigated the expression of 35 human herpesvirus 6B (HHV-6B) genes in T cells infected by strain PL-1. Kinetic analysis and dependency on de novo protein synthesis and viral DNA polymerase activity suggest that the HHV-6B genes segregate into six separate kinetic groups. The genes expressed early (groups I and II) and late (groups V and VI) corresponded well with IE and L genes, whereas the intermediate groups III and IV contained E and L genes. Although HHV-6B has characteristics similar to those of other roseoloviruses in its overall gene regulation, we detected three B-variant-specific IE genes. Moreover, genes that were independent of de novo protein synthesis clustered in an area of the viral genome that has the lowest identity to the HHV-6A variant. The organization of IE genes in an area of the genome that differs from that of HHV-6A underscores the distinct differences between HHV-6B and HHV-6A and may provide a basis for further molecular and immunological analyses to elucidate their different biological behaviors.
Collapse
Affiliation(s)
- Bodil Øster
- Department of Medical Microbiology and Immunology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
14
|
Wu TF, Chen HH, Wu H. Functional characterization of Marek's disease virus (MDV) origin-binding protein (OBP): analysis of its origin-binding properties. Virus Genes 2002; 23:227-39. [PMID: 11724278 DOI: 10.1023/a:1011829313123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In previous studies, we identified a Marek's disease virus (MDV) origin-binding protein (OBP) gene that is highly homologous to the herpes simplex virus type 1 UL9 gene that encodes an OBP and functions as an initiator protein for viral DNA replication. In this study, a protein of 95 kDa was produced in coupled in vitro transcription-translation reaction with the plasmid containing the wild type MDV OBP gene. The in vitro synthesized protein was detected by immunoprecipitation with a penta-histidine specific monoclonal antibody. Further characterization of MDV OBP was accomplished using electrophoretic mobility shift assay (EMSA) with the in vitro expressed MDV OBP using a double-stranded (ds) 26-mer oligonucleotide as the probe, which was designed from the putative MDV OBP binding site present in the serotype 1 or 2 MDV replication origin. The EMSA results indicated that MDV OBP could form a protein-DNA complex with the ds 26-mer oligonucleotide designed from serotype 1 or 2 replication origin. A series of 26-mer oligonucleotides with two-base-pair (bp) substitution across the putative MDV OBP binding site were used in competitive EMSA to determine the recognition sequence for the MDV OBP. The results demonstrated that the recognition sequence for MDV OBP was the TTCGCACC that is a subset of a 9-bp element (CGTTCGCAC) conserved in the replication origins of alphaherpesviruses. Furthermore, the results of EMSA with a series of deletion mutants from the N-terminus of MDV OBP indicated that the origin-binding domain was located at the amino acids region 528 to 841 of the wild-type MDV OBP. Taken together, our results suggest that the MDV OBP gene encodes an OBP of MDV.
Collapse
Affiliation(s)
- T F Wu
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan.
| | | | | |
Collapse
|
15
|
Krug LT, Inoue N, Pellett PE. Differences in DNA binding specificity among Roseolovirus origin binding proteins. Virology 2001; 288:145-53. [PMID: 11543667 DOI: 10.1006/viro.2001.1066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Roseolovirus genus of the Betaherpesvirinae consists of the very closely related viruses, human herpesvirus 6 variants A and B (HHV-6A and HHV-6B) plus the somewhat more distantly related human herpesvirus 7 (HHV-7). The roseoloviruses each encode a homolog of the alphaherpesvirus origin binding protein (OBP) which is required for lytic DNA replication. In contrast, members of the other betaherpesvirus genera, the cytomegaloviruses, initiate DNA replication by a different mechanism. To better understand the basis of roseolovirus OBP sequence specificity, we investigated their ability to recognize each other's binding sites. HHV-6A OBP (OBP(H6A)) and HHV-6B OBP (OBP(H6B)) each bind to both of the HHV-7 OBP sites (OBP-1 and OBP-2) with similar strengths, which are also similar to their nearly equivalent interactions with their own sites. In contrast, HHV-7 OBP (OBP(H7)) had a gradient of binding preferences: HHV-7 OBP-2 > HHV-6 OBP-2 > HHV-7 OBP-1 > HHV-6 OBP-1. Thus, the roseolovirus OBPs are not equally reciprocal in their recognition of each other's OBP sites, suggesting that the sequence requirements for the interaction of OBPH7 at the OBP sites in its cognate oriLyt differ from those of OBPH6A and OBPH6B.
Collapse
Affiliation(s)
- L T Krug
- Microbiology and Molecular Genetics Program, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
16
|
Krug LT, Inoue N, Pellett PE. Sequence requirements for interaction of human herpesvirus 7 origin binding protein with the origin of lytic replication. J Virol 2001; 75:3925-36. [PMID: 11264381 PMCID: PMC114883 DOI: 10.1128/jvi.75.8.3925-3936.2001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As do human herpesvirus 6 variants A and B (HHV-6A and -6B), HHV-7 encodes a homolog of the alphaherpesvirus origin binding protein (OBP), which binds at sites in the origin of lytic replication (oriLyt) to initiate DNA replication. In this study, we sought to characterize the interaction of the HHV-7 OBP (OBP(H7)) with its cognate sites in the 600-bp HHV-7 oriLyt. We expressed the carboxyl-terminal domain of OBP(H7) and found that amino acids 484 to 787 of OBP(H7) were sufficient for DNA binding activity by electrophoretic mobility shift analysis. OBP(H7) has one high-affinity binding site (OBP-2) located on one flank of an AT-rich spacer element and a low-affinity site (OBP-1) on the other. This is in contrast to the HHV-6B OBP (OBP(H6B)), which binds with similar affinity to its two cognate OBP sites in the HHV-6B oriLyt. The minimal recognition element of the OBP-2 site was mapped to a 14-bp sequence. The OBP(H7) consensus recognition sequence of the 9-bp core, BRTYCWCCT (where B is a T, G, or C; R is a G or A; Y is a T or C; and W is a T or A), overlaps with the OBP(H6B) consensus YGWYCWCCY and establishes YCWCC as the roseolovirus OBP core recognition sequence. Heteroduplex analysis suggests that OBP(H7) interacts along one face of the DNA helix, with the major groove, as do OBP(H6B) and herpes simplex virus type 1 OBP. Together, these results illustrate both conserved and divergent DNA binding properties between OBP(H7) and OBP(H6B).
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Binding, Competitive
- Cell Line
- Consensus Sequence/genetics
- DNA Replication
- DNA, Viral/chemistry
- DNA, Viral/genetics
- DNA, Viral/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Herpesvirus 7, Human/genetics
- Herpesvirus 7, Human/metabolism
- Heteroduplex Analysis
- Humans
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- RNA, Viral/analysis
- RNA, Viral/genetics
- Regulatory Sequences, Nucleic Acid/genetics
- Replication Origin/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Thermodynamics
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- L T Krug
- Microbiology and Molecular Genetics Program, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
17
|
Chen HH, Tsai FY, Chen CT. Negative regulatory regions of the PAT1 promoter of Hz-1 virus contain GATA elements which associate with cellular factors and regulate promoter activity. J Gen Virol 2001; 82:313-320. [PMID: 11161268 DOI: 10.1099/0022-1317-82-2-313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The persistence-associated transcript 1 (PAT1) is actively expressed during persistent infection with Hz-1 virus, while transcription of the rest of the viral genes is shut down. Previously, results of a series deletion of the PAT1 promoter suggested that the regions from nucleotides -312 to -212 and nucleotides -158 to -90 negatively regulate the promoter activity. Here, the negative regulatory effect of the -312/-90 fragment was confirmed using a heterologous IE0 promoter of Autographa californica multiple nucleopolyhedrovirus. Further, the negative regulation of the -312 to -212 region was orientation-independent. The results of electrophoresis mobility shift assays showed that cellular protein(s) bind specifically to DNA fragments -312/-212 and -158/-90. In each of these fragments, a GATA element was identified by computer-assisted analysis. Mutating both GATA elements in the -312/-90 fragment completely eliminated its negative effect on IE0 promoter activity, while mutating only one of these elements had little or no effect. Together, these results suggest that the GATA element has a negative regulatory role on the IE0 and PAT1 promoters.
Collapse
Affiliation(s)
- Hong-Hwa Chen
- Institute of Biotechnology1 and Department of Biology2, National Cheng Kung University, Tainan 701, Taiwan
| | - Feng-Yuan Tsai
- Institute of Biotechnology1 and Department of Biology2, National Cheng Kung University, Tainan 701, Taiwan
| | - Chung-Te Chen
- Institute of Biotechnology1 and Department of Biology2, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
18
|
Abstract
Several of the gamma-herpesviruses are known to have cellular transforming and oncogenic properties. The genomes of eight distinct gamma-herpesviruses have been sequenced, and the resulting database of information has enabled the identification of genetic similarities and differences between evolutionarily closely related and distant viruses of the subfamily and between the gamma-herpesviruses and other members of the herpesvirus family. The recognition of coincident loci of genetic divergence between individual gamma-herpesviruses and the identification of novel genes and cellular gene homologues in these genomic regions has delineated a subset of genes that are likely to contribute to the unique biological properties of these viruses. These genes, together with gamma-herpesvirus conserved genes not found in viruses outside the family, might be responsible for virus specific pathogenicity and pathogenic effects, such as viral associated neoplasia, characteristic of the subfamily. The presence of the gamma-herpesvirus major divergent genomic loci and the apparent increased mutational frequencies of homologous genes (where they occur) within these regions, indicates that these loci possess particular features that drive genetic divergence. Whatever the mechanisms underlying this phenomenon, it potentially provides the basis for the relatively rapid adaptation and evolution of gamma-herpesviruses and the diversity of biological and pathogenic properties.
Collapse
Affiliation(s)
- J Nicholas
- Department of Oncology, John Hopkins University School of Medicine, Baltimore, Maryland 21231, USA.
| |
Collapse
|
19
|
Rapp JC, Krug LT, Inoue N, Dambaugh TR, Pellett PE. U94, the human herpesvirus 6 homolog of the parvovirus nonstructural gene, is highly conserved among isolates and is expressed at low mRNA levels as a spliced transcript. Virology 2000; 268:504-16. [PMID: 10704358 DOI: 10.1006/viro.1999.0163] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human herpesvirus 6 variants A and B (HHV-6A and HHV-6B, respectively) encode homologs (U94) of the parvovirus nonstructural gene, ns1 or rep. Here we describe the HHV-6B homolog and analyze its genetic heterogeneity and transcription. U94 nucleotide and amino acid sequences differ by approximately 3.5% and 2.5%, respectively, between HHV-6A and HHV-6B. Among a collection of 17 clinically and geographically disparate HHV-6 isolates, intravariant nucleotide and amino acid sequence divergence was less than 0.6% and 0.2%, respectively; all 13 HHV-6B isolates had identical amino acid sequences. The U94 transcript is spliced to remove a 2.6-kb intron and is expressed at very low levels relative to other HHV-6B genes, reaching approximately 10 copies per cell 3 days after infection. The mRNA has several small AUG-initiated open reading frames upstream of the U94 open reading frame, a hallmark of proteins expressed at low levels. Consistent with this, the U94-encoded protein was immunologically undetectable in HHV-6B-infected cells. The high degree of sequence conservation suggests that the gene function is nearly intolerant of sequence variation. The low abundance of U94 transcripts and the presence of encoded inefficient translation initiation suggest that the U94 protein may be required only in small amounts during infection.
Collapse
Affiliation(s)
- J C Rapp
- Centers for Disease Control and Prevention, Atlanta, Georgia, 30333, USA
| | | | | | | | | |
Collapse
|
20
|
Isegawa Y, Mukai T, Nakano K, Kagawa M, Chen J, Mori Y, Sunagawa T, Kawanishi K, Sashihara J, Hata A, Zou P, Kosuge H, Yamanishi K. Comparison of the complete DNA sequences of human herpesvirus 6 variants A and B. J Virol 1999; 73:8053-63. [PMID: 10482554 PMCID: PMC112821 DOI: 10.1128/jvi.73.10.8053-8063.1999] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 6 (HHV-6), which belongs to the betaherpesvirus subfamily and infects mainly T cells in vitro, causes acute and latent infections. Two variants of HHV-6 have been distinguished on the basis of differences in several properties. We have determined the complete DNA sequence of HHV-6 variant B (HHV-6B) strain HST, the causative agent of exanthem subitum, and compared the sequence with that of variant A strain U1102. A total of 115 potential open reading frames (ORFs) were identified within the 161,573-bp contiguous sequence of the entire HHV-6 genome, including some genes with remarkable differences in amino acid identity. All genes with <70% identity between the two variants were found to contain deleted regions when ORFs that could not be expressed were excluded from the comparison. Except in the case of U47, these differences were found in immediate-early/regulatory genes, DR2, DR7, U86/90, U89/90, and U95, which may represent characteristic differences of variants A and B. Also, we have successfully typed 14 different strains belonging to variant A or B by PCR using variant-specific primers; the results suggest that the remarkable differences observed were conserved evolutionarily as variant-specific divergence.
Collapse
Affiliation(s)
- Y Isegawa
- Department of Microbiology, Osaka University Medical School C1, 2-2 Yamada-Oka Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dominguez G, Dambaugh TR, Stamey FR, Dewhurst S, Inoue N, Pellett PE. Human herpesvirus 6B genome sequence: coding content and comparison with human herpesvirus 6A. J Virol 1999; 73:8040-52. [PMID: 10482553 PMCID: PMC112820 DOI: 10.1128/jvi.73.10.8040-8052.1999] [Citation(s) in RCA: 248] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/1999] [Accepted: 06/10/1999] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 6 variants A and B (HHV-6A and HHV-6B) are closely related viruses that can be readily distinguished by comparison of restriction endonuclease profiles and nucleotide sequences. The viruses are similar with respect to genomic and genetic organization, and their genomes cross-hybridize extensively, but they differ in biological and epidemiologic features. Differences include infectivity of T-cell lines, patterns of reactivity with monoclonal antibodies, and disease associations. Here we report the complete genome sequence of HHV-6B strain Z29 [HHV-6B(Z29)], describe its genetic content, and present an analysis of the relationships between HHV-6A and HHV-6B. As sequenced, the HHV-6B(Z29) genome is 162,114 bp long and is composed of a 144,528-bp unique segment (U) bracketed by 8,793-bp direct repeats (DR). The genomic sequence allows prediction of a total of 119 unique open reading frames (ORFs), 9 of which are present only in HHV-6B. Splicing is predicted in 11 genes, resulting in the 119 ORFs composing 97 unique genes. The overall nucleotide sequence identity between HHV-6A and HHV-6B is 90%. The most divergent regions are DR and the right end of U, spanning ORFs U86 to U100. These regions have 85 and 72% nucleotide sequence identity, respectively. The amino acid sequences of 13 of the 17 ORFs at the right end of U differ by more than 10%, with the notable exception of U94, the adeno-associated virus type 2 rep homolog, which differs by only 2.4%. This region also includes putative cis-acting sequences that are likely to be involved in transcriptional regulation of the major immediate-early locus. The catalog of variant-specific genetic differences resulting from our comparison of the genome sequences adds support to previous data indicating that HHV-6A and HHV-6B are distinct herpesvirus species.
Collapse
Affiliation(s)
- G Dominguez
- Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | | | |
Collapse
|
22
|
Lee SS, Lehman IR. The interaction of herpes simplex type 1 virus origin-binding protein (UL9 protein) with Box I, the high affinity element of the viral origin of DNA replication. J Biol Chem 1999; 274:18613-7. [PMID: 10373472 DOI: 10.1074/jbc.274.26.18613] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The herpes simplex type 1 (HSV-1) origin binding protein, the UL9 protein, exists in solution as a homodimer of 94-kDa monomers. It binds to Box I, the high affinity element of the HSV-1 origin, Oris, as a dimer. The UL9 protein also binds the HSV-1 single strand DNA-binding protein, ICP8. Photocross-linking studies have shown that although the UL9 protein binds Box I as a dimer, only one of the two monomers contacts Box I. It is this form of the UL9 homodimer that upon interaction with ICP8, promotes the unwinding of Box I coupled to the hydrolysis of ATP to ADP and Pi. Photocross-linking studies have also shown that the amount of UL9 protein that interacts with Box I is reduced by its interaction with ICP8. Antibody directed against the C-terminal ten amino acids of the UL9 protein inhibits its Box I unwinding activity, consistent with the requirement for interaction of the C terminus of the UL9 protein with ICP8. Inhibition by the antibody is enhanced when the UL9 protein is first bound to Box I, suggesting that the C terminus of the UL9 protein undergoes a conformational change upon binding Box I.
Collapse
Affiliation(s)
- S S Lee
- Department of Biochemistry, Beckman Center, Stanford University, Stanford, California 94305-5307, USA
| | | |
Collapse
|
23
|
Chen Z, Sugano S, Watanabe S. A 189-bp repeat region within the human cytomegalovirus replication origin contains a sequence dispensable but irreplaceable with other sequences. Virology 1999; 258:240-8. [PMID: 10366561 DOI: 10.1006/viro.1999.9735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human cytomegalovirus (HCMV) replication origin exhibits a strain-dependent difference in the number of copies of a 189-bp region: the AD169 and Towne strains contain one and three copies of the region, respectively. A nearly complete deletion of the 189-bp repeat region of the Towne strain does not eliminate the origin's ability to initiate DNA synthesis. Here we report that the replication ability of the HCMV replication origin in infected cells disappeared after replacements of an internal sequence (152 bp) of the 189-bp repeat region with lambda DNA of identical and different lengths as well as after introduction of multiple nucleotide substitutions within the 152-bp internal sequence of the 189-bp repeat. In contrast, a variation in the copy number of 189-bp region (either one or two copies) or an inversion of the 152-bp internal sequence of the 189-bp repeat maintained replication abilities similar to those of the wild-type origin of the Towne strain. These results indicate that the 189-bp repeat region within the HCMV replication origin is not just a dispensable spacer sequence but instead contains an irreplaceable sequence that may play a supporting role in HCMV DNA replication.
Collapse
Affiliation(s)
- Z Chen
- The Institute of Medical Science, The University of Tokyo, Tokyo, 108, Japan
| | | | | |
Collapse
|
24
|
Abstract
Infections with human herpesvirus 6 (HHV-6), a beta-herpesvirus of which two variant groups (A and B) are recognized, is very common, approaching 100% in seroprevalence. Primary infection with HHV-6B causes roseola infantum or exanthem subitum, a common childhood disease that resolves spontaneously. After primary infection, the virus replicates in the salivary glands and is shed in saliva, the recognized route of transmission for variant B strains; it remains latent in lymphocytes and monocytes and persists at low levels in cells and tissues. Not usually associated with disease in the immunocompetent, HHV-6 infection is a major cause of opportunistic viral infections in the immunosuppressed, typically AIDS patients and transplant recipients, in whom HHV-6 infection/reactivation may culminate in rejection of transplanted organs and death. Other opportunistic viruses, human cytomegalovirus and HHV-7, also infect or reactivate in persons at risk. Another disease whose pathogenesis may be correlated with HHV-6 is multiple sclerosis. Data in favor of and against the correlation are discussed.
Collapse
|
25
|
Lin K, Ricciardi RP. The 41-kDa protein of human herpesvirus 6 specifically binds to viral DNA polymerase and greatly increases DNA synthesis. Virology 1998; 250:210-9. [PMID: 9770435 DOI: 10.1006/viro.1998.9348] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously isolated a 41-kDa early antigen of human herpesvirus 6 (HHV-6), which exhibited nuclear localization and DNA-binding activity (Agulnick et al., 1993). In this study, we observed that a 110-kDa protein was coimmunoprecipitated with p41 from HHV-6-infected cells by an anti-p41 antibody. This 110-kDa protein was identified as the HHV-6 DNA polymerase (Pol-6) by an antibody raised against the N terminus of Pol-6. Reciprocal immunoprecipitation and Western blot analyses confirmed that p41 complexes with Pol-6 in HHV-6-infected cells. In addition, both p41 and Pol-6 were expressed in vitro and shown to form a specific complex. An in vitro DNA synthesis assay using primed M13 single-stranded DNA template demonstrated that p41 not only increased the DNA synthesis activity of Pol-6 but also allowed Pol-6 to synthesize DNA products corresponding to full-length M13 template (7249 nucleotides). By contrast, Pol-6 alone could only synthesize DNA of <100 nucleotides. The functional interaction between Pol-6 and p41 appears to be specific because they could not be physically or functionally substituted in vitro by their herpes simplex virus 1 homologues. Moreover, as revealed by mutational analysis, both the N and C termini of Pol-6 contribute to its binding to p41. In the case of p41, the N terminus is required for increasing DNA synthesis but not binding to Pol-6, whereas the C terminus is totally dispensable.
Collapse
Affiliation(s)
- K Lin
- School of Dental Medicine, School of Medicine, University of Pennsylvania, 4010 Locust Street, Philadelphia, Pennsylvania, 19104, USA
| | | |
Collapse
|
26
|
Dominguez G, Black JB, Stamey FR, Inoue N, Pellett PE. Physical and genetic maps of the human herpesvirus 7 strain SB genome. Arch Virol 1998; 141:2387-408. [PMID: 9526545 DOI: 10.1007/bf01718639] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human herpesvirus 7 (HHV-7) is a close relative of human herpesvirus 6A (HHV-6A) and human herpesvirus 6B (HHV-6B) based on limited biologic and genetic data. In this work we describe physical and genetic maps for HHV-7 strain SB [HHV-7(SB)], which was obtained from the saliva of a healthy adult. The HHV-7(SB) genome length is approximately 144 kb by clamped homogeneous electric field gel electrophoresis and approximately 135 kb by summation of restriction endonuclease fragments. We constructed plasmid clones and PCR amplimers that span the HHV-7 genome, except for the genomic termini, and determined the maps of the restriction endonuclease cleavage sites for BamHI, PstI, and SacI. The HHV-7(SB) genome is composed of a single unique region of approximately 122 kb bounded at each end by a 6 kb direct repeat. Homologs to thirty-five herpesvirus genes were identified. The highest similarity was with the HHV-6 genes, with an average amino acid identity of 50%, followed by the human cytomegalovirus counterpart. The genomic and genetic maps indicated that the HHV-7 and HHV-6 genomes are colinear. There was no sequence variation in a segment of the gene encoding the DNA polymerase-associated factor homolog among six HHV-7 isolates, while the corresponding segment of the HHV-6A and HHV-6B counterparts differed by 4.6%. These data support previous observations that the closest genetic relatives of HHV-7 are betaherpesviruses.
Collapse
MESH Headings
- Amino Acid Sequence
- Cells, Cultured
- Cloning, Molecular
- Cytomegalovirus/genetics
- DNA Primers
- DNA, Viral/analysis
- DNA, Viral/genetics
- DNA-Directed DNA Polymerase/genetics
- Electrophoresis, Gel, Pulsed-Field
- Gene Library
- Genes, Viral
- Genome, Viral
- Herpesvirus 6, Human/genetics
- Herpesvirus 7, Human/genetics
- Humans
- Molecular Sequence Data
- Nucleic Acid Hybridization
- Phylogeny
- Plasmids
- Polymerase Chain Reaction
- Polymorphism, Restriction Fragment Length
- Repetitive Sequences, Nucleic Acid
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- G Dominguez
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
27
|
Kosuge H, Isegawa Y, Yamanishi K. Nucleotide sequence analysis of a 30-kilobase-pair region of human herpesvirus-6B (HHV-6B) genome and strain-specific variations in major immediate-early genes. Virus Res 1997; 52:1-14. [PMID: 9453140 DOI: 10.1016/s0168-1702(97)00099-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human herpesvirus 6 (HHV-6) is now classified into two distinct variants such as HHV-6 variant A(HHV-6A) and B(HHV-6B) (Ablashi et al., Arch. Virol. 129, 1993, 1-4) and the DNA of HHV-6A strain U1102 was completely sequenced (Gompels et al., Virology 209, 1995, 29-51). We have sequenced a 30-kilobase pair (kbp) (genomic positions around 111-141 kb) of HHV-6B strain HST, and a sequence of this region was compared with that of HHV-6A strain U1102. Dodecameric repeats, G/T and Kpn repeat elements, putative major immediate early 1 (MIE1) and major immediate early 2 (MIE2) genes were found in this region. The DNA sequences of HHV-6A (U1102) and HHV-6B (HSI) were markedly different in the MIE1 region, Kpn repeat elements and the putative MIE2 region. Dodecameric repeat element was located in the putative MIE2 locus of HHV-6. When primers covering dodecameric repeat region were used to amplify HHV-6 DNA of clinical isolates from patients with exanthem subitum (ES) by polymerase chain reaction (PCR), variations in size of PCR products in each isolate were found, indicating strain-specific features. Furthermore, the results of molecular biological analysis by PCR using DNA samples in a family suggest that HHV-6 infects within a family.
Collapse
Affiliation(s)
- H Kosuge
- Department of Virology, Osaka University, Japan
| | | | | |
Collapse
|
28
|
Barnard EC, Brown G, Stow ND. Deletion mutants of the herpes simplex virus type 1 UL8 protein: effect on DNA synthesis and ability to interact with and influence the intracellular localization of the UL5 and UL52 proteins. Virology 1997; 237:97-106. [PMID: 9344911 DOI: 10.1006/viro.1997.8763] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The herpes simplex virus type 1 (HSV-1) helicase-primase, an essential component of the viral DNA replication machinery, is a trimeric complex of the virus-coded UL5, UL8, and UL52 proteins. An assembly of the UL5 and UL52 subunits retains both enzymic activities, and the UL8 protein has been implicated in modulating these functions, facilitating efficient nuclear uptake of the complex and interacting with other viral DNA replication proteins. To further our understanding of UL8, we have constructed plasmids expressing mutant proteins, truncated at their N- or C-termini or lacking amino acids internally, under the control of the human cytomegalovirus major immediate-early promoter. Deletion of 23 amino acids from the N-terminus or 33 from the C-terminus abolished the ability of UL8 to support DNA replication in transient transfection assays. None of the UL8 mutants tested exhibited a strong dominant negative phenotype in the presence of the wild-type product, although some inhibition of replication was observed with mutants lacking 165 N-terminal or 497 C-terminal amino acids. The ability of the UL8 mutants to facilitate efficient nuclear localization of UL52 in the presence of coexpressed UL5 was examined by immunofluorescence. Selected mutants were also expressed by recombinant baculoviruses and tested for interaction with UL5 and UL52 in immunoprecipitation assays. The replicative ability of the mutants was found to correlate with their ability to localize UL52 to the nucleus, but not their interaction with UL5 and UL52. This property precluded the identification of any region of UL8 important for its presumed nuclear functions.
Collapse
Affiliation(s)
- E C Barnard
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow, G11 5JR, United Kingdom
| | | | | |
Collapse
|
29
|
Abstract
Human herpesvirus 6 variant A (HHV-6A) and human herpesvirus 6 variant B (HHV-6B) are two closely related yet distinct viruses. These visuses belong to the Roseolovirus genus of the betaherpesvirus subfamily; they are most closely related to human herpesvirus 7 and then to human cytomegalovirus. Over 95% of people older than 2 years of age are seropositive for either or both HHV-6 variants, and current serologic methods are incapable of discriminating infection with one variant from infection with the other. HHV-6A has not been etiologically linked to any human disease, but such an association will probably be found soon. HHV-6B is the etiologic agent of the common childhood illness exanthem subitum (roseola infantum or sixth disease) and related febrile illnesses. These viruses are frequently active and associated with illness in immunocompromised patients and may play a role in the etiology of Hodgkin's disease and other malignancies. HHV-6 is a commensal inhabitant of brains; various neurologic manifestations, including convulsions and encephalitis, can occur during primary HHV-6 infection or in immunocompromised patients. HHV-6 and distribution in the central nervous system are altered in patients with multiple sclerosis; the significance of this is under investigation.
Collapse
Affiliation(s)
- D K Braun
- Eli Lilly, Lilly Corporate Center, Indianapolis, Indiana 46285, USA
| | | | | |
Collapse
|
30
|
Masse MJ, Messerle M, Mocarski ES. The location and sequence composition of the murine cytomegalovirus replicator (oriLyt). Virology 1997; 230:350-60. [PMID: 9143291 DOI: 10.1006/viro.1997.8473] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
DNA replication during human or simian cytomegalovirus (CMV) infection has been shown to be under control of a replicator region referred to as oriLyt. The murine CMV oriLyt has been mapped to a region of the genome located upstream of the gene encoding the herpesvirus-conserved single-stranded DNA binding protein, analogous to human and simian CMV oriLyts. A minimal oriLyt of approximately 1.7 kbp has been identified using a transient replication system. Like occurs with human and simian CMV counterparts, addition of flanking sequences to this minimal origin-stimulated replication efficiency. Analysis of the DNA sequence in this region shows that murine CMV oriLyt is complex and exhibits an asymmetric distribution of nucleotides as well as many repeat sequence elements, including distinct AT- and GC-rich regions and region with arrays of closely spaced direct repeats. Despite similarities in organization of all three CMV oriLyts, no sequence identity and only limited DNA sequence similarity was detectable. Consistent with this sequence divergence, the human and murine CMV oriLyts were unable to substitute for one another in transient replication assays.
Collapse
Affiliation(s)
- M J Masse
- Department of Microbiology and Immunology, Stanford University, California 94305-5402, USA
| | | | | |
Collapse
|
31
|
van Loon N, Dykes C, Deng H, Dominguez G, Nicholas J, Dewhurst S. Identification and analysis of a lytic-phase origin of DNA replication in human herpesvirus 7. J Virol 1997; 71:3279-84. [PMID: 9060695 PMCID: PMC191464 DOI: 10.1128/jvi.71.4.3279-3284.1997] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human herpesvirus 7 (HHV-7) DNA sequences colinear with the HHV-6 lytic-phase origin of DNA replication (oriLyt) were amplified by PCR. Plasmid constructs containing these sequences were replicated in HHV-7-infected cord blood mononuclear cells but not in HHV-6-infected cells. In contrast, plasmids bearing HHV-6 oriLyt were replicated in both HHV-6- and HHV-7-infected cells. Finally, the minimal HHV-7 DNA element necessary for replicator activity was mapped to a 600-bp region which contains two sites with high homology to the consensus binding site for the HHV-6 origin binding protein. At least one of these binding sites was shown to be essential for replicator function of HHV-7 oriLyt.
Collapse
Affiliation(s)
- N van Loon
- Department of Microbiology and Immunology, Medical Center, University of Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
32
|
Lee SS, Lehman IR. Unwinding of the box I element of a herpes simplex virus type 1 origin by a complex of the viral origin binding protein, single-strand DNA binding protein, and single-stranded DNA. Proc Natl Acad Sci U S A 1997; 94:2838-42. [PMID: 9096307 PMCID: PMC20283 DOI: 10.1073/pnas.94.7.2838] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/1997] [Indexed: 02/04/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) genome contains three origins of replication: oriL and two copies of oriS. These origins contain specific sequences, box I and box II, linked by an AT-rich segment, that are recognized by an HSV-1-encoded origin binding protein (UL9 protein) which also possesses DNA helicase activity. Despite its intrinsic helicase activity, the UL9 protein is unable to unwind oriS or the box I element of oriS, either in the presence or absence of the HSV-1-encoded single-strand DNA binding protein, ICP8. However, a complex of the UL9 protein and ICP8 can unwind box I if it contains a 3' single-stranded tail at least 18 nt in length positioned downstream of box I. These findings suggest a model for the initiation of HSV-1 DNA replication in which a complex consisting of the UL9 protein bound to box I, and ICP8 bound to single-stranded DNA generated at the A+T rich linker, perhaps as a consequence of transcription, unwinds an HSV-1 origin of replication to provide access to the replication machinery with the consequent initiation of viral DNA replication. This mode of unwinding is distinct from that observed for other animal viruses--e.g., simian virus 40 or bovine papilloma virus--in which the initiator protein, T antigen, or E1 protein alone, unwinds elements of the origin sequence, and the single-strand DNA binding protein serves only to keep the separated strands apart.
Collapse
Affiliation(s)
- S S Lee
- Department of Biochemistry, Stanford University, CA 94305-5307, USA
| | | |
Collapse
|
33
|
Abstract
Human herpesvirus 7 (HHV-7) is a recently isolated betaherpesvirus that is prevalent in the human population, with primary infection usually occurring in early childhood. HHV-7 is related to human herpesvirus 6 (HHV-6) in terms of both biological and, from limited prior DNA sequence analysis, genetic criteria. However, extensive analysis of the HHV-7 genome has not been reported, and the precise phylogenetic relationship of HHV-7 to the other human betaherpesviruses HHV-6 and human cytomegalovirus has not been determined. Here I report on the determination and analysis of the complete DNA sequence of HHV-7 strain JI. The data establish that the close biological relationship of HHV-6 and HHV-7 is reflected at the genetic level, where there is a very high degree of conservation of genetic content and encoded amino acid sequences. The data also delineate loci of divergence between the HHV-6 and HHV-7 genomes, which occur at the genome terminal in the region of the terminal direct-repeat elements and within limited regions of the unique component. Of potential significance with respect to biological and evolutionary divergence of HHV-6 and HHV-7 are notable structural differences in putative transcriptional regulatory genes specified by the direct-repeat and immediate-early region A loci of these viruses and the absence of an equivalent of the HHV-6 adeno-associated virus type 2 rep gene homolog in HHV-7.
Collapse
Affiliation(s)
- J Nicholas
- Johns Hopkins Oncology Center, Baltimore, Maryland 21231, USA
| |
Collapse
|
34
|
Huang L, Zhu Y, Anders DG. The variable 3' ends of a human cytomegalovirus oriLyt transcript (SRT) overlap an essential, conserved replicator element. J Virol 1996; 70:5272-81. [PMID: 8764037 PMCID: PMC190484 DOI: 10.1128/jvi.70.8.5272-5281.1996] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The genetically defined human cytomegalovirus (HCMV) lytic-phase replicator, oriLyt, comprises more than 2 kb in a structurally complex region that spans a variety of potential transcription control signals. Several transcripts originate within or cross oriLyt, and we are studying these oriLyt transcription units to determine whether they participate in initiating or regulating lytic-phase DNA synthesis. Results presented here establish the temporal accumulation and structure of the smallest replicator transcript, which we call SRT, and identify a single-sequence element essential to replicator function. SRT was detected as early as 2 h after HCMV infection of human fibroblast cells; transcript levels increased by 24 h and continued to increase thereafter. Consistent with its early appearance, treatment of HCMV-infected cells with the viral DNA polymerase inhibitor phosphonoformic acid had no effect on SRT accumulation; however, no SRT was detected in RNA preparations from cycloheximide-treated infected cells. Additional Northern (RNA) analysis localized the 0.2- to 0.25-kb SRT to an apparently noncoding segment near the center of the oriLyt core region. Reverse transcriptase PCR (rapid amplification of cDNA 5' ends [5'-RACE]) identified a single 5' end. In transient-transfection assays, the sequence immediately upstream of SRT functioned as a promoter responsive to HCMV infection when placed upstream of a reporter gene, suggesting that SRT is the product of a discrete transcription unit. RNA ligase-mediated 3'-RACE showed that SRT is not polyadenylated and has heterogeneous 3' ends within a roughly 45-nucleotide window overlapping an oligopyrimidine sequence having counterparts in the lytic-phase replicators of several herpesviruses. Mutation of the oligopyrimidine element showed that it is essential to oriLyt replicator function; it is the only essential single-sequence HCMV oriLyt replicator element described to date. Collectively, the location of SRT near the center of the oriLyt core region, its early expression, its overlapping relationship with a sequence element essential to replicator function, and its similarities to replicator transcripts in other systems suggest the possibility that SRT plays a role in initiating or regulating HCMV lytic-phase DNA synthesis.
Collapse
Affiliation(s)
- L Huang
- The David Axelrod Institute, Wadsworth Center for Laboratories and Research, University at Albany School of Public Health, New York 12201-2002, USA
| | | | | |
Collapse
|
35
|
Lindquester GJ, Inoue N, Allen RD, Castelli JW, Stamey FR, Dambaugh TR, O'Brian JJ, Danovich RM, Frenkel N, Pellett PE. Restriction endonuclease mapping and molecular cloning of the human herpesvirus 6 variant B strain Z29 genome. Arch Virol 1996; 141:367-79. [PMID: 8634027 DOI: 10.1007/bf01718406] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Human herpesvirus 6(HHV-6) variants A and B differ in cell tropism, reactivity with monoclonal antibodies, restriction endonuclease profiles, and epidemiology. Nonetheless, comparative nucleotide and amino acid sequences from several genes indicate that the viruses are very highly conserved genetically, The B variant is the major etiologic agent of exanthem subitum and is frequently isolated from children with febrile illness; no disease has been etiologically associated with HHV-6A. One HHV-6A strain has been cloned and sequenced, but similar information and reagents are not available for HHV-6B. We report here the determination of maps of the restriction endonuclease cleavage sites for BamHI, C1aI, HindIII, KpnI, and Sa1I, and the cloning in plasmids and bacteriophages of fragments representing over 95% of the HHV-6B strain Z29 [HHV-6B(Z29)] genome. Hybridization experiments and orientation of several blocks of nucleotide sequence information onto the genomic map indicate that HHV-6A and HHV-6B genomes are colinear.
Collapse
Affiliation(s)
- G J Lindquester
- Department of Biology, Rhodes College, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen Z, Watanabe S, Yamaguchi N. Strain-dependent differences in the human cytomegalovirus replication origin. Arch Virol 1996; 141:13-30. [PMID: 8629940 DOI: 10.1007/bf01718585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The nucleotide sequence of the human cytomegalovirus replication origin of strain Towne (an AatII-SacI fragment corresponding to nt 90372-94637 of strain AD169) was determined and compared with AD169. Two differences were found in the nucleotide sequence level. One was the alteration of structural organization (a major difference): a 189-bp region of AD169 (nt 93337-93525) was directly repeated three times in Towne. The other was a change in the nucleotide residue level including substitution, insertion, or deletion (a minor difference). The divergent residues were predominantly localized within the nt 92591-92855 region of AD169. A replication assay revealed that replication ability remained after deletion of the 189-bp repeat but disappeared after either a 1.5-kb deletion from the AatII end or a 0.9-kb deletion from the SacI end. The 1.5- and 0.9-kb regions were relatively conserved. These results indicate that at least two regions essential for replication ability lie outside of both the relatively variable region and the 189-bp repeat and suggest that these essential regions support replication even with a spatial separation of either one (AD169) or three repeats (Towne) of the 189-bp region.
Collapse
Affiliation(s)
- Z Chen
- Department of Virology, The Institute of Medical Science, The University of Tokyo, Japan
| | | | | |
Collapse
|
37
|
Inoue N, Pellett PE. Human herpesvirus 6B origin-binding protein: DNA-binding domain and consensus binding sequence. J Virol 1995; 69:4619-27. [PMID: 7609026 PMCID: PMC189261 DOI: 10.1128/jvi.69.8.4619-4627.1995] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We previously demonstrated by a DNA-binding assay that the human herpesvirus 6B (HHV-6B) replication origin has a structure similar to those of alphaherpesviruses, although the HHV-6B and herpes simplex virus type 1 (HSV-1) origin-binding proteins (OBPs) and origins are not interchangeable. Here we describe additional properties of the interaction between HHV-6B OBP and the HHV-6B origin. Competitive electrophoretic mobility shift assays (EMSAs) with DNA duplexes containing single-base alterations allowed deduction of a consensus DNA sequence for HHV-6B-specific OBP binding, YGWYCWCCY, where Y is T or C and W is T or A, while that for HSV-1-specific binding was reported to be YGYTCGCACT. By EMSA, the HHV-6B OBP DNA-binding domain was mapped to a segment containing amino acids 482 to 770. However, in Southwestern (protein-DNA) blotting, the region sufficient for the DNA binding encompassed only amino acids 657 to 770. Similarly, Southwestern blotting showed that amino acids 689 to 851 of HSV-1 OBP had HSV-1 origin-binding activity, although this region was insufficient for origin binding in the EMSA. Although the longer DNA-binding domains identified by EMSA have marginal overall homology among HHV-6B and alphaherpesvirus OBP homologs, the smaller regions sufficient for the binding observed by Southwestern blotting have significant similarity. From these results, we propose a hypothesis that the DNA-binding domain of herpesvirus OBPs consists of two subdomains, one containing a conserved motif that contacts DNA directly, and another, less well conserved, that may modulate either the conformation or accessibility of the binding domain.
Collapse
Affiliation(s)
- N Inoue
- National Institute of Health, Tokyo, Japan
| | | |
Collapse
|
38
|
Stamey FR, Dominguez G, Black JB, Dambaugh TR, Pellett PE. Intragenomic linear amplification of human herpesvirus 6B oriLyt suggests acquisition of oriLyt by transposition. J Virol 1995; 69:589-96. [PMID: 7983761 PMCID: PMC188616 DOI: 10.1128/jvi.69.1.589-596.1995] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We identified some passage lineages of human herpesvirus 6 variant B (HHV-6B) strain Z29 that contain as many as 12 tandem copies of a genomic segment that corresponds almost precisely to a previously identified minimal efficient origin of lytic replication (oriLyt). Analysis of nucleotide sequences in the vicinity of the amplified segment suggests that the amplification occurred as a two-step process, with the first step being a rare sequence duplication mediated through directly repeated sequences located near the termini of the amplified segment and the second step occurring via homologous recombination through the duplicated sequence. These results demonstrate that oriLyt has been amplified in some virus stocks and indicate that (i) origin amplification confers a growth advantage on the virus in cell culture and (ii) laboratory-passaged HHV-6B genomes can accommodate additional nucleotide sequences and thus may be useful gene transfer vectors. The structures of the amplified segment and its adjacent sequences together suggest that HHV-6B or a progenitor virus acquired oriLyt by transposition from an unknown source.
Collapse
Affiliation(s)
- F R Stamey
- Centers for Disease Control and Prevention, Atlanta, Georgia 30333
| | | | | | | | | |
Collapse
|
39
|
Dewhurst S, Krenitsky DM, Dykes C. Human herpesvirus 6B origin: sequence diversity, requirement for two binding sites for origin-binding protein, and enhanced replication from origin multimers. J Virol 1994; 68:6799-803. [PMID: 8084018 PMCID: PMC237107 DOI: 10.1128/jvi.68.10.6799-6803.1994] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A previously identified human herpesvirus 6B (HHV-6B) origin of DNA replication contains two binding sites for the origin-binding protein (OBPH6B). We have investigated the functional significance of these sites by determining the replication efficiencies of mutated origin sequences, using a transient replication assay. The results indicate that both sites are required for DNA replication. In addition, we have tested the functional consequences of linear sequence amplifications in the origin. The data show that tandemized origin elements are more efficiently replicated than single-copy origins. Finally, we have determined the extent of interstrain origin sequence variation that exists among HHV-6 isolates by cloning, sequencing, and analyzing origins from a number of virus isolates, including examples of both HHV-6A and HHV-6B.
Collapse
Affiliation(s)
- S Dewhurst
- Department of Microbiology and Immunology, University of Rochester Medical Center, New York 14642
| | | | | |
Collapse
|