1
|
Cheerathodi MR, Meckes DG. The Epstein-Barr virus LMP1 interactome: biological implications and therapeutic targets. Future Virol 2018; 13:863-887. [PMID: 34079586 DOI: 10.2217/fvl-2018-0120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The oncogenic potential of Epstein-Barr virus (EBV) is mostly attributed to latent membrane protein 1 (LMP1), which is essential and sufficient for transformation of fibroblast and primary lymphocytes. LMP1 expression results in the activation of multiple signaling cascades like NF-ΚB and MAP kinases that trigger cell survival and proliferative pathways. LMP1 specific signaling events are mediated through the recruitment of a number of interacting proteins to various signaling domains. Based on these properties, LMP1 is an attractive target to develop effective therapeutics to treat EBV-related malignancies. In this review, we focus on LMP1 interacting proteins, associated signaling events, and potential targets that could be exploited for therapeutic strategies.
Collapse
Affiliation(s)
- Mujeeb R Cheerathodi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306
| |
Collapse
|
2
|
Transmembrane Domains Mediate Intra- and Extracellular Trafficking of Epstein-Barr Virus Latent Membrane Protein 1. J Virol 2018; 92:JVI.00280-18. [PMID: 29950415 DOI: 10.1128/jvi.00280-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022] Open
Abstract
EBV latent membrane protein 1 (LMP1) is released from latently infected tumor cells in small membrane-enclosed extracellular vesicles (EVs). Accumulating evidence suggests that LMP1 is a major driver of EV content and functions. LMP1-modified EVs have been shown to influence recipient cell growth, migration, differentiation, and regulation of immune cell function. Despite the significance of LMP1-modified exosomes, very little is known about how this viral protein enters or manipulates the host EV pathway. In this study, LMP1 deletion mutants were generated to assess protein regions required for EV trafficking. Following transfection of LMP1 or mutant plasmids, EVs were collected by differential centrifugation, and the levels of specific cargo were evaluated by immunoblot analysis. The results demonstrate that, together, the N terminus and transmembrane region 1 of LMP1 are sufficient for efficient sorting into EVs. Consistent with these findings, a mutant lacking the N terminus and transmembrane domains 1 through 4 (TM5-6) failed to be packaged into EVs, and exhibited higher colocalization with endoplasmic reticulum and early endosome markers than the wild-type protein. Surprisingly, TM5-6 maintained the ability to colocalize and form a complex with CD63, an abundant exosome protein that is important for the incorporation of LMP1 into EVs. Other mutations within LMP1 resulted in enhanced levels of secretion, pointing to potential positive and negative regulatory mechanisms for extracellular vesicle sorting of LMP1. These data suggest new functions of the N terminus and transmembrane domains in LMP1 intra- and extracellular trafficking that are likely downstream of an interaction with CD63.IMPORTANCE EBV infection contributes to the development of cancers, such as nasopharyngeal carcinoma, Burkitt lymphoma, Hodgkin's disease, and posttransplant lymphomas, in immunocompromised or genetically susceptible individuals. LMP1 is an important viral protein expressed by EBV in these cancers. LMP1 is secreted in extracellular vesicles (EVs), and the transfer of LMP1-modified EVs to uninfected cells can alter their physiology. Understanding the cellular machinery responsible for sorting LMP1 into EVs is limited, despite the importance of LMP1-modified EVs. Here, we illustrate the roles of different regions of LMP1 in EV packaging. Our results show that the N terminus and TM1 are sufficient to drive LMP1 EV trafficking. We further show the existence of potential positive and negative regulatory mechanisms for LMP1 vesicle sorting. These findings provide a better basis for future investigations to identify the mechanisms of LMP1 targeting to EVs, which could have broad implications in understanding EV cargo sorting.
Collapse
|
3
|
Gantuz M, Lorenzetti MA, Chabay PA, Preciado MV. A novel recombinant variant of latent membrane protein 1 from Epstein Barr virus in Argentina denotes phylogeographical association. PLoS One 2017; 12:e0174221. [PMID: 28328987 PMCID: PMC5362222 DOI: 10.1371/journal.pone.0174221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/05/2017] [Indexed: 12/15/2022] Open
Abstract
Epstein Barr virus (EBV) infection in Argentina occurs at an early age and occasionally develops infectious mononucleosis (IM). EBV is also related with lymphomas. LMP1, the viral oncoprotein is polymorphic and is used to define viral variants.
Collapse
Affiliation(s)
- Magdalena Gantuz
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, Laboratorio de Biología Molecular, División Patología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Mario Alejandro Lorenzetti
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, Laboratorio de Biología Molecular, División Patología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Paola Andrea Chabay
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, Laboratorio de Biología Molecular, División Patología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María Victoria Preciado
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, Laboratorio de Biología Molecular, División Patología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
4
|
Abstract
Almost exactly twenty years after the discovery of Epstein-Barr virus (EBV), the latent membrane protein 1 (LMP1) entered the EBV stage, and soon thereafter, it was recognized as the primary transforming gene product of the virus. LMP1 is expressed in most EBV-associated lymphoproliferative diseases and malignancies, and it critically contributes to pathogenesis and disease phenotypes. Thirty years of LMP1 research revealed its high potential as a deregulator of cellular signal transduction pathways leading to target cell proliferation and the simultaneous subversion of cell death programs. However, LMP1 has multiple roles beyond cell transformation and immortalization, ranging from cytokine and chemokine induction, immune modulation, the global alteration of gene and microRNA expression patterns to the regulation of tumor angiogenesis, cell-cell contact, cell migration, and invasive growth of tumor cells. By acting like a constitutively active receptor, LMP1 recruits cellular signaling molecules associated with tumor necrosis factor receptors such as tumor necrosis factor receptor-associated factor (TRAF) proteins and TRADD to mimic signals of the costimulatory CD40 receptor in the EBV-infected B lymphocyte. LMP1 activates NF-κB, mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3-K), IRF7, and STAT pathways. Here, we review LMP1's molecular and biological functions, highlighting the interface between LMP1 and the cellular signal transduction network as an important factor of virus-host interaction and a potential therapeutic target.
Collapse
|
5
|
Greenfeld H, Takasaki K, Walsh MJ, Ersing I, Bernhardt K, Ma Y, Fu B, Ashbaugh CW, Cabo J, Mollo SB, Zhou H, Li S, Gewurz BE. TRAF1 Coordinates Polyubiquitin Signaling to Enhance Epstein-Barr Virus LMP1-Mediated Growth and Survival Pathway Activation. PLoS Pathog 2015; 11:e1004890. [PMID: 25996949 PMCID: PMC4440769 DOI: 10.1371/journal.ppat.1004890] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/17/2015] [Indexed: 11/25/2022] Open
Abstract
The Epstein-Barr virus (EBV) encoded oncoprotein Latent Membrane Protein 1 (LMP1) signals through two C-terminal tail domains to drive cell growth, survival and transformation. The LMP1 membrane-proximal TES1/CTAR1 domain recruits TRAFs to activate MAP kinase, non-canonical and canonical NF-kB pathways, and is critical for EBV-mediated B-cell transformation. TRAF1 is amongst the most highly TES1-induced target genes and is abundantly expressed in EBV-associated lymphoproliferative disorders. We found that TRAF1 expression enhanced LMP1 TES1 domain-mediated activation of the p38, JNK, ERK and canonical NF-kB pathways, but not non-canonical NF-kB pathway activity. To gain insights into how TRAF1 amplifies LMP1 TES1 MAP kinase and canonical NF-kB pathways, we performed proteomic analysis of TRAF1 complexes immuno-purified from cells uninduced or induced for LMP1 TES1 signaling. Unexpectedly, we found that LMP1 TES1 domain signaling induced an association between TRAF1 and the linear ubiquitin chain assembly complex (LUBAC), and stimulated linear (M1)-linked polyubiquitin chain attachment to TRAF1 complexes. LMP1 or TRAF1 complexes isolated from EBV-transformed lymphoblastoid B cell lines (LCLs) were highly modified by M1-linked polyubiqutin chains. The M1-ubiquitin binding proteins IKK-gamma/NEMO, A20 and ABIN1 each associate with TRAF1 in cells that express LMP1. TRAF2, but not the cIAP1 or cIAP2 ubiquitin ligases, plays a key role in LUBAC recruitment and M1-chain attachment to TRAF1 complexes, implicating the TRAF1:TRAF2 heterotrimer in LMP1 TES1-dependent LUBAC activation. Depletion of either TRAF1, or the LUBAC ubiquitin E3 ligase subunit HOIP, markedly impaired LCL growth. Likewise, LMP1 or TRAF1 complexes purified from LCLs were decorated by lysine 63 (K63)-linked polyubiqutin chains. LMP1 TES1 signaling induced K63-polyubiquitin chain attachment to TRAF1 complexes, and TRAF2 was identified as K63-Ub chain target. Co-localization of M1- and K63-linked polyubiquitin chains on LMP1 complexes may facilitate downstream canonical NF-kB pathway activation. Our results highlight LUBAC as a novel potential therapeutic target in EBV-associated lymphoproliferative disorders. The linear ubiquitin assembly complex (LUBAC) plays crucial roles in immune receptor-mediated NF-kB and MAP kinase pathway activation. Comparatively little is known about the extent to which microbial pathogens use LUBAC to activate downstream pathways. We demonstrate that TRAF1 enhances EBV oncoprotein LMP1 TES1/CTAR1 domain mediated MAP kinase and canonical NF-kB activation. LMP1 TES1 signaling induces association between TRAF1 and LUBAC, and triggers M1-polyubiquitin chain attachment to TRAF1 complexes. TRAF1 and LMP1 complexes are decorated by M1-polyubiquitin chains in LCL extracts. TRAF2 plays a key role in LMP1-induced LUBAC recruitment and M1-chain attachment to TRAF1 complexes. TRAF1 and LMP1 complexes are modified by lysine 63-linked polyubiquitin chains in LCL extracts, and TRAF2 is a target of LMP1-induced K63-ubiquitin chain attachment. Thus, the TRAF1:TRAF2 heterotrimer may coordinate ubiquitin signaling downstream of TES1. Depletion of TRAF1 or the LUBAC subunit HOIP impairs LCL growth and survival. Thus, although TRAF1 is the only TRAF without a RING finger ubiquitin ligase domain, TRAF1 nonetheless has important roles in ubiqutin-mediated signal transduction downstream of LMP1. Our work suggests that LUBAC is important for EBV-driven B-cell proliferation, and suggests that LUBAC may be a novel therapeutic target in EBV-associated lymphoproliferative disorders.
Collapse
Affiliation(s)
- Hannah Greenfeld
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Kaoru Takasaki
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Michael J. Walsh
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Ina Ersing
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Katharina Bernhardt
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Yijie Ma
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Bishi Fu
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Camille W. Ashbaugh
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Jackson Cabo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Sarah B. Mollo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Hufeng Zhou
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Shitao Li
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
6
|
Abstract
Latent Epstein–Barr virus (EBV) infection has a substantial role in causing many human disorders. The persistence of these viral genomes in all malignant cells, yet with the expression of limited latent genes, is consistent with the notion that EBV latent genes are important for malignant cell growth. While the EBV-encoded nuclear antigen-1 (EBNA-1) and latent membrane protein-2A (LMP-2A) are critical, the EBNA-leader proteins, EBNA-2, EBNA-3A, EBNA-3C and LMP-1, are individually essential for in vitro transformation of primary B cells to lymphoblastoid cell lines. EBV-encoded RNAs and EBNA-3Bs are dispensable. In this review, the roles of EBV latent genes are summarized.
Collapse
Affiliation(s)
- Myung-Soo Kang
- 1] Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, Korea [2] Samsung Biomedical Research Institute (SBRI), Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
| | - Elliott Kieff
- Department of Medicine, Brigham and Women's Hospital, Program in Virology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Arcipowski KM, Bishop GA. TRAF binding is required for a distinct subset of in vivo B cell functions of the oncoprotein LMP1. THE JOURNAL OF IMMUNOLOGY 2012; 189:5165-70. [PMID: 23109728 DOI: 10.4049/jimmunol.1201821] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
EBV-encoded latent membrane protein 1 (LMP1) is important for EBV contributions to B cell transformation and many EBV-associated malignancies, as well as EBV-mediated exacerbation of autoimmunity. LMP1 functionally mimics TNF receptor (TNFR) superfamily member CD40, but LMP1 signals and downstream effects are amplified and sustained compared with CD40. CD40 and LMP1 both use TNFR-associated factor (TRAF) adaptor proteins, but in distinct ways. LMP1 functions require TRAFs 3, 5, and 6, which interact with LMP1. However, TRAFs can also contribute to signaling in the absence of direct interactions with cell surface receptors, so we investigated whether their roles in LMP1 in vivo functions require direct association. We show in this study that the LMP1 TRAF binding site was required for LMP1-mediated autoantibody production, the germinal center response to immunization, and optimal production of several isotypes of Ig, but not LMP1-dependent enlargement of secondary lymphoid organs in transgenic mice. Thus, LMP1 in vivo effects can be mediated via both TRAF binding-dependent and -independent pathways. Together with our previous findings, these results indicate that TRAF-dependent receptor functions may not always require TRAF-receptor binding. These data suggest that TRAF-mediated signaling pathways, such as those of LMP1, may be more diverse than previously appreciated. This finding has significant implications for receptor and TRAF-targeted therapies.
Collapse
Affiliation(s)
- Kelly M Arcipowski
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
8
|
The initial results of Epstein-Barr virus (EBV)-encoded latent membrane protein-1 (LMP-1) for screening nasopharyngeal carcinoma (NPC). ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s10330-011-0725-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Santón A, Manzanal AI, Campo E, Bellas C. Deletions in the Epstein-Barr virus latent membrane protein-1 oncogene in Hodgkin's disease. Mol Pathol 2010; 48:M184-7. [PMID: 16696002 PMCID: PMC407958 DOI: 10.1136/mp.48.4.m184] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Aims-To analyse the latent membrane protein-1 (LMP-1) gene in a series of patients with Epstein-Barr virus (EBV) positive LMP expressing ordinary and HIV associated Hodgkin's disease to detect possible genetic alterations and particularly the existence of deletions near the 3' end of the gene.Methods-Expression of the EBV LMP-1 was assessed using immunohistochemistry in 186 cases of Hodgkin's disease and 31 cases of HIV associated Hodgkin's disease. Genomic DNA was extracted from frozen lymph node biopsy specimens from 25 cases of Hodgkin's disease and 11 of HIV associated Hodgkin's disease, all of whom expressed the LMP-1 protein within diagnostic Hodgkin and Reed-Sternberg (HRS) cells, and amplified by polymerase chain reaction (PCR) using primers specific for the different LMP-1 regions.Results-LMP-1 expression was observed in 106 of 186 Hodgkin's disease cases and in all 31 HIV associated Hodgkin's disease cases. Molecular analysis of the LMP-1 gene showed a high degree of genetic heterogeneity in the carboxy-terminal domain compared with the prototype B95-8 EBV strain, specially in the patients with HIV associated Hodgkin's disease. Variation in the size of the repeated region was found in 17 of 25 Hodgkin's disease and nine of 11 HIV associated Hodgkin's disease cases. Deletions of 30 base pairs near the 3' end of the gene were detected in all cases of HIV associated Hodgkin's disease and in six Hodgkin's disease. In one case of Hodgkin's disease a larger deletion was observed. In all patients with LMP-1 deletion mutants, 50-90% of the diagnostic HRS cells expressed the LMP-1 protein.Conclusions-The presence of the 30 base pair deletion in all cases of HIV associated Hodgkin's disease supports previous studies that reported aggressive histological and clinical behaviour in tumours harbouring this deletion. This deletion may prolong the half-life of the protein which would explain the high levels of LMP-1 expressing HRS cells in those cases carrying LMP-1 deletions. That the 30 base pair deletion was present in all of the HIV associated Hodgkin's disease specimens suggests that impairment of immune function is a stringent requirement for the expansion of malignant cells infected by EBV strains containing the deleted LMP-1 gene.
Collapse
Affiliation(s)
- A Santón
- Department of Pathology, Ramón y Cajal Hospital, Madrid, Spain
| | | | | | | |
Collapse
|
10
|
Soni V, Cahir-McFarland E, Kieff E. LMP1 TRAFficking Activates Growth and Survival pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 597:173-87. [PMID: 17633026 DOI: 10.1007/978-0-387-70630-6_14] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epstein-Barr Virus (EBV) Latent Infection Membrane Protein 1 (LMP1) is expressed in all the EBV related malignancies. LMP1 expression is critical for transformation of human B-cells by EBV. LMP1 expression in human B cells induces activation and adhesion molecule expression and cell dumping, which are characteristic of CD40 activated B lymphocytes. In immortalized fibroblasts, LMP1 mimics aspects of activated ras in enabling serum, contact, and anchorage independent growth. Reverse genetic analyses implicate six transmembrane domains (TM), TM1-6, and two C-terminal cytosolic domains, transformation effector sites 1 and 2 (TES1 and 2) or C-terminal activation regions 1 and 2 (CTAR1 and 2) as the essential domains for LMP1 effects. The 6 transmembrane domains cause intermolecular interaction, whereas the C-terminal domains signal through tumor necrosis factor receptor (TNFR) associated factors (TRAFs) or TNFR associated death domain proteins (TRADD) and activate NF-kappaB, JNK, and p38. LMP1 TES1/CTAR1 directly recruits TRAFs 1, 2, 3 and 5 whereas LMP1 TES2/CTAR2 indirectly recruits TRAF6 via BS69. LMP1 TES1/CTAR1 activates TRAF2, NIK, IKKalpha and p52 mediated noncanonical NF-KB pathway and LMP1 TES2/CTAR2 activates TRAF6, TAB1, TAK1, IKKalpha/ IKKbeta/ IKKgamma mediated canonical NF-KB pathway. Interestingly, TRAF3 is a negative regulator of noncanonical NF-kappaB activation, although a positive role in LMP1 signaling has also been described. LMP1 mediated JNK activation is predominantly TES2/CTAR2 dependent and requires TRAF6. LMP1 specifically increases TRAF3 partitioning into lipid rafts and interestingly does not induce degradation of any of the TRAFs upon NF-kappaB activation. Studies of the chemistry and biology of LMP1-TRAF interaction mediated activation of signaling pathways are important for controlling EBV infected cell survival and growth.
Collapse
Affiliation(s)
- Vishal Soni
- Channing Laboratory and Infectious Disease Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School and University, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
11
|
Bajaj BG, Murakami M, Robertson ES. Molecular biology of EBV in relationship to AIDS-associated oncogenesis. Cancer Treat Res 2007; 133:141-62. [PMID: 17672040 DOI: 10.1007/978-0-387-46816-7_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Epstein-Barr virus (EBV) is a gammaherpesvirus of the Lymphocryptovirus genus, which infects greater than 90% of the world's population. Infection is nonsymptomatic in healthy individuals, but has been associated with a number of lymphoproliferative disorders when accompanied by immunosuppression. Like all herpesviruses, EBV has both latent and lytic replication programs, which allows it to evade immune clearance and persist for the lifetime of the host. Latent infection is characterized by replication of the viral genome as an integral part of the host cell chromosomes, and the absence of production of infectious virus. A further layer of complexity is added in that EBV can establish three distinct latency programs, in each of which a specific set of viral antigens is expressed. In most malignant disorders associated with EBV, the virus replicates using one of these three latency programs. In the most aggressive latency program, only 11 of the hitherto 85 identified open reading frames in the EBV genome are expressed. The other two latency programs express even smaller subsets of this repertoire of latent genes. The onset of the AIDS pandemic and the corresponding increase in individuals with acquired immunodeficiency resulted in a sharp increase in EBV-mediated AIDS-associated malignancies. This has sparked a renewed interest in EBV biology and pathogenesis.
Collapse
Affiliation(s)
- Bharat G Bajaj
- Department of Microbiology, Abramson Comprehensive Cancer Center, University of Pennsylvania Medical School, Philadelphia, PA, USA
| | | | | |
Collapse
|
12
|
Pioche-Durieu C, Keryer C, Souquère S, Bosq J, Faigle W, Loew D, Hirashima M, Nishi N, Middeldorp J, Busson P. In nasopharyngeal carcinoma cells, Epstein-Barr virus LMP1 interacts with galectin 9 in membrane raft elements resistant to simvastatin. J Virol 2005; 79:13326-37. [PMID: 16227255 PMCID: PMC1262583 DOI: 10.1128/jvi.79.21.13326-13337.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinomas (NPC) are etiologically related to the Epstein-Barr virus (EBV), and malignant NPC cells have consistent although heterogeneous expression of the EBV latent membrane protein 1 (LMP1). LMP1 trafficking and signaling require its incorporation into membrane rafts. Conversely, raft environment is likely to modulate LMP1 activity. In order to investigate NPC-specific raft partners of LMP1, rafts derived from the C15 NPC xenograft were submitted to preparative immunoprecipitation of LMP1 combined with mass spectrometry analysis of coimmunoprecipitated proteins. Through this procedure, galectin 9, a beta-galactoside binding lectin and Hodgkin tumor antigen, was identified as a novel LMP1 partner. LMP1 interaction with galectin 9 was confirmed by coimmunoprecipitation and Western blotting in whole-cell extracts of NPC and EBV-transformed B cells (lymphoblastoid cell lines [LCLs]). Using mutant proteins expressed in HeLa cells, LMP1 was shown to bind galectin 9 in a TRAF3-independent manner. Galectin 9 is abundant in NPC biopsies as well as in LCLs, whereas it is absent in Burkitt lymphoma cells. In subsequent experiments, NPC cells were treated with Simvastatin, a drug reported to dissociate LMP1 from membrane rafts in EBV-transformed B cells. We found no significant effects of Simvastatin on the distribution of LMP1 and galectin 9 in NPC cell rafts. However, Simvastatin was highly cytotoxic for NPC cells, regardless of the presence or absence of LMP1. This suggests that Simvastatin is a potentially useful agent for the treatment of NPCs although it has distinct mechanisms of action in NPC and LCL cells.
Collapse
|
13
|
Jen KY, Higuchi M, Cheng J, Li J, Wu LY, Li YF, Lin HL, Chen Z, Gurtsevitch V, Fujii M, Saku T. Nucleotide sequences and functions of the Epstein-Barr virus latent membrane protein 1 genes isolated from salivary gland lymphoepithelial carcinomas. Virus Genes 2005; 30:223-35. [PMID: 15744579 DOI: 10.1007/s11262-004-5630-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/16/2004] [Accepted: 09/16/2004] [Indexed: 10/25/2022]
Abstract
Epstein-Barr virus (EBV) infection is associated with salivary gland lymphoepithelial carcinoma (SLEC) and nasopharyngeal carcinoma (NPC). EBV is a ubiquitous herpes virus world wide, but EBV-associated SLEC and NPC are prevalent in restricted regions such as south areas of China, Southeastern Asia and Greenland (Eskimos). To examine whether particular EBV variants play roles in the development of SLEC and NPC, we isolated the complete EBV LMP1 genes from 12 paraffin-embedded biopsy samples of SLECs isolated from China, Taiwan and Russia, and compared these LMP1 genes with those of NPC (CAO) and the prototype B95-8 EBV. Nucleotide sequence analysis showed that SLECs LMP1 is more similar to that of CAO than that of prototype B95-8. The analysis also identified several conserved (67-100%) variations in SLEC-LMP1 and CAO-LMP1 distinct from B95-8-LMP1. These included 10-amino acid deletion, 5-amino acid deletion and 12-single amino acid variations. A SLEC-LMP1 gene with the aforementioned conserved variations inhibited the growth of an embryonic kidney cell line (293T), highly activated the NF-kappaB pathway, and these activities were equivalent to those of B95-8 and CAO. These findings suggest that the biological functions of SLEC-LMP 1 are similar to those of B95-8-LMP1 and CAO-LMP1, and that these amino acid variations including the well-known 10-aa deletion did not affect these two prominent activities. While the present results could not uncover functional differences between SLEC-LMP1 and B95-8-LMP1, the nucleotide sequences and the molecular clone of LMP1 directly isolated from SLEC patients will be a useful tool to identify the high-pathogenic EBV strain(s), associated with SLEC and NPC.
Collapse
Affiliation(s)
- Kai Yu Jen
- Division of Oral Pathology, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata, 951-8510, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Xie P, Bishop GA. Roles of TNF Receptor-Associated Factor 3 in Signaling to B Lymphocytes by Carboxyl-Terminal Activating Regions 1 and 2 of the EBV-Encoded Oncoprotein Latent Membrane Protein 1. THE JOURNAL OF IMMUNOLOGY 2004; 173:5546-55. [PMID: 15494504 DOI: 10.4049/jimmunol.173.9.5546] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
TNFR-associated factor (TRAF)3, an adaptor protein that binds the cytoplasmic domains of both CD40 and the EBV-encoded oncoprotein latent membrane protein (LMP)1, is required for positive signaling by LMP1 but not CD40 in B lymphocytes. The present study further investigated how TRAF3 participates in LMP1 signaling. We found that TRAF3 mediates signaling both through direct interactions with the C-terminal activating region (CTAR)1 of LMP1 and through indirect interactions with the CTAR2 region of LMP1 in mouse B cells. Notably, our results demonstrated that the CTAR2 region appears to inhibit the recruitment of TRAF1 and TRAF2 to membrane rafts by the CTAR1 region. Additionally, the absence of TRAF2 in B cells resulted in only a modest reduction in CTAR1-mediated signals and no detectable effect on CTAR2-mediated signals. CTAR1 and CTAR2 cooperated to achieve the robust signaling activity of LMP1 when recruited to the same membrane microdomains in B cells. Interestingly, TRAF3 deficiency completely abrogated the cooperation between CTAR1 and CTAR2, supporting the hypothesis that TRAF3 participates in the physical interaction between CTAR1 and CTAR2 of LMP1. Together, our findings highlight the central importance of TRAF3 in LMP1-mediated signaling, which is critical for EBV persistent infection and EBV-associated pathogenesis.
Collapse
Affiliation(s)
- Ping Xie
- Department of Microbiology, University of Iowa, Iowa City, IA 52242 , USA
| | | |
Collapse
|
15
|
Tao YG, Tan YN, Liu YP, Song X, Zeng L, Gu HH, Tang M, Li W, Yi W, Cao Y. Epstein-Barr virus latent membrane protein 1 modulates epidermal growth factor receptor promoter activity in a nuclear factor kappa B-dependent manner. Cell Signal 2004; 16:781-90. [PMID: 15115657 DOI: 10.1016/j.cellsig.2003.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 12/01/2003] [Accepted: 12/02/2003] [Indexed: 11/24/2022]
Abstract
The Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) oncoprotein may cause multiple cellular changes including the induction of epidermal growth factor receptor (EGFR) expression and activation of the NFkappaB transcription factor. LMP1 increases the levels of both EGFR protein and mRNA, but does not stabilize EGFR mRNA. Thus, the effects of LMP1 are likely to be mediated by the direct activation of the EGFR promoter. In this study, induction of LMP1 increased the EGFR in both protein and promoter levels in a dose-dependent manner using tetracycline-regulated LMP1 expression in nasopharyngeal carcinoma (NPC) cell line. Mutational analysis of the LMP1 protein indicated that the C-terminal activation region-1 (CTAR1) domain was mainly involved in the EGFR promoter induction, while CTAR2 was necessary but not sufficient to induce EGFR promoter. Inhibition of LMP1-mediated NFkappaB activation by constitutive repressive IkappaBalpha marginally decreased EGFR promoter activity using transiently transfected IkappaBalpha dominant negative mutant. Promoter mutagenesis analysis demonstrated that two putative NFkappaB binding sites of EGFR promoter were very necessary for the transcriptional activity of EGFR induced by LMP1, the proximal NFkappaB binding site was more important than the distal NFkappaB binding site, and both NFkappaB binding sites played a cooperative role. Taken together, Epstein-Barr virus latent membrane protein 1 modulated the EGFR promoter activity in a NFkappaB-dependent manner.
Collapse
Affiliation(s)
- Yong-Guang Tao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gennari F, Mehta S, Wang Y, St Clair Tallarico A, Palu G, Marasco WA. Direct Phage to Intrabody Screening (DPIS): Demonstration by Isolation of Cytosolic Intrabodies Against the TES1 Site of Epstein Barr Virus Latent Membrane Protein 1 (LMP1) that Block NF-κB Transactivation. J Mol Biol 2004; 335:193-207. [PMID: 14659750 DOI: 10.1016/j.jmb.2003.09.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The expression of intracellular antibodies (intrabodies) in eukaryotic cells has provided a powerful tool to manipulate microbial and cellular signaling pathways in a highly precise manner. However, there have been several technical issues that have restricted their more widespread use. In particular, single-chain antibodies (sFv) have been reported to fold poorly in the reducing environment of the cytoplasm and as such there has been a reluctance to use sFv-phage libraries as a source of intrabodies unless a pre-selection step to identify these rare sFvs from natural libraries or libraries of engineering sFvs that could fold properly in the absence of disulfide bonds were used. Here, we investigated whether target specific sFvs that are isolated from a 15 billion member non-immune human sFv-phage display library could be directly screened in pools as intrabodies without prior knowledge of their individual identity or purity within pools of antigen-specific sFvs. As the target, we used a synthetic transformation effector site 1 (TES1) polypeptide comprising the membrane-most proximal 34 amino acid residues of the carboxy-terminal cytoplasmic tail of the oncogenic latent membrane protein 1 (LMP1) of Epstein Barr virus, which serves as a docking site for adapter proteins of the tumor necrosis factor (TNF) receptor (TNFR)-associated factor (TRAF) family. Anti-TES1 sFvs, initially identified by phage ELISA screens, were grouped into pools according to the absorbance reading of the antigen-specific phage ELISA assays and then transferred as pools into eukaryotic expression vectors and expressed as cytoplasmic intrabodies. Using the pooling strategy, there was no loss of individual anti-TES1 sFvs in the transfer from prokaryotic to eukaryotic expression vectors. In addition, the initial assignments into sFv pools based on phage ELISA readings allowed the segregation of individual anti-TES1 sFvs into discrete or minimally overlapping intrabody pools. Further assessment of the biological activity of the anti-TES1 intrabody pools demonstrated that they were all able to selectively block F-LMP1-induced NFkappaB activity that was mediated through the TES1-site and to bind LMP1 protein with high efficiency. This direct phage to intrabody screening (DPIS) strategy should allow investigators to bypass much of the in vitro sFv characterization that is often not predictive of in vivo intrabody function and provide a more efficient use of large native and synthetic sFv phage libraries already in existence to identify intrabodies that are active in vivo.
Collapse
Affiliation(s)
- Francesca Gennari
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street-JFB824, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
17
|
Yasui T, Luftig M, Soni V, Kieff E. Latent infection membrane protein transmembrane FWLY is critical for intermolecular interaction, raft localization, and signaling. Proc Natl Acad Sci U S A 2003; 101:278-83. [PMID: 14695890 PMCID: PMC314176 DOI: 10.1073/pnas.2237224100] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Relatively little is known about the biochemical mechanisms through which the Epstein-Barr virus latent infection integral membrane protein 1 (LMP1) transmembrane domains cause constitutive LMP1 aggregation and continuous cytoplasmic C terminus-mediated signal transduction. We now evaluate the role of the three consecutive LMP1 hydrophobic transmembrane pairs, transmembrane domains (TM)1-2, TM3-4, and TM5-6, in intermolecular aggregation and NF-kappaB activation. LMP1TM1-2 enabled approximately 40% of wild-type LMP1 cytoplasmic domain-mediated NF-kappaB activation, whereas TM3-4 or TM5-6 assayed in parallel had almost no effect independent of LMP1TM1-2. Alanine mutagenesis of conserved residues in LMP1TM1-2 identified FWLY(38-41) to be critical for LMP1TM1-2 intermolecular association with LMP1TM3-6. Further, in contrast to wild-type LMP1, LMP1 with FWLY(38-41) mutated to AALA(38-41) did not (i). significantly partition to lipid Rafts or Barges and effectively intermolecularly associate, (ii). enable cytoplasmic C terminus engagement of tumor necrosis factor receptor-associated factor 3, (iii). activate NF-kappaB, and thereby (iv). induce tumor necrosis factor receptor-associated factor 1 expression. Other LMP1 intermolecular associations were observed that involved LMP1TM1-2/LMP1TM1-2 or LMP1TM3-4/LMP1TM3-6 interactions; these probably also contribute to LMP1 aggregation. Because FWLY(38-41) was essential for LMP1-mediated signal transduction, and LMP1 activation of NF-kappaB is essential for proliferating B lymphocyte survival, inhibition of LMP1FWLY(41)-mediated LMP1/LMP1 intermolecular interactions is an attractive therapeutic target.
Collapse
Affiliation(s)
- Teruhito Yasui
- Brigham and Women's Hospital, Department of Medicine, Harvard University, 181 Longwood Avenue, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
18
|
Li HP, Chang YS. Epstein-Barr virus latent membrane protein 1: structure and functions. J Biomed Sci 2003; 10:490-504. [PMID: 12928589 DOI: 10.1007/bf02256110] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2003] [Accepted: 05/22/2003] [Indexed: 12/22/2022] Open
Abstract
The Epstein-Barr virus latent membrane protein (LMP) 1 is a versatile protein that has profound effects on target cells through its effect on constitutive cellular proteins, e.g. TRAFs, TRADD, RIP, JAK3, BRAM1, and p85. LMP1 can stimulate or inhibit signaling pathways, resulting in transformation of rodent fibroblast cell lines, blockade of differentiation in epithelial cells, upregulation of anti-apoptotic proteins, production of cytokines, upregulation of cell surface markers, upregulation of DNA methyltransferase activity, and downregulation of cell adhesion molecules and cyclin-dependent kinases. Overall, this results in greater transformation and survival in LMP1-expressing cells. Within nasopharyngeal carcinoma biopsy tissues, a naturally occurring LMP1 variant has been identified as having a 10-amino acid deletion in the C-terminus that seems to confer greater transformation potential than non-deleted LMP1. The role of LMP1 as a viral oncogene and its interaction with cellular factors are discussed.
Collapse
Affiliation(s)
- Hsin-Pai Li
- Graduate Institute of Basic Medical Sciences, Chang Gung University, Taoyuan, Taiwan, ROC
| | | |
Collapse
|
19
|
Tsao SW, Tramoutanis G, Dawson CW, Lo AKF, Huang DP. The significance of LMP1 expression in nasopharyngeal carcinoma. Semin Cancer Biol 2002; 12:473-87. [PMID: 12450733 DOI: 10.1016/s1044579x02000901] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is a key effector of EBV-mediated B cell transformation. LMP1 displays potent oncogenic properties in rodent fibroblasts, and induces a wide range of effects in B cells and epithelial cells. LMP1 functions as a constitutively active tumor necrosis factor receptor (TNFR) engaging a multitude of signaling pathways that include NF-kappaB, the mitogen-activated protein kinases (MAPKs), JNK, p38, the JAK/STAT pathway and, more recently, the small Rho GTPases. The constitutive activation of these signaling cascades explains LMP1's ability to induce such a diverse array of morphological and phenotypic effects in cells and provides an insight into how LMP1 may induce cell transformation. The frequent expression of LMP1 in undifferentiated nasopharyngeal carcinoma (NPC) points to a role for this viral oncoprotein as a key effector molecule in NPC pathogenesis.
Collapse
Affiliation(s)
- Sai Wah Tsao
- Department of Anatomy, Faculty of Medicine, University of Hong Kong, Hong Kong, PR China.
| | | | | | | | | |
Collapse
|
20
|
Zhang XS, Song KH, Mai HQ, Jia WH, Feng BJ, Xia JC, Zhang RH, Huang LX, Yu XJ, Feng QS, Huang P, Chen JJ, Zeng YX. The 30-bp deletion variant: a polymorphism of latent membrane protein 1 prevalent in endemic and non-endemic areas of nasopharyngeal carcinomas in China. Cancer Lett 2002; 176:65-73. [PMID: 11790455 DOI: 10.1016/s0304-3835(01)00733-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Development of nasopharyngeal carcinoma (NPC) is closely associated with Epstein-Barr virus (EBV) infection. However, NPC occurs with a marked geographic and racial distribution, whereas EBV infection is ubiquitous in the world. This leads to a question whether certain subtypes of EBV have a greater potential to induce cell transformation. Latent membrane protein 1 (LMP1) is an EBV-encoded oncogenic protein and its 30-bp deleted variant (del-LMP1) has been reported to be predominant in biopsies of NPC. We have assessed the polymorphism of LMP1 in 47 biopsies of NPC, 107 cases of throat washings (TWs) from NPC patients, and 106 cases of TWs from non-NPC patients in Guangzhou, an endemic area of NPC in southern China, as well as 103 cases of TWs from healthy donors in Haerbin, a non-endemic area of NPC in northern China. Our results found a similar extent of the LMP1 polymorphism between NPC patients and non-NPC patients in Guangzhou, with the del-LMP1 being predominant in both Guangzhou and Haerbin. Sequence analyses showed identical substitutions in other coding regions of the del-LMP1 isolated from Guangzhou and Haerbin. These results indicate that del-LMP1 represents a geographic or race-associated polymorphism rather than an NPC disease phenotype-associated polymorphism.
Collapse
Affiliation(s)
- Xiao-Shi Zhang
- Cancer Institute, Cancer Center, Sun Yat-sen University of Medical Sciences, 651 Dongfeng East Road, Guangzhou 510060, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Higuchi M, Kieff E, Izumi KM. The Epstein-Barr virus latent membrane protein 1 putative Janus kinase 3 (JAK3) binding domain does not mediate JAK3 association or activation in B-lymphoma or lymphoblastoid cell lines. J Virol 2002; 76:455-9. [PMID: 11739714 PMCID: PMC135721 DOI: 10.1128/jvi.76.1.455-459.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) latent infection membrane protein 1 (LMP1) has an intermediate domain between the two cytoplasmic carboxyl-terminal domains that are critical for transforming B-lymphocytes into lymphoblastoid cell lines (LCLs). The intermediate domain has been implicated in Janus kinase 3 (JAK3) association and activation. We now find that LCLs transformed by EBV recombinants that express Flag-LMP1 with the putative JAK3 binding and activating intermediate domain deleted and LCLs transformed by Flag-LMP1 EBV recombinants have similar levels of phosphotyrosine-activated JAK3, signal transducer and activator of transcription 3 (STAT3), or STAT5 and similar very low levels of JAK3 associated with LMP1. Further, transient Flag-LMP1 expression in a B-lymphoma cell line transduces signals that upregulate TRAF1 levels but does not alter JAK3 levels or activation state. Although these data indicate that the LMP1 putative JAK3 binding and activating intermediate domain does not mediate JAK3 association or activation in B-lymphocytes, JAK3 association with LMP1 could be significant, particularly in cells in which LMP1, JAK3, or a JAK3-associated protein is expressed at high levels.
Collapse
Affiliation(s)
- Masaya Higuchi
- Channing Laboratory and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115-5804, USA
| | | | | |
Collapse
|
22
|
Schultheiss U, Püschner S, Kremmer E, Mak TW, Engelmann H, Hammerschmidt W, Kieser A. TRAF6 is a critical mediator of signal transduction by the viral oncogene latent membrane protein 1. EMBO J 2001; 20:5678-91. [PMID: 11598011 PMCID: PMC125680 DOI: 10.1093/emboj/20.20.5678] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The oncogenic latent membrane protein 1 (LMP1) of the Epstein-Barr virus recruits tumor necrosis factor-receptor (TNFR)-associated factors (TRAFs), the TNFR-associated death domain protein (TRADD) and JAK3 to induce intracellular signaling pathways. LMP1 serves as the prototype of a TRADD-binding receptor that transforms cells but does not induce apoptosis. Here we show that TRAF6 critically mediates LMP1 signaling to p38 mitogen-activated protein kinase (MAPK) via a MAPK kinase 6-dependent pathway. In addition, NF-kappaB but not c-Jun N-terminal kinase 1 (JNK1) induction by LMP1 involves TRAF6. The PxQxT motif of the LMP1 C-terminal activator region 1 (CTAR1) and tyrosine 384 of CTAR2 together are essential for full p38 MAPK activation and for TRAF6 recruitment to the LMP1 signaling complex. Dominant-negative TRADD blocks p38 MAPK activation by LMP1. The data suggest that entry of TRAF6 into the LMP1 complex is mediated by TRADD and TRAF2. In TRAF6-knockout fibroblasts, significant induction of p38 MAPK by LMP1 is dependent on the ectopic expression of TRAF6. We describe a novel role of TRAF6 as an essential signaling mediator of a transforming oncogene, downstream of TRADD and TRAF2.
Collapse
Affiliation(s)
| | - Stephanie Püschner
- Institute for Clinical Molecular Biology and Tumor Genetics, Department of Gene Vectors,
Institute for Molecular Immunology, GSF-National Research Center for Environment and Health, Marchioninistrasse 25, D-81377 München, Institute for Immunology, Ludwig-Maximilians-University München, Goethestrasse 31, D-80336 München, Germany and Amgen Institute, 620 University Avenue, Toronto, Ontario, Canada M5G 2C1 Corresponding author e-mail:
| | - Elisabeth Kremmer
- Institute for Clinical Molecular Biology and Tumor Genetics, Department of Gene Vectors,
Institute for Molecular Immunology, GSF-National Research Center for Environment and Health, Marchioninistrasse 25, D-81377 München, Institute for Immunology, Ludwig-Maximilians-University München, Goethestrasse 31, D-80336 München, Germany and Amgen Institute, 620 University Avenue, Toronto, Ontario, Canada M5G 2C1 Corresponding author e-mail:
| | - Tak W. Mak
- Institute for Clinical Molecular Biology and Tumor Genetics, Department of Gene Vectors,
Institute for Molecular Immunology, GSF-National Research Center for Environment and Health, Marchioninistrasse 25, D-81377 München, Institute for Immunology, Ludwig-Maximilians-University München, Goethestrasse 31, D-80336 München, Germany and Amgen Institute, 620 University Avenue, Toronto, Ontario, Canada M5G 2C1 Corresponding author e-mail:
| | - Hartmut Engelmann
- Institute for Clinical Molecular Biology and Tumor Genetics, Department of Gene Vectors,
Institute for Molecular Immunology, GSF-National Research Center for Environment and Health, Marchioninistrasse 25, D-81377 München, Institute for Immunology, Ludwig-Maximilians-University München, Goethestrasse 31, D-80336 München, Germany and Amgen Institute, 620 University Avenue, Toronto, Ontario, Canada M5G 2C1 Corresponding author e-mail:
| | | | - Arnd Kieser
- Institute for Clinical Molecular Biology and Tumor Genetics, Department of Gene Vectors,
Institute for Molecular Immunology, GSF-National Research Center for Environment and Health, Marchioninistrasse 25, D-81377 München, Institute for Immunology, Ludwig-Maximilians-University München, Goethestrasse 31, D-80336 München, Germany and Amgen Institute, 620 University Avenue, Toronto, Ontario, Canada M5G 2C1 Corresponding author e-mail:
| |
Collapse
|
23
|
Lee W, Hwang YH, Lee SK, Subramanian C, Robertson ES. An Epstein-Barr virus isolated from a lymphoblastoid cell line has a 16-kilobase-pair deletion which includes gp350 and the Epstein-Barr virus nuclear antigen 3A. J Virol 2001; 75:8556-68. [PMID: 11507201 PMCID: PMC115101 DOI: 10.1128/jvi.75.18.8556-8568.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with human cancers, including nasopharyngeal carcinoma, Burkitt's lymphoma, gastric carcinoma and, somewhat controversially, breast carcinoma. EBV infects and efficiently transforms human primary B lymphocytes in vitro. A number of EBV-encoded genes are critical for EBV-mediated transformation of human B lymphocytes. In this study we show that an EBV-infected lymphoblastoid cell line obtained from the spontaneous outgrowth of B cells from a leukemia patient contains a deletion, which involves a region of approximately 16 kbp. This deletion encodes major EBV genes involved in both infection and transformation of human primary B lymphocytes and includes the glycoprotein gp350, the entire open reading frame of EBNA3A, and the amino-terminal region of EBNA3B. A fusion protein created by this deletion, which lies between the BMRF1 early antigen and the EBNA3B latent antigen, is truncated immediately downstream of the junction 21 amino acids into the region of the EBNA3B sequence, which is out of frame with respect to the EBNA3B protein sequence, and indicates that EBNA3B is not expressed. The fusion is from EBV coordinate 80299 within the BMRF1 sequence to coordinate 90998 in the EBNA3B sequence. Additionally, we have shown that there is no detectable induction in viral replication observed when SNU-265 is treated with phorbol esters, and no transformants were detected when supernatant is used to infect primary B lymphocytes after 8 weeks in culture. Therefore, we have identified an EBV genome with a major deletion in critical genes involved in mediating EBV infection and the transformation of human primary B lymphocytes that is incompetent for replication of this naturally occurring EBV isolate.
Collapse
Affiliation(s)
- W Lee
- Department of Biological Sciences, Myongji University, Yongin Kyunggi-do, Korea
| | | | | | | | | |
Collapse
|
24
|
Coffin WF, Erickson KD, Hoedt-Miller M, Martin JM. The cytoplasmic amino-terminus of the Latent Membrane Protein-1 of Epstein-Barr Virus: relationship between transmembrane orientation and effector functions of the carboxy-terminus and transmembrane domain. Oncogene 2001; 20:5313-30. [PMID: 11536044 DOI: 10.1038/sj.onc.1204689] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2001] [Revised: 05/24/2001] [Accepted: 05/31/2001] [Indexed: 11/09/2022]
Abstract
The Latent Membrane Protein 1 (LMP-1) protein of Epstein-Barr virus (EBV) is localized in the plasma membrane of the infected cell. LMP-1 possesses a hydrophobic membrane spanning domain, and charged, intracellular amino- and carboxy-termini. Two models have been proposed for the contribution of the amino-terminus to LMP-1's function: (i) as an effector domain, interacting with cellular proteins, or (ii) as a structural domain dictating the correct orientation of transmembrane domains and thereby positioning LMP-1's critical effector domains (i.e. the carboxy-terminus). However, no studies to date have addressed directly the structural contributions of LMP-1's cytoplasmic amino-terminus to function. This study was designed to determine if LMP-1's cytoplasmic amino-terminus (N-terminus) encodes information required solely for maintenance of proper topological orientation. We have constructed LMP-1 chimeras in which the cytoplasmic N-terminus of LMP-1 is replaced with an unrelated domain of similar size and charge, but of different primary sequence. Retention of the charged amino-terminal (N-terminal) cytoplasmic domain and first predicted transmembrane domain was required for correct transmembrane topology. The absolute primary sequence of the cytoplasmic N-terminus was not critical for LMP-1's cytoskeletal association, turnover, plasma membrane patching, oligomerization, Tumor Necrosis Factor Receptor-associated factor (TRAF) binding, NF-kappaB activation, rodent cell transformation and cytostatic activity. Furthermore, our results point to the hydrophobic transmembrane domain, independent of the cytoplasmic domains, as the primary LMP-1 domain mediating oligomerization, patching and cytoskeletal association. The cytoplasmic amino-terminus provides the structural information whereby proper transmembrane orientation is achieved.
Collapse
Affiliation(s)
- W F Coffin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Box 347, Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
25
|
Niedobitek G, Meru N, Delecluse HJ. Epstein-Barr virus infection and human malignancies. Int J Exp Pathol 2001. [PMID: 11488990 DOI: 10.1111/j.1365-2613.2001.iep190.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Epstein-Barr virus (EBV) is a herpes virus which establishes a life-long persistent infection in over 90% of the human adult population world-wide. Based on its association with a variety of lymphoid and epithelial malignancies, EBV has been classified as a group 1 carcinogen by the International Agency for Research on Cancer. In this article we discuss the evidence supporting an aetiological role for EBV in the pathogenesis of human tumours. The biology of EBV infection will be described with special emphasis on viral transforming gene products. A brief survey of EBV-associated tumours is followed by a discussion of specific problems. Evidence is presented which suggests that failures of the EBV-specific immunity may play a role in the pathogenesis of EBV-associated tumours also in patients without clinically manifest immunodeficiencies. Finally, the timing of EBV infection in the pathogenesis of virus-associated malignancies is discussed. There is good evidence that EBV infection precedes expansion of the malignant cell populations in some virus-associated tumours. However, this is clearly not always the case and for some of these tumours there are indications that clonal genetic alterations may occur prior to EBV infection. Thus, whilst there is good evidence to suggest that EBV is a human carcinogen, its precise role(s) in the development of virus-associated human tumours requires clarification.
Collapse
Affiliation(s)
- G Niedobitek
- Pathologisches Institut, Friedrich-Alexander-Universität, Krankenhausstr. 8-10, 91054 Erlangen, Germany. gerald.niedobitek @patho.imed.uni-erlangen.de
| | | | | |
Collapse
|
26
|
Abstract
The Epstein-Barr virus (EBV) is a herpes virus which establishes a life-long persistent infection in over 90% of the human adult population world-wide. Based on its association with a variety of lymphoid and epithelial malignancies, EBV has been classified as a group 1 carcinogen by the International Agency for Research on Cancer. In this article we discuss the evidence supporting an aetiological role for EBV in the pathogenesis of human tumours. The biology of EBV infection will be described with special emphasis on viral transforming gene products. A brief survey of EBV-associated tumours is followed by a discussion of specific problems. Evidence is presented which suggests that failures of the EBV-specific immunity may play a role in the pathogenesis of EBV-associated tumours also in patients without clinically manifest immunodeficiencies. Finally, the timing of EBV infection in the pathogenesis of virus-associated malignancies is discussed. There is good evidence that EBV infection precedes expansion of the malignant cell populations in some virus-associated tumours. However, this is clearly not always the case and for some of these tumours there are indications that clonal genetic alterations may occur prior to EBV infection. Thus, whilst there is good evidence to suggest that EBV is a human carcinogen, its precise role(s) in the development of virus-associated human tumours requires clarification.
Collapse
Affiliation(s)
- G Niedobitek
- Pathologisches Institut, Friedrich-Alexander-Universität, Krankenhausstr. 8-10, 91054 Erlangen, Germany. gerald.niedobitek @patho.imed.uni-erlangen.de
| | | | | |
Collapse
|
27
|
Abstract
The Epstein-Barr virus (EBV) is a herpes virus which establishes a life-long persistent infection in over 90% of the human adult population world-wide. Based on its association with a variety of lymphoid and epithelial malignancies, EBV has been classified as a group 1 carcinogen by the International Agency for Research on Cancer. In this article we discuss the evidence supporting an aetiological role for EBV in the pathogenesis of human tumours. The biology of EBV infection will be described with special emphasis on viral transforming gene products. A brief survey of EBV-associated tumours is followed by a discussion of specific problems. Evidence is presented which suggests that failures of the EBV-specific immunity may play a role in the pathogenesis of EBV-associated tumours also in patients without clinically manifest immunodeficiencies. Finally, the timing of EBV infection in the pathogenesis of virus-associated malignancies is discussed. There is good evidence that EBV infection precedes expansion of the malignant cell populations in some virus-associated tumours. However, this is clearly not always the case and for some of these tumours there are indications that clonal genetic alterations may occur prior to EBV infection. Thus, whilst there is good evidence to suggest that EBV is a human carcinogen, its precise role(s) in the development of virus-associated human tumours requires clarification.
Collapse
Affiliation(s)
- Gerald Niedobitek
- Pathologisches Institut, Friedrich-Alexander-UniversitätKrankenhausstr. 8–10, 91054 Erlangen, Germany
| | - Nadine Meru
- Pathologisches Institut, Friedrich-Alexander-UniversitätKrankenhausstr. 8–10, 91054 Erlangen, Germany
| | | |
Collapse
|
28
|
Abstract
Epstein-Barr virus (EBV) latent infection is tightly associated with the development of lymphoid and epithelial human malignancies. The disruption of cell-growth checkpoints is mediated by a limited number of viral proteins that interfere with signal transduction mechanisms and transcription control in the infected cell. Genetic and biochemical evidence supports the notion that EBV-mediated transformation relies extensively on interference with cytokine signaling networks. This is achieved through direct modulation of cytokine receptor signaling mechanisms as well as alterations in the expression levels of various cytokines. The principal effector of these interventions is the EBV latent membrane protein 1 (LMP1) which plays a central role in the transformation process. This viral protein mimics activated receptors of the tumor necrosis factor receptor superfamily to promote cell growth and antiapoptotic mechanisms. LMP1 and other EBV latent proteins upregulate cytokines and growth factors which participate in autocrine and paracrine loops that are likely to promote cell transformation and modulate immune responses. This report will review the molecular mechanisms that underlie the disruption of cytokine signaling mechanisms in EBV-mediated transformation with a particular emphasis on the LMP1 mechanism of function.
Collapse
Affiliation(s)
- G Mosialos
- Institute of Immunology, Biomedical Sciences Research Center Al. Fleming, 14-16 Al. Fleming Str., Vari 16672, Greece.
| |
Collapse
|
29
|
Delecluse HJ, Hammerschmidt W. The genetic approach to the Epstein-Barr virus: from basic virology to gene therapy. Mol Pathol 2000; 53:270-9. [PMID: 11091851 PMCID: PMC1186980 DOI: 10.1136/mp.53.5.270] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The Epstein-Barr virus (EBV) infects humans and the genome of this infectious agent has been detected in several tumour types, ranging from lymphomas to carcinomas. The analysis of the functions of the numerous viral proteins encoded by EBV has been impeded by the large size of the viral genome, which renders the construction of viral mutants difficult. To overcome these limitations, several genetic systems have been developed that allow the modification of the viral genome. Two different approaches, depending on the host cell type in which the viral mutants are generated, have been used in the past. Traditionally, mutants were constructed in EBV infected eukaryotic cells, but more recently, approaches that make use of a recombinant EBV cloned in Escherichia coli have been proposed. The phenotype associated with the inactivation or modification of nearly 20 of the 100 EBV viral genes has been reported in the literature. In most of the reported cases, the EBV latent genes that mediate the ability of EBV to immortalize infected cells were the targets of the genetic analysis, but some virus mutants in which genes involved in DNA lytic replication or infection were disrupted have also been reported. The ability to modify the viral genome also opens the way to the construction of viral strains with medical relevance. A cell line infected by a virus that lacks the EBV packaging sequences can be used as a helper cell line for the encapsidation of EBV based viral vectors. This cell line will allow the evaluation of EBV as a gene transfer system with applications in gene therapy. Finally, genetically modified non-pathogenic strains will provide a basis for the design of an attenuated EBV live vaccine.
Collapse
Affiliation(s)
- H J Delecluse
- GSF-National Research Center for Environment and Health, Department Gene Vectors, München, Germany.
| | | |
Collapse
|
30
|
Aviel S, Winberg G, Massucci M, Ciechanover A. Degradation of the epstein-barr virus latent membrane protein 1 (LMP1) by the ubiquitin-proteasome pathway. Targeting via ubiquitination of the N-terminal residue. J Biol Chem 2000; 275:23491-9. [PMID: 10807912 DOI: 10.1074/jbc.m002052200] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The latent membrane protein 1 (LMP1) of the Epstein-Barr virus is a constitutively active receptor essential for B lymphocyte transformation by the Epstein-Barr virus. It is a short-lived protein, but the proteolytic pathway involved in its degradation is not known. The ubiquitin pathway is a major system for specific protein degradation in eukaryotes. Most plasma membrane substrates of the pathway are internalized upon ubiquitination and delivered for degradation in the lysosome/vacuole. Here we show that LMP1 is a substrate of the ubiquitin pathway and is ubiquitinated both in vitro and in vivo. However, in contrast to other plasma membrane substrates of the ubiquitin system, it is degraded mostly by the proteasome and not by lysosomes. Degradation is independent of the single Lys residue of the protein; a lysine-less mutant LMP1 is degraded in a ubiquitin- and proteasome-dependent manner similar to the wild type protein. Degradation of both wild type and lysine-less protein is sensitive to fusion of a Myc tag to the N terminus of LMP1. In addition, deletion of as few as 12 N-terminal amino acid residues stabilizes the protein. These findings suggest that the first event in LMP1 degradation is attachment of ubiquitin to the N-terminal residue of the protein. We present evidence suggesting that phosphorylation is also required for degradation of LMP1.
Collapse
Affiliation(s)
- S Aviel
- Department of Biochemistry and the Rappaport Family Institute for Research in the Medical Sciences, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | |
Collapse
|
31
|
Izumi KM, Cahir McFarland ED, Riley EA, Rizzo D, Chen Y, Kieff E. The residues between the two transformation effector sites of Epstein-Barr virus latent membrane protein 1 are not critical for B-lymphocyte growth transformation. J Virol 1999; 73:9908-16. [PMID: 10559303 PMCID: PMC113040 DOI: 10.1128/jvi.73.12.9908-9916.1999] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is essential for EBV-mediated transformation of primary B lymphocytes. LMP1 spontaneously aggregates in the plasma membrane and enables two transformation effector sites (TES1 and TES2) within the 200-amino-acid cytoplasmic carboxyl terminus to constitutively engage the tumor necrosis factor receptor (TNFR)-associated factors TRAF1, TRAF2, TRAF3, and TRAF5 and the TNFR-associated death domain proteins TRADD and RIP, thereby activating NF-kappaB and c-Jun N-terminal kinase (JNK). To investigate the importance of the 60% of the LMP1 carboxyl terminus that lies between the TES1-TRAF and TES2-TRADD and -RIP binding sites, an EBV recombinant was made that contains a specific deletion of LMP1 codons 232 to 351. Surprisingly, the deletion mutant was similar to wild-type (wt) LMP1 EBV recombinants in its efficiency in transforming primary B lymphocytes into lymphoblastoid cell lines (LCLs). Mutant and wt EBV-transformed LCLs were similarly efficient in long-term outgrowth and in regrowth after endpoint dilution. Mutant and wt LMP1 proteins were also similar in their constitutive association with TRAF1, TRAF2, TRAF3, TRADD, and RIP. Mutant and wt EBV-transformed LCLs were similar in steady-state levels of Bcl2, JNK, and activated JNK proteins. The wt phenotype of recombinants with LMP1 codons 232 to 351 deleted further demarcates TES1 and TES2, underscores their central importance in B-lymphocyte growth transformation, and provides a new perspective on LMP1 sequence variation between TES1 and TES2.
Collapse
Affiliation(s)
- K M Izumi
- Department of Medicine, Brigham and Women's Hospital, Channing Laboratories, Harvard Medical School, Boston, Massachusetts 02115-5804, USA
| | | | | | | | | | | |
Collapse
|
32
|
Bloss T, Kaykas A, Sugden B. Dissociation of patching by latent membrane protein-1 of Epstein-Barr virus from its stimulation of NF-kappaB activity. J Gen Virol 1999; 80 ( Pt 12):3227-3232. [PMID: 10567655 DOI: 10.1099/0022-1317-80-12-3227] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alterations were made in the amino terminus and the first two transmembrane-spanning regions of the latent membrane protein-1 (LMP-1) of Epstein-Barr virus. These mutant proteins were tested for their abilities to patch and to stimulate NF-kappaB activity. A subset of these derivatives retains the wild-type topology of LMP-1 in the plasma membrane, but has lost the ability to patch. Deletion of residues 9-20 of LMP-1, which contain potential SH3-binding motifs, abrogates patching of LMP-1. However, mutation of the prolines within these motifs, which eliminates binding of LMP-1 to SH3 domains in vitro, does not prevent patching by LMP-1. Deletion of the first two transmembrane regions of LMP-1 does prevent it patching. Some of the derivatives of LMP-1 which do not patch do stimulate NF-kappaB activity. Patching by LMP-1 appears to be a higher-order assemblage of protein that is compatible with the stimulation of NF-kappaB activity but is not necessary for this signalling.
Collapse
Affiliation(s)
- Tim Bloss
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1400 University Ave, Madison, WI 53706, USA1
| | - Ajamete Kaykas
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1400 University Ave, Madison, WI 53706, USA1
| | - Bill Sugden
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1400 University Ave, Madison, WI 53706, USA1
| |
Collapse
|
33
|
Cahir McFarland ED, Izumi KM, Mosialos G. Epstein-barr virus transformation: involvement of latent membrane protein 1-mediated activation of NF-kappaB. Oncogene 1999; 18:6959-64. [PMID: 10602470 DOI: 10.1038/sj.onc.1203217] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Epstein-Barr virus (EBV) transforms resting primary human B lymphocytes into indefinitely proliferating lymphoblastoid cell lines in vitro and is associated with several human malignancies in vivo. Recombinant EBV genetic analyses combined with in vitro B lymphocyte transformation assays demonstrate that latent infection membrane protein 1 (LMP1) is essential for EBV-mediated lymphocyte transformation. LMP1 has no intrinsic enzymatic activity but instead aggregates cellular proteins of the tumor necrosis factor receptor signaling pathway to activate transcription factor NF-kappaB. Mutants rendering LMP1 defective in these protein interactions are impaired in their abilities to activate NF-kappaB in reporter gene assays. Concordantly, EBV recombinants with LMP1 mutations that are compromised for NF-kappaB activation are impaired for growth transformation. Thus, EBV-mediated growth transformation is genetically and biochemically linked to LMP1-mediated activation of NF-kappaB.
Collapse
Affiliation(s)
- E D Cahir McFarland
- Brigham and Women's Hospital, Department of Medicine, 181 Longwood Avenue, Boston, Massachusetts, MA 02115, USA
| | | | | |
Collapse
|
34
|
Izumi KM, Cahir McFarland ED, Ting AT, Riley EA, Seed B, Kieff ED. The Epstein-Barr virus oncoprotein latent membrane protein 1 engages the tumor necrosis factor receptor-associated proteins TRADD and receptor-interacting protein (RIP) but does not induce apoptosis or require RIP for NF-kappaB activation. Mol Cell Biol 1999; 19:5759-67. [PMID: 10409763 PMCID: PMC84426 DOI: 10.1128/mcb.19.8.5759] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A site in the Epstein-Barr virus (EBV) transforming protein LMP1 that constitutively associates with the tumor necrosis factor receptor 1 (TNFR1)-associated death domain protein TRADD to mediate NF-kappaB and c-Jun N-terminal kinase activation is critical for long-term lymphoblastoid cell proliferation. We now find that LMP1 signaling through TRADD differs from TNFR1 signaling through TRADD. LMP1 needs only 11 amino acids to activate NF-kappaB or synergize with TRADD in NF-kappaB activation, while TNFR1 requires approximately 70 residues. Further, LMP1 does not require TRADD residues 294 to 312 for NF-kappaB activation, while TNFR1 requires TRADD residues 296 to 302. LMP1 is partially blocked for NF-kappaB activation by a TRADD mutant consisting of residues 122 to 293. Unlike TNFR1, LMP1 can interact directly with receptor-interacting protein (RIP) and stably associates with RIP in EBV-transformed lymphoblastoid cell lines. Surprisingly, LMP1 does not require RIP for NF-kappaB activation. Despite constitutive association with TRADD or RIP, LMP1 does not induce apoptosis in EBV-negative Burkitt lymphoma or human embryonic kidney 293 cells. These results add a different perspective to the molecular interactions through which LMP1, TRADD, and RIP participate in B-lymphocyte activation and growth.
Collapse
MESH Headings
- Antigens, CD/physiology
- Apoptosis
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Burkitt Lymphoma/pathology
- Calcium-Calmodulin-Dependent Protein Kinases/physiology
- Cell Line, Transformed
- Cell Transformation, Viral
- Gene Expression Regulation
- Herpesvirus 4, Human/physiology
- Humans
- JNK Mitogen-Activated Protein Kinases
- Jurkat Cells/metabolism
- Jurkat Cells/pathology
- Kidney
- Macromolecular Substances
- Mitogen-Activated Protein Kinases
- Models, Molecular
- NF-kappa B/metabolism
- Proteins/metabolism
- Receptor-Interacting Protein Serine-Threonine Kinases
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Type I
- TNF Receptor-Associated Factor 1
- Transcription, Genetic
- Tumor Cells, Cultured
- Viral Matrix Proteins/physiology
Collapse
Affiliation(s)
- K M Izumi
- Department of Medicine, Brigham and Women's Hospital, and Channing Laboratories, Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115-5804, USA
| | | | | | | | | | | |
Collapse
|
35
|
Devergne O, Cahir McFarland ED, Mosialos G, Izumi KM, Ware CF, Kieff E. Role of the TRAF binding site and NF-kappaB activation in Epstein-Barr virus latent membrane protein 1-induced cell gene expression. J Virol 1998; 72:7900-8. [PMID: 9733827 PMCID: PMC110117 DOI: 10.1128/jvi.72.10.7900-7908.1998] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we investigated the induction of cellular gene expression by the Epstein-Barr Virus (EBV) latent membrane protein 1 (LMP1). Previously, LMP1 was shown to induce the expression of ICAM-1, LFA-3, CD40, and EBI3 in EBV-negative Burkitt lymphoma (BL) cells and of the epidermal growth factor receptor (EGF-R) in epithelial cells. We now show that LMP1 expression also increased Fas and tumor necrosis factor receptor-associated factor 1 (TRAF1) in BL cells. LMP1 mediates NF-kappaB activation via two independent domains located in its C-terminal cytoplasmic tail, a TRAF-interacting site that associates with TRAF1, -2, -3, and -5 through a PXQXT/S core motif and a TRADD-interacting site. In EBV-transformed B cells or transiently transfected BL cells, significant amounts of TRAF1, -2, -3, and -5 are associated with LMP1. In epithelial cells, very little TRAF1 is expressed, and only TRAF2, -3, and -5, are significantly complexed with LMP1. The importance of TRAF binding to the PXQXT/S motif in LMP1-mediated gene induction was studied by using an LMP1 mutant that contains alanine point mutations in this motif and fails to associate with TRAFs. This mutant, LMP1(P204A/Q206A), induced 60% of wild-type LMP1 NF-kappaB activation and had approximately 60% of wild-type LMP1 effect on Fas, ICAM-1, CD40, and LFA-3 induction. In contrast, LMP1(P204A/Q206A) was substantially more impaired in TRAF1, EBI3, and EGF-R induction. Thus, TRAF binding to the PXQXT/S motif has a nonessential role in up-regulating Fas, ICAM-1, CD40, and LFA-3 expression and a critical role in up-regulating TRAF1, EBI3, and EGF-R expression. Further, D1 LMP1, an LMP1 mutant that does not aggregate failed to induce TRAF1, EBI3, Fas, ICAM-1, CD40, and LFA-3 expression confirming the essential role for aggregation in LMP1 signaling. Overexpression of a dominant form of IkappaBalpha blocked LMP1-mediated TRAF1, EBI3, Fas, ICAM-1, CD40, and LFA-3 up-regulation, indicating that NF-kappaB is an important component of LMP1-mediated gene induction from both the TRAF- and TRADD-interacting sites.
Collapse
Affiliation(s)
- O Devergne
- INSERM U131 and Institut Paris-Sud sur les Cytokines, 92140 Clamart, France
| | | | | | | | | | | |
Collapse
|
36
|
Sylla BS, Hung SC, Davidson DM, Hatzivassiliou E, Malinin NL, Wallach D, Gilmore TD, Kieff E, Mosialos G. Epstein-Barr virus-transforming protein latent infection membrane protein 1 activates transcription factor NF-kappaB through a pathway that includes the NF-kappaB-inducing kinase and the IkappaB kinases IKKalpha and IKKbeta. Proc Natl Acad Sci U S A 1998; 95:10106-11. [PMID: 9707608 PMCID: PMC21469 DOI: 10.1073/pnas.95.17.10106] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/1998] [Indexed: 11/18/2022] Open
Abstract
The Epstein-Barr virus oncoprotein latent infection membrane protein 1 (LMP1) is a constitutively aggregated pseudo-tumor necrosis factor receptor (TNFR) that activates transcription factor NF-kappaB through two sites in its C-terminal cytoplasmic domain. One site is similar to activated TNFRII in associating with TNFR-associated factors TRAF1 and TRAF2, and the second site is similar to TNFRI in associating with the TNFRI death domain interacting protein TRADD. TNFRI has been recently shown to activate NF-kappaB through association with TRADD, RIP, and TRAF2; activation of the NF-kappaB-inducing kinase (NIK); activation of the IkappaB alpha kinases (IKKalpha and IKKbeta); and phosphorylation of IkappaB alpha. IkappaB alpha phosphorylation on Ser-32 and Ser-36 is followed by its degradation and NF-kappaB activation. In this report, we show that NF-kappaB activation by LMP1 or by each of its effector sites is mediated by a pathway that includes NIK, IKKalpha, and IKKbeta. Dominant negative mutants of NIK, IKKalpha, or IKKbeta substantially inhibited NF-kappaB activation by LMP1 or by each of its effector sites.
Collapse
Affiliation(s)
- B S Sylla
- Departments of Microbiology and Molecular Genetics and Medicine, Harvard Medical School and Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hatzivassiliou E, Miller WE, Raab-Traub N, Kieff E, Mosialos G. A Fusion of the EBV Latent Membrane Protein-1 (LMP1) Transmembrane Domains to the CD40 Cytoplasmic Domain Is Similar to LMP1 in Constitutive Activation of Epidermal Growth Factor Receptor Expression, Nuclear Factor-κB, and Stress-Activated Protein Kinase. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.3.1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The EBV latent infection transforming protein, LMP1, has six hydrophobic transmembrane domains that enable it to aggregate in the plasma membrane and a 200-amino acid carboxyl-terminal cytoplasmic domain (CT) that activates nuclear factor-κB and induces many of the phenotypic changes in B lymphocytes that accompany CD40 activation. Since the phenotypic effects of LMP1 are similar to those of activated CD40, we now compare signaling from the LMP1 CT with that from the CD40 CT fused to the LMP1 transmembrane domains. The LMPCD40 chimera was similar to LMP1 in nuclear factor-κB activation and in up-regulation of epidermal growth factor receptor expression. CD40 ligation was known to activate the stress-activated protein kinase, and both LMPCD40 and LMP1 are now shown to induce stress-activated protein kinase activity in the absence of ligand. Deletion of the first four transmembrane domains of LMP1 abrogated LMP1 aggregation in the plasma membrane and nearly abolished signaling from LMP1 or the LMPCD40 chimera. These results highlight the role of LMP1 as a constitutively active receptor similar to CD40 and provide a novel approach for the generation of ligand-independent receptors.
Collapse
Affiliation(s)
- Eudoxia Hatzivassiliou
- *Departments of Microbiology and Molecular Genetics and Medicine, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115; and
| | - William E. Miller
- †Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Nancy Raab-Traub
- †Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Elliott Kieff
- *Departments of Microbiology and Molecular Genetics and Medicine, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115; and
| | - George Mosialos
- *Departments of Microbiology and Molecular Genetics and Medicine, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115; and
| |
Collapse
|
38
|
Izumi KM, Kieff ED. The Epstein-Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-kappaB. Proc Natl Acad Sci U S A 1997; 94:12592-7. [PMID: 9356494 PMCID: PMC25049 DOI: 10.1073/pnas.94.23.12592] [Citation(s) in RCA: 310] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/1997] [Indexed: 02/05/2023] Open
Abstract
The Epstein-Barr virus latent membrane protein 1 (LMP1) is essential for the transformation of B lymphocytes into lymphoblastoid cell lines. Previous data are consistent with a model that LMP1 is a constitutively activated receptor that transduces signals for transformation through its carboxyl-terminal cytoplasmic tail. One transformation effector site (TES1), located within the membrane proximal 45 residues of the cytoplasmic tail, constitutively engages tumor necrosis factor receptor-associated factors. Signals from TES1 are sufficient to drive initial proliferation of infected resting B lymphocytes, but most lymphoblastoid cells infected with a virus that does not express the 155 residues beyond TES1 fail to grow as long-term cell lines. We now find that mutating two tyrosines to an isoleucine at the carboxyl end of the cytoplasmic tail cripples the ability of EBV to cause lymphoblastoid cell outgrowth, thereby marking a second transformation effector site, TES2. A yeast two-hybrid screen identified TES2 interacting proteins, including the tumor necrosis factor receptor-associated death domain protein (TRADD). TRADD was the only protein that interacted with wild-type TES2 and not with isoleucine-mutated TES2. TRADD associated with wild-type LMP1 but not with isoleucine-mutated LMP1 in mammalian cells, and TRADD constitutively associated with LMP1 in EBV-transformed cells. In transfection assays, TRADD and TES2 synergistically mediated high-level NF-kappaB activation. These results indicate that LMP1 appropriates TRADD to enable efficient long-term lymphoblastoid cell outgrowth. High-level NF-kappaB activation also appears to be a critical component of long-term outgrowth.
Collapse
Affiliation(s)
- K M Izumi
- Department of Microbiology and Molecular Genetics, Harvard Medical School and Medicine, Brigham and Women's Hospital, Eighth Floor Channing Laboratories, 181 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
39
|
Scheinfeld AG, Nador RG, Cesarman E, Chadburn A, Knowles DM. Epstein-Barr virus latent membrane protein-1 oncogene deletion in post-transplantation lymphoproliferative disorders. THE AMERICAN JOURNAL OF PATHOLOGY 1997; 151:805-12. [PMID: 9284829 PMCID: PMC1857855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is a multifunctional oncoprotein. A 30-bp deletion of the 3' end of the LMP1 gene (del-LMP1) has been identified in some EBV isolates. This deleted LMP1 gene encodes a protein, altered on the carboxy terminus, which is thought to have greater oncogenic potential than the wild type. Recently, it was suggested that del-LMP1 plays a role in the development of malignant lymphomas occurring in immunocompromised patients. To further elucidate the role of del-LMP1 in post-transplantation lymphoproliferative disorders (PT-LPDs) we analyzed 58 PT-LPD lesions from 36 heart and kidney organ transplant recipients. Overall, del-LMP1 was detected in 44% of the cases. Four plasmacytic hyperplasias (36%), eight polymorphic B-cell hyperplasias/polymorphic B-cell lymphomas (38%), and five malignant lymphomas/multiple myelomas (71%) exhibited del-LMP1. Two of the three patients displaying disease progression showed wild-type LMP1 gene (w-LMP1) and one showed del-LMP1. LMP1 status remained the same in all three patients during disease progression. In patients undergoing biopsy of multiple separate PT-LPD lesions representing different clonal lymphoid proliferations, LMP1 status was the same in all of the lesions in each patient. Furthermore, although the polyclonal lesions harbor multiple EBV infectious events, they either showed w- or del-LMP1 but not both. Analysis of the tissues without an apparent PT-LPD (peripheral blood, bone marrow, or colon) revealed EBV and LMP1 type identical to that found in the lesions. In conclusion, the presence or absence of del-LMP1 in PT-LPDs does not correlate with the histopathological category or the malignant nature of the lymphoid proliferation. LMP1 status does not change during disease progression and is the same within multiple lesions occurring in the same patient regardless of their clonal relationship. These findings suggest that 1) EBV infection in patients with PT-LPDs occurs with a w- or del-LMP1-type EBV isolate and does not change once a patient acquires the virus and 2) the infection is an early event in the development of PT-LPDs and transformation is induced regardless of the type of LMP1.
Collapse
Affiliation(s)
- A G Scheinfeld
- Department of Pathology, New York Hospital-Cornell Medical Center, New York 10021, USA
| | | | | | | | | |
Collapse
|
40
|
Izumi KM, Kaye KM, Kieff ED. The Epstein-Barr virus LMP1 amino acid sequence that engages tumor necrosis factor receptor associated factors is critical for primary B lymphocyte growth transformation. Proc Natl Acad Sci U S A 1997; 94:1447-52. [PMID: 9037073 PMCID: PMC19811 DOI: 10.1073/pnas.94.4.1447] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/1996] [Indexed: 02/03/2023] Open
Abstract
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is essential for transforming primary B lymphocytes into lymphoblastoid cell lines. EBV recombinants with LMP1 genes truncated after the proximal 45 codons of the LMP1 carboxyl terminus are adequate for transformation. The proximal 45 residues include a domain that engages the tumor necrosis factor receptor associated factors (TRAFs). We investigated the importance of the TRAF binding domain by assaying the transforming ability of recombinant EBV genomes with a deletion of LMP1 codons 185-211. This mutation eliminates TRAF association in yeast and in lymphoblasts but does not affect LMP1 stability or localization. Specifically mutated recombinant EBV genomes were generated by transfecting P3HR-1 cells with overlapping EBV cosmids. Infection of primary B lymphocytes resulted in cell lines that were coinfected with an LMP1 delta185-211 EBV recombinant and P3HR-1 EBV, which has a wild-type LMP1 gene but is transformation defective due to another deletion. Despite the equimolar mixture of wild-type and mutated LMP1 genes in virus preparations from five coinfected cell lines, only the wild-type LMP1 gene was found in 412 cell lines obtained after transformation of primary B lymphocytes. No transformed cell line had only the LMP1 delta185-211 gene. An EBV recombinant with a Flag-tagged LMP1 gene passaged in parallel segregated from the coinfecting P3HR-1. These data indicate that the LMP1 TRAF binding domain is critical for primary B lymphocyte growth transformation.
Collapse
Affiliation(s)
- K M Izumi
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
41
|
Miller WE, Mosialos G, Kieff E, Raab-Traub N. Epstein-Barr virus LMP1 induction of the epidermal growth factor receptor is mediated through a TRAF signaling pathway distinct from NF-kappaB activation. J Virol 1997; 71:586-94. [PMID: 8985387 PMCID: PMC191088 DOI: 10.1128/jvi.71.1.586-594.1997] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Epstein-Barr virus (EBV)-encoded LMP1 protein induces several cellular changes including induction of epidermal growth factor receptor (EGFR) expression and activation of the NF-kappaB transcription factor. Two domains within the carboxy terminus have been identified that activate NF-kappaB. In this study, mutational analysis of the LMP1 protein indicated that the proximal NF-kappaB activation domain, which is identical to the TRAF interaction domain (amino acids 187 to 231), is essential for induction of the EGFR. The distal NF-kappaB activation domain (amino acids 352 to 386) did not induce expression of the EGFR. In contrast, the two domains both independently activated a kappaB-CAT reporter gene and induced expression of the NF-kappaB-regulated A20 gene in C33A epithelial cells. These results indicate that induction of the EGFR by LMP1 involves the TRAF interaction domain and that activation of NF-kappaB alone is not sufficient. Northern blot analysis revealed that induction of EGFR and A20 expression is likely to be at the transcriptional level. Interestingly expression of CD40 in the C33A cells also induced expression of the EGFR. Overexpression of either TRAF3 or an amino-terminal-truncated form of TRAF3 (TRAF3-C) inhibited signaling from the LMP1 TRAF interaction domain but did not affect signaling from the distal NF-kappaB activation domain. These data further define the mechanism by which LMP1 induces expression of the EGFR and indicate that TRAF signaling from LMP1 and CD40 activates a downstream transcription pathway distinct from NF-kappaB that induces expression of the EGFR.
Collapse
Affiliation(s)
- W E Miller
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill 27599, USA
| | | | | | | |
Collapse
|
42
|
Devergne O, Hatzivassiliou E, Izumi KM, Kaye KM, Kleijnen MF, Kieff E, Mosialos G. Association of TRAF1, TRAF2, and TRAF3 with an Epstein-Barr virus LMP1 domain important for B-lymphocyte transformation: role in NF-kappaB activation. Mol Cell Biol 1996; 16:7098-108. [PMID: 8943365 PMCID: PMC231713 DOI: 10.1128/mcb.16.12.7098] [Citation(s) in RCA: 404] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Epstein-Barr virus (EBV) transforming protein LMP1 appears to be a constitutively activated tumor necrosis factor receptor (TNFR) on the basis of an intrinsic ability to aggregate in the plasma membrane and an association of its cytoplasmic carboxyl terminus (CT) with TNFR-associated factors (TRAFs). We now show that in EBV-transformed B lymphocytes most of TRAF1 or TRAF3 and 5% of TRAF2 are associated with LMP1 and that most of LMP1 is associated with TRAF1 or TRAF3. TRAF1, TRAF2, and TRAF3 bind to a single site in the LMP1 CT corresponding to amino acids (aa) 199 to 214, within a domain which is important for B-lymphocyte growth transformation (aa 187 to 231). Further deletional and alanine mutagenesis analyses and comparison with TRAF binding sequences in CD40, in CD30, and in the LMP1 of other lymphycryptoviruses provide the first evidence that PXQXT/S is a core TRAF binding motif. The negative effects of point mutations in the LMP1(1-231) core TRAF binding motif on TRAF binding and NF-kappaB activation genetically link the TRAFs to LMP1(1-231)-mediated NF-kappaB activation. NF-kappaB activation by LMP1(1-231) is likely to be mediated by TRAF1/TRAF2 heteroaggregates since TRAF1 is unique among the TRAFs in coactivating NF-kappaB with LMP1(1-231), a TRAF2 dominant-negative mutant can block LMP1(1-231)-mediated NF-kappaB activation as well as TRAF1 coactivation, and 30% of TRAF2 is associated with TRAF1 in EBV-transformed B cells. TRAF3 is a negative modulator of LMP1(1-231)-mediated NF-kappaB activation. Surprisingly, TRAF1, -2, or -3 does not interact with the terminal LMP1 CT aa 333 to 386 which can independently mediate NF-kappaB activation. The constitutive association of TRAFs with LMP1 through the aa 187 to 231 domain which is important in NF-kappaB activation and primary B-lymphocyte growth transformation implicates TRAF aggregation in LMP1 signaling.
Collapse
Affiliation(s)
- O Devergne
- Department of Microbiology, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Robertson ES, Ooka T, Kieff ED. Epstein-Barr virus vectors for gene delivery to B lymphocytes. Proc Natl Acad Sci U S A 1996; 93:11334-40. [PMID: 8876136 PMCID: PMC38058 DOI: 10.1073/pnas.93.21.11334] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Basic research in Epstein-Barr virus (EBV) molecular genetics has provided means to maintain episomes in human cells, to efficiently deliver episomes with up to 150 kbp of heterologous DNA to human B lymphocytes, and to immortalize human B lymphocytes with EBV recombinants that can maintain up to 120 kbp of heterologous DNA. Episome maintenance requires an EBV nuclear protein, EBNA1, whereas immortalization of cells with EBV recombinants requires EBNA1, EBNA2, EBNA3A, EBNA3C, EBNALP, and LMP1. EBV-derived vectors are useful for experimental genetic reconstitution in B lymphocytes, a cell type frequently used in establishing repositories of human genetic deficiencies. The ability of EBV-infected cells to establish a balanced state of persistence in normal humans raises the possibility that cells infected with EBV recombinants could be useful for genetic reconstitution, in vivo.
Collapse
Affiliation(s)
- E S Robertson
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
44
|
Kaye KM, Devergne O, Harada JN, Izumi KM, Yalamanchili R, Kieff E, Mosialos G. Tumor necrosis factor receptor associated factor 2 is a mediator of NF-kappa B activation by latent infection membrane protein 1, the Epstein-Barr virus transforming protein. Proc Natl Acad Sci U S A 1996; 93:11085-90. [PMID: 8855313 PMCID: PMC38288 DOI: 10.1073/pnas.93.20.11085] [Citation(s) in RCA: 195] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Latent infection membrane protein 1 (LMP1), the Epstein-Barr virus transforming protein, associates with tumor necrosis factor receptor (TNFR) associated factor 1 (TRAF1) and TRAF3. Since TRAF2 has been implicated in TNFR-mediated NF-kappa B activation, we have evaluated the role of TRAF2 in LMP1-mediated NF-kappa B activation. TRAF2 binds in vitro to the LMP1 carboxyl-terminal cytoplasmic domain (CT), coprecipitates with LMP1 in B lymphoblasts, and relocalizes to LMP1 plasma membrane patches. A dominant negative TRAF2 deletion mutant that lacks amino acids 6-86 (TRAF/ delta 6-86) inhibits NF-kappa B activation from the LMP1 CT and competes with TRAF2 for LMP1 binding. TRAF2 delta 6-86 inhibits NF-kappa B activation mediated by the first 45 amino acids of the LMP1 CT by more than 75% but inhibits NF-kappa B activation through the last 55 amino acids of the CT by less than 40%. A TRAF interacting protein, TANK, inhibits NF-kappa B activation by more than 70% from both LMP1 CT domains. These data implicate TRAF2 aggregation in NF-kappa B activation by the first 45 amino acids of the LMP1 CT and suggest that a different TRAF-related pathway may be involved in NF-kappa B activation by the last 55 amino acids of the LMP1 CT.
Collapse
Affiliation(s)
- K M Kaye
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Mitchell T, Sugden B. Stimulation of NF-kappa B-mediated transcription by mutant derivatives of the latent membrane protein of Epstein-Barr virus. J Virol 1995; 69:2968-76. [PMID: 7707523 PMCID: PMC188996 DOI: 10.1128/jvi.69.5.2968-2976.1995] [Citation(s) in RCA: 236] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The latent membrane protein (LMP) of Epstein-Barr virus contributes to the immortalizing activity of the virus in primary, human B lymphocytes, but its mechanism of function is unknown. LMP is expressed at the plasma membrane and may act by influencing the signalling pathways of infected cells. LMP increases transcription of reporter plasmids that are responsive to members of the NF-kappa B/Rel family of transcription factors (M.-L. Hammarskjold and M. C. Simurda, J. Virol. 66:6496-6501, 1992, and A. Krikos, C. D. Laherty, and V. M. Dixit, J. Biol. Chem. 267:17971-17976, 1992). We measured the stimulation of the activity of a reporter plasmid by LMP in Jurkat and 293 cells in transfection experiments. Expression of LMP stimulated plasmids that contained kappa B enhancer elements but not plasmids that lacked the elements. In 293 cells, expression of the NF-kappa B inhibitor, I kappa B-alpha, reduced the stimulatory activity of LMP. We used deletional analysis to map the domains of LMP that are required for its activity in 293 cells. Wild-type LMP stimulated NF-kappa B by a factor of 20 to 30, while mutant derivatives of LMP that lack oncogenic activity stimulated NF-kappa B by a factor of 3. The multiple membrane-spanning segments together with the carboxy-terminal 55 amino acid residues of LMP were required for its maximal stimulatory function. Residues within its cytoplasmic amino terminus were not required for LMP's stimulation of NF-kappa B. We tested also for stimulation of NF-kappa B activity in cell lines known to support phenotypic changes mediated by expression of LMP. LMP stimulated little NF-kappa B activity in HEp2 cells and no detectable NF-kappa B activity in BALB/3T3 cells. The LMP stimulation of NF-kappa B factors that occurs in some cell lines provides a useful and biochemically tractable assay for determining the function of LMP.
Collapse
Affiliation(s)
- T Mitchell
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
46
|
Menin C, Ometto L, Veronesi A, Montagna M, Coppola V, Veronese ML, Indraccolo S, Bruni L, Corneo B, Amadori A. Dominance of a single Epstein-Barr virus strain in SCID-mouse tumors induced by injection of peripheral blood mononuclear cells from healthy human donors. Virus Res 1995; 36:215-31. [PMID: 7653100 DOI: 10.1016/0168-1702(95)00005-b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Severe Combined Immune Deficiency mouse tumors, induced by inoculating peripheral blood mononuclear cells from 11 healthy human donors (hu-PBMC-SCID tumors), were used to analyse Epstein-Barr virus (EBV) type and strain variations. PCR analysis of EBNA 2- and EBNA 3C-specific sequences showed that EBV type A was present in SCID-mouse tumors induced by PBMC from all donors but one, while, using amplimers for a highly polymorphic region within the latent membrane protein (LMP) coding sequence, 5 different strains could be detected among the samples examined. The same LMP fragment was present in different tumors arising in the same animal, as well as in different mice injected with PBMC from any donor. Compared to B95.8 and AG876 prototype viruses, sequence analysis of LMP variants disclosed a higher homology to the latter, with 33 bp additional repetitions and a few point mutations in specific sites. This study confirms and extends previous data on the presence of a single EBV type and strain in the peripheral blood of most normal healthy subjects using the SCID-mouse system.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/isolation & purification
- Humans
- Injections, Intraperitoneal
- Leukocytes, Mononuclear/virology
- Mice
- Mice, SCID/genetics
- Mice, SCID/virology
- Molecular Sequence Data
- Neoplasms, Experimental/blood
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/virology
- Sequence Homology, Amino Acid
- Tumor Virus Infections/genetics
- Tumor Virus Infections/virology
- Viral Matrix Proteins/biosynthesis
- Viral Matrix Proteins/genetics
Collapse
Affiliation(s)
- C Menin
- Institute of Oncology, University of Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Robertson ES, Grossman S, Johannsen E, Miller C, Lin J, Tomkinson B, Kieff E. Epstein-Barr virus nuclear protein 3C modulates transcription through interaction with the sequence-specific DNA-binding protein J kappa. J Virol 1995; 69:3108-16. [PMID: 7707539 PMCID: PMC189012 DOI: 10.1128/jvi.69.5.3108-3116.1995] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Epstein-Barr virus (EBV) nuclear protein 3C (EBNA 3C) is essential for EBV-mediated transformation of primary B lymphocytes, is turned on by EBNA 2, and regulates transcription of some of the viral and cellular genes which are regulated by EBNA 2. EBNA 2 is targeted to response elements by binding to the DNA sequence-specific, transcriptional repressor protein J kappa. We now show that EBNA 3C also binds to J kappa. EBNA 3C causes J kappa to not bind DNA or EBNA 2. J kappa DNA binding activity in EBV-transformed lymphoblastoid cells is consequently reduced. More than 10% of the EBNA 3C coimmunoprecipitated with J kappa from extracts of non-EBV-infected B lymphoblasts that had been stably converted to EBNA 3C expression. EBNA 3C in nuclear extracts from these cells (or in vitro-translated EBNA 3C) prevented J kappa from interacting with a high-affinity DNA binding site. Under conditions of transient overexpression in B lymphoblasts, EBNA 2 and EBNA 3C associated with J kappa and less EBNA 2 associated with J kappa when EBNA 3C was coexpressed in the same cell. EBNA 3C had no effect on the activity of a -512/+40 LMP1 promoter-CAT reporter construct that has two upstream J kappa sites, but it did inhibit EBNA 2 transactivation of this promoter. These data are compatible with a role for EBNA 3C as a "feedback" down modulator of EBNA 2-mediated transactivation. EBNA 3C could, in theory, also activate transcription by inhibiting the interaction of the J kappa repressor with its cognate DNA. The interaction of two viral transcriptional regulators with the same cell protein may reflect an unusually high level of complexity or stringency in target gene regulation.
Collapse
MESH Headings
- Antigens, Viral/genetics
- Antigens, Viral/metabolism
- Base Sequence
- Binding Sites/genetics
- Cell Line
- DNA, Viral/genetics
- DNA, Viral/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Epstein-Barr Virus Nuclear Antigens
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/metabolism
- Humans
- Immunoglobulin J Recombination Signal Sequence-Binding Protein
- Molecular Sequence Data
- Nuclear Proteins
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transcription, Genetic
- Transcriptional Activation
Collapse
Affiliation(s)
- E S Robertson
- Department of Microbiology, Harvard University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Mosialos G, Birkenbach M, Yalamanchili R, VanArsdale T, Ware C, Kieff E. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 1995; 80:389-99. [PMID: 7859281 DOI: 10.1016/0092-8674(95)90489-1] [Citation(s) in RCA: 765] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cytoplasmic C-terminus of Epstein-Barr virus (EBV) latent infection membrane protein 1 (LMP1) is essential for B lymphocyte growth transformation and is now shown to interact with a novel human protein (LMP1-associated protein 1 [LAP1]). LAP1 is homologous to a murine protein, tumor necrosis factor receptor-associated factor 2 (TRAF2), implicated in growth signaling from the p80 TNFR. A second novel protein (EBI6), induced by EBV infection, is the human homolog of a second murine TNFR-associated protein (TRAF1). LMP1 expression causes LAP1 and EBI6 to localize to LMP1 clusters in lymphoblast plasma membranes, and LMP1 coimmunoprecipitates with these proteins. LAP1 binds to the p80 TNFR, CD40, and the lymphotoxin-beta receptor, while EBI6 associates with the p80 TNFR. The interaction of LMP1 with these TNFR family-associated proteins is further evidence for their role in signaling and links LMP1-mediated transformation to signal transduction from the TNFR family.
Collapse
Affiliation(s)
- G Mosialos
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | |
Collapse
|
49
|
Kaye KM, Izumi KM, Mosialos G, Kieff E. The Epstein-Barr virus LMP1 cytoplasmic carboxy terminus is essential for B-lymphocyte transformation; fibroblast cocultivation complements a critical function within the terminal 155 residues. J Virol 1995; 69:675-83. [PMID: 7815530 PMCID: PMC188628 DOI: 10.1128/jvi.69.2.675-683.1995] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Recombinant Epstein-Barr viruses (EBVs) were made with mutated latent membrane protein 1 (LMP1) genes that express only the LMP1 amino-terminal cytoplasmic and six transmembrane domains (MS187) or these domains and the first 44 amino acids of the 200-residue LMP1 carboxy-terminal domain (MS231). After infection of primary B lymphocytes with virus stocks having small numbers of recombinant virus and large numbers of P3HR-1 EBV which is transformation defective but wild type (WT) for LMP1, all lymphoblastoid cell lines (LCLs) that had MS187 or MS231 LMP1 also had WT LMP1 provided by the coinfecting P3HR-1 EBV. Lytic virus infection was induced in these coinfected LCLs, and primary B lymphocytes were infected. In over 200 second-generation LCLs, MS187 LMP1 was never present without WT LMP1. Screening of over 600 LCLs infected with virus from MS231 recombinant virus-infected LCLs identified two LCLs which were infected with an MS231 recombinant without WT LMP1. The MS231 recombinant virus could growth transform primary B lymphocytes when cells were grown on fibroblast feeders. Even after 6 months on fibroblast feeder layers, cells transformed by the MS231 recombinant virus died when transferred to medium without fibroblast feeder cells. These data indicate that the LMP1 carboxy terminus is essential for WT growth-transforming activity. The first 44 amino acids of the carboxy-terminal cytoplasmic domain probably include an essential effector of cell growth transformation, while a deletion of the rest of LMP1 can be complemented by growth on fibroblast feeder layers. LMP1 residues 232 to 386 therefore provide a growth factor-like effect for the transformation of B lymphocytes. This effect may be indicative of the broader role of LMP1 in cell growth transformation.
Collapse
Affiliation(s)
- K M Kaye
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
50
|
Molecular Mechanisms of Transformation by Epstein-Barr Virus. INFECTIOUS AGENTS AND PATHOGENESIS 1995. [DOI: 10.1007/978-1-4899-1100-1_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|