1
|
Grose C, Putman Z, Esposito D. A review of alternative promoters for optimal recombinant protein expression in baculovirus-infected insect cells. Protein Expr Purif 2021; 186:105924. [PMID: 34087362 PMCID: PMC8266756 DOI: 10.1016/j.pep.2021.105924] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022]
Abstract
Generating recombinant proteins in insect cells has been made possible via the use of the Baculovirus Expression Vector System (BEVS). Despite the success of many proteins via this platform, some targets remain a challenge due to issues such as cytopathic effects, the unpredictable nature of co-infection and co-expressions, and baculovirus genome instability. Many promoters have been assayed for the purpose of expressing diverse proteins in insect cells, and yet there remains a lack of implementation of those results when reviewing the landscape of commercially available baculovirus vectors. In advancing the platform to produce a greater variety of proteins and complexes, the development of such constructs cannot be avoided. A better understanding of viral gene regulation and promoter options including viral, synthetic, and insect-derived promoters will be beneficial to researchers looking to utilize BEVS by recruiting these intricate mechanisms of gene regulation for heterologous gene expression. Here we summarize some of the developments that could be utilized to improve the expression of recombinant proteins and multi-protein complexes in insect cells.
Collapse
Affiliation(s)
- Carissa Grose
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| | - Zoe Putman
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Dominic Esposito
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| |
Collapse
|
2
|
Wang J, Xing K, Xiong P, Liang H, Zhu M, Zhao J, Yu X, Ning X, Li R, Wang X. Identification of miRNAs encoded by Autographa californica nucleopolyhedrovirus. J Gen Virol 2020; 102. [PMID: 33236978 DOI: 10.1099/jgv.0.001510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Two Autographa californica nucleopolyhedrovirus (AcMNPV) encoded miRNAs, AcMNPV-miR-1 and AcMNPV-miR-3, have been reported by us in 2013 and 2019, respectively. Here, we present an integrated investigation of AcMNPV-encoded miRNAs, which include the above two miRNAs and three additional newly identified miRNAs. Six candidate miRNAs were predicted through small RNA deep sequencing and bioinformatics, of which, five were validated. Three miRNAs are located opposite the coding sequences, the other two are located in the coding sequences of viral genes. Targets in both virus and host were predicted and subsequently tested using dual-luciferase reporter assays. The validated targets were found mainly in AcMNPV, except for the targets of AcMNPV-miR-4, which are all host genes. Based on reporter assays, the five miRNAs predominantly function by down-regulating their targets. The transcription start sites of these miRNAs were bioinformatic screened based on known baculovirus promoter motifs. Our study reveals that AcMNPV-encoded miRNAs function as fine modulators of the interactions between host and virus by regulating viral and/or host genes.
Collapse
Affiliation(s)
- Jinwen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Ke Xing
- School of Life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Peiwen Xiong
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Hai Liang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Mengxiao Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jin Zhao
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xinghua Yu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xiaolian Ning
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Runcai Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xunzhang Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
3
|
Sosa-Gómez DR, Morgado FS, Corrêa RFT, Silva LA, Ardisson-Araújo DMP, Rodrigues BMP, Oliveira EE, Aguiar RWS, Ribeiro BM. Entomopathogenic Viruses in the Neotropics: Current Status and Recently Discovered Species. NEOTROPICAL ENTOMOLOGY 2020; 49:315-331. [PMID: 32358711 DOI: 10.1007/s13744-020-00770-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
The market for biological control of insect pests in the world and in Brazil has grown in recent years due to the unwanted ecological and human health impacts of chemical insecticides. Therefore, research on biological control agents for pest management has also increased. For instance, insect viruses have been used to protect crops and forests around the world for decades. Among insect viruses, the baculoviruses are the most studied and used viral biocontrol agent. More than 700 species of insects have been found to be naturally infected by baculoviruses, with 90% isolated from lepidopteran insects. In this review, some basic aspects of baculovirus infection in vivo and in vitro infection, gene content, viral replication will be discussed. Furthermore, we provide examples of the use of insect viruses for biological pest control and recently characterized baculoviruses in Brazil.
Collapse
Affiliation(s)
- D R Sosa-Gómez
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Soja, Londrina, PR, Brasil
| | - F S Morgado
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil
| | - R F T Corrêa
- Depto de Biotecnologia, Univ Federal de Tocantins, Gurupi, TO, Brasil
| | - L A Silva
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil
| | - D M P Ardisson-Araújo
- Depto de Bioquímica e Biologia Molecular, Univ Federal de Santa Maria, Santa Maria, RS, Brasil
| | - B M P Rodrigues
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil
| | - E E Oliveira
- Depto de Entomologia, Univ Federal de Viçosa, Viçosa, MG, Brasil
| | - R W S Aguiar
- Depto de Biotecnologia, Univ Federal de Tocantins, Gurupi, TO, Brasil
| | - B M Ribeiro
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil.
| |
Collapse
|
4
|
Reply to Das and Berkhout, "How Polypurine Tract Changes in the HIV-1 RNA Genome Can Cause Resistance against the Integrase Inhibitor Dolutegravir". mBio 2018; 9:mBio.00623-18. [PMID: 29844110 PMCID: PMC5974467 DOI: 10.1128/mbio.00623-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
5
|
Gueli Alletti G, Carstens EB, Weihrauch B, Jehle JA. Agrotis segetum nucleopolyhedrovirus but not Agrotis segetum granulovirus replicate in AiE1611T cell line of Agrotisipsilon. J Invertebr Pathol 2018; 151:7-13. [DOI: 10.1016/j.jip.2017.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 01/01/2023]
|
6
|
Triska M, Solovyev V, Baranova A, Kel A, Tatarinova TV. Nucleotide patterns aiding in prediction of eukaryotic promoters. PLoS One 2017; 12:e0187243. [PMID: 29141011 PMCID: PMC5687710 DOI: 10.1371/journal.pone.0187243] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023] Open
Abstract
Computational analysis of promoters is hindered by the complexity of their architecture. In less studied genomes with complex organization, false positive promoter predictions are common. Accurate identification of transcription start sites and core promoter regions remains an unsolved problem. In this paper, we present a comprehensive analysis of genomic features associated with promoters and show that probabilistic integrative algorithms-driven models allow accurate classification of DNA sequence into “promoters” and “non-promoters” even in absence of the full-length cDNA sequences. These models may be built upon the maps of the distributions of sequence polymorphisms, RNA sequencing reads on genomic DNA, methylated nucleotides, transcription factor binding sites, as well as relative frequencies of nucleotides and their combinations. Positional clustering of binding sites shows that the cells of Oryza sativa utilize three distinct classes of transcription factors: those that bind preferentially to the [-500,0] region (188 “promoter-specific” transcription factors), those that bind preferentially to the [0,500] region (282 “5′ UTR-specific” TFs), and 207 of the “promiscuous” transcription factors with little or no location preference with respect to TSS. For the most informative motifs, their positional preferences are conserved between dicots and monocots.
Collapse
Affiliation(s)
- Martin Triska
- Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States of America
- Faculty of Advanced Technology, University of South Wales, Pontypridd, Wales, United Kingdom
| | | | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, VA, United States of America
- Research Centre for Medical Genetics, Moscow, Russia
| | - Alexander Kel
- geneXplain GmbH, Wolfenbuettel, Germany
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Tatiana V. Tatarinova
- School of Systems Biology, George Mason University, Fairfax, VA, United States of America
- Department of Biology, Division of Natural Sciences, University of La Verne, La Verne, CA, United States of America
- Bioinformatics Center, AA Kharkevich Institute for Information Transmission Problems RAS, Moscow, Russia
- Vavilov’s Institute for General Genetics, Moscow, Russia, Moscow, Russia
- * E-mail:
| |
Collapse
|
7
|
Diversity of large DNA viruses of invertebrates. J Invertebr Pathol 2017; 147:4-22. [DOI: 10.1016/j.jip.2016.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 11/17/2022]
|
8
|
Morgado FDS, Ardisson-Araújo DMP, Ribeiro BM. Real-Time Expression Analysis of Selected Anticarsia gemmatalis multiple nucleopolyhedrovirus Gene Promoters during Infection of Permissive, Semipermissive and Nonpermissive Cell Lines. Viruses 2017; 9:E132. [PMID: 28587184 PMCID: PMC5490809 DOI: 10.3390/v9060132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 12/03/2022] Open
Abstract
Baculovirus infection follows a transcriptionally controlled sequence of gene expression that occurs by activation of different viral gene promoter sequences during infection. This sequence of promoter activation may be disrupted by cellular defenses against viral infection, which might interfere with viral progeny formation. In this work, the activity of the ie1, gp64, lef-1, vp39, p6.9 and polh promoters of the Anticarsia gemmatalis multiple nucleopolyhedrovirus was assessed during infection of permissive, semipermissive and nonpermissive cell lines by a novel methodology that detects reporter protein luminescence in real-time. This technique allowed us to characterize in rich detail the AgMNPV promoters in permissive cell lines and revealed differential profiles of expression in cells with limited permissivity that correlate well with limitations in viral DNA replication. Semipermissive and nonpermissive cell lines presented delays and restrictions in late and very late promoter expression. Cells undergoing apoptosis did not inhibit late gene expression; however, viral progeny formation is severely affected. This work demonstrates the application of the real-time luminescence detection methodology and how the promoter expression profile may be used to diagnose cellular permissivity to baculovirus infection.
Collapse
Affiliation(s)
- Fabricio da Silva Morgado
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília, 70910-900 Brasília-DF, Brazil.
| | - Daniel Mendes Pereira Ardisson-Araújo
- Laboratory of Insect Virology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 97105-900 Santa Maria-RS, Brazil.
| | - Bergmann Morais Ribeiro
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília, 70910-900 Brasília-DF, Brazil.
| |
Collapse
|
9
|
Permissiveness of lepidopteran hosts is linked to differential expression of bracovirus genes. Virology 2016; 492:259-72. [DOI: 10.1016/j.virol.2016.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 01/01/2023]
|
10
|
Abstract
The development of baculovirus expression vector systems has accompanied a rapid expansion of our knowledge about the genes, their function and regulation in insect cells. Classification of these viruses has also been refined as we learn more about differences in gene content between isolates, how this affects virus structure and their replication in insect larvae. Baculovirus gene expression occurs in an ordered cascade, regulated by early, late and very late gene promoters. There is now a detailed knowledge of these promoter elements and how they interact first with host cell-encoded RNA polymerases and later with virus-encoded enzymes. The composition of this virus RNA polymerase is known. The virus replication process culminates in the very high level expression of both polyhedrin and p10 gene products in the latter stages of infection. It has also been realized that the insect host cell has innate defenses against baculoviruses in the form of an apoptotic response to virus invasion. Baculoviruses counter this by encoding apoptotic-suppressors, which also appear to have a role in determining the host range of the virus. Also of importance to our understanding of baculovirus expression systems is how the virus can accumulate mutations within genes that affect recombinant protein yield in cell culture. The summary in this chapter is not exhaustive, but should provide a good preparation to those wishing to use this highly successful gene expression system.
Collapse
Affiliation(s)
- Barbara J Kelly
- The Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Linda A King
- School of Biological and Molecular Sciences, Oxford Brookes University, Oxford, UK
| | - Robert D Possee
- NERC CEH (Oxford), Mansfield Road, Oxford, OX1, UK.
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
11
|
Fujita R, Ono C, Ono I, Asano SI, Bando H. Analysis of the Bombyx mori nucleopolyhedrovirus ie-1 promoter in insect, mammalian, plant, and bacterial cells. Biochem Biophys Res Commun 2015; 464:1297-1301. [PMID: 26225750 DOI: 10.1016/j.bbrc.2015.07.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 07/25/2015] [Indexed: 11/27/2022]
Abstract
The Bombyx mori nucleopolyhedrovirus (BmNPV) ie-1 promoter exhibits strong transcriptional activity and is used in transient foreign gene expression systems in insect cells. In a reporter assay experiment using the BmNPV ie-1 promoter, we found that it exhibited activity even in non-host mammalian BHK cells, plant BY-2 cells, and also bacterial Escherichia coli cells. An analysis using a deletion series of the BmNPV ie-1 promoter demonstrated that the core promoter region of this promoter was sufficient to display promoter activity in BHK cells, BY-2 cells, and E. coli cells, whereas upstream elements were required for higher activity in insect cells. Furthermore, we found that the BmNPV ie-1 promoter exhibited sufficient activity for a β-galactosidase assay in E. coli cells. The results obtained here suggest that the BmNPV ie-1 promoter has potential as a universal promoter for transient expression systems in insect, mammalian, plant, and bacterial cells.
Collapse
Affiliation(s)
- Ryosuke Fujita
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; Department of Medical Entomology, National Institute of Infectious Disease, Tokyo 162-8640, Japan
| | - Chikako Ono
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Isamu Ono
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Shin-Ichiro Asano
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Hisanori Bando
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| |
Collapse
|
12
|
Liu WJ, Lo CF, Kou GH, Leu JH, Lai YJ, Chang LK, Chang YS. The promoter of the white spot syndrome virus immediate-early gene WSSV108 is activated by the cellular KLF transcription factor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:7-18. [PMID: 25445906 DOI: 10.1016/j.dci.2014.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/24/2014] [Accepted: 10/25/2014] [Indexed: 06/04/2023]
Abstract
A series of deletion and mutation assays of the white spot syndrome virus (WSSV) immediate-early gene WSSV108 promoter showed that a Krüppel-like factor (KLF) binding site located from -504 to -495 (relative to the transcription start site) is important for the overall level of WSSV108 promoter activity. Electrophoretic mobility shift assays further showed that overexpressed recombinant Penaeus monodon KLF (rPmKLF) formed a specific protein-DNA complex with the (32)P-labeled KLF binding site of the WSSV108 promoter, and that higher levels of Litopenaeus vannamei KLF (LvKLF) were expressed in WSSV-infected shrimp. A transactivation assay indicated that the WSSV108 promoter was strongly activated by rPmKLF in a dose-dependent manner. Lastly, we found that specific silencing of LvKLF expression in vivo by dsRNA injection dramatically reduced both WSSV108 expression and WSSV replication. We conclude that shrimp KLF is important for WSSV genome replication and gene expression, and that it binds to the WSSV108 promoter to enhance the expression of this immediate-early gene.
Collapse
Affiliation(s)
- Wang-Jing Liu
- Department of Earth and Life Science, College of Science, University of Taipei, Taipei 100, Taiwan
| | - Chu-Fang Lo
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Guang-Hsiung Kou
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Jiann-Horng Leu
- Institute of Marine Biology, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Ying-Jang Lai
- Department of Food Science, College of Science and Engineering, National Quemoy University, Kinmen 892, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Yun-Shiang Chang
- Department of Molecular Biotechnology, College of Biotechnology and Bioresources, Da-Yeh University, Changhua 515, Taiwan.
| |
Collapse
|
13
|
Kikhno I. Identification of a conserved non-protein-coding genomic element that plays an essential role in Alphabaculovirus pathogenesis. PLoS One 2014; 9:e95322. [PMID: 24740153 PMCID: PMC3989284 DOI: 10.1371/journal.pone.0095322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 03/26/2014] [Indexed: 12/13/2022] Open
Abstract
Highly homologous sequences 154-157 bp in length grouped under the name of "conserved non-protein-coding element" (CNE) were revealed in all of the sequenced genomes of baculoviruses belonging to the genus Alphabaculovirus. A CNE alignment led to the detection of a set of highly conserved nucleotide clusters that occupy strictly conserved positions in the CNE sequence. The significant length of the CNE and conservation of both its length and cluster architecture were identified as a combination of characteristics that make this CNE different from known viral non-coding functional sequences. The essential role of the CNE in the Alphabaculovirus life cycle was demonstrated through the use of a CNE-knockout Autographa californica multiple nucleopolyhedrovirus (AcMNPV) bacmid. It was shown that the essential function of the CNE was not mediated by the presumed expression activities of the protein- and non-protein-coding genes that overlap the AcMNPV CNE. On the basis of the presented data, the AcMNPV CNE was categorized as a complex-structured, polyfunctional genomic element involved in an essential DNA transaction that is associated with an undefined function of the baculovirus genome.
Collapse
Affiliation(s)
- Irina Kikhno
- Institute of Molecular Biology & Genetics of Ukrainian Academy of Science, Kiev, Ukraine
- * E-mail:
| |
Collapse
|
14
|
The transcriptome of the baculovirus Autographa californica multiple nucleopolyhedrovirus in Trichoplusia ni cells. J Virol 2013; 87:6391-405. [PMID: 23536684 DOI: 10.1128/jvi.00194-13] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Baculoviruses are important insect pathogens that have been developed as protein expression vectors in insect cells and as transduction vectors for mammalian cells. They have large double-stranded DNA genomes containing approximately 156 tightly spaced genes, and they present significant challenges for transcriptome analysis. In this study, we report the first comprehensive analysis of AcMNPV transcription over the course of infection in Trichoplusia ni cells, by a combination of strand-specific RNA sequencing (RNA-Seq) and deep sequencing of 5' capped transcription start sites and 3' polyadenylation sites. We identified four clusters of genes associated with distinctive patterns of mRNA accumulation through the AcMNPV infection cycle. A total of 218 transcription start sites (TSS) and 120 polyadenylation sites (PAS) were mapped. Only 29 TSS were associated with a canonical TATA box, and 14 initiated within or near the previously identified CAGT initiator motif. The majority of viral transcripts (126) initiated within the baculovirus late promoter motif (TAAG), and late transcripts initiated precisely at the second position of the motif. Analysis of 3' ends showed that 92 (77%) of the 3' PAS were located within 30 nucleotides (nt) downstream of a consensus termination signal (AAUAAA or AUUAAA). A conserved U-rich region was found approximately 2 to 10 nt downstream of the PAS for 58 transcripts. Twelve splicing events and an unexpectedly large number of antisense RNAs were identified, revealing new details of possible regulatory mechanisms controlling AcMNPV gene expression. Combined, these data provide an emerging global picture of the organization and regulation of AcMNPV transcription through the infection cycle.
Collapse
|
15
|
Autographa californica M nucleopolyhedrovirus open reading frame 109 affects infectious budded virus production and nucleocapsid envelopment in the nucleus of cells. Virology 2013; 435:442-52. [DOI: 10.1016/j.virol.2012.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 09/05/2012] [Accepted: 10/08/2012] [Indexed: 11/19/2022]
|
16
|
Sf-PHB2, a new transcription factor, drives WSSV Ie1 gene expression via a 12-bp DNA element. Virol J 2012; 9:206. [PMID: 22985503 PMCID: PMC3511282 DOI: 10.1186/1743-422x-9-206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 09/07/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The WSSV immediate early gene ie1 is highly expressed throughout viral infection cycle and may play a central role in initiating viral replication during infection. RESULTS Here, a detailed characterization of the ie1 promoter was performed using deletion and mutation analyses to elucidate the role of the individual promoter motifs. Three results were obtained: 1) the ie1 promoter is a classical eukaryotic promoter that contains the initiator element (Inr) and TATA box responsible for the basal promoter activity; 2) mutation or truncation of a predicted Sp1 site decreased the level of promoter activity by about 3-fold, indicating that the Sp1 site is an important cis-element of the promoter; and 3) truncation of a 12-bp sequence that resides at -78/-67 of the ie1 promoter decreased the level of promoter activity by about 14-fold, indicating that the 12-bp motif is a critical upstream element of the ie1 promoter for binding of a strong transcription factor to drive the ie1 gene expression in the cells. Further, the 12-bp DNA binding protein was purified from the nuclear proteins of Sf9 cells using DNA affinity chromatography, and was identified as a homologue of the prohibitin2 protein (named as Sf-PHB2) using mass spectrometry. Furthermore, the DNA binding activity of Sf-PHB2 was verified using a super shift analysis. CONCLUSION These results support that the Sf-PHB2 is a novel transcription factor that drives WSSV ie1 gene expression by binding to the 12-bp DNA element.
Collapse
|
17
|
Roy P, Noad R. Use of bacterial artificial chromosomes in baculovirus research and recombinant protein expression: current trends and future perspectives. ISRN MICROBIOLOGY 2012; 2012:628797. [PMID: 23762754 PMCID: PMC3671692 DOI: 10.5402/2012/628797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/16/2012] [Indexed: 11/23/2022]
Abstract
The baculovirus expression system is one of the most successful and widely used eukaryotic protein expression methods. This short review will summarise the role of bacterial artificial chromosomes (BACS) as an enabling technology for the modification of the virus genome. For many years baculovirus genomes have been maintained in E. coli as bacterial artificial chromosomes, and foreign genes have been inserted using a transposition-based system. However, with recent advances in molecular biology techniques, particularly targeting reverse engineering of the baculovirus genome by recombineering, new frontiers in protein expression are being addressed. In particular, BACs have facilitated the propagation of disabled virus genomes that allow high throughput protein expression. Furthermore, improvement in the selection of recombinant viral genomes inserted into BACS has enabled the expression of multiprotein complexes by iterative recombineering of the baculovirus genome.
Collapse
Affiliation(s)
- Polly Roy
- Department of Pathogen Molecular Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | |
Collapse
|
18
|
Lin L, Wang J, Deng R, Ke J, Wu H, Wang X. ac109 is required for the nucleocapsid assembly of Autographa californica multiple nucleopolyhedrovirus. Virus Res 2009; 144:130-5. [PMID: 19393701 DOI: 10.1016/j.virusres.2009.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/13/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022]
Abstract
ORF109 (Ac109) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a highly conserved gene in all sequenced baculovirus genomes, but its function is not known. This paper describes generation of an ac109 knockout virus (Ac-ac109-KO-GP) and analyses of the influence of ac109 deletion on the virus replication in Sf-9 cells so as to investigate the role of ac109 in the viral life cycle. Results revealed that budded virus (BV) yields and occlusion body synthesis were completely blocked in cells infected with the mutant virus. Electron microscopy demonstrated that ac109 deletion blocked nucleocapsid formation, though infection was initiated and electron-dense bodies associated with the virogenic stroma appeared. The mutant phenotype was rescued by an ac109 rescue virus. On the other hand, real-time PCR analysis indicated that ac109 is not required for viral DNA replication. Thus, these results suggested that ac109 plays an important role in AcMNPV nucleocapsid formation.
Collapse
Affiliation(s)
- Lin Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
19
|
Katsuma S, Fujii T, Kawaoka S, Shimada T. Bombyx mori nucleopolyhedrovirus SNF2 global transactivator homologue (Bm33) enhances viral pathogenicity in B. mori larvae. J Gen Virol 2008; 89:3039-3046. [DOI: 10.1099/vir.0.2008/004887-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The SNF2 global transactivator gene homologue (Bm33) of Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the genes exclusive to group I NPVs, but its function remains unknown. This study describes the characterization of Bm33. Transcriptional analysis suggested that Bm33 is an early gene, as its transcript was observed at 4 h post-infection in BmNPV-infected BmN cells. To examine the role of Bm33 during BmNPV infection, a Bm33 deletion mutant (BmORF33D) was constructed and its infectivity was characterized in BmN cells and B. mori larvae. BmORF33D did not have any obvious defects in the production of budded viruses (BVs) or occlusion bodies (OBs) in BmN cells compared with wild-type BmNPV. Larval bioassays revealed that deletion of Bm33 did not reduce virus infectivity. However, BmORF33D took approximately 10–15 h longer than wild-type BmNPV to kill B. mori larvae when tested by either BV injection or OB ingestion. These results suggest that Bm33 is not essential for virus growth in vitro or in vivo, but that it accelerates the time of death of B. mori larvae.
Collapse
Affiliation(s)
- Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tsuguru Fujii
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shinpei Kawaoka
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toru Shimada
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
20
|
Characterization of the promoter elements and transcription profile of Periplaneta fuliginosa densovirus nonstructural genes. Virus Res 2008; 133:149-56. [PMID: 18243392 DOI: 10.1016/j.virusres.2007.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 12/01/2007] [Accepted: 12/02/2007] [Indexed: 11/23/2022]
Abstract
Periplaneta fuliginosa Densovirus (PfDNV), an autonomous invertebrate parvovirus that infects the cockroach, is unusual in that alternative splicing is involved in the structural gene expression. The expression strategy for nonstructural (NS) genes has yet not been reported. Northern blot analysis of cockroach larvae infected with PfDNV revealed two transcripts for the NS genes, one of 2.6 kb, and the other of 1.9 kb. The two transcripts were shown to begin at a common initiator consensus sequence, CAGT, located in the terminus of ITR. The 1.9 kb transcript was produced by splicing out the ns3 gene from the 2.6 kb transcript. To understand the mechanism of transcriptional regulation of NS genes, the 5'-flanking sequence of ns3 gene (325 bp), which encompasses the region from the 5'-terminus of the viral genome to the initiator ATG codon of the ns3 gene, was cloned and fused to a luciferase reporter gene. The luciferase reporter assay showed that this sequence possessed promoter activity in Sf9, Ld652, Tn368, and S2 cell lines. Subsequent promoter deletion analysis showed that the promoter exhibited TATA-dependent and TATA-independent transcriptional activities. Moreover, we found that the promoter activity of the 325-bp fragment in S2 cells could be enhanced significantly by co-transfection of the nonstructural protein NS1 and that the NS1 binding element, (CAC)(4) repeat, mediated the promoter activity activated by NS1 protein.
Collapse
|
21
|
Goenka S, Weaver RF. The p26 gene of the Autographa californica nucleopolyhedrovirus: Timing of transcription, and cellular localization and dimerization of product. Virus Res 2008; 131:136-44. [DOI: 10.1016/j.virusres.2007.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 08/30/2007] [Accepted: 08/30/2007] [Indexed: 11/15/2022]
|
22
|
Ke J, Wang J, Deng R, Wang X. Autographa californica multiple nucleopolyhedrovirus ac66 is required for the efficient egress of nucleocapsids from the nucleus, general synthesis of preoccluded virions and occlusion body formation. Virology 2008; 374:421-31. [PMID: 18241908 DOI: 10.1016/j.virol.2007.12.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 11/20/2007] [Accepted: 12/18/2007] [Indexed: 11/29/2022]
Abstract
Although orf66 (ac66) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is conserved in all sequenced lepidopteran baculovirus genomes, its function is not known. This paper describes generation of an ac66 knockout AcMNPV bacmid mutant and analyses of the influence of ac66 deletion on the virus replication in Sf-9 cells so as to determine the role of ac66 in the viral life cycle. Results indicated that budded virus (BV) yields were reduced over 99% in ac66-null mutant infected cells in comparison to that in wild-type virus infected cells. Optical microscopy revealed that occlusion body synthesis was significantly reduced in the ac66 knockout bacmid-transfected cells. In addition, ac66 deletion interrupted preoccluded virion synthesis. The mutant phenotype was rescued by an ac66 repair bacmid. On the other hand, real-time PCR analysis indicated that ac66 deletion did not affect the levels of viral DNA replication. Electron microscopy revealed that ac66 is not essential for nucleocapsid assembly, but for the efficient transport of nucleocapsids from the nucleus to the cytoplasm. These results suggested that ac66 plays an important role for the efficient exit of nucleocapsids from the nucleus to the cytoplasm for BV synthesis as well as for preoccluded virion and occlusion synthesis.
Collapse
Affiliation(s)
- Jianhao Ke
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China.
| | | | | | | |
Collapse
|
23
|
Bilen MF, Pilloff MG, Belaich MN, Da Ros VG, Rodrigues JC, Ribeiro BM, Romanowski V, Lozano ME, Ghiringhelli PD. Functional and structural characterisation of AgMNPV ie1. Virus Genes 2007; 35:549-62. [PMID: 17682932 DOI: 10.1007/s11262-007-0150-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 11/20/2006] [Indexed: 11/25/2022]
Abstract
We have located and cloned the Anticarsia gemmatalis multicapsid nucleopolyhedrovirus isolate 2D (AgMNPV-2D) genomic DNA fragment containing the immediate early 1 ORF and its flanking regions. Computer assisted analysis of the complete ie1 locus nucleotide sequence information was used to locate regulatory signals in the upstream region and conserved nucleotide and amino acid sequences. Comparative studies led to the identification of several characteristic protein motifs and to the conclusion that AgMNPV-2D is more closely related to Choristoneura fumiferana defective NPV than to other Group I nucleopolyhedrovirus. We have also shown that the AgMNPV IE1 protein was able to transactivate an early Autographa californica MNPV promoter and its own promoter in transient expression assays. In order to investigate the biological functionality of the ie1 promoter, the ie1 upstream activating region (UAR) was molecularly dissected and cloned upstream of the E. coli lacZ ORF. The results obtained, after transfection of UFL-AG-286 insect cells, leading us to find that the -492 and -357 versions contains sequence motifs important for the level of the lacZ reporter gene expression.
Collapse
Affiliation(s)
- Marcos Fabián Bilen
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Departamento de Ciencia y Tecnología, Centro de Estudios e Investigaciones, Universidad Nacional de Quilmes, Roque Saenz Peña 352, 1876 Bernal, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The development of baculovirus expression vector systems has accompanied a rapid expansion of our knowledge about the genes, their function, and regulation in insect cells. Classification of these viruses has also been refined as we learn more about differences in gene content between isolates, how this affects virus structure, and their replication in insect larvae. Baculovirus gene expression occurs in an ordered cascade, regulated by early, late, and very late gene promoters. There is now a detailed knowledge of these promoter elements and how they interact first with host cell-encoded RNA polymerases and later with virus-encoded enzymes. The composition of this virus RNA polymerase is known. The virus replication process culminates in the very high level expression of both polyhedrin and p10 gene products in the latter stages of infection. It has also been realized that the insect host cell has innate defenses against baculoviruses in the form of an apoptotic response to virus invasion. Baculoviruses counter this by encoding apoptotic-suppressors, which also appear to have a role in determining the host range of the virus. Also of importance to our understanding of baculovirus expression systems is how the virus can accumulate mutations within genes that affect recombinant protein yield in cell culture. The summary in this chapter is not exhaustive, but should provide a good preparation to those wishing to use this highly successful gene expression system.
Collapse
Affiliation(s)
- Barbara J Kelly
- The Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | | | | |
Collapse
|
25
|
Jiang SS, Chang IS, Huang LW, Chen PC, Wen CC, Liu SC, Chien LC, Lin CY, Hsiung CA, Juang JL. Temporal transcription program of recombinant Autographa californica multiple nucleopolyhedrosis virus. J Virol 2006; 80:8989-99. [PMID: 16940511 PMCID: PMC1563934 DOI: 10.1128/jvi.01158-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Baculoviruses, a family of large, rod-shaped viruses that mainly infect lepidopteran insects, have been widely used to transduce various cells for exogenous gene expression. Nonetheless, how a virus controls its transcription program in cells is poorly understood. With a custom-made baculovirus DNA microarray, we investigated the recombinant Autographa californica multiple nucleopolyhedrosis virus (AcMNPV) gene expression program in lepidopteran Sf21 cells over the time course of infection. Our analysis of transcription kinetics in the cells uncovered sequential viral gene expression patterns possibly regulated by different mechanisms during different phases of infection. To gain further insight into the regulatory network, we investigated the transcription program of a mutant virus deficient in an early transactivator (pe38) and uncovered several pe38-dependent and pe38-independent genes. This study of baculovirus dynamic transcription programs in different virus genetic backgrounds provides new molecular insights into how gene expression in viruses is regulated.
Collapse
Affiliation(s)
- Shih Sheng Jiang
- Division of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Duffy SP, Young AM, Morin B, Lucarotti CJ, Koop BF, Levin DB. Sequence analysis and organization of the Neodiprion abietis nucleopolyhedrovirus genome. J Virol 2006; 80:6952-63. [PMID: 16809301 PMCID: PMC1489044 DOI: 10.1128/jvi.00187-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Of 30 baculovirus genomes that have been sequenced to date, the only nonlepidopteran baculoviruses include the dipteran Culex nigripalpus nucleopolyhedrovirus and two hymenopteran nucleopolyhedroviruses that infect the sawflies Neodiprion lecontei (NeleNPV) and Neodiprion sertifer (NeseNPV). This study provides a complete sequence and genome analysis of the nucleopolyhedrovirus that infects the balsam fir sawfly Neodiprion abietis (Hymenoptera, Symphyta, Diprionidae). The N. abietis nucleopolyhedrovirus (NeabNPV) is 84,264 bp in size, with a G+C content of 33.5%, and contains 93 predicted open reading frames (ORFs). Eleven predicted ORFs are unique to this baculovirus, 10 ORFs have a putative sequence homologue in the NeleNPV genome but not the NeseNPV genome, and 1 ORF (neab53) has a putative sequence homologue in the NeseNPV genome but not the NeleNPV genome. Specific repeat sequences are coincident with major genome rearrangements that distinguish NeabNPV and NeleNPV. Genes associated with these repeat regions encode a common amino acid motif, suggesting that they are a family of repeated contiguous gene clusters. Lepidopteran baculoviruses, similarly, have a family of repeated genes called the bro gene family. However, there is no significant sequence similarity between the NeabNPV and bro genes. Homologues of early-expressed genes such as ie-1 and lef-3 were absent in NeabNPV, as they are in the previously sequenced hymenopteran baculoviruses. Analyses of ORF upstream sequences identified potential temporally distinct genes on the basis of putative promoter elements.
Collapse
Affiliation(s)
- Simon P Duffy
- Department of Biology, University of Victoria, Victoria, BC, Canada V8W 2Y2
| | | | | | | | | | | |
Collapse
|
27
|
Fujita R, Matsuyama T, Yamagishi J, Sahara K, Asano S, Bando H. Expression of Autographa californica multiple nucleopolyhedrovirus genes in mammalian cells and upregulation of the host beta-actin gene. J Virol 2006; 80:2390-5. [PMID: 16474145 PMCID: PMC1395404 DOI: 10.1128/jvi.80.5.2390-2395.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene expression of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) was examined in two types of mammalian cells, human HeLa14 and hamster BHK cells. DNA microarray analysis followed by reverse transcription-PCR identified at least 12 viral genes transcribed in both HeLa14 cells and BHK cells inoculated with AcMNPV. 5' rapid amplification of cDNA ends was carried out to examine the transcriptional fidelity of these genes in HeLa14 cells. The transcription of ie-1, ie-0 and gp64 was initiated at a baculovirus early gene motif, CAGT, accompanied by a TATA motif. In addition, the same splicing observed for ie-0 mRNA in Sf9 cells occurred in HeLa14 cells. While the transcription initiation sites for pe38 and p6.9 were not located in the CAGT motif, most of them were in a typical eukaryotic RNA polymerase II promoter structure (a conventional TATA motif and/or an initiator). Interestingly, the expression of beta-actin was upregulated in the mammalian cells inoculated with AcMNPV. Subsequent experiments using UV-inactivated virus confirmed the upregulation, suggesting that de novo synthesis of viral products is not required for the event. These results indicated that the AcMNPV genome acts as a template for transcription in mammalian cells through the usual infection pathway, though there is no evidence for the functional expression of viral genes at present.
Collapse
Affiliation(s)
- Ryosuke Fujita
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
28
|
de Lima L, Pinedo FJR, Ribeiro BM, Zanotto PMA, Wolff JLC. Identification, expression and phylogenetic analysis of the Anticarsia gemmatalis multicapsid nucleopolyhedrovirus (AgMNPV) Helicase gene. Virus Genes 2005; 29:345-52. [PMID: 15550775 DOI: 10.1007/s11262-004-7438-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The helicase gene from Anticarsia gemmatalis multicapsid nucleopolyhedrovirus (AgMNPV) was identified and localized in the 58.85-65.90 m.u. of the viral genomic map. This gene encodes a putative polypeptide of 1221 amino acids containing motifs homologous to those found in the helicase superfamily. Expression of the AgMNPV helicase was observed as early as 4h post-infection (p.i.) up until 10 h p.i. A unique early transcription initiation site was observed upstream a putative TATA box. Phylogenetic analysis of the helicase genes of 23 baculoviruses indicated that the AgMNPV helicase is closely related to the helicase genes from Epiphyas postvitanna multicapsid nucleopolyhedrovirus and Choristoneura fumiferana defective nucleopolyhedrovirus.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Animals
- Chromosome Mapping
- DNA Helicases/genetics
- DNA, Viral/chemistry
- DNA, Viral/isolation & purification
- Gene Expression Regulation, Viral/genetics
- Lepidoptera/virology
- Molecular Sequence Data
- Nucleopolyhedroviruses/genetics
- Nucleopolyhedroviruses/isolation & purification
- Open Reading Frames
- Phylogeny
- Promoter Regions, Genetic
- RNA, Messenger/analysis
- RNA, Viral/analysis
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Transcription Initiation Site
- Transcription, Genetic
- Viral Proteins/genetics
Collapse
Affiliation(s)
- Leoberto de Lima
- Laboratório de Virologia Molecular, Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes, Av. Dr. Cândido Xavier da Almeida Souza 200, SP, Brazil
| | | | | | | | | |
Collapse
|
29
|
Liu WJ, Chang YS, Wang CH, Kou GH, Lo CF. Microarray and RT-PCR screening for white spot syndrome virus immediate-early genes in cycloheximide-treated shrimp. Virology 2005; 334:327-41. [PMID: 15780883 DOI: 10.1016/j.virol.2005.01.047] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 01/18/2005] [Accepted: 01/18/2005] [Indexed: 10/25/2022]
Abstract
Here, we report for the first time the successful use of cycloheximide (CHX) as an inhibitor to block de novo viral protein synthesis during WSSV (white spot syndrome virus) infection. Sixty candidate IE (immediate-early) genes were identified using a global analysis microarray technique. RT-PCR showed that the genes corresponding to ORF126, ORF242 and ORF418 in the Taiwan isolate were consistently CHX-insensitive, and these genes were designated ie1, ie2 and ie3, respectively. The sequences for these IE genes also appear in the two other WSSV isolates that have been sequenced. Three corresponding ORFs were identified in the China WSSV isolate, but only an ORF corresponding to ie1 was predicted in the Thailand isolate. In a promoter activity assay in Sf9 insect cells using EGFP (enhanced green fluorescence protein) as a reporter, ie1 showed very strong promoter activity, producing higher EGFP signals than the insect Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus (OpMNPV) ie2 promoter.
Collapse
Affiliation(s)
- Wang-Jing Liu
- Institute of Zoology, National Taiwan University, Taipei 106, Taiwan, ROC
| | | | | | | | | |
Collapse
|
30
|
Li L, Li Q, Willis LG, Erlandson M, Theilmann DA, Donly C. Complete comparative genomic analysis of two field isolates of Mamestra configurata nucleopolyhedrovirus-A. J Gen Virol 2005; 86:91-105. [PMID: 15604435 DOI: 10.1099/vir.0.80488-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A second genotype of Mamestra configurata nucleopolyhedrovirus-A (MacoNPV-A), variant 90/4 (v90/4), was identified due to its altered restriction endonuclease profile and reduced virulence for the host insect, M. configurata, relative to the archetypal genotype, MacoNPV-A variant 90/2 (v90/2). To investigate the genetic differences between these two variants, the genome of v90/4 was sequenced completely. The MacoNPV-A v90/4 genome is 153 656 bp in size, 1404 bp smaller than the v90/2 genome. Sequence alignment showed that there was 99·5 % nucleotide sequence identity between the genomes of v90/4 and v90/2. However, the v90/4 genome has 521 point mutations and numerous deletions and insertions when compared to the genome of v90/2. Gene content and organization in the genome of v90/4 is identical to that in v90/2, except for an additional bro gene that is found in the v90/2 genome. The region between hr1 and orf31 shows the greatest divergence between the two genomes. This region contains three bro genes, which are among the most variable baculovirus genes. These results, together with other published data, suggest that bro genes may influence baculovirus genome diversity and may be involved in recombination between baculovirus genomes. Many ambiguous residues found in the v90/4 sequence also reveal the presence of 214 sequence polymorphisms. Sequence analysis of cloned HindIII fragments of the original MacoNPV field isolate that the 90/4 variant was derived from indicates that v90/4 is an authentic variant and may represent approximately 25 % of the genotypes in the field isolate. These results provide evidence of extensive sequence variation among the individual genomes comprising a natural baculovirus outbreak in a continuous host population.
Collapse
Affiliation(s)
- Lulin Li
- Pacific Agri-Food Research Centre, AAFC, Summerland, BC, Canada
| | - Qianjun Li
- Saskatoon Research Centre, AAFC-Saskatoon, SK, Canada
| | - Leslie G Willis
- Pacific Agri-Food Research Centre, AAFC, Summerland, BC, Canada
| | | | | | - Cam Donly
- Southern Crop Protection and Food Research Centre, AAFC, London, ON, Canada
| |
Collapse
|
31
|
Lu L, Du Q, Chejanovsky N. Reduced expression of the immediate-early protein IE0 enables efficient replication of Autographa californica multiple nucleopolyhedrovirus in poorly permissive Spodoptera littoralis cells. J Virol 2003; 77:535-45. [PMID: 12477858 PMCID: PMC140604 DOI: 10.1128/jvi.77.1.535-545.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of Spodoptera littoralis SL2 cells with the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) results in apoptosis and low yields of viral progeny, in contrast to infection with S. littoralis nucleopolyhedrovirus (SlNPV). By cotransfecting SL2 cells with AcMNPV genomic DNA and a cosmid library representing the complete SlNPV genome, we were able to rescue AcMNPV replication and to isolate recombinant virus vAcSL2, which replicated efficiently in SL2 cells. Moreover, vAcSL2 showed enhanced infectivity for S. littoralis larvae compared to AcMNPV. The genome of vAcSL2 carried a 519-bp insert fragment that increased the distance between the TATA element and the transcriptional initiation site (CAGT) of immediate-early gene ie0. This finding correlated with low steady-state levels of IE0 and higher steady-state levels of IE1 (the product of the ie1 gene, a major AcMNPV transactivator, and a multifunctional protein) than of IE0. Mutagenesis of the ie0 promoter locus by insertion of the chloramphenical acetyltransferase (cat) gene yielded a new recombinant AcMNPV with replication properties identical to those of vAcSL2. Thus, the analysis indicated that increasing the steady-state levels of IE1 relative to IE0 should enable AcMNPV replication in SL2 cells. This suggestion was confirmed by constructing a recombinant AcMNPV bearing an extra copy of the ie1 gene under the control of the Drosophila hsp70 promoter. These results suggest that IE0 plays a role in the regulation of AcMNPV infection and show, for the first time, that significant improvement in the ability of AcMNPV to replicate in a poorly permissive cell line and organism can be achieved by increasing the expression of the main multiple functional protein, IE1.
Collapse
Affiliation(s)
- Liqun Lu
- Entomology Department, Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | | | | |
Collapse
|
32
|
Chen LL, Wang HC, Huang CJ, Peng SE, Chen YG, Lin SJ, Chen WY, Dai CF, Yu HT, Wang CH, Lo CF, Kou GH. Transcriptional analysis of the DNA polymerase gene of shrimp white spot syndrome virus. Virology 2002; 301:136-47. [PMID: 12359454 DOI: 10.1006/viro.2002.1536] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The white spot syndrome virus DNA polymerase (DNA pol) gene (WSSV dnapol) has already been tentatively identified based on the presence of highly conserved motifs, but it shows low overall homology with other DNA pols and is also much larger (2351 amino acid residues vs 913-1244 aa). In the present study we perform a transcriptional analysis of the WSSV dnapol gene using the total RNA isolated from WSSV-infected shrimp at different times after infection. Northern blot analysis with a WSSV dnapol-specific riboprobe found a major transcript of 7.5 kb. 5'-RACE revealed that the major transcription start point is located 27 nucleotides downstream of the TATA box, at the nucleotide residue A within a CAGT motif, one of the initiator (Inr) motifs of arthropods. In a temporal expression analysis using differential RT-PCR, WSSV dnapol transcripts were detected at low levels at 2-4 h.p.i., increased at 6 h.p.i., and remained fairly constant thereafter. This is similar to the previously reported transcription patterns for genes encoding the key enzyme of nucleotide metabolism, ribonucleotide reductase. Phylogenetic analysis showed that the DNA pols from three different WSSV isolates form an extremely tight cluster. In addition, similar to an earlier phylogenetic analysis of WSSV protein kinase, the phylogenetic tree of viral DNA pols further supports the suggestion that WSSV is a distinct virus (likely at the family level) that does not belong to any of the virus families that are currently recognized.
Collapse
Affiliation(s)
- Li-Li Chen
- Department of Zoology, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang W, Leat N, Fielding B, Davison S. Identification, sequence analysis, and phylogeny of the immediate early gene 1 of the Trichoplusia ni single nucleocapsid polyhedrosis virus. Virus Genes 2002; 23:53-62. [PMID: 11556402 DOI: 10.1023/a:1011183313021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Substantial research has been conducted on the immediate early I (ie-1) genes from the prototype baculovirus Auographa californica multicapsid nuclear polyhedrosis virus (AcMNPV) and the Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus (OpMNPV). In both cases ie-1 gene products have been implicated in transcriptional activation and repression. In this study an ie-1 homolog was identified from Trichoplusia ni single nucleocapsid polyhedrosis virus (TniSNPV). Nucleotide sequence analysis indicated that the TniSNPV ie-1 gene consists of a 2,217 nucleotide open reading frame (ORF), encoding a protein with a molecular mass of 84.464 kDa. This represents the largest baculovirus ie-1 gene characterised to date. Of the seven ie-1 homologs identified to date, the TniSNPV ie-1 shared most sequence similarity with the ie-1 gene of Spodoptera exigua MNPV (SeMNPV) (41%). At the nucleotide level, expected TATA and CAGT motifs were found to precede each ie-1 ORE. At the protein level, it was confirmed that the N-termini are poorly conserved, but share the characteristic of having a high proportion of acidic amino acids. In addition it was found that N-terminal regions significantly matched the SET domain in the Swiss-Prot prosite database. The C-terminal regions of the deduced IE-1 sequences were found to be substantially more conserved than the N-termini. Several conserved motifs were identified in the C-terminal sequences. A phylogenetic tree of nine baculovirus IE-1 proteins was constructed using maximum parsimony analysis. The phylogenetic estimation of the ie-1 genes shows that TniSNPV is a member of the previously described lepidopteran NPV group II and it is most closely related to SeMNPV.
Collapse
Affiliation(s)
- W Wang
- Department of Microbiology, University of the Western Cape, Bellville, South Africa
| | | | | | | |
Collapse
|
34
|
Shippam-Brett CE, Willis LG, Theilmann DA. Analysis of sequences involved in IE2 transactivation of a baculovirus immediate-early gene promoter and identification of a new regulatory motif. Virus Res 2001; 75:13-28. [PMID: 11311424 DOI: 10.1016/s0168-1702(00)00253-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Opep-2 is a unique baculovirus early gene that has only been identified in the Orgyia pseudotsugata multiple capsid nucleopolyhedrovirus (OpMNPV). Previous analyses have shown this gene is expressed at very early times post-infection (p.i.) but is shut down by 36-48 h p.i. The promoter of opep-2 therefore, represents a class of early genes that is temporally regulated. In this study, a detailed analysis of the opep-2 promoter is performed to analyze the role individual motifs play in early gene expression. A new 13 base pair regulatory element was identified and shown to be essential in controlling high-level expression of this gene. In addition, mutational analysis revealed that GATA and CACGTG motifs, which have been shown to bind cellular factors in Sf9 and Ld652Y cells, played minor roles in influencing opep-2 expression in the absence of other viral factors. The OpMNPV transactivator IE2 causes a significant activation of the opep-2 promoter. Cotransfection of an extensive number of promoter deletions and mutations did not show any sequence specificity for IE2 transactivation. This is the first detailed analysis of the sequence requirements for IE2 transactivation, and these results suggest that IE2 does not bind directly to specific elements in the opep-2 promoter.
Collapse
Affiliation(s)
- C E Shippam-Brett
- Department of Plant Science, University of British Columbia, BC, Vancouver, Canada
| | | | | |
Collapse
|
35
|
Chen HH, Tsai FY, Chen CT. Negative regulatory regions of the PAT1 promoter of Hz-1 virus contain GATA elements which associate with cellular factors and regulate promoter activity. J Gen Virol 2001; 82:313-320. [PMID: 11161268 DOI: 10.1099/0022-1317-82-2-313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The persistence-associated transcript 1 (PAT1) is actively expressed during persistent infection with Hz-1 virus, while transcription of the rest of the viral genes is shut down. Previously, results of a series deletion of the PAT1 promoter suggested that the regions from nucleotides -312 to -212 and nucleotides -158 to -90 negatively regulate the promoter activity. Here, the negative regulatory effect of the -312/-90 fragment was confirmed using a heterologous IE0 promoter of Autographa californica multiple nucleopolyhedrovirus. Further, the negative regulation of the -312 to -212 region was orientation-independent. The results of electrophoresis mobility shift assays showed that cellular protein(s) bind specifically to DNA fragments -312/-212 and -158/-90. In each of these fragments, a GATA element was identified by computer-assisted analysis. Mutating both GATA elements in the -312/-90 fragment completely eliminated its negative effect on IE0 promoter activity, while mutating only one of these elements had little or no effect. Together, these results suggest that the GATA element has a negative regulatory role on the IE0 and PAT1 promoters.
Collapse
Affiliation(s)
- Hong-Hwa Chen
- Institute of Biotechnology1 and Department of Biology2, National Cheng Kung University, Tainan 701, Taiwan
| | - Feng-Yuan Tsai
- Institute of Biotechnology1 and Department of Biology2, National Cheng Kung University, Tainan 701, Taiwan
| | - Chung-Te Chen
- Institute of Biotechnology1 and Department of Biology2, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
36
|
Ward TW, Kimmick MW, Afanasiev BN, Carlson JO. Characterization of the structural gene promoter of Aedes aegypti densovirus. J Virol 2001; 75:1325-31. [PMID: 11152505 PMCID: PMC114038 DOI: 10.1128/jvi.75.3.1325-1331.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2000] [Accepted: 11/10/2000] [Indexed: 11/20/2022] Open
Abstract
Aedes aegypti densonucleosis virus (AeDNV) has two promoters that have been shown to be active by reporter gene expression analysis (B. N. Afanasiev, Y. V. Koslov, J. O. Carlson, and B. J. Beaty, Exp. Parasitol. 79:322-339, 1994). Northern blot analysis of cells infected with AeDNV revealed two transcripts 1,200 and 3,500 nucleotides in length that are assumed to express the structural protein (VP) gene and nonstructural protein genes, respectively. Primer extension was used to map the transcriptional start site of the structural protein gene. Surprisingly, the structural protein gene transcript began at an initiator consensus sequence, CAGT, 60 nucleotides upstream from the map unit 61 TATAA sequence previously thought to define the promoter. Constructs with the beta-galactosidase gene fused to the structural protein gene were used to determine elements necessary for promoter function. Deletion or mutation of the initiator sequence, CAGT, reduced protein expression by 93%, whereas mutation of the TATAA sequence at map unit 61 had little effect. An additional open reading frame was observed upstream of the structural protein gene that can express beta-galactosidase at a low level (20% of that of VP fusions). Expression of the AeDNV structural protein gene was shown to be stimulated by the major nonstructural protein NS1 (Afanasiev et al., Exp. parasitol., 1994). To determine the sequences required for transactivation, expression of structural protein gene-beta-galactosidase gene fusion constructs differing in AeDNV genome content was measured with and without NS1. The presence of NS1 led to an 8- to 10-fold increase in expression when either genomic end was present, compared to a 2-fold increase with a construct lacking the genomic ends. An even higher (37-fold) increase in expression occurred with both genomic ends present; however, this was in part due to template replication as shown by Southern blot analysis. These data indicate the location and importance of various elements necessary for efficient protein expression and transactivation from the structural protein gene promoter of AeDNV.
Collapse
Affiliation(s)
- T W Ward
- Department of Microbiology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | |
Collapse
|
37
|
Lan Q, Hiruma K, Hu X, Jindra M, Riddiford LM. Activation of a delayed-early gene encoding MHR3 by the ecdysone receptor heterodimer EcR-B1-USP-1 but not by EcR-B1-USP-2. Mol Cell Biol 1999; 19:4897-906. [PMID: 10373539 PMCID: PMC84291 DOI: 10.1128/mcb.19.7.4897] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MHR3, a homolog of the retinoid orphan receptor (ROR), is a transcription factor in the nuclear hormone receptor family that is induced by 20-hydroxyecdysone (20E) in the epidermis of the tobacco hornworm, Manduca sexta. Its 2.7-kb 5' flanking region was found to contain four putative ecdysone receptor response elements (EcREs) and a monomeric (GGGTCA) nuclear receptor binding site. Activation of this promoter fused to a chloramphenicol acetyltransferase (CAT) reporter by 2 micrograms of 20E per ml in Manduca GV1 cells was similar to that of endogenous MHR3, with detectable CAT by 3 h. When the ecdysone receptor B1 (EcR-B1) and Ultraspiracle 1 (USP-1) were expressed at high levels under the control of a constitutive promoter, CAT levels after a 3-h exposure to 20E increased two- to sixfold. In contrast, high expression of EcR-B1 and USP-2 caused little increase in CAT levels in response to 20E. Moreover, expression of USP-2 prevented activation by EcR-B1-USP-1. Deletion experiments showed that the upstream region, including the three most proximal putative EcREs, was responsible for most of the 20E activation, with the EcRE3 at -671 and the adjacent GGGTCA being most critical. The EcRE1 at -342 was necessary but not sufficient for the activational response but was the only one of the three putative EcREs to bind the EcR-B1-USP-1 complex in gel mobility shift assays and was responsible for the silencing action of EcR-B1-USP-1 in the absence of hormone. EcRE2 and EcRE3 each specifically bound other protein(s) in the cell extract, but not EcR and USP, and so are not EcREs in this cellular context. When cell extracts were used, the EcR-B1-USP-2 heterodimer showed no binding to EcRE1, and the presence of excess USP-2 prevented the binding of EcR-B1-USP-1 to this element. In contrast, in vitro-transcribed-translated USP-1 and USP-2 both formed heterodimeric complexes with EcR-B1 that bound ponasterone A with the same Kd (7 x 10(-10) M) and bound to both EcRE1 and heat shock protein 27 EcRE. Thus, factors present in the cell extract appear to modulate the differential actions of the two USP isoforms.
Collapse
Affiliation(s)
- Q Lan
- Department of Zoology, University of Washington, Seattle, Washington 98195-1800, USA
| | | | | | | | | |
Collapse
|
38
|
Ghosh S, Jain A, Mukherjee B, Habib S, Hasnain SE. The host factor polyhedrin promoter binding protein (PPBP) is involved in transcription from the baculovirus polyhedrin gene promoter. J Virol 1998; 72:7484-93. [PMID: 9696845 PMCID: PMC109984 DOI: 10.1128/jvi.72.9.7484-7493.1998] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypertranscription and temporal expression from the Autographa californica nuclear polyhedrosis (AcNPV) baculovirus polyhedrin promoter involves an alpha-amanitin-resistant RNA polymerase and requires a trans-acting viral factor(s). We previously reported that a 30-kDa host factor, polyhedrin promoter binding protein (PPBP), binds with unusual affinity, specificity, and stability to the transcriptionally important motif AATAAATAAGTATT within the polyhedrin (polh) initiator promoter and also displays coding strand-specific single-stranded DNA (ssDNA)-binding activity (S. Burma, B. Mukherjee, A. Jain, S. Habib, and S. E. Hasnain, J. Biol. Chem. 269:2750-2757, 1994; B. Mukherjee, S. Burma, and S. E. Hasnain, J. Biol. Chem. 270:4405-4411, 1995). We now present evidence which indicates that an additional factor(s) is involved in stabilizing PPBP-duplex promoter and PPBP-ssDNA interactions. TBP (TATA box binding protein) present in Spodoptera frugiperda (Sf9) cells is characteristically distinct from PPBP and does not interact directly with the polh promoter. Replacement of PPBP cognate sequences within the polh promoter with random nucleotides abolished PPBP binding in vitro and also failed to express the luciferase reporter gene in vivo. Phosphocellulose fractions of total nuclear extract from virus-infected cells which support in vitro transcription from the polh promoter contain PPBP activity. When PPBP was sequestered by the presence of oligonucleotides containing PPBP cognate sequence motifs, in vitro transcription of a C-free reporter cassette was affected but was restored by the exogenous addition of nuclear extract containing PPBP. When PPBP was mopped out in vivo by a plasmid carrying PPBP cognate sequence present in trans, polh promoter-driven expression of the luciferase reporter was abolished, demonstrating that binding of PPBP to the polh promoter is essential for transcription.
Collapse
Affiliation(s)
- S Ghosh
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
39
|
Chao YC, Lee ST, Chang MC, Chen HH, Chen SS, Wu TY, Liu FH, Hsu EL, Hou RF. A 2.9-kilobase noncoding nuclear RNA functions in the establishment of persistent Hz-1 viral infection. J Virol 1998; 72:2233-45. [PMID: 9499081 PMCID: PMC109520 DOI: 10.1128/jvi.72.3.2233-2245.1998] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Differential viral gene expression during both productive and persistent infections of Hz-1 virus in insect cells was elucidated. Despite more than 100 viral transcripts being expressed during productive viral infection, massive viral gene shutoff was observed during viral persistency, leaving the 2.9-kb persistence-associated transcript 1 (PAT1) as the only detectable viral RNA. Persistence-associated gene 1 (pag1), which encodes PAT1, was cloned and found to contain no significant open reading frames. PAT1 is not associated with the cellular translation machinery and is located exclusively in the nucleus. Further experiments showed that PAT1 is functional in the establishment of persistent Hz-1 viral infection in the cells. All the evidence collectively indicates that PAT1 is a novel nuclear transcript of viral origin. Our results showed that although PAT1 and XIST RNA, a mammalian X-inactive specific transcript, are transcribed by different genes, they have interesting similarities.
Collapse
Affiliation(s)
- Y C Chao
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
LaCount DJ, Friesen PD. Role of early and late replication events in induction of apoptosis by baculoviruses. J Virol 1997; 71:1530-7. [PMID: 8995679 PMCID: PMC191210 DOI: 10.1128/jvi.71.2.1530-1537.1997] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Autographa californica nuclear polyhedrosis virus (AcMNPV) mutants that lack the apoptotic suppressor gene p35 cause apoptosis in Spodoptera frugiperda SF21 cells. To identify a viral signal(s) that induces programmed cell death, we first defined the timing of apoptotic events during infection. Activation of a P35-inhibitable caspase, intracellular fragmentation of host and AcMNPV DNA, and cell membrane blebbing coincided with the initiation of viral DNA synthesis between 9 and 12 h after infection and thus suggested that apoptotic signaling begins at or before this time. Virus entry was required since binding of budded virus to host cell receptors alone was insufficient to induce apoptosis. To therefore determine the contribution of early and late replication events to apoptotic signaling, we used the AcMNPV mutant ts8 with a temperature-sensitive lesion in the putative helicase gene p143. At the nonpermissive temperature at which viral DNA synthesis was conditionally blocked, ts8 caused extensive apoptosis of the SF21 cell line p3576D, which dominantly interferes with anti-apoptotic function of viral P35. Confirming that apoptosis can be induced in the absence of normal viral DNA synthesis, parental SF21 cells also underwent apoptosis when infected with a ts8 p35 deletion mutant at the nonpermissive temperature. However, maximum levels of ts8 p35 deletion mutant-induced apoptosis required a temperature-sensitive event(s) that included the initiation of viral DNA synthesis. Collectively, these data suggested that baculovirus-induced apoptosis can be triggered by distinct early (pre-DNA synthesis) and late replicative events, including viral DNA synthesis or late gene expression.
Collapse
Affiliation(s)
- D J LaCount
- Institute for Molecular Virology and Department of Biochemistry, Graduate School and College of Agricultural and Life Sciences, University of Wisconsin-Madison, 53706, USA
| | | |
Collapse
|
41
|
Wu Y, Carstens EB. Initiation of baculovirus DNA replication: early promoter regions can function as infection-dependent replicating sequences in a plasmid-based replication assay. J Virol 1996; 70:6967-72. [PMID: 8794340 PMCID: PMC190746 DOI: 10.1128/jvi.70.10.6967-6972.1996] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
From the results of transient plasmid-based replication assays, it has been postulated that homologous regions (hrs) of Autographa californica nuclear polyhedrosis virus (AcMNPV) function as origins of viral DNA replication. However, these assays vary in specificity according to the methodology used and may not be dependent solely on the presence of hr sequences. To determine the role that hrs and other sequences might play in the replication process, a series of plasmids containing specific deletions of various hrs was generated and tested in a standardized replication assay. Deletion of the AcMNPV hr2 and hr5 sequences abolished the ability of plasmids to replicate in the standard infection-dependent replication assay, while deletion of hr1, hr3, and hr4a sequences decreased but did not eliminate plasmid replication in this assay. Plasmids carrying the complete ie-2 and pe38 genes, the ie-1 gene upstream region, or a variety of baculovirus genes including 11 early promoter regions were also able to replicate in virus-infected cells, suggesting that early viral promoter sequences could also function as putative origins of replication. These data suggest that the standard infection-dependent replication assay may identify a broad range of infection-dependent replicating sequences, only one or a few of which may represent genuine viral origins used by the virus in vivo. We propose a model suggesting that the selection of replication initiation sites may be imposed directly by chromatin structure and indirectly by primary sequence and that the process of viral DNA replication may be linked with viral transcription.
Collapse
Affiliation(s)
- Y Wu
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
42
|
Abstract
Baculovirus interactions with host cells range from the physical interactions that occur during viral binding and entry, to the complex and subtle mechanisms that regulate host gene expression and modify and regulate cellular and organismal physiology and defenses. Fundamental studies of baculovirus biochemistry and molecular biology have yielded many interesting and important discoveries on the mechanisms of these virus-host interactions. Information from such studies has also resulted in exciting new strategies for environmentally sound insect pest control, and in the development and improvement of a valuable eukaryotic expression vector system. In addition a number of important and valuable model biological systems have emerged from studies of baculoviruses. These include robust systems for studies of eukaryotic transcription, viral DNA replication, membrane fusion, and apoptosis. Because functions have been identified for only a small number of baculovirus genes, we can expect many exciting new discoveries in the future and an unfolding of the complex and intricate relationship between baculoviruses and insect cells.
Collapse
Affiliation(s)
- G W Blissard
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853-1801, USA
| |
Collapse
|
43
|
Rodems SM, Friesen PD. Transcriptional enhancer activity of hr5 requires dual-palindrome half sites that mediate binding of a dimeric form of the baculovirus transregulator IE1. J Virol 1995; 69:5368-75. [PMID: 7636981 PMCID: PMC189379 DOI: 10.1128/jvi.69.9.5368-5375.1995] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The hr5 enhancer element stimulates early viral transcription and may function as an origin of DNA replication for Autographa californica nuclear polyhedrosis virus (AcMNPV). The smallest functional unit of hr5 is a 28-bp repeat consisting of an imperfect palindrome (28-mer). To identify essential sequences and examine the molecular basis of hr5 activity, the effects of site-directed mutations on transcriptional enhancement by the 28-mer and binding of the AcMNPV transregulator IE1 were investigated. In transfection assays and infections with AcMNPV recombinants, activation of a basal viral promoter required sequences within both halves of the 28-mer. Basal promoter activation also required a critical spacing between these half sites. Mobility shift assays indicated that hr5 probes containing a single 28-mer were bound by in vitro-synthesized IE1. Competition assays using DNA fragments that contained mutated 28-mers demonstrated that both half sites were required for optimal binding of IE1. Similar assays using mutated 28-mer DNAs and nuclear extracts indicated that the relative affinity with which AcMNPV infection-specific proteins bound to the 28-mer was similar to that of in vitro-synthesized IE1. By using a combination of DNA binding and antibody supershift assays, it was demonstrated that IE1 binds to the 28-mer as a dimer. Collectively, these findings support a model in which symmetrical IE1 binding and simultaneous interaction with each half site are required for IE1-mediated transcriptional enhancement by hr5. Thus, sequence-specific binding may be one of the mechanisms by which IE1 directly or indirectly transregulates baculovirus gene expression.
Collapse
Affiliation(s)
- S M Rodems
- Institute for Molecular Virology, Graduate School and College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706, USA
| | | |
Collapse
|