1
|
Chang-Gonzalez AC, Akitsu A, Mallis RJ, Lang MJ, Reinherz EL, Hwang W. Load-based divergence in the dynamic allostery of two TCRs recognizing the same pMHC. eLife 2025; 13:RP104280. [PMID: 40192121 PMCID: PMC11975369 DOI: 10.7554/elife.104280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
Increasing evidence suggests that mechanical load on the αβ T-cell receptor (TCR) is crucial for recognizing the antigenic peptide-bound major histocompatibility complex (pMHC) molecule. Our recent all-atom molecular dynamics (MD) simulations revealed that the inter-domain motion of the TCR is responsible for the load-induced catch bond behavior of the TCR-pMHC complex and peptide discrimination (Chang-Gonzalez et al., 2024). To further examine the generality of the mechanism, we perform all-atom MD simulations of the B7 TCR under different conditions for comparison with our previous simulations of the A6 TCR. The two TCRs recognize the same pMHC and have similar interfaces with pMHC in crystal structures. We find that the B7 TCR-pMHC interface stabilizes under ∼15 pN load using a conserved dynamic allostery mechanism that involves the asymmetric motion of the TCR chassis. However, despite forming comparable contacts with pMHC as A6 in the crystal structure, B7 has fewer high-occupancy contacts with pMHC and exhibits higher mechanical compliance during the simulation. These results indicate that the dynamic allostery common to the TCRαβ chassis can amplify slight differences in interfacial contacts into distinctive mechanical responses and nuanced biological outcomes.
Collapse
MESH Headings
- Molecular Dynamics Simulation
- Allosteric Regulation
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Humans
- Major Histocompatibility Complex
- Protein Binding
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
| | - Aoi Akitsu
- Laboratory of Immunobiology, Dana-Farber Cancer InstituteBostonUnited States
- Department of Medical Oncology, Dana-Farber Cancer InstituteBostonUnited States
- Department of Medicine, Harvard Medical SchoolBostonUnited States
| | - Robert J Mallis
- Laboratory of Immunobiology, Dana-Farber Cancer InstituteBostonUnited States
- Department of Medical Oncology, Dana-Farber Cancer InstituteBostonUnited States
- Department of Dermatology, Harvard Medical SchoolBostonUnited States
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt UniversityNashvilleUnited States
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Dana-Farber Cancer InstituteBostonUnited States
- Department of Medical Oncology, Dana-Farber Cancer InstituteBostonUnited States
- Department of Medicine, Harvard Medical SchoolBostonUnited States
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M UniversityCollege StationUnited States
- Department of Materials Science & Engineering, Texas A&M UniversityCollege StationUnited States
- Center for AI and Natural Sciences, Korea Institute for Advanced StudySeoulRepublic of Korea
- Department of Physics & Astronomy, Texas A&M UniversityCollege StationUnited States
| |
Collapse
|
2
|
Chang-Gonzalez AC, Akitsu A, Mallis RJ, Lang MJ, Reinherz EL, Hwang W. Load-based divergence in the dynamic allostery of two TCRs recognizing the same pMHC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.16.618634. [PMID: 39464111 PMCID: PMC11507873 DOI: 10.1101/2024.10.16.618634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Increasing evidence suggests that mechanical load on the αβ T cell receptor (TCR) is crucial for recognizing the antigenic peptide-loaded major histocompatibility complex (pMHC) molecule. Our recent all-atom molecular dynamics (MD) simulations revealed that the inter-domain motion of the TCR is responsible for the load-induced catch bond behavior of the TCR-pMHC complex and peptide discrimination. To further examine the generality of the mechanism, we perform all-atom MD simulations of the B7 TCR under different conditions for comparison with our previous simulations of the A6 TCR. The two TCRs recognize the same pMHC and have similar interfaces with pMHC in crystal structures. We find that the B7 TCR-pMHC interface stabilizes under ~15-pN load using a conserved dynamic allostery mechanism that involves the asymmetric motion of the TCR chassis. However, despite forming comparable contacts with pMHC as A6 in the crystal structure, B7 has fewer high-occupancy contacts with pMHC and exhibits higher mechanical compliance during the simulation. These results indicate that the dynamic allostery common to the TCRαβ chassis can amplify slight differences in interfacial contacts into distinctive mechanical responses and nuanced biological outcomes.
Collapse
Affiliation(s)
- Ana C. Chang-Gonzalez
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Aoi Akitsu
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Robert J. Mallis
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Matthew J. Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Ellis L. Reinherz
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, USA
- Department of Physics & Astronomy, Texas A&M University, College Station, TX, USA
- Center for AI and Natural Sciences, Korea Institute for Advanced Study, Seoul, Republic of Korea
| |
Collapse
|
3
|
Mallis RJ, Brazin KN, Duke‐Cohan JS, Akitsu A, Stephens HM, Chang‐Gonzalez AC, Masi DJ, Kirkpatrick EH, Holliday EL, Feng Y, Zienkiewicz KJ, Lee JJ, Cinella V, Uberoy KI, Tan K, Wagner G, Arthanari H, Hwang W, Lang MJ, Reinherz EL. Biophysical and Structural Features of αβT-Cell Receptor Mechanosensing: A Paradigmatic Shift in Understanding T-Cell Activation. Immunol Rev 2025; 329:e13432. [PMID: 39745432 PMCID: PMC11744257 DOI: 10.1111/imr.13432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/10/2024] [Indexed: 01/21/2025]
Abstract
αβT cells protect vertebrates against many diseases, optimizing surveillance using mechanical force to distinguish between pathophysiologic cellular alterations and normal self-constituents. The multi-subunit αβT-cell receptor (TCR) operates outside of thermal equilibrium, harvesting energy via physical forces generated by T-cell motility and actin-myosin machinery. When a peptide-bound major histocompatibility complex molecule (pMHC) on an antigen presenting cell is ligated, the αβTCR on the T cell leverages force to form a catch bond, prolonging bond lifetime, and enhancing antigen discrimination. Under load, the αβTCR undergoes reversible structural transitions involving partial unfolding of its clonotypic immunoglobulin-like (Ig) domains and coupled rearrangements of associated CD3 subunits and structural elements. We postulate that transitions provide critical energy to initiate the signaling cascade via induction of αβTCR quaternary structural rearrangements, associated membrane perturbations, exposure of CD3 ITAMs to phosphorylation by non-receptor tyrosine kinases, and phase separation of signaling molecules. Understanding force-mediated signaling by the αβTCR clarifies long-standing questions regarding αβTCR antigen recognition, specificity and affinity, providing a basis for continued investigation. Future directions include examining atomistic mechanisms of αβTCR signal initiation, performance quality, tissue compliance adaptability, and T-cell memory fate. The mechanotransduction paradigm will foster improved rational design of T-cell based vaccines, CAR-Ts, and adoptive therapies.
Collapse
Affiliation(s)
- Robert J. Mallis
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Department of DermatologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Kristine N. Brazin
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Jonathan S. Duke‐Cohan
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Aoi Akitsu
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Hanna M. Stephens
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | | | - Daniel J. Masi
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Evan H. Kirkpatrick
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Elizabeth L. Holliday
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Yinnian Feng
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | | | - Jonathan J. Lee
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Vincenzo Cinella
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Kaveri I. Uberoy
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Kemin Tan
- Structural Biology Center, X‐Ray Science Division, Advanced Photon SourceArgonne National LaboratoryLemontIllinoisUSA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Wonmuk Hwang
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTexasUSA
- Department of Materials Science and EngineeringTexas A&M UniversityCollege StationTexasUSA
- Department of Physics and AstronomyTexas A&M UniversityCollege StationTexasUSA
- Center for AI and Natural SciencesKorea Institute for Advanced StudySeoulRepublic of Korea
| | - Matthew J. Lang
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
- Department of Molecular Physiology and BiophysicsVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Ellis L. Reinherz
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
4
|
Clauze A, Enose-Akahata Y, Jacobson S. T cell receptor repertoire analysis in HTLV-1-associated diseases. Front Immunol 2022; 13:984274. [PMID: 36189294 PMCID: PMC9520328 DOI: 10.3389/fimmu.2022.984274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Human T lymphotropic virus 1 (HTLV-1) is a human retrovirus identified as the causative agent in adult T-cell leukemia/lymphoma (ATL) and chronic-progressive neuroinflammatory disorder HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 is estimated to infect between 5-20 million people worldwide, although most infected individuals remain asymptomatic. HTLV-1 infected persons carry an estimated lifetime risk of approximately 5% of developing ATL, and between 0.25% and 1.8% of developing HAM/TSP. Most HTLV-1 infection is detected in CD4+ T cells in vivo which causes the aggressive malignancy in ATL. In HAM/TSP, the increase of HTLV-1 provirus induces immune dysregulation to alter inflammatory milieu, such as expansion of HTLV-1-specific CD8+ T cells, in the central nervous system of the infected subjects, which have been suggested to underlie the pathogenesis of HAM/TSP. Factors contributing to the conversion from asymptomatic carrier to disease state remain poorly understood. As such, the identification and tracking of HTLV-1-specific T cell biomarkers that may be used to monitor the progression from primary infection to immune dysfunction and disease are of great interest. T cell receptor (TCR) repertoires have been extensively investigated as a mechanism of monitoring adaptive T cell immune response to viruses and tumors. Breakthrough technologies such as single-cell RNA sequencing have increased the specificity with which T cell clones may be characterized and continue to improve our understanding of TCR signatures in viral infection, cancer, and associated treatments. In HTLV-1-associated disease, sequencing of TCR repertoires has been used to reveal repertoire patterns, diversity, and clonal expansions of HTLV-1-specific T cells capable of immune evasion and dysregulation in ATL as well as in HAM/TSP. Conserved sequence analysis has further been used to identify CDR3 motif sequences and exploit disease- or patient-specificity and commonality in HTLV-1-associated disease. In this article we review current research on TCR repertoires and HTLV-1-specific clonotypes in HTLV-1-associated diseases ATL and HAM/TSP and discuss the implications of TCR clonal expansions on HTLV-1-associated disease course and treatments.
Collapse
|
5
|
Ch'ng ACW, Lam P, Alassiri M, Lim TS. Application of phage display for T-cell receptor discovery. Biotechnol Adv 2021; 54:107870. [PMID: 34801662 DOI: 10.1016/j.biotechadv.2021.107870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/23/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
The immune system is tasked to keep our body unharmed and healthy. In the immune system, B- and T-lymphocytes are the two main components working together to stop and eliminate invading threats like virus particles, bacteria, fungi and parasite from attacking our healthy cells. The function of antibodies is relatively more direct in target recognition as compared to T-cell receptors (TCR) which recognizes antigenic peptides being presented on the major histocompatibility complex (MHC). Although phage display has been widely applied for antibody presentation, this is the opposite in the case of TCR. The cell surface TCR is a relatively large and complex molecule, making presentation on phage surfaces challenging. Even so, recombinant versions and modifications have been introduced to allow the growing development of TCR in phage display. In addition, the increasing application of TCR for immunotherapy has made it an important binding motif to be developed by phage display. This review will emphasize on the application of phage display for TCR discovery as well as the engineering aspect of TCR for improved characteristics.
Collapse
Affiliation(s)
- Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Paula Lam
- CellVec Private Limited, 118518, Singapore; National University of Singapore, Department of Physiology, 117597, Singapore; Duke-NUS Graduate Medical School, Cancer and Stem Cells Biology Program, 169857, Singapore
| | - Mohammed Alassiri
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
6
|
Pettmann J, Huhn A, Abu Shah E, Kutuzov MA, Wilson DB, Dustin ML, Davis SJ, van der Merwe PA, Dushek O. The discriminatory power of the T cell receptor. eLife 2021; 10:e67092. [PMID: 34030769 PMCID: PMC8219380 DOI: 10.7554/elife.67092] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/15/2021] [Indexed: 12/20/2022] Open
Abstract
T cells use their T cell receptors (TCRs) to discriminate between lower-affinity self and higher-affinity non-self peptides presented on major histocompatibility complex (pMHC) antigens. Although the discriminatory power of the TCR is widely believed to be near-perfect, technical difficulties have hampered efforts to precisely quantify it. Here, we describe a method for measuring very low TCR/pMHC affinities and use it to measure the discriminatory power of the TCR and the factors affecting it. We find that TCR discrimination, although enhanced compared with conventional cell-surface receptors, is imperfect: primary human T cells can respond to pMHC with affinities as low as KD ∼ 1 mM. The kinetic proofreading mechanism fit our data, providing the first estimates of both the time delay (2.8 s) and number of biochemical steps (2.67) that are consistent with the extraordinary sensitivity of antigen recognition. Our findings explain why self pMHC frequently induce autoimmune diseases and anti-tumour responses, and suggest ways to modify TCR discrimination.
Collapse
Affiliation(s)
- Johannes Pettmann
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
- Radcliffe Department of Medicine, Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
| | - Anna Huhn
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Enas Abu Shah
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
- Kennedy Institute of Rheumatology, University of OxfordOxfordUnited Kingdom
| | - Mikhail A Kutuzov
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Daniel B Wilson
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
- Boston University, Department of Mathematics and StatisticsBostonUnited States
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of OxfordOxfordUnited Kingdom
| | - Simon J Davis
- Radcliffe Department of Medicine, Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
| | | | - Omer Dushek
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
7
|
Dubois S, Feigenbaum L, Waldmann TA, Müller JR. NK cells prevent T cell lymphoma development in T cell receptor-transgenic mice. Cell Immunol 2020; 352:104081. [PMID: 32143838 DOI: 10.1016/j.cellimm.2020.104081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/16/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
Mice that express a single transgenic T cell receptor have a low incidence of T cell lymphoma development. We investigated whether this tumor development is restricted by surveillance mechanisms that are exerted by IL-15-dependent cells. Lymphoma incidence was increased to between 30 and 60% when TCR transgenes were expressed in IL-15-deficient mice. Mice in which NK cells had been depleted genetically or with neutralizing antibodies allowed lymphoma growth while the absence of CD8 T cells was without consequence. Half of the emerged T cell lymphomas carried Notch1 mutations. The distinct phenotype of the lymphomas involved expression of PD1, CD30, CD24, the stress receptor ligand Mult1 and MHC class I down-regulation. NK cells were able to directly lyse lymphoma cells, and neutralizations of Mult1 and class I expression prevented NK cell degranulation. Together these data support an involvement of NK cells in tumor surveillance of nascent T cell lymphomas.
Collapse
Affiliation(s)
- Sigrid Dubois
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lionel Feigenbaum
- Science Applications International Corporation/Frederick, NCI-Frederick Cancer Research and Development Center, Frederick, MD 21702, USA
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jürgen R Müller
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Guo T, Koo MY, Kagoya Y, Anczurowski M, Wang CH, Saso K, Butler MO, Hirano N. A Subset of Human Autoreactive CD1c-Restricted T Cells Preferentially Expresses TRBV4-1 + TCRs. THE JOURNAL OF IMMUNOLOGY 2017; 200:500-511. [PMID: 29237773 DOI: 10.4049/jimmunol.1700677] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
Abstract
In humans, a substantial portion of T cells recognize lipids presented by the monomorphic CD1 proteins. Recent studies have revealed the molecular basis of mycobacterial lipid recognition by CD1c-restricted T cells. Subsets of CD1c-restricted T cells recognize self-lipids in addition to foreign lipids, which may have implications in human diseases involving autoimmunity and malignancy. However, the molecular identity of these self-reactive T cells remains largely elusive. In this study, using a novel CD1c+ artificial APC (aAPC)-based system, we isolated human CD1c-restricted autoreactive T cells and characterized them at the molecular level. By using the human cell line K562, which is deficient in MHC class I/II and CD1 expression, we generated an aAPC expressing CD1c as the sole Ag-presenting molecule. When stimulated with this CD1c+ aAPC presenting endogenous lipids, a subpopulation of primary CD4+ T cells from multiple donors was consistently activated, as measured by CD154 upregulation and cytokine production in a CD1c-specific manner. These activated CD4+ T cells preferentially expressed TRBV4-1+ TCRs. Clonotypic analyses of the reconstituted TRBV4-1+ TCR genes confirmed CD1c-restricted autoreactivity of this repertoire, and the strength of CD1c reactivity was influenced by the diversity of CDR3β sequences. Finally, alanine scanning of CDR1 and CDR2 sequences of TRBV4-1 revealed two unique residues, Arg30 and Tyr51, as critical in conferring CD1c-restricted autoreactivity, thus elucidating the molecular basis of the observed V gene bias. These data provide new insights into the molecular identity of human autoreactive CD1c-restricted T cells.
Collapse
Affiliation(s)
- Tingxi Guo
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Ming Yin Koo
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Yuki Kagoya
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Mark Anczurowski
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Chung-Hsi Wang
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Kayoko Saso
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Marcus O Butler
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and.,Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Naoto Hirano
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| |
Collapse
|
9
|
Kubota R. Pathogenesis of human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis. ACTA ACUST UNITED AC 2017. [DOI: 10.1111/cen3.12395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryuji Kubota
- Division of Molecular Pathology; Center for Chronic Viral Diseases; Graduate School of Medical and Dental Sciences; Kagoshima University; Kagoshima Japan
| |
Collapse
|
10
|
Chamoto K, Guo T, Scally SW, Kagoya Y, Anczurowski M, Wang CH, Rahman MA, Saso K, Butler MO, Chiu PPL, Julien JP, Hirano N. Key Residues at Third CDR3β Position Impact Structure and Antigen Recognition of Human Invariant NK TCRs. THE JOURNAL OF IMMUNOLOGY 2016; 198:1056-1065. [PMID: 28003379 DOI: 10.4049/jimmunol.1601556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/21/2016] [Indexed: 01/27/2023]
Abstract
The human invariant NK (iNK) TCR is largely composed of the invariant TCR Vα24-Jα18 chain and semivariant TCR Vβ11 chains with variable CDR3β sequences. The direct role of CDR3β in Ag recognition has been studied extensively. Although it was noted that CDR3β can interact with CDR3α, how this interaction might indirectly influence Ag recognition is not fully elucidated. We observed that the third position of Vβ11 CDR3 can encode an Arg or Ser residue as a result of somatic rearrangement. Clonotypic analysis of the two iNK TCR types with a single amino acid substitution revealed that the staining intensity by anti-Vα24 Abs depends on whether Ser or Arg is encoded. When stained with an anti-Vα24-Jα18 Ab, human primary invariant NKT cells could be divided into Vα24 low- and high-intensity subsets, and Arg-encoding TCR Vβ11 chains were more frequently isolated from the Vα24 low-intensity subpopulation compared with the Vα24 high-intensity subpopulation. The Arg/Ser substitution also influenced Ag recognition as determined by CD1d multimer staining and CD1d-restricted functional responses. Importantly, in silico modeling validated that this Ser-to-Arg mutation could alter the structure of the CDR3β loop, as well as the CDR3α loop. Collectively, these results indicate that the Arg/Ser encoded at the third CDR3β residue can effectively modulate the overall structure of, and Ag recognition by, human iNK TCRs.
Collapse
Affiliation(s)
- Kenji Chamoto
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Tingxi Guo
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Stephen W Scally
- Program in Molecular Structure and Function, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Yuki Kagoya
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Mark Anczurowski
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Chung-Hsi Wang
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Muhammed A Rahman
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Kayoko Saso
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Marcus O Butler
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Priscilla P L Chiu
- Division of Pediatric Surgery, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Jean-Philippe Julien
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Molecular Structure and Function, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Naoto Hirano
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
11
|
A conserved αβ transmembrane interface forms the core of a compact T-cell receptor-CD3 structure within the membrane. Proc Natl Acad Sci U S A 2016; 113:E6649-E6658. [PMID: 27791034 DOI: 10.1073/pnas.1611445113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The T-cell antigen receptor (TCR) is an assembly of eight type I single-pass membrane proteins that occupies a central position in adaptive immunity. Many TCR-triggering models invoke an alteration in receptor complex structure as the initiating event, but both the precise subunit organization and the pathway by which ligand-induced alterations are transferred to the cytoplasmic signaling domains are unknown. Here, we show that the receptor complex transmembrane (TM) domains form an intimately associated eight-helix bundle organized by a specific interhelical TCR TM interface. The salient features of this core structure are absolutely conserved between αβ and γδ TCR sequences and throughout vertebrate evolution, and mutations at key interface residues caused defects in the formation of stable TCRαβ:CD3δε:CD3γε:ζζ complexes. These findings demonstrate that the eight TCR-CD3 subunits form a compact and precisely organized structure within the membrane and provide a structural basis for further investigation of conformationally regulated models of transbilayer TCR signaling.
Collapse
|
12
|
Root-Bernstein R. Autoimmunity and the microbiome: T-cell receptor mimicry of "self" and microbial antigens mediates self tolerance in holobionts: The concepts of "holoimmunity" (TcR-mediated tolerance for the holobiont) and "holoautoimmunity" (loss of tolerance for the holobiont) are introduced. Bioessays 2016; 38:1068-1083. [PMID: 27594308 PMCID: PMC7161894 DOI: 10.1002/bies.201600083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
I propose a T-cell receptor (TcR)-based mechanism by which immunity mediates both "genetic self" and "microbial self" thereby, connecting microbiome disease with autoimmunity. The hypothesis is based on simple principles. First, TcR are selected to avoid strong cross-reactivity with "self," resulting in selection for a TcR repertoire mimicking "genetic self." Second, evolution has selected for a "microbial self" that mimics "genetic self" so as to share tolerance. In consequence, our TcR repertoire also mimics microbiome antigenicity, providing a novel mechanism for modulating tolerance to it. Also, the microbiome mimics the TcR repertoire, acting as a secondary immune system. I call this TcR-microbiome mimicry "holoimmunity" to denote immune tolerance to the "holobiont self." Logically, microbiome-host mimicry means that autoimmunity directed at host antigens will also attack components of the microbiome, and conversely, an immunological attack on the microbiome may cross-react with host antigens producing "holoautoimmunity."
Collapse
|
13
|
Guo T, Chamoto K, Nakatsugawa M, Ochi T, Yamashita Y, Anczurowski M, Butler MO, Hirano N. Mouse and Human CD1d-Self-Lipid Complexes Are Recognized Differently by Murine Invariant Natural Killer T Cell Receptors. PLoS One 2016; 11:e0156114. [PMID: 27213277 PMCID: PMC4877060 DOI: 10.1371/journal.pone.0156114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/09/2016] [Indexed: 02/02/2023] Open
Abstract
Invariant natural killer T (iNKT) cells recognize self-lipids presented by CD1d through characteristic TCRs, which mainly consist of the invariant Vα14-Jα18 TCRα chain and Vβ8.2, 7 or 2 TCRβ chains with hypervariable CDR3β sequences in mice. The iNKT cell-CD1d axis is conserved between humans and mice, and human CD1d reactivity of murine iNKT cells have been described. However, the detailed differences between the recognition of human and mouse CD1d bound to various self-lipids by mouse iNKT TCRs are largely unknown. In this study, we generated a de novo murine iNKT TCR repertoire with a wider range of autoreactivity compared with that of naturally occurring peripheral iNKT TCRs. Vβ8.2 mouse iNKT TCRs capable of recognizing the human CD1d-self-lipid tetramer were identified, although such clones were not detectable in the Vβ7 or Vβ2 iNKT TCR repertoire. In line with previously reports, clonotypic Vβ8.2 iNKT TCRs with unique CDR3β loops did not discriminate among lipids presented by mouse CD1d. Unexpectedly, however, these iNKT TCRs showed greater ligand selectivity toward human CD1d presenting the same lipids. Our findings demonstrated that the recognition of mouse and human CD1d-self-lipid complexes by murine iNKT TCRs is not conserved, thereby further elucidating the differences between cognate and cross-species reactivity of self-antigens by mouse iNKT TCRs.
Collapse
Affiliation(s)
- Tingxi Guo
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Kenji Chamoto
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Munehide Nakatsugawa
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Toshiki Ochi
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yuki Yamashita
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mark Anczurowski
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Marcus O. Butler
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Naoto Hirano
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
14
|
Abstract
T-cell receptor (TCR) binding to peptide/MHC determines specificity and initiates signaling in antigen-specific cellular immune responses. Structures of TCR-pMHC complexes have provided enormous insight to cellular immune functions, permitted a rational understanding of processes such as pathogen escape, and led to the development of novel approaches for the design of vaccines and other therapeutics. As production, crystallization, and structure determination of TCR-pMHC complexes can be challenging, there is considerable interest in modeling new complexes. Here we describe a rapid approach to TCR-pMHC modeling that takes advantage of structural features conserved in known complexes, such as the restricted TCR binding site and the generally conserved diagonal docking mode. The approach relies on the powerful Rosetta suite and is implemented using the PyRosetta scripting environment. We show how the approach can recapitulate changes in TCR binding angles and other structural details, and highlight areas where careful evaluation of parameters is needed and alternative choices might be made. As TCRs are highly sensitive to subtle structural perturbations, there is room for improvement. Our method nonetheless generates high-quality models that can be foundational for structure-based hypotheses regarding TCR recognition.
Collapse
Affiliation(s)
- Timothy P Riley
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
| | - Nishant K Singh
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
| | - Brian G Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA.
- Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA.
| |
Collapse
|
15
|
Melamed A, Laydon DJ, Al Khatib H, Rowan AG, Taylor GP, Bangham CRM. HTLV-1 drives vigorous clonal expansion of infected CD8(+) T cells in natural infection. Retrovirology 2015; 12:91. [PMID: 26552867 PMCID: PMC4640420 DOI: 10.1186/s12977-015-0221-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/02/2015] [Indexed: 12/20/2022] Open
Abstract
Background Human T-lymphotropic Virus Type I (HTLV-1) is a retrovirus that persistently infects 5–10 million individuals worldwide and causes disabling or fatal inflammatory and malignant diseases. The majority of the HTLV-1 proviral load is found in CD4+ T cells, and the phenotype of adult T cell leukemia (ATL) is typically CD4+. HTLV-1 also infects CD8+ cells in vivo, but the relative abundance and clonal composition of the two infected subpopulations have not been studied. We used a high-throughput DNA sequencing protocol to map and quantify HTLV-1 proviral integration sites in separated populations of CD4+ cells, CD8+ cells and unsorted peripheral blood mononuclear cells from 12 HTLV-1-infected individuals. Results We show that the infected CD8+ cells constitute a median of 5 % of the HTLV-1 proviral load. However, HTLV-1-infected CD8+ clones undergo much greater oligoclonal proliferation than the infected CD4+ clones in infected individuals, regardless of disease manifestation. The CD8+ clones are over-represented among the most abundant clones in the blood and are redetected even after several years. Conclusions We conclude that although they make up only 5 % of the proviral load, the HTLV-1-infected CD8+ T-cells make a major impact on the clonal composition of HTLV-1-infected cells in the blood. The greater degree of oligoclonal expansion observed in the infected CD8+ T cells, contrasts with the CD4+ phenotype of ATL; cases of CD8+ adult T-cell leukaemia/lymphoma are rare. This work is consistent with growing evidence that oligoclonal expansion of HTLV-1-infected cells is not sufficient for malignant transformation. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0221-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anat Melamed
- Section of Virology, Imperial College London, Wright-Fleming Institute, Norfolk Place, London, W2 1PG, UK.
| | - Daniel J Laydon
- Section of Virology, Imperial College London, Wright-Fleming Institute, Norfolk Place, London, W2 1PG, UK.
| | - Hebah Al Khatib
- Section of Virology, Imperial College London, Wright-Fleming Institute, Norfolk Place, London, W2 1PG, UK.
| | - Aileen G Rowan
- Section of Virology, Imperial College London, Wright-Fleming Institute, Norfolk Place, London, W2 1PG, UK.
| | - Graham P Taylor
- Section of Virology, Imperial College London, Wright-Fleming Institute, Norfolk Place, London, W2 1PG, UK.
| | - Charles R M Bangham
- Section of Virology, Imperial College London, Wright-Fleming Institute, Norfolk Place, London, W2 1PG, UK.
| |
Collapse
|
16
|
Smith SN, Wang Y, Baylon JL, Singh NK, Baker BM, Tajkhorshid E, Kranz DM. Changing the peptide specificity of a human T-cell receptor by directed evolution. Nat Commun 2014; 5:5223. [PMID: 25376839 PMCID: PMC4225554 DOI: 10.1038/ncomms6223] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/10/2014] [Indexed: 11/09/2022] Open
Abstract
Binding of a T-cell receptor (TCR) to a peptide/major histocompatibility complex is the key interaction involved in antigen specificity of T cells. The recognition involves up to six complementarity determining regions (CDR) of the TCR. Efforts to examine the structural basis of these interactions and to exploit them in adoptive T-cell therapies has required the isolation of specific T-cell clones and their clonotypic TCRs. Here we describe a strategy using in vitro-directed evolution of a single TCR to change its peptide specificity, thereby avoiding the need to isolate T-cell clones. The human TCR A6, which recognizes the viral peptide Tax/HLA-A2, was converted to TCR variants that recognized the cancer peptide MART1/HLA-A2. Mutational studies and molecular dynamics simulations identified CDR residues that were predicted to be important in the specificity switch. Thus, in vitro engineering strategies alone can be used to discover TCRs with desired specificities.
Collapse
Affiliation(s)
- Sheena N. Smith
- Department of Biochemistry, University of Illinois, 600 S. Matthews Ave., Urbana, IL 61801, USA
| | - Yuhang Wang
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61802, USA
| | - Javier L. Baylon
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61802, USA
| | - Nishant K. Singh
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 1234 Notre Dame Avenue, South Bend, IN 46557, USA
| | - Brian M. Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 1234 Notre Dame Avenue, South Bend, IN 46557, USA
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois, 600 S. Matthews Ave., Urbana, IL 61801, USA
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61802, USA
| | - David M. Kranz
- Department of Biochemistry, University of Illinois, 600 S. Matthews Ave., Urbana, IL 61801, USA
| |
Collapse
|
17
|
Feige MJ, Hendershot LM. Quality control of integral membrane proteins by assembly-dependent membrane integration. Mol Cell 2013; 51:297-309. [PMID: 23932713 DOI: 10.1016/j.molcel.2013.07.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/28/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023]
Abstract
Cell-surface multiprotein complexes are synthesized in the endoplasmic reticulum (ER), where they undergo cotranslational membrane integration and assembly. The quality control mechanisms that oversee these processes remain poorly understood. We show that less hydrophobic transmembrane (TM) regions derived from several single-pass TM proteins can enter the ER lumen completely. Once mislocalized, they are recognized by the Hsp70 chaperone BiP. In a detailed analysis for one of these proteins, the αβT cell receptor (αβTCR), we show that unassembled ER-lumenal subunits are rapidly degraded, whereas specific subunit interactions en route to the native receptor promote membrane integration of the less hydrophobic TM segments, thereby stabilizing the protein. For the TCR α chain, both complete ER import and subunit assembly depend on the same pivotal residue in its TM region. Thus, membrane integration linked to protein assembly allows cellular quality control of membrane proteins and connects the lumenal ER chaperone machinery to membrane protein biogenesis.
Collapse
Affiliation(s)
- Matthias J Feige
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | |
Collapse
|
18
|
Baker BM, Scott DR, Blevins SJ, Hawse WF. Structural and dynamic control of T-cell receptor specificity, cross-reactivity, and binding mechanism. Immunol Rev 2013; 250:10-31. [PMID: 23046120 DOI: 10.1111/j.1600-065x.2012.01165.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the past two decades, structural biology has shown how T-cell receptors engage peptide/major histocompatibility complex (MHC) complexes and provided insight into the mechanisms underlying antigen specificity and cross-reactivity. Here we review and contextualize our contributions, which have emphasized the influence of structural changes and molecular flexibility. A repeated observation is the presence of conformational melding, in which the T-cell receptor (TCR), peptide, and in some cases, MHC protein cooperatively adjust in order for recognition to proceed. The structural changes reflect the intrinsic dynamics of the unligated proteins. Characterization of the dynamics of unligated TCR shows how binding loop motion can influence TCR cross-reactivity as well as specificity towards peptide and MHC. Examination of peptide dynamics indicates not only peptide-specific variation but also a peptide dependence to MHC flexibility. This latter point emphasizes that the TCR engages a composite peptide/MHC surface and that physically the receptor makes little distinction between the peptide and MHC. Much additional evidence for this can be found within the database of available structures, including our observations of a peptide dependence to the TCR binding mode and structural compensations for altered interatomic interactions, in which lost TCR-peptide interactions are replaced with TCR-MHC interactions. The lack of a hard-coded physical distinction between peptide and MHC has implications not only for specificity and cross-reactivity but also the mechanisms underlying MHC restriction as well as attempts to modulate and control TCR recognition.
Collapse
Affiliation(s)
- Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, IN, USA.
| | | | | | | |
Collapse
|
19
|
|
20
|
Neumann F, Kubuschok B, Ertan K, Schormann C, Stevanovic S, Preuss KD, Schmidt W, Pfreundschuh M. A peptide epitope derived from the cancer testis antigen HOM-MEL-40/SSX2 capable of inducing CD4⁺ and CD8⁺ T-cell as well as B-cell responses. Cancer Immunol Immunother 2011; 60:1333-46. [PMID: 21630107 PMCID: PMC11028599 DOI: 10.1007/s00262-011-1030-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Antigen-derived HLA class I-restricted peptides can generate specific CD8(+) T-cell responses in vivo and are therefore often used as vaccines for patients with cancer. However, only occasional objective clinical responses have been reported suggesting the necessity of CD4(+) T-cell help and possibly antibodies for the induction of an effective anti-tumor immunity in vivo. The SSX2 gene encodes the cancer testis antigen (CTA) HOM-MEL-40/SSX2, which is frequently expressed in a wide spectrum of cancers. Both humoral and cellular immune responses against SSX2 have been described making SSX2 an attractive candidate for vaccine trials. METHODS SYFPEITHI algorithm was used to predict five pentadecamer peptides with a high binding probability for six selected HLA-DRB1 subtypes (*0101, *0301, *0401, *0701, *1101, *1501) which are prevalent in the Caucasian population. RESULTS Using peripheral blood cells of 13 cancer patients and 5 healthy controls, the HOM-MEL-40/SSX2-derived peptide p101-111 was identified as an epitope with dual immunogenicity for both CD4(+) helper and cytotoxic CD8(+) T cells. This epitope also reacted with anti-SSX2 antibodies in the serum of a patient with breast cancer. Most remarkably, SSX2/p101-111 simultaneously induced specific CD8, CD4, and antibody responses in vitro. CONCLUSIONS p101-111 is the first CTA-derived peptide which induces CD4(+), CD8(+), and B-cell responses in vitro. This triple-immunogenic peptide represents an attractive vaccine candidate for the induction of effective anti-tumor immunity.
Collapse
Affiliation(s)
- Frank Neumann
- José-Carreras-Center at the Department of Internal Medicine I—Build. 45.3, Saarland University Medical School, 66424 Homburg, Germany
| | - Boris Kubuschok
- José-Carreras-Center at the Department of Internal Medicine I—Build. 45.3, Saarland University Medical School, 66424 Homburg, Germany
| | - Kubilay Ertan
- Department of Gynecology and Obstetrics, Clinical Center Leverkusen GmbH, 51375 Leverkusen, Germany
| | - Claudia Schormann
- José-Carreras-Center at the Department of Internal Medicine I—Build. 45.3, Saarland University Medical School, 66424 Homburg, Germany
| | - Stefan Stevanovic
- Department of Immunology, Institute for Cell Biology, Eberhard-Karls-University, 72076 Tübingen, Germany
| | - Klaus-Dieter Preuss
- José-Carreras-Center at the Department of Internal Medicine I—Build. 45.3, Saarland University Medical School, 66424 Homburg, Germany
| | - Werner Schmidt
- Department of Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical School, 66424 Homburg, Germany
| | - Michael Pfreundschuh
- Department of Internal Medicine I—Build. 40, Saarland University Medical School, 66424 Homburg, Germany
| |
Collapse
|
21
|
Aggen DH, Chervin AS, Insaidoo FK, Piepenbrink KH, Baker BM, Kranz DM. Identification and engineering of human variable regions that allow expression of stable single-chain T cell receptors. Protein Eng Des Sel 2011; 24:361-72. [PMID: 21159619 PMCID: PMC3049343 DOI: 10.1093/protein/gzq113] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/14/2010] [Accepted: 11/16/2010] [Indexed: 01/08/2023] Open
Abstract
Single-chain antibody fragments (scFv), consisting of two linked variable regions (V(H) and V(L)), are a versatile format for engineering and as potential antigen-specific therapeutics. Although the analogous format for T cell receptors (TCRs), consisting of two linked V regions (Vα and Vβ; referred to here as scTv), could provide similar opportunities, all wild-type scTv proteins examined to date are unstable. This obstacle has prevented scTv fragments from being widely used for engineering or therapeutics. To further explore whether some stable human scTv fragments could be expressed, we used a yeast system in which display of properly folded domains correlates with ability to express the folded scTv in soluble form. We discovered that, unexpectedly, scTv fragments that contained the human Vα2 region (IMGT: TRAV12 family) were displayed and properly associated with different Vβ regions. Furthermore, a single polymorphic residue (Ser(α49)) in the framework region conferred additional thermal stability. These stabilized Vα2-containing scTv fragments could be expressed at high levels in Escherichia coli, and used to stain target cells that expressed the specific pep-HLA-A2 complexes. Thus, the scTv fragments can serve as a platform for engineering TCRs with diverse specificities, and possibly for therapeutic or diagnostic applications.
Collapse
MESH Headings
- Cloning, Molecular
- Escherichia coli/genetics
- Escherichia coli/metabolism
- HLA-A2 Antigen/immunology
- Humans
- Peptides/immunology
- Protein Conformation
- Protein Engineering/methods
- Protein Folding
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Single-Chain Antibodies/biosynthesis
- Single-Chain Antibodies/chemistry
- Single-Chain Antibodies/immunology
Collapse
Affiliation(s)
- David H. Aggen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Adam S. Chervin
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Francis K. Insaidoo
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Kurt H. Piepenbrink
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Brian M. Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - David M. Kranz
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA
| |
Collapse
|
22
|
Borbulevych OY, Piepenbrink KH, Baker BM. Conformational melding permits a conserved binding geometry in TCR recognition of foreign and self molecular mimics. THE JOURNAL OF IMMUNOLOGY 2011; 186:2950-8. [PMID: 21282516 DOI: 10.4049/jimmunol.1003150] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Molecular mimicry between foreign and self Ags is a mechanism of TCR cross-reactivity and is thought to contribute to the development of autoimmunity. The αβ TCR A6 recognizes the foreign Ag Tax from the human T cell leukemia virus-1 when presented by the class I MHC HLA-A2. In a possible link with the autoimmune disease human T cell leukemia virus-1-associated myelopathy/tropical spastic paraparesis, A6 also recognizes a self peptide from the neuronal protein HuD in the context of HLA-A2. We found in our study that the complexes of the HuD and Tax epitopes with HLA-A2 are close but imperfect structural mimics and that in contrast with other recent structures of TCRs with self Ags, A6 engages the HuD Ag with the same traditional binding mode used to engage Tax. Although peptide and MHC conformational changes are needed for recognition of HuD but not Tax and the difference of a single hydroxyl triggers an altered TCR loop conformation, TCR affinity toward HuD is still within the range believed to result in negative selection. Probing further, we found that the HuD-HLA-A2 complex is only weakly stable. Overall, these findings help clarify how molecular mimicry can drive self/nonself cross-reactivity and illustrate how low peptide-MHC stability can permit the survival of T cells expressing self-reactive TCRs that nonetheless bind with a traditional binding mode.
Collapse
Affiliation(s)
- Oleg Y Borbulevych
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
23
|
Tanaka Y, Nakasone H, Yamazaki R, Sato K, Sato M, Terasako K, Kimura SI, Okuda S, Kako S, Oshima K, Tanihara A, Nishida J, Yoshikawa T, Nakatsura T, Sugiyama H, Kanda Y. Single-cell analysis of T-cell receptor repertoire of HTLV-1 Tax-specific cytotoxic T cells in allogeneic transplant recipients with adult T-cell leukemia/lymphoma. Cancer Res 2010; 70:6181-6192. [PMID: 20647322 DOI: 10.1158/0008-5472.can-10-0678] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adult T-cell leukemia (ATL) is a lymphoproliferative malignancy associated with human T-cell lymphotropic virus type 1 (HTLV-1) infection. Recently, it has been shown that allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for ATL, and that HTLV-1 Tax-specific CD8(+) cytotoxic T cells (CTL) contribute to the graft-versus-ATL effect. In the present study, we, for the first time, analyzed the T-cell receptor (TCR) repertoire of isolated Tax(301-309) (SFHSLHLLF)-specific CTLs in HLA-A*2402(+) ATL patients before and after allo-HSCT by single-cell reverse transcription-PCR. The Tax(301-309)-specific CTLs in bone marrow and peripheral blood showed highly restricted oligoclonal diversity. In addition, a unique conserved amino acid motif of "P-D/P-R" in TCR-beta complementarity-determining region 3 in either BV7- or BV18-expressing CTLs was observed not only in all of the samples from ATL patients, but also in samples from the same patient before and after HSCT. Furthermore, the P-D/P-R motif-bearing CTL clones established from peripheral blood samples after HSCT exhibited strong killing activity against the HTLV-1-infected T cells of the patient. CTL clones were not established in vitro from samples prior to allo-HSCT. In addition, CTL clones with a strong killing activity were enriched in vivo after HSCT in the patient. Hence, Tax(301-309)-specific CTLs in ATL patients might have a preference for TCR construction and induce strong immune responses against the HTLV-1-infected T cells of patients, which contribute to the graft-versus-ATL effects after allo-HSCT. However, further analyses with a larger number of patients and more frequent sampling after allo-HSCT is required to confirm these findings.
Collapse
MESH Headings
- Amino Acid Motifs
- Gene Products, tax/immunology
- HLA-A Antigens/immunology
- HLA-A24 Antigen
- Hematopoietic Stem Cell Transplantation
- Human T-lymphotropic virus 1/immunology
- Humans
- Leukemia-Lymphoma, Adult T-Cell/immunology
- Leukemia-Lymphoma, Adult T-Cell/therapy
- Leukemia-Lymphoma, Adult T-Cell/virology
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/virology
Collapse
Affiliation(s)
- Yukie Tanaka
- Division of Hematology, Saitama Medical Center, Jichi Medical University, Saitama City, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mamedov IZ, Britanova OV, Chkalina AV, Staroverov DB, Amosova AL, Mishin AS, Kurnikova MA, Zvyagin IV, Mutovina ZY, Gordeev AV, Khaidukov SV, Sharonov GV, Shagin DA, Chudakov DM, Lebedev YB. Individual characterization of stably expanded T cell clones in ankylosing spondylitis patients. Autoimmunity 2009; 42:525-36. [PMID: 19657773 DOI: 10.1080/08916930902960362] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Ankylosing spondylitis (AS) is commonly characterized by clonal expansions of T cells. However, these clonal populations are poorly studied and their role in disease initiation and progression remains unclear. Here, we performed mass sequencing of TCR V beta libraries to search for the expanded T cell clones for two AS patients. A number of clones comprising more than 5% of the corresponding TCR V beta family were identified in both patients. For the first time, expanded clones were shown to be stably abundant in blood samples of AS patients for the prolonged period (1.5 and 2.5 years for two patients, correspondingly). These clones were individually characterized in respect to their differentiation status using fluorescent cell sorting with CD27, CD28, and CD45RA markers followed by quantitative identification of each clone within corresponding fraction using real time PCR analysis. Stable clones differed in phenotype and several were shown to belong to the proinflammatory CD27 - /CD28 - population. Their potentially cytotoxic status was confirmed by staining with perforin-specific antibodies. Search for the TCR V beta CRD3 sequences homologous to the identified clones revealed close matches with the previously reported T cell clones from AS and reactive arthritis patients, thus supporting their role in the disease and proposing consensus TCR V beta CDR3 motifs for AS. Interestingly, these motifs were also found to have homology with earlier reported virus-specific CDR3 variants, indicating that viral infections could play role in development of AS.
Collapse
Affiliation(s)
- I Z Mamedov
- Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fluorine substitutions in an antigenic peptide selectively modulate T-cell receptor binding in a minimally perturbing manner. Biochem J 2009; 423:353-61. [PMID: 19698083 DOI: 10.1042/bj20090732] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TCR (T-cell receptor) recognition of antigenic peptides bound and presented by MHC (major histocompatibility complex) molecules forms the basis of the cellular immune response to pathogens and cancer. TCRs bind peptide-MHC complexes weakly and with fast kinetics, features which have hindered detailed biophysical studies of these interactions. Modified peptides resulting in enhanced TCR binding could help overcome these challenges. Furthermore, there is considerable interest in using modified peptides with enhanced TCR binding as the basis for clinical vaccines. In the present study, we examined how fluorine substitutions in an antigenic peptide can selectively impact TCR recognition. Using a structure-guided design approach, we found that fluorination of the Tax peptide [HTLV (human T-cell lymphotropic virus)-1 Tax(11-19)] enhanced binding by the Tax-specific TCR A6, yet weakened binding by the Tax-specific TCR B7. The changes in affinity were consistent with crystallographic structures and fluorine chemistry, and with the A6 TCR independent of other substitutions in the interface. Peptide fluorination thus provides a means to selectively modulate TCR binding affinity without significantly perturbing peptide composition or structure. Lastly, we probed the mechanism of fluorine's effect on TCR binding and we conclude that our results were most consistent with a 'polar hydrophobicity' mechanism, rather than a purely hydrophobic- or electrostatic-based mechanism. This finding should have an impact on other attempts to alter molecular recognition with fluorine.
Collapse
|
26
|
Connelley T, MacHugh ND, Burrells A, Morrison WI. Dissection of the clonal composition of bovine alphabeta T cell responses using T cell receptor Vbeta subfamily-specific PCR and heteroduplex analysis. J Immunol Methods 2008; 335:28-40. [PMID: 18436232 DOI: 10.1016/j.jim.2008.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 02/14/2008] [Accepted: 02/22/2008] [Indexed: 11/26/2022]
Abstract
Although techniques that permit analysis of the clonal composition of T cell populations have been used extensively to provide a better understanding of the mechanisms that influence efficacy of T cell responses in humans and mice, such methods are lacking for other animal species. In this paper we report the establishment and validation of a panel of Vbeta subfamily-specific semi-nested PCR assays, and a CDR3beta heteroduplex technique for analysing the clonal diversity of bovine alphabeta T cell responses. Development of these methods was based on available sequence data for 48 functional Vbeta genes classified within 17 subfamilies. These techniques were used to determine the clonal composition of parasite-reactive CD8(+) T cells obtained from two animals immunised with the protozoan parasite Theileria parva. Analyses of uncloned T cell lines as well as large panels of cloned T cells derived from each of these lines confirmed the specificity and sensitivity of the assays. Specific PCR products were obtained from 96% of the T cell clones examined, indicating that the currently identified Vbeta genes represent most of the functional Vbeta subfamilies in cattle. Heteroduplex analyses, coupled with sequencing of PCR products, identified over 20 clonal expansions within each of the T cell lines, distributed over a large number of Vbeta subfamilies, although a limited number of clonotypes numerically dominated the response in both animals. The development and validation of these methods provides for the first time a generic set of molecular tools that can be used to perform detailed analysis of the TCR diversity and clonal composition of bovine T cell responses.
Collapse
Affiliation(s)
- T Connelley
- Division of Veterinary Clinical Studies, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, UK.
| | | | | | | |
Collapse
|
27
|
Truscott SM, Wang X, Lybarger L, Biddison WE, McBerry C, Martinko JM, Connolly JM, Linette GP, Fremont DH, Hansen TH, Carreno BM. Human major histocompatibility complex (MHC) class I molecules with disulfide traps secure disease-related antigenic peptides and exclude competitor peptides. J Biol Chem 2008; 283:7480-90. [PMID: 18195006 DOI: 10.1074/jbc.m709935200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ongoing discovery of disease-associated epitopes detected by CD8 T cells greatly facilitates peptide-based vaccine approaches and the construction of multimeric soluble recombinant proteins (e.g. tetramers) for isolation and enumeration of antigen-specific CD8 T cells. Related to these outcomes of epitope discovery is the recent demonstration that MHC class I/peptide complexes can be expressed as single chain trimers (SCTs) with peptide, beta(2)m and heavy chain connected by linkers to form a single polypeptide chain. Studies using clinically relevant mouse models of human disease have shown that SCTs expressed by DNA vaccination are potent stimulators of cytotoxic T lymphocytes. Their vaccine efficacy has been attributed to the fact that SCTs contain a preprocessed and preloaded peptide that is stably displayed on the cell surface. Although SCTs of HLA class I/peptide complexes have been previously reported, they have not been characterized for biochemical stability or susceptibility to exogenous peptide binding. Here we demonstrate that human SCTs remain almost exclusively intact when expressed in cells and can incorporate a disulfide trap that dramatically excludes the binding of exogenous peptides. The mechanistic and practical applications of these findings for vaccine development and T cell isolation/enumeration are discussed.
Collapse
Affiliation(s)
- Steven M Truscott
- Department of Pathology and Immunology, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Packer AN, Muraro PA. Optimized clonotypic analysis of T-cell receptor repertoire in immune reconstitution. Exp Hematol 2007; 35:516-21. [PMID: 17309832 DOI: 10.1016/j.exphem.2006.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 10/13/2006] [Accepted: 11/17/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE In recent years, T-cell receptor (TCR) sequencing analysis has proven an effective technique for the identification of T-cell populations of interest in cancer and autoimmunity, as well as for the characterization of peripheral immune repertoire reconstitution after hematopoietic stem cell transplantation (HSCT). However, despite its increased utilization, to our knowledge no group has investigated the minimum number of sequences necessary to accurately and efficiently describe the composition of TCR repertoire. The primary aim of this study was to optimize a procedure for clonotypic analysis of the TCR repertoire in patients undergoing autologous HSCT. MATERIALS AND METHODS TCR beta-chain diversity was analyzed by DNA sequencing and CDR3 spectratyping CD8(+) T cells isolated from three patients with multiple sclerosis undergoing autologous HSCT. Samples were collected at baseline and 1 or 2 years post-HSCT. RESULTS Using DNA cloning and high throughput sequencing, we analyzed over 1500 in-frame TCR sequences, allowing us to evaluate how our measures of TCR repertoire diversity change with increasing numbers of sequences included in the analysis. Our findings show that by analyzing 75 to 100 in-frame sequences, we are able to estimate TCR diversity within 5.0% to 7.4% of the values obtained at endpoint analysis (213-312 sequences per sample). CONCLUSIONS This study confirms the use of TCR sequencing as an effective technique for the characterization of immune renewal after autologous HSCT. In addition, we demonstrate for the first time convincing evidence to support the use of moderate sample sizes to accurately and efficiently evaluate TCR repertoire diversity.
Collapse
Affiliation(s)
- Amy N Packer
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
29
|
Armstrong KM, Baker BM. A comprehensive calorimetric investigation of an entropically driven T cell receptor-peptide/major histocompatibility complex interaction. Biophys J 2007; 93:597-609. [PMID: 17449678 PMCID: PMC1896243 DOI: 10.1529/biophysj.107.104570] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The alphabeta T cell receptor (TCR) is responsible for recognizing peptides bound and "presented" by major histocompatibility complex (MHC) molecules. We recently reported that at 25 degrees C the A6 TCR, which recognizes the Tax peptide presented by the class I MHC human leukocyte antigen-A*0201 (HLA-A2), binds with a weak DeltaH degrees , a favorable DeltaS degrees , and a moderately negative DeltaC(p). These observations were of interest given the unfavorable binding entropies and large heat capacity changes measured for many other TCR-ligand interactions, suggested to result from TCR conformational changes occurring upon binding. Here, we further investigated the A6-Tax/HLA-A2 interaction using titration calorimetry. We found that binding results in a pK(a) shift, complicating interpretation of measured binding thermodynamics. To better characterize the interaction, we measured binding as a function of pH, temperature, and buffer ionization enthalpy. A global analysis of the resulting data allowed determination of both the intrinsic binding thermodynamics separated from the influence of protonation as well as the thermodynamics associated with the pK(a) shift. Our results indicate that intrinsically, A6 binds Tax/HLA-A2 with a very weak DeltaH degrees , an even more favorable DeltaS degrees than previously thought, and a relatively large negative DeltaC(p). Comparison of these energetics with the makeup of the protein-protein interface suggests that conformational adjustments are required for binding, but these are more likely to be structural shifts, rather than disorder-to-order transitions. The thermodynamics of the pK(a) shift suggest protonation may be linked to an additional process such as ion binding.
Collapse
Affiliation(s)
- Kathryn M Armstrong
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
30
|
Richman SA, Kranz DM. Display, engineering, and applications of antigen-specific T cell receptors. ACTA ACUST UNITED AC 2007; 24:361-73. [PMID: 17409021 DOI: 10.1016/j.bioeng.2007.02.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/23/2007] [Accepted: 02/26/2007] [Indexed: 10/23/2022]
Abstract
The use of T cell receptors (TCRs) as potential therapeutic agents provides an opportunity to target a greatly expanded array of antigens, compared to those now targeted with monoclonal antibodies. With the advent of new display technologies and TCR formats for in vitro engineering, it should be possible to generate high-affinity TCRs against virtually any peptide antigen that is shown to bind to a major histocompatibility complex (MHC) molecule (e.g. peptides derived from viral antigens or from self proteins that are associated with the transformed phenotype). What remains, however, are challenges associated with effective targeting of very low numbers of cell surface antigens (pepMHC), fewer than the case for conventional monoclonal antibody-based therapies. This hurdle might be overcome with the attachment of more effective payloads for soluble TCR approaches, or by using TCR gene transfer into T cells that can then be adoptively transferred into patients. There is considerable work to be done on the physiological aspects of either approach, including pharmacokinetic studies in the case of soluble TCRs, and T cell trafficking, persistence, and autoreactivity studies in the case of adoptively transferred T cells. As with the field of monoclonal antibodies, it will take time to explore these issues, but the potential benefits of TCR-based therapies make these challenges worth the effort.
Collapse
Affiliation(s)
- Sarah A Richman
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
31
|
Gagnon SJ, Borbulevych OY, Davis-Harrison RL, Turner RV, Damirjian M, Wojnarowicz A, Biddison WE, Baker BM. T cell receptor recognition via cooperative conformational plasticity. J Mol Biol 2006; 363:228-43. [PMID: 16962135 DOI: 10.1016/j.jmb.2006.08.045] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 08/15/2006] [Accepted: 08/16/2006] [Indexed: 11/25/2022]
Abstract
Although T cell receptor cross-reactivity is a fundamental property of the immune system and is implicated in numerous autoimmune pathologies, the molecular mechanisms by which T cell receptors can recognize and respond to diverse ligands are incompletely understood. In the current study we examined the response of the human T cell lymphotropic virus-1 (HTLV-1) Tax-specific T cell receptor (TCR) A6 to a panel of structurally distinct haptens coupled to the Tax 11-19 peptide with a lysine substitution at position 5 (Tax5K, LLFG[K-hapten]PVYV). The A6 TCR could cross-reactively recognize one of these haptenated peptides, Tax-5K-4-(3-Indolyl)-butyric acid (IBA), presented by HLA-A*0201. The crystal structures of Tax5K-IBA/HLA-A2 free and in complex with A6 reveal that binding is mediated by a mechanism of cooperative conformational plasticity involving conformational changes on both sides of the protein-protein interface, including the TCR complementarity determining region (CDR) loops, Valpha/Vbeta domain orientation, and the hapten-modified peptide. Our findings illustrate the complex role that protein dynamics can play in TCR cross-reactivity and highlight that T cell receptor recognition of ligand can be achieved through diverse and complex molecular mechanisms that can occur simultaneously in the interface, not limited to molecular mimicry and CDR loop shifts.
Collapse
Affiliation(s)
- Susan J Gagnon
- Molecular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Purbhoo MA, Sutton DH, Brewer JE, Mullings RE, Hill ME, Mahon TM, Karbach J, Jäger E, Cameron BJ, Lissin N, Vyas P, Chen JL, Cerundolo V, Jakobsen BK. Quantifying and imaging NY-ESO-1/LAGE-1-derived epitopes on tumor cells using high affinity T cell receptors. THE JOURNAL OF IMMUNOLOGY 2006; 176:7308-16. [PMID: 16751374 DOI: 10.4049/jimmunol.176.12.7308] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Presentation of intracellular tumor-associated Ags (TAAs) in the context of HLA class I molecules offers unique cancer-specific cell surface markers for the identification and targeting of tumor cells. For most peptide Ags, the levels of and variations in cell surface presentation remain unknown, yet these parameters are of crucial importance when considering specific TAAs as targets for anticancer therapy. Here we use a soluble TCR with picomolar affinity for the HLA-A2-restricted 157-165 epitope of the NY-ESO-1 and LAGE-1 TAAs to investigate presentation of this immunodominant epitope on the surface of a variety of cancer cells. By single molecule fluorescence microscopy, we directly visualize HLA-peptide presentation for the first time, demonstrating that NY-ESO-1/LAGE-1-positive tumor cells present 10-50 NY-ESO-1/LAGE-1(157-165) epitopes per cell.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigen Presentation
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigen-Presenting Cells/pathology
- Antigens, Neoplasm/analysis
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/metabolism
- Antigens, Surface
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Epitopes, T-Lymphocyte/analysis
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/metabolism
- HCT116 Cells
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- Humans
- Immunodominant Epitopes/analysis
- Immunodominant Epitopes/biosynthesis
- Immunodominant Epitopes/metabolism
- Immunosuppressive Agents/metabolism
- Melanoma/immunology
- Melanoma/metabolism
- Membrane Proteins/analysis
- Membrane Proteins/biosynthesis
- Membrane Proteins/metabolism
- Molecular Sequence Data
- Peptide Fragments/analysis
- Peptide Fragments/biosynthesis
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
|
33
|
Lichterfeld M, Williams KL, Mui SK, Shah SS, Mothe BR, Sette A, Kim A, Johnston MN, Burgett N, Frahm N, Cohen D, Brander C, Rosenberg ES, Walker BD, Altfeld M, Yu XG. T cell receptor cross-recognition of an HIV-1 CD8+ T cell epitope presented by closely related alleles from the HLA-A3 superfamily. Int Immunol 2006; 18:1179-88. [PMID: 16772368 DOI: 10.1093/intimm/dxl052] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HLA-A3 and -A11 share similar peptide-binding motifs, however, it is unclear if promiscuous epitope presentation by HLA-A3 or HLA-A11 is associated with promiscuous TCR recognition. Here, we show that despite widespread cross-presentation of identical HIV-1 peptides in HIV-1-infected individuals expressing HLA-A3 or HLA-A11, peptides presented by HLA-A3 or HLA-A11 commonly exhibited clear immune distinctiveness with exclusive TCR recognition. Yet, using HLA-A3 and HLA-A11 tetramers for testing T cell cross-recognition of the HIV-1 Nef QK10 epitope, we observed in two study persons that specific CD8+ T cell populations were able to cross-recognize this peptide in the context of both HLA-A3 and HLA-A11. This cross-recognition was mediated by single cross-reactive TCRs, as shown by TCR sequencing in conjunction with TCR Vbeta chain immunostaining. In each cross-reactive cell population, multiple TCR beta chain variants were detected in the presence of only one TCR alpha chain variant. Thus, despite distinct TCR recognition of HLA-A3 or HLA-A11 presented HIV-1 peptides in the vast majority of cases, specific TCRs can cross-recognize their antigen in the context of both HLA-A3 and HLA-A11.
Collapse
Affiliation(s)
- Mathias Lichterfeld
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sibon D, Gabet AS, Zandecki M, Pinatel C, Thête J, Delfau-Larue MH, Rabaaoui S, Gessain A, Gout O, Jacobson S, Mortreux F, Wattel E. HTLV-1 propels untransformed CD4 lymphocytes into the cell cycle while protecting CD8 cells from death. J Clin Invest 2006; 116:974-83. [PMID: 16585963 PMCID: PMC1421359 DOI: 10.1172/jci27198] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 01/10/2006] [Indexed: 01/03/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) infects both CD4+ and CD8+ lymphocytes, yet it induces adult T cell leukemia/lymphoma (ATLL) that is regularly of the CD4+ phenotype. Here we show that in vivo infected CD4+ and CD8+ T cells displayed similar patterns of clonal expansion in carriers without malignancy. Cloned infected cells from individuals without malignancy had a dramatic increase in spontaneous proliferation, which predominated in CD8+ lymphocytes and depended on the amount of tax mRNA. In fact, the clonal expansion of HTLV-1-positive CD8+ and CD4+ lymphocytes relied on 2 distinct mechanisms--infection prevented cell death in the former while recruiting the latter into the cell cycle. Cell cycling, but not apoptosis, depended on the level of viral-encoded tax expression. Infected tax-expressing CD4+ lymphocytes accumulated cellular defects characteristic of genetic instability. Therefore, HTLV-1 infection establishes a preleukemic phenotype that is restricted to CD4+ infected clones.
Collapse
Affiliation(s)
- David Sibon
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Anne-Sophie Gabet
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Marc Zandecki
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Christiane Pinatel
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Julien Thête
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Marie-Hélène Delfau-Larue
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Samira Rabaaoui
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Antoine Gessain
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Olivier Gout
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven Jacobson
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Franck Mortreux
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Eric Wattel
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
35
|
Sospedra M, Muraro PA, Stefanová I, Zhao Y, Chung K, Li Y, Giulianotti M, Simon R, Mariuzza R, Pinilla C, Martin R. Redundancy in antigen-presenting function of the HLA-DR and -DQ molecules in the multiple sclerosis-associated HLA-DR2 haplotype. THE JOURNAL OF IMMUNOLOGY 2006; 176:1951-61. [PMID: 16424227 PMCID: PMC2746197 DOI: 10.4049/jimmunol.176.3.1951] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The three HLA class II alleles of the DR2 haplotype, DRB1*1501, DRB5*0101, and DQB1*0602, are in strong linkage disequilibrium and confer most of the genetic risk to multiple sclerosis. Functional redundancy in Ag presentation by these class II molecules would allow recognition by a single TCR of identical peptides with the different restriction elements, facilitating T cell activation and providing one explanation how a disease-associated HLA haplotype could be linked to a CD4+ T cell-mediated autoimmune disease. Using combinatorial peptide libraries and B cell lines expressing single HLA-DR/DQ molecules, we show that two of five in vivo-expanded and likely disease-relevant, cross-reactive cerebrospinal fluid-infiltrating T cell clones use multiple disease-associated HLA class II molecules as restriction elements. One of these T cell clones recognizes >30 identical foreign and human peptides using all DR and DQ molecules of the multiple sclerosis-associated DR2 haplotype. A T cell signaling machinery tuned for efficient responses to weak ligands together with structural features of the TCR-HLA/peptide complex result in this promiscuous HLA class II restriction.
Collapse
Affiliation(s)
- Mireia Sospedra
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Paolo A. Muraro
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Irena Stefanová
- Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Yingdong Zhao
- Computational and System Biology Group, Biometric Research Branch, National Cancer Institute, National Institutes of Health, Rockville, MD 20852
| | - Katherine Chung
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Yili Li
- Center for Advanced Research in Biotechnology, University of Maryland, Rockville, MD 20850
| | | | - Richard Simon
- Computational and System Biology Group, Biometric Research Branch, National Cancer Institute, National Institutes of Health, Rockville, MD 20852
| | - Roy Mariuzza
- Center for Advanced Research in Biotechnology, University of Maryland, Rockville, MD 20850
| | - Clemencia Pinilla
- Mixture Sciences, San Diego, CA 92121
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121
| | - Roland Martin
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
- Address correspondence and reprint requests to Dr. Roland Martin at the current address: Institució Catalana de Recerca i Estudis Avançats, Unitat de Neuroimmunologia Clinica, Hospital Universitari Vall d’Hebron, Pg Vall d’Hebron 119-129, 08035 Barcelona, Spain.
| |
Collapse
|
36
|
Gagnon SJ, Turner RV, Shiue MG, Damirjian M, Biddison WE. Extensive T cell receptor cross-reactivity on structurally diverse haptenated peptides presented by HLA-A2. Mol Immunol 2006; 43:346-56. [PMID: 16310048 DOI: 10.1016/j.molimm.2005.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 02/15/2005] [Indexed: 11/23/2022]
Abstract
Previous studies have shown that individual TCRs are able to effectively recognize multiple peptide/MHC complexes that have varying degrees of structural diversity. These TCR cross-reactivities have usually been demonstrated by using peptides that have different amino acid sequences. To further examine the extent to which TCRs can accommodate structurally diverse ligands, we analyzed human TCR cross-reactivity to eight structurally distinct haptens that are coupled to the HLA-A2-binding Tax peptide with a lysine substitution at position 5 (Tax-5K, LLFG[K-hapten]PVYV). The results demonstrate that 71% percent of the haptenated-peptide-induced CTL lines could cross-react on at least one other hapten. We compared the effects of HLA-A2 mutants with substitutions at known TCR contact sites for recognition by hapten-cross-reactive CTL. Recognition of the A2 mutants was remarkably similar whether they were presenting the immunizing or the cross-reactive peptide, indicating that similar amino acid contacts are made by the TCR during recognition of both complexes. Thus, hapten cross-reactivity is apparently accomplished without major adjustments to the interaction between the TCR and the surface of the HLA-A2 molecule. Collectively, these results suggest that TCRs possess the molecular flexibility to accommodate very structurally diverse ligands while retaining conserved interactions with the surface of the MHC molecule.
Collapse
Affiliation(s)
- Susan J Gagnon
- Molecular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Building 10, Room 5B-16, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
37
|
Muraro PA, Cassiani-Ingoni R, Chung K, Packer AN, Sospedra M, Martin R. Clonotypic analysis of cerebrospinal fluid T cells during disease exacerbation and remission in a patient with multiple sclerosis. J Neuroimmunol 2005; 171:177-83. [PMID: 16298432 DOI: 10.1016/j.jneuroim.2005.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Accepted: 10/06/2005] [Indexed: 11/22/2022]
Abstract
Migration of autoreactive T cells into the central nervous system (CNS) compartment is thought to be an important step in the pathogenesis of multiple sclerosis (MS). To follow the evolution of T cell repertoire in the CNS of a patient with relapsing-remitting MS, we analyzed cerebrospinal fluid (CSF) cells obtained during an acute clinical exacerbation, and subsequent disease remission after 13 months of immunomodulatory therapy. T cell receptor CDR3 region length distribution was significantly altered during the relapse, demonstrating the presence of clonally expanded T cells in the CSF. CDR3 spectratyping is a valuable approach to identify disease-associated T cells in the CNS.
Collapse
Affiliation(s)
- Paolo A Muraro
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bldg. 10, Room 5B16, 10 Center Dr MSC1400 Bethesda, MD 20892-1400, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Davis-Harrison RL, Armstrong KM, Baker BM. Two different T cell receptors use different thermodynamic strategies to recognize the same peptide/MHC ligand. J Mol Biol 2005; 346:533-50. [PMID: 15670602 DOI: 10.1016/j.jmb.2004.11.063] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 11/12/2004] [Accepted: 11/23/2004] [Indexed: 11/15/2022]
Abstract
A6 and B7 are two alphabeta T cell receptors (TCRs) that recognize the Tax peptide presented by the class I major histocompatibility molecule HLA-A2 (Tax/HLA-A2). Despite the fact that the two TCRs have different CDR loops and use different amino acid residues to contact their ligand, both receptors bind ligand with similar diagonal orientations. Here we show that they also bind with very similar binding affinities and kinetics (the DeltaDeltaG degrees for binding is approximately 0.3kcal/mol at 25 degrees C). The two receptors respond similarly to alterations in the MHC molecule, yet differ dramatically in their responses to ionic strength and temperature. The different responses to temperature indicate markedly different binding thermodynamics, which are not predictable from the surface area buried in the interfaces. A6 and B7 thus represent two TCRs that are both compatible with Tax/HLA-A2, although compatibility has been achieved through the use of different thermodynamic strategies. Finally, neither A6 nor B7 are predicted to undergo large conformational adaptations upon binding, distinguishing them from a number of other TCRs whose structure, thermodynamics, and kinetics have been characterized.
Collapse
Affiliation(s)
- Rebecca L Davis-Harrison
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
39
|
Laugel B, Boulter JM, Lissin N, Vuidepot A, Li Y, Gostick E, Crotty LE, Douek DC, Hemelaar J, Price DA, Jakobsen BK, Sewell AK. Design of Soluble Recombinant T Cell Receptors for Antigen Targeting and T Cell Inhibition. J Biol Chem 2005; 280:1882-92. [PMID: 15531581 DOI: 10.1074/jbc.m409427200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The use of recombinant T cell receptors (TCRs) to target therapeutic interventions has been hindered by the naturally low affinity of TCR interactions with peptide major histocompatibility complex ligands. Here, we use multimeric forms of soluble heterodimeric alphabeta TCRs for specific detection of target cells pulsed with cognate peptide, discrimination of quantitative changes in antigen display at the cell surface, identification of virus-infected cells, inhibition of antigen-specific cytotoxic T lymphocyte activation, and identification of cross-reactive peptides. Notably, the A6 TCR specific for the immunodominant HLA A2-restricted human T cell leukemia virus type 1 Tax(11-19) epitope bound to HLA A2-HuD(87-95) (K(D) 120 microm by surface plasmon resonance), an epitope implicated as a causal antigen in the paraneoplastic neurological degenerative disorder anti-Hu syndrome. A mutant A6 TCR that exhibited dramatically increased affinity for cognate antigen (K(D) 2.5 nm) without enhanced cross-reactivity was generated; this TCR demonstrated potent biological activity even as a monomeric molecule. These data provide insights into TCR repertoire selection and delineate a framework for the selective modification of TCRs in vitro that could enable specific therapeutic intervention in vivo.
Collapse
Affiliation(s)
- Bruno Laugel
- The T-cell Modulation Group, The Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Rd., Oxford OX1 3SY, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Betts MR, Price DA, Brenchley JM, Loré K, Guenaga FJ, Smed-Sorensen A, Ambrozak DR, Migueles SA, Connors M, Roederer M, Douek DC, Koup RA. The functional profile of primary human antiviral CD8+ T cell effector activity is dictated by cognate peptide concentration. THE JOURNAL OF IMMUNOLOGY 2004; 172:6407-17. [PMID: 15128832 DOI: 10.4049/jimmunol.172.10.6407] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Antiviral CD8(+) T cells can elaborate at least two effector functions, cytokine production and cytotoxicity. Which effector function is elaborated can determine whether the CD8(+) T cell response is primarily inflammatory (cytokine producing) or antiviral (cytotoxic). In this study we demonstrate that cytotoxicity can be triggered at peptide concentrations 10- to 100-fold less than those required for cytokine production in primary HIV- and CMV-specific human CD8(+) T cells. Cytolytic granule exocytosis occurs at peptide concentrations insufficient to cause substantial TCR down-regulation, providing a mechanism by which a CD8(+) T cell could engage and lyse multiple target cells. TCR sequence analysis of virus-specific cells shows that individual T cell clones can degranulate or degranulate and produce cytokine depending on the Ag concentration, indicating that response heterogeneity exists within individual CD8(+) T cell clonotypes. Thus, antiviral CD8(+) T cell effector function is determined primarily by Ag concentration and is not an inherent characteristic of a virus-specific CD8(+) T cell clonotype or the virus to which the response is generated. The inherent ability of viruses to induce high or low Ag states may be the primary determinant of the cytokine vs cytolytic nature of the virus-specific CD8(+) T cell response.
Collapse
Affiliation(s)
- Michael R Betts
- Immunology Laboratory, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Baxter TK, Gagnon SJ, Davis-Harrison RL, Beck JC, Binz AK, Turner RV, Biddison WE, Baker BM. Strategic Mutations in the Class I Major Histocompatibility Complex HLA-A2 Independently Affect Both Peptide Binding and T Cell Receptor Recognition. J Biol Chem 2004; 279:29175-84. [PMID: 15131131 DOI: 10.1074/jbc.m403372200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutational studies of T cell receptor (TCR) contact residues on the surface of the human class I major histocompatibility complex (MHC) molecule HLA-A2 have identified a "functional hot spot" that comprises Arg(65) and Lys(66) and is involved in recognition by most peptide-specific HLA-A2-restricted TCRs. Although there is a significant amount of functional data on the effects of mutations at these positions, there is comparatively little biochemical information that could illuminate their mode of action. Here, we have used a combination of fluorescence anisotropy, functional assays, and Biacore binding experiments to examine the effects of mutations at these positions on the peptide-MHC interaction and TCR recognition. The results indicate that mutations at both position 65 and position 66 influence peptide binding by HLA-A2 to various extents. In particular, mutations at position 66 result in significantly increased peptide dissociation rates. However, these effects are independent of their effects on TCR recognition, and the Arg(65)-Lys(66) region thus represents a true "hot spot" for TCR recognition. We also made the observation that in vitro T cell reactivity does not scale with the half-life of the peptide-MHC complex, as is often assumed. Finally, position 66 is implicated in the "dual recognition" of both peptide and TCR, emphasizing the multiple roles of the class I MHC peptide-binding domain.
Collapse
Affiliation(s)
- Tiffany K Baxter
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Call ME, Pyrdol J, Wucherpfennig KW. Stoichiometry of the T-cell receptor-CD3 complex and key intermediates assembled in the endoplasmic reticulum. EMBO J 2004; 23:2348-57. [PMID: 15152191 PMCID: PMC423287 DOI: 10.1038/sj.emboj.7600245] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Accepted: 04/30/2004] [Indexed: 11/08/2022] Open
Abstract
The T-cell receptor (TCR)-CD3 complex is critical for T-cell development and function, and represents one of the most complex transmembrane receptors. Models of different stoichiometry and valency have been proposed based on cellular experiments and these have important implications for the mechanisms of receptor triggering. Since determination of receptor stoichiometry in T-cells is not possible due to the presence of previously synthesized, unlabeled receptor components with different half-lives, we examined the stoichiometry of the receptor assembled in endoplasmic reticulum (ER) microsomes of B-cell origin. The stoichiometric relationship among all subunits was directly determined using intact radiolabeled TCR-CD3 complexes that were isolated with a sequential, non-denaturing immunoprecipitation method, and identical results were obtained with two detergents belonging to different structural classes. The results firmly establish that the alphabeta TCR-CD3 complex assembled in the ER is monovalent and composed of one copy of the TCRalphabeta, CD3deltaepsilon, CD3gammaepsilon and zeta-zeta dimers.
Collapse
Affiliation(s)
- Matthew E Call
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Boston, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Jason Pyrdol
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Boston, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Room Dana-1410, 44 Binney Street, Boston, MA 02115, USA. Tel.: +1 617 632 3086; Fax: +1 617 632 2662; E-mail:
| |
Collapse
|
43
|
Biddison WE, Turner RV, Gagnon SJ, Lev A, Cohen CJ, Reiter Y. Tax and M1 peptide/HLA-A2-specific Fabs and T cell receptors recognize nonidentical structural features on peptide/HLA-A2 complexes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:3064-74. [PMID: 12960332 DOI: 10.4049/jimmunol.171.6.3064] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both TCRs and Ab molecules are capable of MHC-restricted recognition of peptide/MHC complexes. However, such MHC restriction is the predominant mode of recognition by T cells, but is extremely rare for B cells. The present study asks whether the dichotomy in Ag recognition modes of T and B cells could be due to fundamental differences in the methods by which TCRs and Abs recognize peptide/MHC complexes. We have compared MHC and peptide recognition by panels of CTL lines specific for the Tax and M1 peptides presented by HLA-A2 plus Tax and M1 peptide/HLA-A2-specific human Fabs that were selected from a naive phage display library. Collectively, the results indicate both striking similarities and important differences between Fab and TCR recognition of MHC and peptide components of the Tax and M1/HLA-A2 complexes. These findings suggest that these two classes of immunoreceptors have solved the problem of specific recognition of peptide/MHC complexes by nonidentical mechanisms. This conclusion is important in part because it indicates that Ab engineering approaches could produce second-generation Ab molecules that more closely mimic TCR fine specificity. Such efforts may produce more efficacious diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- William E Biddison
- Molecular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Gagnon SJ, Wang Z, Turner R, Damirjian M, Biddison WE. MHC recognition by hapten-specific HLA-A2-restricted CD8+ CTL. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2233-41. [PMID: 12928367 DOI: 10.4049/jimmunol.171.5.2233] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell recognition by peptide-specific alphabeta TCRs involves not only recognition of the peptide, but also recognition of multiple molecular features on the surface of the MHC molecule to which the peptide has been bound. We have previously shown that TCRs that are specific for five different peptides presented by HLA-A2 recognize similar molecular features on the surface of the alpha1 and alpha2 helices of the HLA-A2 molecule. We next asked whether these same molecular features of the HLA-A2 molecule would be recognized by hapten-specific HLA-A2-restricted TCRs, given that hapten-specific T cells frequently show reduced MHC dependence/restriction. The results show that a panel of CD8+ CTL that are specific for the hapten DNP bound to two different peptides presented by HLA-A2 do the following: 1) show stringent MHC restriction, and 2) are largely affected by the same mutations on the HLA-A2 molecule that affected recognition by peptide-specific CTL. A small subset of this panel of CD8+ CTL can recognize a mutant HLA-A2 molecule in the absence of hapten. These data suggest that TCR recognition of a divergent repertoire of ligands presented by HLA-A2 is largely dependent upon common structural elements in the central portion of the peptide-binding site.
Collapse
Affiliation(s)
- Susan J Gagnon
- Molecular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
45
|
Stefanová I, Hemmer B, Vergelli M, Martin R, Biddison WE, Germain RN. TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways. Nat Immunol 2003; 4:248-54. [PMID: 12577055 DOI: 10.1038/ni895] [Citation(s) in RCA: 370] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2002] [Accepted: 01/14/2003] [Indexed: 12/27/2022]
Abstract
Functional discrimination between structurally similar self and foreign antigens is a main attribute of adaptive immunity. Here we describe two feedback mechanisms in T lymphocytes that together sharpen and amplify initial signaling differences related to the quality of T cell receptor (TCR) engagement. Weakly binding ligands predominantly trigger a negative feedback loop leading to rapid recruitment of the tyrosine phosphatase SHP-1, followed by receptor desensitization through inactivation of Lck kinase. In contrast, strongly binding ligands efficiently activate a positive feedback circuit involving Lck modification by ERK, preventing SHP-1 recruitment and allowing the long-lasting signaling necessary for gene activation. The characteristics of these pathways suggest that they constitute an important part of the mechanism allowing T cells to discriminate between self and foreign ligands.
Collapse
Affiliation(s)
- Irena Stefanová
- Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Dr., MSC-1892, Bethesda, Maryland 20892-1892, USA
| | | | | | | | | | | |
Collapse
|
46
|
Muraro PA, Wandinger KP, Bielekova B, Gran B, Marques A, Utz U, McFarland HF, Jacobson S, Martin R. Molecular tracking of antigen-specific T cell clones in neurological immune-mediated disorders. Brain 2003; 126:20-31. [PMID: 12477694 PMCID: PMC4993026 DOI: 10.1093/brain/awg021] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
T cells recognizing self or microbial antigens may trigger or reactivate immune-mediated diseases. Monitoring the frequency of specific T cell clonotypes to assess a possible link with the course of disease has been a difficult task with currently available technology. Our goal was to track individual candidate pathogenic T cell clones, selected on the basis of previous extensive studies from patients with immune-mediated disorders of the CNS, including multiple sclerosis, HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP) and chronic Lyme neuroborreliosis. We developed and applied a highly specific and sensitive technique to track single CD4(+) and CD8(+) T cell clones through the detection and quantification of T cell receptor (TCR) alpha or beta chain complementarity-determining region 3 transcripts by real-time reverse transcriptase (RT)-PCR. We examined the frequency of the candidate pathogenic T cell clones in the peripheral blood and CSF during the course of neurological disease. Using this approach, we detected variations of clonal frequencies that appeared to be related to clinical course, significant enrichment in the CSF, or both. By integrating clonotype tracking with direct visualization of antigen-specific staining, we showed that a single T cell clone contributed substantially to the overall recognition of the viral peptide/MHC complex in a patient with HAM/TSP. T cell clonotype tracking is a powerful new technology enabling further elucidation of the dynamics of expansion of autoreactive or pathogen-specific T cells that mediate pathological or protective immune responses in neurological disorders.
Collapse
Affiliation(s)
- Paolo A Muraro
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, MD 20892-1400, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang Z, Turner R, Baker BM, Biddison WE. MHC allele-specific molecular features determine peptide/HLA-A2 conformations that are recognized by HLA-A2-restricted T cell receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:3146-54. [PMID: 12218132 DOI: 10.4049/jimmunol.169.6.3146] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The structures of alphabeta TCRs bound to complexes of class I MHC molecules and peptide show that the TCRs make multiple contacts with the alpha1 and alpha2 helixes of the MHC. Previously we have shown that the A6 TCR in complex with the HLA-A2/Tax peptide has 15 contact sites on HLA-A2. Single amino acid mutagenesis of these contact sites demonstrated that mutation of only three amino acids clustered on the alpha1 helix (R65, K66, A69) disrupted recognition by the A6 TCR. In the present study we have asked whether TCRs that recognize four other peptides presented by HLA-A2 interact with the MHC in identical, similar, or different patterns as the A6 TCR. Mutants K66A and Q155A had the highest frequency of negative effects on lysis. A subset of peptide-specific CTL also selectively recognized mutants K66A or Q155A in the absence of exogenous cognate peptides, indicating that these mutations affected the presentation of endogenous peptide/HLA-A2 complexes. These findings suggest that most HLA-A2-restricted TCRs recognize surfaces on the HLA-A2/peptide complex that are dependent upon the side chains of K66 and Q155 in the central portion of the peptide binding groove. Crystallographic structures of several peptide/HLA-A2 structures have shown that the side chains of these critical amino acids that make contact with the A6 TCR also contact the bound peptide. Collectively, our results indicate that the generalized effects of changes at these critical amino acids are probably due to the fact that they can be directly contacted by TCRs as well as influence the binding and presentation of the bound peptides.
Collapse
Affiliation(s)
- Zichun Wang
- Molecular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
48
|
Muraro PA, Bonanni L, Mazzanti B, Pantalone A, Traggiai E, Massacesi L, Vergelli M, Gambi D. Short-term dynamics of circulating T cell receptor V beta repertoire in relapsing-remitting MS. J Neuroimmunol 2002; 127:149-59. [PMID: 12044987 DOI: 10.1016/s0165-5728(02)00105-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To understand the short-term dynamics of the circulating T cell receptor V beta (TCRBV) repertoire in relapsing-remitting multiple sclerosis (MS), we monitored the TCRBV profiles of untreated MS patients and healthy controls. Expansions of TCRBV genes in MS patients were significantly more frequent than in controls (P<0.001), were predominantly oligoclonal (80%) and were significantly correlated with immune responses to myelin basic protein (MBP) (P<0.02) and with inflammatory disease activity detected by magnetic resonance imaging (MRI) (P<0.05). Autoreactive T cell responses against myelin antigens may be implicated in perturbations of TCR repertoire in untreated MS patients, detectable even in the absence of clinically evident manifestations.
Collapse
MESH Headings
- Adult
- Female
- Gene Expression/immunology
- Humans
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/immunology
- Immunoglobulins
- Magnetic Resonance Imaging
- Male
- Middle Aged
- Multiple Sclerosis, Relapsing-Remitting/immunology
- Multiple Sclerosis, Relapsing-Remitting/pathology
- Myelin Basic Protein/immunology
- Oligoclonal Bands
- Polymorphism, Single-Stranded Conformational
- RNA, Messenger/analysis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- P A Muraro
- Neurological Clinic, Department of Oncology and Neuroscience, Nuovo Ospedale Clinicizzato, G.D. Annunzio University, Via dei Vestini, 66013 Chieti, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kubota R, Soldan SS, Martin R, Jacobson S. Selected cytotoxic T lymphocytes with high specificity for HTLV-I in cerebrospinal fluid from a HAM/TSP patient. J Neurovirol 2002; 8:53-7. [PMID: 11847592 DOI: 10.1080/135502802317247811] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Human T lymphotropic virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic inflammatory disease of the spinal cord in which HTLV-I Tax-specific cytotoxic T lymphocytes (CTL) have been suggested to be immunopathogenic. However, it is unknown whether the HTLV-I-specific CTL in the central nervous system differ from those in the periphery. We investigated functional T-cell receptor diversity in HTLV-I Tax11-19-specific CTL clones derived from peripheral blood and cerebrospinal fluid (CSF) of a HAM/TSP patient using analogue peptides of the viral antigen. CTL responses to the analogue peptides varied between T-cell clones, however, CTL clones from CSF showed limited recognition of the peptides when compared to those from peripheral blood. This suggests that CTL with highly focused specificity for HTLV-I Tax accumulate in the CSF and may contribute to the pathogenesis of HAM/TSP. Furthermore, this study provides a rationale for analogue peptide-based immunotherapeutic strategies focusing on the immunopathogenic T-cells in HTLV-I-associated neurologic disease.
Collapse
Affiliation(s)
- Ryuji Kubota
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
50
|
Peggs K, Verfuerth S, Pizzey A, Ainsworth J, Moss P, Mackinnon S. Characterization of human cytomegalovirus peptide-specific CD8(+) T-cell repertoire diversity following in vitro restimulation by antigen-pulsed dendritic cells. Blood 2002; 99:213-23. [PMID: 11756174 DOI: 10.1182/blood.v99.1.213] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Under conditions of impaired T-cell immunity, human cytomegalovirus (HCMV) can reactivate from lifelong latency, resulting in potentially fatal disease. A crucial role for CD8(+) T cells has been demonstrated in control of viral replication, and high levels of HCMV-specific cytotoxic T-lymphocytes are seen in immunocompetent HCMV-seropositive individuals despite very low viral loads. Elucidation of the minimum portion of the anti-HCMV T-cell repertoire that is required to suppress viral replication requires further study of clonal composition. The ability of dendritic cells to take up and process exogenous viral antigen by constitutive macropinocytosis was used to study HCMV-specific T-cell memory in the absence of viral replication. The specificity and clonal composition of the CD8(+) T-cell responses were evaluated using HLA tetrameric complexes and T-cell receptor beta chain (TCRBV) spectratypic analyses. There was a skewed reactivity toward the matrix protein pp65, with up to 40-fold expansion of CD8(+) T cells directed toward a single peptide-MHC combination. Individual expansions detected on TCRBV spectratype analysis were HCMV-specific and composed of single or highly restricted numbers of clones. There was preferential TCRBV gene usage (BV6.1/6.2, BV8, and BV13 in HLA-A*0201(+) individuals) but lack of conservation of CDR3 length and junctional motifs between donors. While there was a spectrum of TCR repertoire diversity directed toward individual MHC-peptide combinations between donors, a relatively small number of clones appeared to predominate the response in each case. These data provide further insight into the range of anti-HCMV responses and will aid the design and monitoring of adoptive immunotherapy protocols.
Collapse
Affiliation(s)
- Karl Peggs
- Department of Haematology, University College London, United Kingdom
| | | | | | | | | | | |
Collapse
|